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Abstract. In this research study, we present concept of intuitionis-
tic neutrosophic graph structures. We introduce the certain operations on
intuitionistic neutrosophic graph structures and elaborate them with suit-
able examples. Further, we investigate some remarkable properties of these
operators. Moreover, we discuss a highly worthwhile real-life application of
intuitionistic neutrosophic graph structures in decision-making. Lastly, we
elaborate general procedure of our application by designing an algorithm.
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1. Introduction

Graphical models are extensively useful tools for solving combinatorial prob-
lems of different fields including optimization, algebra, computer science, topology
and operations research etc. Fuzzy graphical models are comparatively more close to
nature, because in nature vagueness and ambiguity occurs. There are many complex
phenomena and processes in science and technology having incomplete information.
To deal such cases we needed a theory different from classical mathematics. Graph
structures as generalized simple graphs are widely used for study of edge colored
and edge signed graphs, also helpful and copiously used for studying large domains
of computer science. Initially in 1965, Zadeh [29] proposed the notion of fuzzy
sets to handle uncertainty in a lot of real applications. Fuzzy set theory is finding
large number of applications in real time systems, where information inherent in
systems has various levels of precision. Afterwards, Turksen [26] proposed the idea
of interval-valued fuzzy set. But in various systems, there are membership and non-
membership values, membership value is in favor of an event and non-membership
value is against of that event. Atanassov [8] proposed the notion of intuitionistic
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fuzzy set in 1986. The intuitionistic fuzzy sets are more practical and applicable in
real-life situations. Intuitionistic fuzzy set deal with incomplete information, that
is, degree of membership function, non-membership function but not indeterminate
and inconsistent information that exists definitely in many systems, including belief
system, decision-support systems etc. In 1998, Smarandache [24] proposed another
notion of imprecise data named as neutrosophic sets. “Neutrosophic set is a part
of neutrosophy which studies the origin, nature and scope of neutralities, as well
as their interactions with different ideational spectra”. Neutrosophic set is recently
proposed powerful formal framework. For convenient usage of neutrosophic sets in
real-life situations, Wang et al. [27] proposed single-valued neutrosophic set as a gen-
eralization of intuitionistic fuzzy set[8]. A neutrosophic set has three independent
components having values in unit interval [0, 1]. On the other hand, Bhowmik and
Pal [10, 11] introduced the notions of intuitionistic neutrosophic sets and relations.
Kauffman [16] defined fuzzy graph on the basis of Zadeh’s fuzzy relations [30]. Rosen-
feld [21] investigated fuzzy analogue of various graph-theoretic ideas in 1975. Later
on, Bhattacharya gave some remarks on fuzzy graph in 1987. Bhutani and Rosenfeld
discussed M-strong fuzzy graphs with their properties in [12]. In 2011, Dinesh and
Ramakrishnan [15] put forward fuzzy graph structures and investigated its prop-
erties. In 2016, Akram and Akmal [1] proposed the notion of bipolar fuzzy graph
structures. Broumi et al. [13] portrayed single-valued neutrosophic graphs. Akram
and Shahzadi [2] introduced the notion of neutrosophic soft graphs with applications.
Akram and Shahzadi [4] highlighted some flaws in the definitions of Broumi et al.
[13] and Shah-Hussain [22]. Akram et al. [5] also introduced the single-valued neu-
trosophic hypergraphs. Representation of graphs using intuitionistic neutrosophic
soft sets was discussed in [3]. In this paper, we present concept of intuitionistic
neutrosophic graph structures. We introduce the certain operations on intuitionistic
neutrosophic graph structures and elaborate them with suitable examples. Further,
we investigate some remarkable properties of these operators. Moreover, we discuss
a highly worthwhile real-life application of intuitionistic neutrosophic graph struc-
tures in decision-making. Lastly, we elaborate general procedure of our application
by designing an algorithm.
We have used standard definitions and terminologies in this paper. For other no-
tations, terminologies and applications not mentioned in the paper, the readers are
referred to [3,6, 7, 9, 13, 14, 17, 18, 20, 22, 23, 25, 28, 30].

