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Abstract: Characteristics of uncertainty and imprecision, even imperfection is
presented from knowledge acquisition in map reconstruction of autonomous mobile
robots. Especially in the course of building grid map using sonar, this characteristic
of uncertainty is especially servere. Jean Dezert and Florentin Smarandache have
recently proposed a new information fusion theory (DSmT), whose greatest merit is
to deal with uncertainty and conflict of information, and also proposed a series of
proportional conflict redistribution rules (PRC1∼PCR5), therein, presently PCR5
is the most precise rule to deal with conflict factor according to its authors, though
the complexity of computation might be increased correspondingly. In this chapter,
according to the fusion machine based on the theory of DSmT coupled with PCR5,
we not only can fuse information of the same reliable degree from homogeneous
or heterogeneous sensors, but also the different reliable degree of evidential sources
with the discounting theory. Then we established the belief model for sonar grid map,
and constructed the generalized basic belief assignment function (gbbaf). Pioneer II
virtual mobile robot with 16 sonar range finders on itself served as the experiment
platform, which evolves in a virtual environment with some obstacles (discernable
objects) and 3D Map was rebuilt online with our self-developing software platform.
At the same time, we also compare it from other methods (i.e. Probability theory,
Fuzzy theory and Dempster-Shafer Theory (DST)). The results of the comparison
shows the new tool to have a better performance in map reconstruction of mobile
robot. It also supplied with a foundation to study the Self-Localization And Mapping
(SLAM) problem with the new tool further.

Supported by National Natural Science Foundation of China (No.69585003). The corresponding author:
Xinde Li (xdli825@yahoo.com.cn).

343



344 DSMT-BASED FUSION MACHINE

14.1 Introduction

The study on exploration of entirely unknown environment for intelligent mobile robots has been
a popular and difficult subject for experts in the robotic field for a long time. Robots do not
know the environment around themselves, that is, they have no experienced knowledge about the
environment such as size, shape, layout of the environment, and also no signs such as beacons,
landmarks, allowing them to determine their location about robot within the environment.
Thus, the relation between self-localization and map building for mobile robot is like the chicken
and egg problem [3, 16]. This is because if the mobile robot builds the map of the environment,
then it must know the real position of itself within the environment; at the same time, if the
robot wants to know its own position, then it must have a referenced map of the environment.
Though it is hard to answer this question, some intelligent sensors such as odometer, electronic
compass, sonar detector, laser range finder and vision sensor are installed on the mobile robot
as if a person has perceptive organs.

How to manage and utilize this perceptive information acquired by organs, it’s a new subject
in information fusion, which will play an important role herein. As far as we know, experts
have not yet given a unified expression. Just aiming to the practical field or system, proposed
architecture of control such as hierarchical, concentrative, distributive and composite, and then
according to the different integrated hierarchy, we compared the validity of all kinds of classical
(Probability) and intelligent (Fuzzy, Neural-Networks (NN), Rough Set theory, Dempster-Shafer
theory (DST), etc.) arithmetic. As far as the mobile robot is concerned, the popular arithmetic
of self-localization in an unknown environment relying on interoceptive sensors (odometer, elec-
tronic compass) and exteroceptive sensors (sonar detector, laser range finder and visual sensor)
is Markov location [10] or Monte Carlo location [28]. The map of the environment is built by
applying some arithmetic such as Probability theory, Fuzzy Set theory and DST. The informa-
tion of environment can be expressed as grid map, geometrical feature or topological map, etc.,
where the grid map is the most popular arithmetic expression [8, 9]. In this chapter, a new tool
of the Fusion Machine based on DSmT [5, 6, 22] coupling with PCR5 is introduced to apply
to the map reconstruction of mobile robots. DSmT mentioned here that has been proposed
by Jean Dezert and Florentin Smarandache based on Bayesian theory and Dempster-Shafer
theory [21] recently is a general, flexible and valid arithmetic of fusion. Its largest advantage
is that it can deal with uncertain and imprecise information effectively, which supplies with a
powerful tool to deal with uncertain information acquired by sonar detector in the course of
building the grid map. Moreover, through the rule of PCR5, which is also proposed by Jean
Dezert and Florentin Smarandache [23–25], we can refine and redistribute the conflict mass to
improve the precision and correctness of fusion. The comparison of the new tool from other
methods is done to testify it to have a better performance to solve the puzzle.