2. Intuitionistic Neutrosophic Graph Structures

Definition 2.1. ([23]). Let Ǧ1 = (P, P1, P2, . . . , Pr) and Ǧ2 = (P ′, P ′

1, P
′

2, . . . , P
′

r)
be two GSs, Cartesian product of Ǧ1 and Ǧ1 is defined as:

Ǧ1 × Ǧ2 = (P × P ′, P1 × P ′

1, P2 × P ′

2, . . . , Pr × P ′

r),

where Ph × P ′

h = {(k1l)(k2l) | l ∈ P ′, k1k2 ∈ Ph} ∪ {(kl1)(kl2) | k ∈ p, l1l2 ∈ P ′

h},
h = (1, 2, . . . , r).

Definition 2.2. ([23]). Let Ǧ1 = (P, P1, P2, . . . , Pn) and Ǧ2 = (P ′, P ′

1, P
′

2, . . . , P
′

r)
be two GSs, cross product of Ǧ1 and Ǧ2 is defined as:

Ǧ1 ∗ Ǧ2 = (P ∗ P ′, P1 ∗ P
′

1, P2 ∗ P
′

2, . . . , Pr ∗ P
′

r),
2
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where Ph ∗ P ′

h = {(k1l1)(k2l2) | k1k2 ∈ Ph, l1l2 ∈ P ′

h}, h = (1, 2, . . . , r).

Definition 2.3. ([23]). Let Ǧ1 = (P, P1, P2, . . . , Pr) and Ǧ2 = (P ′, P ′

1, P
′

2, . . . , P
′

r)
be two GSs, lexicographic product of Ǧ1 and Ǧ2 is defined as:

Ǧ1 • Ǧ2 = (P • P ′, P1 • P
′

1, P2 • P
′

2, . . . , Pr • P
′

r),

where Ph•P
′

h = {(kl1)(kl2) | k ∈ P, l1l2 ∈ P ′

h}∪{(k1l1)(k2l2) | k1k2 ∈ Ph, l1l2 ∈ P ′

h},
h = (1, 2, . . . , r).

Definition 2.4. ([23]). Let Ǧ1 = (P, P1, P2, . . . , Pr) and Ǧ2 = (P ′, P ′

1, P
′

2, . . . , P
′

r)
be two GSs, strong product of Ǧ1 and Ǧ2 is defined as:

Ǧ1 ⊠ Ǧ2 = (P ⊠ P ′, P1 ⊠ P ′

1, P2 ⊠ P ′

2, . . . , Pr ⊠ P ′

r),

where Ph ⊠ P ′

h = {(k1l)(k2l) | l ∈ P ′, k1k2 ∈ Ph} ∪ {(kl1)(kl2) | k ∈ P, l1l2 ∈ P ′

h} ∪
{(k1l1)(k2l2) | k1k2 ∈ Ph, l1l2 ∈ P ′

h}, h = (1, 2, . . . , r).

Definition 2.5. ([23]). Let Ǧ1 = (P, P1, P2, . . . , Pr) and Ǧ2 = (P ′, P ′

1, P
′

2, . . . , P
′

n)
be two GSs, composition of Ǧ1 and Ǧ2 is defined as:

Ǧ1 ◦ Ǧ2 = (P ◦ P ′, P1 ◦ P
′

1, P2 ◦ P
′

2, . . . , Pr ◦ P
′

r),

where Ph ◦ P ′

h = {(k1l)(k2l) | l ∈ P ′, k1k2 ∈ Ph} ∪ {(kl1)(kl2) | k ∈ P, l1l2 ∈ P ′

h} ∪
{(k1l1)(k2l2) | k1k2 ∈ Ph, l1, l2 ∈ P ′ such that l1 6= l2}, h = (1, 2, . . . , r).

Definition 2.6. ([23]). Let Ǧ1 = (P, P1, P2, . . . , Pr) and Ǧ2 = (P ′, P ′

1, P
′

2, . . . , P
′

r)
be two GSs, union of Ǧ1 and Ǧ2 is defined as:

Ǧ1 ∪ Ǧ2 = (P ∪ P ′, P1 ∪ P ′

1, P2 ∪ P ′

2, . . . , Pr ∪ P ′

r).