14.2 The fusion machine

14.2.1 General principle

At first, here the fusion machine is referred to a theory tool to combine and integrate the
imperfect information without preprocessing it (i.e. filter the information) according to the
different combination rules (i.e. DST, DSmT, etc.). It even redistributes the conflict masses to
other basic belief masses according to the constraints of system using the different redistribution
rules (i.e. PCR1∼PCR5, minC [2], WAO [11], etc.). Of course, how to adopt the fusion rule must
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be considered according to the different application. Here we consider the application, and give a
special fusion machine (shown in Fig. 14.1). In Fig. 14.1, k sources of evidences (i.e. the inputs)
provide basic belief assignments over a propositional space generated by elements of a frame
of discernment and set operators endowed with eventually a given set of integrity constraints,
which depend on the nature of elements of the frame. The set of belief assignments need then to
be combined with a fusion operator. Since in general the combination of uncertain information
yields a degree of conflict, say K, between sources, this conflict must be managed by the fusion
operator/machine. The way the conflict is managed is the key of the fusion step and makes
the difference between the fusion machines. The fusion can be performed globally/optimally
(when combining the sources in one derivation step all together) or sequentially (one source after
another as in Fig. 14.1). The sequential fusion processing (well adapted for temporal fusion) is
natural and more simple than the global fusion but in general remains only suboptimal if the
fusion rule chosen is not associative, which is the case for most of fusion rules, but Dempster’s
rule. In this chapter, the sequential fusion based on the PCR5 rule is chosen because PCR5 has
shown good performances in works and because the sequential fusion is much more simple to
implement and to test. The optimal (global) PCR5 fusion rule formula for k sources is possible
and has also been proposed [23] but is much more difficult to implement and has not been
tested yet. A more efficient PCR rule (denoted PCR6) proposed very recently by Martin and
Osswald in [15], which outperforms PCR5, could be advantageously used in the fusion machine
instead PCR5. Such idea is currently under investigation and new results will be reported in
a forthcoming publication. We present in more details in next section the DSmT-based fusion
machine.

Figure 14.1: A kind of sequential fusion machine

14.2.2 Basis of DSmT

DSmT (Dezert-Smarandache Theory) is a new, general and flexible arithmetic of fusion, which
can solve the fusion problem of different tiers including data-tier, feature-tier and decision-tier,
and even, not only can solve the static problem of fusion, but also can solve the dynamic one.
Especially, it has a prominent merit that it can deal with uncertain and highly conflicting
information [5, 6, 22].
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14.2.2.1 Simple review of DSmT

1) Let Θ = {θ1, θ2, · · · , θn}, be the frame of discernment, which includes n finite focal elements
θi(i = 1, · · · , n). Because the focal elements are not precisely defined and separated, so that no
refinement of Θ in a new larger set Ωref of disjoint elementary hypotheses is possible.

2) The hyper-power set DΘ is defined as the set of all compositions built from elements of Θ
with ∪ and ∩ (Θ generates DΘ under operators ∪ and ∩) operators such that

a) ∅, θ1, θ2, · · · , θn ∈ DΘ.

b) If A,B ∈ DΘ, then A ∩B ∈ DΘ and A ∪B ∈ DΘ.

c) No other elements belong to DΘ, except those obtained by using rules a) or b).

3) General belief and plausibility functions

Let Θ = {θ1, θ2, · · · , θn} be the general frame of discernment. For every evidential source
S, let us define a set of map of m(·) : DΘ → [0, 1] associated to it (abandoning Shafer’s model)
by assuming here that the fuzzy/vague/relative nature of elements θi(i = 1, · · · , n) can be non-
exclusive, as well as no refinement of Θ into a new finer exclusive frame of discernment Θref is
possible. The mapping m(·) is called a generalized basic belief assignment function if it satisfies

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1,

then m(A) is called A’s generalized basic belief assignment function (gbbaf). The general belief
function and plausibility function are defined respectively in almost the same manner as within
the DST, i.e.