Definition 2.7. ([23]). Let Ǧ1 = (P, P1, P2, . . . , Pr) and Ǧ2 = (P ′, P ′

1, P
′

2, . . . , P
′

r)
be two GSs, join of Ǧ1 and Ǧ2 is defined as:

Ǧ1 + Ǧ2 = (P + P ′, P1 + P ′

1, P2 + P ′

2, . . . , Pr + P ′

r),

where P + P ′ = P ∪ P ′, Ph + P ′

h = Ph ∪ P ′

h ∪ P ′′

h for h = (1, 2, . . . , r). P ′′

h consists
of all those edges which join the vertices of P and P ′.

Definition 2.8. ([19]). Let V be a fixed set. A generalized intuitionistic fuzzy set I
of V is an object having the form I={(v, µI(v), νI(v))|v ∈ V }, where the functions
µI : V → [0, 1] and νI : V → [0, 1] define the degree of membership and degree of
nonmembership of an element v ∈ V , respectively, such that

min{µI(v), νI(v)} ≤ 0.5, for all v ∈ V .

This condition is called the generalized intuitionistic condition.

Definition 2.9. ([10, 11]). A set I = {TI(v), II (v), FI(v) : v ∈ V } is said to be an
intuitionistic neutrosophic (IN)set, if

(i) {TI(v) ∧ II(v)} ≤ 0.5, {II(v) ∧ FI(v)} ≤ 0.5, {FI(v) ∧ TI(v)} ≤ 0.5,
(ii) 0 ≤ TI(v) + II(v) + FI(v) ≤ 2.

Definition 2.10. An intuitionistic neutrosophic graph is a pair G = (A,B) with
underlying set V , where TA, FA, IA : V → [0, 1] denote the truth, falsity and
indeterminacy membership values of the vertices in V and TB, FB , IB : E ⊆ V ×V

→ [0, 1] denote the truth, falsity and indeterminacy membership values of the edges
kl ∈ E such that

3
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(i) TB(kl) ≤ TA(k) ∧ TA(l), FB(kl) ≤ FA(k) ∨ FA(l), IB(kl) ≤ IA(k) ∧ IA(l),
(ii) TB(kl) ∧ IB(kl) ≤ 0.5, TB(kl) ∧ FB(kl) ≤ 0.5, IB(kl) ∧ FB(lk) ≤ 0.5,
(iii) 0 ≤ TB(kl) + FB(kl) + IB(kl) ≤ 2, ∀ k, l ∈ V .

Definition 2.11. Ǧi = (O,O1, O2, . . . , Or) is said to be an intuitionistic neutro-
sophic graph structure(INGS) of graph structure Ǧ = (P, P1, P2, . . . , Pr), if O =
< k, T (k), I(k), F (k) > and Oh = < kl, Th(kl), Ih(kl), Fh(kl) > are the intuitionistic
neutrosophic(IN) sets on the sets P and Ph, respectively such that

(i) Th(kl) ≤ T (k) ∧ T (l), Ih(kl) ≤ I(k) ∧ I(l), Fh(kl) ≤ F (k) ∨ F (l),
(ii) Th(kl) ∧ Ih(kl) ≤ 0.5, Th(kl) ∧ Fh(kl) ≤ 0.5, Ih(kl) ∧ Fh(kl) ≤ 0.5,
(iii) 0 ≤ Th(kl) + Ih(kl) + Fh(kl) ≤ 2, for all kl ∈ Oh, h ∈ {1, 2, . . . , r},

where, O and Oh are underlying vertex and h-edge sets of INGS Ǧi, h ∈ {1, 2, . . . , r}.

Example 2.12. An intuitionistic neutrosophic graph structure is represented in
Fig. 1.
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O1(0.2, 0.4, 0.6)

Figure 1. An intuitionistic neutrosophic graph structure

Now we define the operations on INGSs.

Definition 2.13. Let Ǧi1 = (O1, O11, O12, . . . , O1r) and Ǧi2 = (O2, O21, O22, . . . , Q2r)
be INGSs of GSs Ǧ1 = (P1, P11, P12, . . . , P1r) and Ǧ2 = (P2, P21, P22, . . . , P2r), re-
spectively.
Cartesian product of Ǧi1 and Ǧi2, denoted by

Ǧi1 × Ǧi2 = (O1 ×O2, O11 ×O21, O12 ×O22, . . . , O1r ×O2r),

is defined as:

(i)







T(O1×O2)(kl) = (TO1
× TO2

)(kl) = TO1
(k) ∧ TO2

(l)
I(O1×O2)(kl) = (IO1

× IO2
)(kl) = IO1

(k) ∧ IO2
(l)

F(O1×O2)(kl) = (FO1
× FO2

)(kl) = FO1
(k) ∨ FO2

(l)
for all kl ∈ P1 × P2,

(ii)







T(O1h×O2h)(kl1)(kl2) = (TO1h
× TO2h

)(kl1)(kl2) = TO1
(k) ∧ TO2h

(l1l2)
I(O1h×O2h)(kl1)(kl2) = (IO1h

× IO2h
)(kl1)(kl2) = IO1

(k) ∧ IO2h
(l1l2)

F(O1h×O2h)(kl1)(kl2) = (FO1h
× FO2h

)(kl1)(kl2) = FO1
(k) ∨ FO2h

(l1l2)
for all k ∈ P1 , l1l2 ∈ P2h,

4
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(iii)







T(O1h×O2h)(k1l)(k2l) = (TO1h
× TO2h

)(k1l)(k2l) = TO2
(l) ∧ TO1h

(k1k2)
I(O1h×O2h)(k1l)(k2l) = (IO1h

× IO2h
)(k1l)(k2l) = IO2

(l) ∧ IO2h
(k1k2)

F(O1h×O2h)(k1l)(q2l) = (FO1h
× FO2h

)(k1l)(k2l) = FO2
(l) ∨ FO2h

(k1k2)
for all l ∈ P2 , k1k2 ∈ P1h.

Example 2.14. Consider Ǧi1 = (O1, O11, O12) and Ǧi2 = (O2, O21, O22) are two
INGSs of GSs Ǧ1 = (P1, P11, P12) and Ǧ2 = (P2, P21, P22) respectively, as represented
in Fig. 2, where P11 = {k1k2}, P12 = {k3k4}, P21 = {l1l2}, P22 = {l2l3}.

bb

b
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Figure 2. Two INGSs Ǧi1 and Ǧi2

Cartesian product of Ǧi1 and Ǧi2 defined as Ǧi1×Ǧi2 = {O1×O2, O11×O21, O12×
O22} is represented in Fig. 3.
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Figure 3. Ǧi1 × Ǧi2

Theorem 2.15. Cartesian product Ǧi1×Ǧi2 = (O1×O2, O11×O21, O12×O22, . . . , O1r×
O2r) of two INGSs of GSs Ǧ1 and Ǧ2 is an INGS of Ǧ1 × Ǧ2.

Proof. We consider two cases:

Case 1: For k ∈ P1, l1l2 ∈ P2h

T(O1h×O2h)((kl1)(kl2)) = TO1
(k) ∧ TO2h

(l1l2)

≤ TO1
(k) ∧ [TO2

(l1) ∧ TO2
(l2)]

= [TO1
(k) ∧ TO2

(l1)] ∧ [TO1
(k) ∧ TO2

(l2)]

= T(O1×O2)(kl1) ∧ T(O1×O2)(kl2),

I(O1h×O2h)((kl1)(kl2)) = IO1
(k) ∧ IO2h

(l1l2)

≤ IO1
(k) ∧ [IO2

(l1) ∧ IO2
(l2)]

= [IO1
(k) ∧ IO2

(l1)] ∧ [IO1
(k) ∧ IO2

(l2)]

= I(O1×O2)(kl1) ∧ I(O1×O2)(kl2),

F(O1h×O2h)((kl1)(kl2)) = FO1
(k) ∨ FO2h

(l1l2)

≤ FO1
(k) ∨ [FO2

(l1) ∨ FO2
(l2)]

= [FO1
(k) ∨ FO2

(l1)] ∨ [FO1
(k) ∨ FO2

(l2)]

= F(O1×O2)(kl1) ∨ F(O1×O2)(kl2),

for kl1, kl2 ∈ P1 × P2.