Bel(A) =
∑

B∈DΘ,B⊆A
m(B) (14.1)

Pl(A) =
∑

B∈DΘ,B∩A 6=∅
m(B) (14.2)

4) Classical (free) DSm rule of combination

Let Mf (Θ) be a free DSm model. The classical (free) DSm rule of combination (denoted
(DSmC) for short) for k ≥ 2 sources is given ∀A 6= ∅, andA ∈ DΘas follows:

mMf (Θ)(A) ∼= [m1 ⊕ · · · ⊕mk](A) =
∑

X1,··· ,Xk∈DΘ

X1∩···∩Xk=A

k∏

i=1

mi(Xi) (14.3)

14.2.2.2 Fusion of unreliable sources

1) On the necessity of discounting sources

In fact, sources of information are unreliable in real systems due to the sources with different
knowledge and experience. For example, from the point of view of the mobile robots’ sensors,
the metrical precision and resolution with laser range finder are both higher than that with
sonar sensor. Even if they are the same sonar sensors, then they have also different precision
due to the manufacturing and other factors. Under this condition, if we treat data of unreliable
information sources as data of reliable sources to be fused, then the result is very unreliable
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and even reverses. Thus, unreliable resources must be considered, and then DSmT based on
the discounting method [7, 12, 21, 26] does well in dealing with unreliable sensors.

2) Principle of discounting method

Let’s consider k evidential sources of information (S1, S2, . . . , Sk), here we work out a uniform
way in dealing with the homogeneous and heterogeneous information sources. So we get the
discernment frame Θ = {θ1, θ2, · · · , θn}, m(·) is the basic belief assignment, let mi(·) : DΘ →
[0, 1] be a set of maps, and let pi represent reliable degree supported by Si (i = 1, 2, . . . , k),
considering

∑
A∈DΘ mi(A) = 1, let It = θ1 ∪ θ2 ∪ · · · ∪ θn express the total ignorance, and then

let mg
i (It) = 1− pi + pimi(It) represent the belief assignment of the total ignorance for global

system (after discounting), and then this is because of existing occurrence of malfunction, that
is,
∑

A∈DΘ mi(A) = pi, we assign the quantity 1−pi to the total ignorance again. Thus, the rule
of combination for DSmT based on discounting method with k ≥ 2 evidential sources is given as
in the formula (14.3), i.e. the conjunctive consensus on the hyper-power set by mg

Mf (Θ)
(∅) = 0

and ∀A 6= ∅ ∈ DΘ,

mg
Mf (Θ)

(A) ∼= [mg
1 ⊕ . . .⊕mg

k](A) =
∑

X1,··· ,Xk∈DΘ

X1∩···∩Xk=A

k∏

i=1

pimi(Xi) (14.4)

14.2.3 The PCR5 fusion rule

When integrity constraints are introduced in the model, one has to deal with the conflicting
masses, i.e. all the masses that would become assigned to the empty set through the DSmC
rule. Many fusion rules (mostly based on Shafer’s model) have been proposed [20] for managing
the conflict. Among these rules, Dempster’s rule [21] redistributes the total conflicting mass
over all propositions of 2Θ through a simple normalization step. This rule has been the source
of debates and criticisms because of its unexpected/counter-intuitive behavior in some cases.
Many alternatives have then been proposed [20, 22] for overcoming this drawback. In DSmT,
we have first extended the Dubois & Prade’s rule [7, 22] for taking into account any integrity
constraints in the model and also the possible dynamicity of the model and the frame. This first
general fusion rule, called DSmH (DSm Hybrid) rule, consists just in transferring the partial
conflicts onto the partial ignorances1. The DSmH rule has been recently and advantageously
replaced by the more sophisticated Proportional Conflict Redistribution rule no.5 (PCR5).
According to Smarandache and Dezert, PCR5 does a better redistribution of the conflicting
mass than Dempster’s rule since PCR5 goes backwards on the tracks of the conjunctive rule
and redistributes the partial conflicting masses only to the sets involved in the conflict and
proportionally to their masses put in the conflict, considering the conjunctive normal form of
the partial conflict. PCR5 is quasi-associative and preserves the neutral impact of the vacuous
belief assignment. Since PCR5 is presented in details in [23], we just remind PCR5 rule for only
two sources2: mPCR5(∅) = 0 , and for all X ∈ G \ {∅},

mPCR5(X) = m12(X) +
∑

Y ∈G\{X}
X∩Y =∅

[
m2

1(X)m2(Y )

m1(X) +m2(Y )
+

m2
2(X)m1(Y )

m2(X) +m1(Y )

]
, (14.5)

1Partial ignorance being the disjunction of elements involved in the partial conflicts.
2A general expression of PCR5 for an arbitrary number (s > 2) of sources can be found in [23].
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where all sets are in canonical form and m12(X) =
∑

X1,X2∈GΘ

X1∩X2

m1(X1) ·m2(X2) corresponds

to the conjunctive consensus on X between the two sources and where all denominators are
different from zero. If a denominator is zero, that fraction is discarded.