Case 2: For k ∈ P2, l1l2 ∈ P1h

T(O1h×O2h)((l1k)(l2k)) = TO2
(k) ∧ TO1h

(l1l2)

≤ TO2
(k) ∧ [TO1

(l1) ∧ TO1
(l2)]

= [TO2
(k) ∧ TO1

(l1)] ∧ [TO2
(k) ∧ TO1

(l2)]

= T(O1×O2)(l1k) ∧ T(O1×O2)(l2k),

6
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I(O1h×O2h)((l1k)(l2k)) = IO2
(k) ∧ IO1h

(l1l2)

≤ IO2
(k) ∧ [IO1

(l1) ∧ IO1
(l2)]

= [IO2
(k) ∧ IO1

(l1)] ∧ [IO2
(k) ∧ IO1

(l2)]

= I(O1×O2)(l1k) ∧ I(O1×O2)(l2k),

F(O1h×O2h)((l1k)(l2k)) = FO2
(k) ∨ FO1h

(l1l2)

≤ FO2
(k) ∨ [FO1

(l1) ∨ FO1
(l2)]

= [FO2
(k) ∨ FO1

(l1)] ∨ [FO2
(k) ∨ FO1

(l2)]

= F(O1×O2)(l1k) ∨ F(O1×O2)(l2k),

for l1k, l2k ∈ P1 × P2.

Both cases exists ∀h ∈ {1, 2, . . . , r}. This completes the proof. �

Definition 2.16. Let Ǧi1 = (O1, O11, O12, . . . , Q1r) and Ǧi2 = (O2, O21, O22, . . . , Q2r)
be INGSs of GSs Ǧ1 = (P1, P11, P12, . . . , P1r) and Ǧ2 = (P2, P21, P22, . . . , P2r), re-
spectively. Cross product of Ǧi1 and Ǧi2, denoted by

Ǧi1 ∗ Ǧi2 = (O1 ∗O2, O11 ∗O21, O12 ∗O22, . . . , O1r ∗O2r),

is defined as:

(i)







T(O1∗O2)(kl) = (TO1
∗ TO2

)(kl) = TO1
(k) ∧ TO2

(l)
I(O1∗O2)(kl) = (IO1

∗ IO2
)(kl) = IO1

(k) ∧ IO2
(l)

F(O1∗O2)(kl) = (FO1
∗ FO2

)(kl) = FO1
(k) ∨ FO2

(l)
for all kl ∈ P1 × P2,

(ii)







T(O1h∗O2h)(k1l1)(k2l2) = (TO1h
∗ TO2h

)(k1l1)(k2l2) = TO1h
(k1k2) ∧ TO2h

(l1l2)
I(O1h∗O2h)(k1l1)(k2l2) = (IO1h

∗ IO2h
)(k1l1)(k2l2) = IO1h

(k1k2) ∧ IO2h
(l1l2)

F(O1h∗O2h)(k1l1)(k2l2) = (FO1h
∗ FO2h

)(k1l1)(k2l2) = FO1h
(k1k2) ∨ FO2h

(l1l2)
for all k1k2 ∈ P1h , l1l2 ∈ P2h.

Example 2.17. Cross product of INGSs Ǧi1 and Ǧi2 shown in Fig. 2 is defined as
Ǧi1 ∗ Ǧi2 = {O1 ∗O2, O11 ∗O21, O12 ∗O22} and is represented in Fig. 4.
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Figure 4. Ǧi1 ∗ Ǧi2

Theorem 2.18. Cross product Ǧi1∗Ǧi2 = (O1∗O2, O11∗O21, O12∗O22, . . . , O1r∗O2r)
of two INGSs of GSs Ǧ1 and Ǧ2 is an INGS of Ǧ1 ∗ Ǧ2.
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Proof. For all k1l1, k2l2 ∈ P1 ∗ P2

T(O1h∗O2h)((k1l1)(k2l2)) = TO1h
(k1k2) ∧ TO2h

(l1l2)

≤ [TO1
(k1) ∧ TO1

(k2)] ∧ [TO2
(l1) ∧ TO2

(l2)]

= [TO1
(k1) ∧ TO2

(l1)] ∧ [TO1
(k2) ∧ TO2

(l2)]

= T(O1∗O2)(k1l1) ∧ T(O1∗O2)(k2l2),

I(O1h∗O2h)((k1l1)(k2l2)) = IO1h
(k1k2) ∧ IO2h

l1l2)

≤ [IO1
(k1) ∧ IO1

(k2)] ∧ [IO2
(l1) ∧ IO2

(l2)]

= [IO1
(k1) ∧ IO2

(l1)] ∧ [IO1
(k2) ∧ IO2

(l2)]

= I(O1∗O2)(k1l1) ∧ I(O1∗O2)(k2l2),

F(O1h∗O2h)((k1l1)(k2l2)) = FO1h
(k1k2) ∨ FO2h

(l1l2)

≤ [FO1
(k1) ∨ FO1

(k2)] ∨ [FO2
(l1) ∨ FO2

(l2)]

= [FO1
(k1) ∨ FO2

(l1)] ∨ [FO1
(k2) ∨ FO2

(l2)]

= F(O1∗O2)(k1l1) ∨ F(O1∗O2)(k2l2),

for h ∈ {1, 2, . . . , r}. This completes the proof. �

Definition 2.19. Let Ǧi1 = (O1, O11, O12, ..., O1r) and Ǧi2 = (O2, O21, O22, ..., O2r)
be INGSs of GSs Ǧ1 = (P1, P11, P12, . . . , P1r) and Ǧ2 = (P2, P21, P22, . . . , P2r), re-
spectively. Lexicographic product of Ǧi1 and Ǧi2, denoted by

Ǧi1 • Ǧi2 = (O1 •O2, O11 •O21, O12 •O22, . . . , O1r •O2r),

is defined as:

(i)







T(O1•O2)(kl) = (TO1
• TO2

)(kl) = TO1
(k) ∧ TO2

(l)
I(O1•O2)(kl) = (IO1

• IO2
)(kl) = IO1

(k) ∧ IO2
(l)

F(O1•O2)(kl) = (FO1
• FO2

)(kl) = FO1
(k) ∨ FO2

(l)
for all kl ∈ P1 × P2

(ii)







T(O1h•O2h)(kl1)(kl2) = (TO1h
• TO2h

)(kl1)(kl2) = TO1
(k) ∧ TO2h

(l1l2)
I(O1h•O2h)(kl1)(kl2) = (IO1h

• IO2h
)(kl1)(kl2) = IO1

(k) ∧ IO2h
(l1l2)

F(O1h•O2h)(kl1)(kl2) = (FO1h
• FO2h

)(kl1)(kl2) = FO1
(k) ∨ FO2h

(l1l2)
for all k ∈ P1 , l1l2 ∈ P2h,

(iii)







T(O1h•O2h)(k1l1)(k2l2) = (TO1h
• TO2h

)(k1l1)(k2l2) = TO1h
(k1k2) ∧ TO2h

(l1l2)
I(O1h•O2h)(k1l1)(k2l2) = (IO1h

• IO2h
)(k1l1)(k2l2) = IO1h

(k1k2) ∧ IO2h
(l1l2)

F(O1h•O2h)(k1l1)(k2l2) = (FO1h
• FO2h

)(k1l1)(k2l2) = FO1h
(k1k2) ∨ FO2h

(l1l2)
for all k1k2 ∈ P1h , l1l2 ∈ P2h.

Example 2.20. Lexicographic product of INGSs Ǧi1 and Ǧi2 shown in Fig. 2 is
defined as Ǧi1 • Ǧi2 = {O1 •O2, O11 •O21, O12 •O22} and is represented in Fig. 5.
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Figure 5. Ǧi1 • Ǧi2

Theorem 2.21. Lexicographic product Ǧi1•Ǧi2 = (O1•O2, O11•O21, O12•O22, . . . , O1r•
O2r) of two INGSs of the GSs Ǧ1 and Ǧ2 is an INGS of Ǧ1 • Ǧ2.