Figure 14.2: Sketch of the principle of sonar

14.3 Modeling of Sonar Grid Map Building Based on DSmT

Here we mainly discuss a sonar sensor, whose working principle (shown as Fig. 14.2) is: pro-
ducing sheaves of cone-shaped wave and detecting the objects by receiving the reflected wave.
Due to the restriction of sonar physical characteristic, metrical data has uncertainty as follows:
a) Beside its own error of making, the influence of external environment is also very great, for
example, temperature, humidity, atmospheric pressure and so on.
b) Because the sound wave spreads outwards through a form of loudspeaker, and there exists
a cone-shaped angle, we cannot know the true position of object detected among the fan-shaped
area, with the enlargement of distance between sonar and it.
c) The use of many sonar sensors will result in interference with each other. For example,
when the i-th sonar gives out detecting wave towards an object of irregular shape, if the angle
of incidence is too large, the sonar wave might be reflected out of the receiving range of the i-th
sonar sensor or also might be received by other sonar sensors.
d) Because sonar sensors utilize the reflection principle of sound wave, if the object absorbs
most of heavy sound wave, the sonar sensor might be invalid.

Pointing to the characteristics of sonar’s measurement, we construct a model of uncertain
information acquired from grid map using sonar based on DSmT. Here we suppose there are
two focal elements in system, that is, Θ = {θ1, θ2}. Where θ1 means grid is empty, θ2 means
occupied, and then we can get its hyper-power set DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}. Every grid
in environment is scanned k ≥ 5 times, each of which is viewed as source of evidence. Then
we may define a set of map aiming to every source of evidence and construct the general basic
belief assignment functions (gbbaf) as follows: m(θ1) is defined as the gbbaf for grid-unoccupied
(empty); m(θ2) is defined as the gbbaf for grid-occupied; m(θ1 ∩ θ2) is defined as the gbbaf for
holding grid-unoccupied and occupied simultaneous (conflict). m(θ1 ∪ θ2) is defined as the gb-
baf for grid-ignorance due to the restriction of knowledge and present experience (here referring
to the gbbaf for these grids still not scanned presently), it reflects the degree of ignorance of
grid-unoccupied or occupied.

The gbbaf of a set of map m(·) : DΘ → [0, 1] is constructed by authors such as the formulae
(14.6)∼(14.9) according to sonar physical characteristics.
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m(θ1) = E(ρ)E(θ) =





(1− (ρ/R)2)λ if

{
Rmin ≤ ρ ≤ R ≤ Rmax
0 ≤ θ ≤ ω/2

0 otherwise

(14.6)

m(θ2) = O(ρ)O(θ) =




e−3ρv(ρ−R)2λ if

{
Rmin ≤ ρ ≤ R+ ε ≤ Rmax
0 ≤ θ ≤ ω/2

0 otherwise

(14.7)

m(θ1 ∩ θ2) =





[1− [2(ρ−R+2ε)
R ]

2
]λ if

{
Rmin ≤ ρ ≤ R ≤ Rmax
0 ≤ θ ≤ ω/2

0 otherwise

(14.8)

m(θ1 ∪ θ2) =





tanh(2(ρ−R))λ if

{
R ≤ ρ ≤ Rmax
0 ≤ θ ≤ ω/2

0 otherwise

(14.9)

where λ = E(θ) = O(θ) is given by (see [8] for justification)

λ =

{
1− (2θ/ω)2 if 0 ≤ |θ| ≤ ω/2
0 otherwise

(14.10)

where ρv in formula (14.7) is defined as an environment adjusting variable, that is, the less the
object is in environment, the greater the variable ρv is, and makes the function of m(θ2) more
sensitive. Here let ρv be one. E(·) and O(·) are expressed as the Effect Function of ρ, θ to grid’s
empty or occupancy. In order to insure the sum of all masses to be one, we must renormalize it.
The analysis on the characteristics of gbbaf are shown as Fig. 14.3∼Fig. 14.7, when R = 1.5m.
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Figure 14.3: m(θ1) as function of ρ given by (14.6)
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Figure 14.4: m(θ2) as function of ρ given by (14.7)
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Figure 14.5: m(θ1 ∩ θ2) as function of ρ given by (14.8)

Seen from Fig. 14.3, m(θ1) has a falling tendency with the increasing of distance between
grid and sonar, and has the maximum at Rmin and zero at R. From the point of view of the
working principle of sonar, the more the distance between them approaches the measured value,
the more that grid might be occupied. Thus the probability that grid indicated is empty is very
low, of course the gbbaf of grid-unoccupied is given a low value.