Proof. We consider two cases:

Case 1: For k ∈ P1, l1l2 ∈ P2h

T(O1h•O2h)((kl1)(kl2)) = TO1
(k) ∧ TO2h

(l1l2)

≤ TO1
(k) ∧ [TO2

(l1) ∧ TO2
(l2)]

= [TO1
(k) ∧ TO2

(l1)] ∧ [TO1
(k) ∧ TO2

(l2)]

= T(O1•O2)(kl1) ∧ T(O1•O2)(kl2),

I(O1h•O2i)((kl1)(kl2)) = IO1
(k) ∧ IO2h

(l1l2)

≤ IO1
(k) ∧ [IO2

(l1) ∧ IO2
(l2)]

= [IO1
(k) ∧ IO2

(l1)] ∧ [IO1
(k) ∧ IO2

(l2)]

= I(O1•O2)(kl1) ∧ I(O1•O2)(kl2),

F(O1h•O2i)((kl1)(kl2)) = FO1
(k) ∨ FO2h

(l1l2)

≤ FO1
(k) ∨ [FO2

(l1) ∨ FO2
(l2)]

= [FO1
(k) ∨ FO2

(l1)] ∨ [FO1
(k) ∨ FO2

(l2)]

= F(O1•O2)(kl1) ∨ F(O1•O2)(kl2),

for kl1, kl2 ∈ P1 • P2.
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Case 2: For k1k2 ∈ P1h, l1l2 ∈ P2h

T(O1h•O2h)((k1l1)(k2l2)) = TO1h
(k1k2) ∧ TO2h

(l1l2)

≤ [TO1
(k1) ∧ TO1

(k2)] ∧ [TO2
(l1) ∧ TO2

(l2)]

= [TO1
(k1) ∧ TO2

(l1)] ∧ [TO1
(k2) ∧ TO2

(l2)]

= T(O1•O2)(k1l1) ∧ T(O1•O2)(k2l2),

I(O1h•O2h)((k1l1)(k2l2)) = IO1h
(k1k2) ∧ IO2h

(l1l2)

≤ [IO1
(k1) ∧ IO1

(k2)] ∧ [IO2
(l1) ∧ IO2

(l2)]

= [IO1
(k1) ∧ IO2

(l1)] ∧ [IO1
(k2) ∧ IO2

(l2)]

= I(O1•O2)(k1l1) ∧ I(O1•O2)(k2l2),

F(O1h•O2h)((k1l1)(k2l2)) = FO1h
(k1k2) ∨ FO2h

(l1l2)

≤ [FO1
(k1) ∨ FO1

(k2)] ∨ [FO2
(l1) ∨ FO2

(l2)]

= [FO1
(k1) ∨ FO2

(l1)] ∨ [FO1
(k2) ∨ FO2

(l2)]

= F(O1•O2)(k1l1) ∨ F(O1•O2)(k2l2),

for k1l1, k2l2 ∈ P1 • P2.
Both cases hold for h ∈ {1, 2, . . . , r}. This completes the proof.

�

Definition 2.22. Let Ǧi1 = (O1, O11, O12, . . . , O1r) and Ǧi2 = (O2, O21, O22, . . . , O2r)
be INGSs of GSs Ǧ1 = (P1, P11, P12, . . . , P1r) and Ǧ2 = (P2, P21, P22, . . . , P2r), re-
spectively. Strong product of Ǧi1 and Ǧi2, denoted by

Ǧi1 ⊠ Ǧi2 = (O1 ⊠O2, O11 ⊠O21, O12 ⊠O22, . . . , O1r ⊠O2r),

is defined as:

(i)







T(O1⊠O2)(kl) = (TO1
⊠ TO2

)(kl) = TO1
(k) ∧ TO2

(l)
I(O1⊠O2)(kl) = (IO1

⊠ IO2
)(kl) = IO1

(k) ∧ IO2
(l)

F(O1⊠O2)(kl) = (FO1
⊠ FO2

)(kl) = FO1
(k) ∨ FO2

(l)
for all kl ∈ P1 × P2,

(ii)