From Fig. 14.4, m(θ2) takes on the distribution of Gaussian function with respect to the
addition of distance between them, has the maximum at R, which answers for the characteristic
of sonar acquiring information.

From Fig. 14.5, m(θ1 ∩ θ2) takes on the distribution of a parabola function with respect
to the addition of distance between them. In fact, when m(θ1) equals m(θ2), m(θ1 ∩ θ2) has
the maximum there. But it is very difficult and unnecessary to find the point of intersection
of the two functions. Generally, we let the position of R− 2ε replace the point of intersection.
Experience indicates that its approximate value is more rational.
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Figure 14.6: m(θ1 ∪ θ2) as function of ρ given by (14.9)
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Figure 14.7: λ as function of θ given by (14.10)

From Fig. 14.6, m(θ1∪θ2) takes on the distribution of the hyperbola function with respect to
the addition of distance between them, and zero at R. This function reflects well the ignorance of
grid information at R ≤ ρ ≤ Rmax. The relation between θ and λ is reflected in Fig. 14.7, where
the more the position of grid approaches the central axis, the greater λ becomes, that is, the
greater the contribution to belief assignment is. Otherwise, the lower it is. In short, the general
basic belief assignment functions (gbbaf) entirely fit with the characteristic of sonar acquiring
information. This supplies a theoretic foundation for dealing with uncertain information in grid
map building.

14.4 Sonar Grid Map Building Based on Other Methods

To apply the probability theory and fuzzy set theory to map building, at first, two functions of
uncertainty are introduced. Here the working environment U of robot is separated into m× n
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Figure 14.8: Sketch of the layout of sonars

rectangle grids of same size. Every grid is represented by Gij , U = {Gij |i ∈ [1,m], j ∈ [1, n]},
according to the reference [29]. Two functions are applied to represent the uncertainty of sonar
as follows:

Γ(θ) =

{
1− 21

(
θπ
180

)2
, if 0 ≤ |θ| ≤ 12.5o,

0, if |θ| > 12.5o.
(14.11)

Γ(ρ) = 1− (1 + tanh(2(ρ− ρv)))/2, (14.12)

where θ represents the angle between the center-axis and the spot (i, j) measured in Fig.
14.2. ρv is the pre-defined value, which reflects the smooth transferring point from the certainty
to uncertainty. Γ(θ) shows that the nearer by center- axis is the spot (i, j), the larger is the
density of the wave. Γ(ρ) shows that the farther away from the sonar is it, the lower is the
reliability, while the nearer by the sonar it is, the higher is the reliability of correct measurement.

1) Probability Theory

Elfes and Moravec [8, 9] firstly represented the probability of the grid occupied by obsta-
cles with probability theory. Then Thrun, Fox and Burgard [27], Olson [17], Romero and
Morales [19] also proposed the different methods of map reconstruction by themselves based on
probability theory. According to the above methods, we give the general description of map
building based on probability theory. To avoid an amount of computation, we suppose that
all grids are independent. For every grid Gij , let s(Gij) = E represent the grid empty, while
s(Gij) = O represent the grid occupied and P [s(Gij) = E] and P [s(Gij) = O] the probabilities
of these events with the constraint P [s(Gij) = E] + P [s(Gij) = O] = 1. According to the
physical characteristics, the probability model to map the sonar perception datum is given by
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P [s(Gij) = O|R] = P [s(ρ, θ) = O|R] =





(1− λ′)/2, if 0 ≤ ρ < R− 2ε,

[1− λ′
(
1− (2 + a)2

)
]/2, if R− 2ε ≤ ρ < R− ε,

[1 + λ′
(
1− a2

)
]/2, if R− ε ≤ ρ < R+ ε,

1/2, if ρ ≥ R+ ε

(14.13)
where λ′ = Γ(θ) · Γ(ρ) and a = (ρ−R)/ε. Seen from Eq. (14.13), the mapping between the

sonar data and probability answers for the physical characteristics of sonar. For the data out-
side the measurement range, the probability value is 0.5, that is, the uncertainty is the largest.
When the distance between the grid in the range and the sonar is less than the measurement,
the nearer by the sonar it is, the less is the possibility of grid occupied, while the nearer by the
location of the measurement is the grid, and the larger is the possibility of grid occupied.

The fusion algorithm for multi-sensors is given according to the Bayesian estimate as follows:

P [s(Gij) = O|R1, · · · , Rk+1] =
P [s(Gij) = O|Rk+1] · P [s(Gij) = O|R1, · · · , Rk]∑

X∈{E,O}
P [s(Gij) = X|Rk+1] · P [s(Gij) = X|R1, · · · , Rk]

(14.14)
Remark: In order to make the equation (14.14) hold, we must suppose at the beginning of
map building

∀Gij ∈ U, P [s(Gij) = E] = P [s(Gij) = O] = 0.5

2) Fuzzy Set Theory

Map building based on fuzzy logic is firstly proposed by Giuseppe Oriolo et al. [18]; they
define two fuzzy sets Ψ (represents grid empty) and Ω (represents grid occupied), which of size
all are equal to U , correspondingly, their membership functions are µΨ and µΩ. Similarly, we
can get fuzzy model to map the sonar perception datum.

µS(R)Ψ(Gij) = λ′ · fΨ(ρ,R) (14.15)

µS(R)Ω(Gij) = λ′ · fΩ(ρ,R), (14.16)

where

fΨ(ρ,R) =





kE , if 0 ≤ ρ < R− ε,
kE((R− ρ)/ε)2, if R− ε ≤ ρ < R,

0, if ρ ≥ R.

fΩ(ρ,R) =





kO, if 0 ≤ ρ < R− ε,
kO((R − ρ)/ε)2, if R− ε ≤ ρ < R+ ε,

0, if ρ ≥ R.
Here, fΨ(ρ,R) represents the influence of ρ,R on the membership µΨ of grid Gij . fΩ(ρ,R)

represents the influence of ρ,R on the membership µΩ of grid Gij . kE and kO are constants
with 0 < kE ≤ 1 and 0 < kO ≤ 1. λ′ is same as the definition in (14.13). Seen from the Eq.
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(14.15) and (14.16), if the grid has the great possibility of occupation, then the membership is
µΨ small, while the membership µΩ is great. If the grid is outside the measuring range, then
µΨ = 0 and µΩ = 0. The fusion algorithm for multi-sensors is given according to the union
operator in the fuzzy theory as follow: ∀X ∈ {Ψ,Ω},

µ
S(R1,··· ,Rk+1)
X (Gij) = µ

S(R1,··· ,Rk)
X (Gij)+µ

S(Rk+1)(Gij )
X −µS(R1,··· ,Rk)

X (Gij)·µS(Rk+1)
X (Gij). (14.17)

Remark: Initially, we suppose µΨ(Gij) = µΩ(Gij) = 0 (∀Gij ∈ U). According to membership
of every grid, we can get the final map representation as follows:

M = Ψ2 ∩ Ω ∩A ∩ I (14.18)

Here, A = Ψ ∩ Ω, I = Ψ ∩Ω. At the same time, the rule of fuzzy intersection is

µi∩j(Gij) = µi(Gij) · µj(Gij), ∀ Gij ∈ U,
and the rule of fuzzy complementation is

µi(Gij) = 1− µi(Gij), ∀ Gij ∈ U.
The larger is the membership of Gij belonging to the fuzzy set M , the greater is the possibility
of the grid occupied.

3) Dempster-Shafer Theory (DST)

The idea of using belief functions for representing someone’s subjective feeling of uncertainty
was first proposed by Shafer [21], following the seminal work of Dempster [4] about upper and
lower probabilities induced by a multi-valued mappings. The use of belief functions as an alter-
native to subjective probabilities for representing uncertainty was later justified axiomatically
by Smets [26], who introduced the Transferable Belief Model (TBM), providing a clear and
coherent interpretation of the various concepts underlying the theory.

Let θi (i = 1, 2, . . . , n) be some exhaustive and exclusive elements (hypotheses) of interest
taking on values in a finite discrete set Θ, called the frame of discernment. Let us assume that
an agent entertains beliefs concerning the value of θi, given a certain evidential corpus. We
postulate that these beliefs may be represented by a belief structure (or belief assignment),
i.e. a function from 2Θ to [0, 1] verifying

∑
A⊆Θm(A) = 1 and m(∅) = 0 for all A ⊆ Θ, the

quantity m(A) represents the mass of belief allocated to proposition ”θi ⊆ A”, and that cannot
be allocated to any strict sub-proposition because of lack of evidence. The subsets A of Θ such
that m(A) > 0 are called the focal elements of m. The information contained in the belief
structure may be equivalently represented as a belief function bel, or as a plausibility function
pl, defined respectively as bel(A) =

∑
B⊆Am(B) and pl(A) =

∑
B∩A 6=∅m(B). The quantity

bel(A), called the belief in A, is interpreted as the total degree of belief in A (i.e. in the
proposition ”θi ⊆ A”), whereas pl(A) denotes plausibility of A, i.e. the amount of belief that
could potentially be transferred to A, taking into account the evidence that does not contradict
that hypothesis.

Now we assume the simplest situation that two distinct pieces of evidence induce two belief
structures m1 and m2. The orthogonal sum of m1 and m2, denoted as m = m1 ⊕m2 is defined
as:

m(A) = K−1
∑

B∩C=A

m1(B)m2(C), (14.19)
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Figure 14.9: Flowchat of procedure of sonar map building based on DSmT and PCR5

Here K = 1 − ∑
B∩C=∅

m1(B)m2(C) for A 6= ∅ and m(∅) = 0. The orthogonal sum (also

called Dempster’s rule of combination) is commutative and associative. It plays a fundamental
operation for combining different evidential sources in evidence theory. DST as an information
fusion method has been applied to the environment exploration and map reconstruction [1, 13].
This method can assure to have a precise result in fusing the same or different multi-sources
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information from the sensors on the robot. According to the requirement of sonar grid map
building, we need only to consider a simple 2D frame Θ = {θ1, θ2}, where θ1 means ”the grid is
empty”, and θ2 means ”the grid is occupied”, and then we work with basic belief assignments
defined on its power set 2Θ = {∅, θ1, θ2, θ1 ∪ θ2}. According to DST, let mDST (∅) = 0, here
mDST (θ1) is defined as the basic belief assignment function (bbaf) for grid-empty, mDST (θ2) is
defined as the basic belief assignment function (bbaf) for grid-occupied, mDST (θ1∪θ2) is defined
as the basic belief assignment function for grid-ignorance. We may also construct basic belief
assignment function such asmDST (θ1) = m(θ1), mDST (θ2) = m(θ2), mDST (θ1∪θ2) = m(θ1∪θ2).
bbaf reflects still the characteristics of uncertainty for sonar grip map building in Fig. 14.2.
Though here we define the same bbaf as DSmT, considering the definition of DST must be
satisfied, we must renormalize them while acquiring sonar grid information [13, 14]. The new
basic belief assignment after fusing two evidence sources from the sonar range finders can be
obtained by the combination rule in Eq. (14.19).

14.5 Simulation Experiment

The experiment consists in simulating the autonomous navigation of a virtual Pioneer II Robot
carrying 16 simulated sonar detectors in a 5000mm×5000mm square array with an unknown
obstacle/object. The map building with sonar sensors on the mobile robot is done from the
simulator of SRIsim (shown in Fig.14.10) of ActivMedia company and our self-developing exper-
imental or simulation platform together. (shown in Fig. 14.11). Here the platform developed
with the tool software of visual c++ 6.0 and OpenGL servers as a client end, which can connect
the server end (also developed by ourselves, which connects the SRIsim and the client). When
the virtual robot runs in the virtual environment, the server end can collect many information
(i.e. the location of robot, sensors reading, velocity .etc) from the SRIsim. Through the proto-
col of TCP/IP, the client end can get any information from the server end and fuse them. The
Pioneer II Robot may begin to run at arbitrary location; here we choose the location (1500mm,
2700mm) with an 88 degrees angle the robot faces to. We let the robot move at speeds of
transverse velocity 100mm/s and turning-velocity 50degree/s around the object in the world
map plotted by the Mapper (a simple plotting software), which is opened in the SRIsim shown
in Fig. 14.10.

We adopt grid method to build map. Here we assume that all the sonar sensors have the
same reliability. The global environment is divided into 50×50 lattices (which of size are same).
The object in Fig. 14.10 is taken as a regular rectangular box. When the virtual robot runs
around the object, through its sonar sensors, we can clearly recognize the object and know its
appearance, and even its location in the environment. To describe the experiment clearly, the
flowchart of procedure of sonar map is given in Fig. 14.9. The main steps of procedure based
on the new tool are given as follows:

1. Initialize the parameters of robot (i.e. initial location, moving velocity, etc.).

2. Acquire 16 sonar readings, and robot’s location, when the robot is running (Here we set
the first timer, of which interval is 100 ms.).

3. Compute gbbaf of the fan-form area detected by each sonar sensor.
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Figure 14.10: A world map opened in the SRIsim

Figure 14.11: The platform for simulation or real experiment

4. Check whether some grids are scanned more than 5 times by sonar sensors (Same sonar in
different location, or different sonar sensors. Of course, here we suppose each sonar sensor
has the same characteristics.)? If ”yes”, then go to next step, otherwise, go to step 2.

5. According to the combination rule and the PCR5 in (14.3) and (14.5) respectively, we can
get the new basic belief masses, and redistribute the conflicting mass to the new basic
belief masses in the order of the sequential fusion, until all 5 times are over.
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6. Compute the credibility/total belief of occupancy bel(θ2) of some grids, which have been
fused according to (14.1).

7. Update the map of the environment. (Here we set the second timer, of which interval is
100 ms) Check whether all the grids have been fused? If ”yes”, then stop robot and exit.
Otherwise, go to step 2.
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Figure 14.12: Map reconstruction with DSmT coupling with PCR5 (3D)

Finally, we rebuild the map shown in the Fig. 14.12 (3D) and Fig. 14.13 (2D) with the new
tool. We also rebuild the map by other methods (i.e. probability theory, fuzzy theory, DST) in
Fig. 14.14–Fig. 14.16. Because the other methods are not new, here we don’t give the detailed
steps. If the reader has some interest in them, please refer to their corresponding reference. We
give the result of comparison in Table 14.5. Through the figure and table, it can be concluded
that:
1) In Fig. 14.12, the Z axis shows the Belief of every grid occupied. The value 0 indicates that
the grid is fully empty, and the value 1 indicates that this grid is fully occupied. This facilitates
very much the development of human-computer interface of mobile robot exploring unknown,
dangerous and sightless area.
2) Low coupling. Even if there are many objects in grid map, but there occurs no phenomenon
of the apparently servered, but actually connected. Thus, it supplies with a powerful evidence
for self-localization, path planning and navigation of mobile robot.
3) High validity of calculation. The fusion machine considering the restrained spreading arith-
metic is adopted [29], and overcomes the shortcoming that the global grids in map must be
reckoned once for sonar scanning every time, and improves the validity of calculation.
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Figure 14.13: Map reconstruction with DSmT coupling with PCR5 (2D)
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Figure 14.14: Map reconstruction with probability theory (2D)

4) Seen from the Fig. 14.12, the new tool has a better performance than just DSmT in building
map, (see also [13, 14]), because of considering the conflict factor, and redistributing the conflict
masses to other basic belief masses according to the PCR5.

5) Seen from the Table 14.5, Probability theory spends the least time, while Fuzzy theory spends
the most time. But Map reconstruction with probability theory has very low precision and high
mistaken judging rate shown in Fig. 14.14. Though the new tool spends a little more time than
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Figure 14.15: Map reconstruction with fuzzy theory (2D)
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Figure 14.16: Map reconstruction with DS theory (2D)

probability theory. However, it has very high precision shown in Fig. 14.12 and Fig. 14.13 the
same as the fuzzy theory and very low mistaken judging rate shown in Fig. 14.15. In fact, the
comparison in map building between DST and DSmT have been made in details by us in [13].
Of course, here DST presents high precision and general mistaken rate shown in Fig. 14.16
without considering the PCR rules and other conflict redistribution rules. We don’t compare
the new tool from the fusion machine based on DST coupling with PCR5. Through the analysis
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Probability Theory Fuzzy Set Theory DST DSmT

Total spent time (ms) 18146 35823 19673 19016

Map precision Very low Very high High Very high

Mistaken rate High Low Medium Very low

Table 14.1: Comparison of the performances of the different approaches

of comparison among the four tools in Table 14.5, we testify the new tool to play a better role
in map building.

14.6 Conclusion

In this chapter, we have applied a fusion machine based on DSmT coupled with PCR5 for mobile
robot’s map building in a small environment. Then we have established the belief model for
sonar grid map, and constructed the generalized basic belief assignment function. Through the
simulation experiment, we also have compared the new tool with the other methods, and got
much better performances for robot’s map building. Since it is necessary to consider also robot’s
self-localization as soon as the size of environment becomes very large, complex, and irregular,
we are currently doing some research works in Self-Localization And Mapping (SLAM) based
on this new tool which improves the robustness and practicability of the fusion processing. In
conclusion, our study has supplied a shortcut for human-computer interface for mobile robot
exploring unknown environment and has established a firm foundation for the study of dynamic
unknown environment and multi-robots’ building map and SLAM together.
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