T(O1h⊠O2h)(kl1)(kl2) = (TO1h
⊠ TO2h

)(kl1)(kl2) = TO1
(k) ∧ TO2h

(l1l2)
I(O1h⊠O2h)(kl1)(kl2) = (IO1h

⊠ IO2h
)(kl1)(kl2) = IO1

(k) ∧ IO2h
(l1l2)

F(O1h⊠O2h)(kl1)(kl2) = (FO1h
⊠ FO2h

)(kl1)(kl2) = FO1
(k) ∨ FO2h

(l1l2)
for all k ∈ P1 , l1l2 ∈ P2h,

(iii)







T(O1h⊠O2h)(k1l)(k2l) = (TO1h
⊠ TO2h

)(k1l)(k2l) = TO2
(l) ∧ TO1h

(k1k2)
I(O1h⊠O2h)(k1l)(k2l) = (IO1h

⊠ IO2h
)(k1l)(k2l) = IO2

(l) ∧ IO2h
(k1k2)

F(O1h⊠O2h)(k1l)(k2l) = (FO1h
⊠ FO2h

)(k1l)(k2l) = FO2
(l) ∨ FO2h

(k1k2)
for all l ∈ P2 , k1k2 ∈ P1h,

(iv)







T(O1h⊠O2h)(k1l1)(k2l2) = (TO1h
⊠ TO2h

)(k1l1)(k2l2) = TO1h
(k1k2) ∧ TO2h

(l1l2)
I(O1h⊠O2h)(k1l1)(k2l2) = (IO1h

⊠ IO2h
)(k1l1)(k2l2) = IO1h

(k1k2) ∧ IO2h
(l1l2)

F(O1h⊠O2h)(k1l1)(k2l2) = (FO1h
⊠ FO2h

)(k1l1)(k2l2) = FO1h
(k1k2) ∨ FO2h

(l1l2)
for all k1k2 ∈ P1h , l1l2 ∈ P2h.

Example 2.23. Strong product of INGSs Ǧi1 and Ǧi2 shown in Fig. 2 is defined
as Ǧi1 ⊠ Ǧi2 = {O1 ⊠ O2, O11 ⊠O21, O12 ⊠O22} and is represented in Fig. 6.
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Figure 6. Ǧi1 ⊠ Ǧi2

Theorem 2.24. Strong product Ǧi1⊠Ǧi2 = (O1⊠O2, O11⊠O21, O12⊠O22, . . . , O1r⊠

O2r) of two INGSs of the GSs Ǧ1 and Ǧ2 is an INGS of Ǧ1 ⊠ Ǧ2.

Proof. There are three cases:

Case 1: For k ∈ P1, l1l2 ∈ P2h

T(O1h⊠O2h)((kl1)(kl2)) = TO1
(k) ∧ TO2h

(l1l2)

≤ TO1
(k) ∧ [TO2

(l1) ∧ TO2
(l2)]

= [TO1
(k) ∧ TO2

(l1)] ∧ [TO1
(k) ∧ TO2

(l2)]

= T(O1⊠O2)(kl1) ∧ T(O1⊠O2)(kl2),

I(O1h⊠O2h)((kl1)(kl2)) = IO1
(k) ∧ IO2h

(l1l2)

≤ IO1
(k) ∧ [IO2

(l1) ∧ IO2
(l2)]

= [IO1
(k) ∧ IO2

(l1)] ∧ [IO1
(k) ∧ IO2

(l2)]

= I(O1⊠O2)(kl1) ∧ I(O1⊠O2)(kl2),
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F(O1h⊠O2h)((kl1)(kl2)) = FO1
(k) ∨ FO2h

(l1l2)

≤ FO1
(k) ∨ [FO2

(l1) ∨ FO2
(l2)]

= [FO1
(k) ∨ FO2

(l1)] ∨ [FO1
(k) ∨ FO2

(l2)]

= F(O1⊠O2)(kl1) ∨ F(O1⊠O2)(kl2),

for kl1, kl2 ∈ P1 ⊠ P2.

Case 2: For k ∈ P2, l1l2 ∈ P1h

T(O1h⊠O2h)((l1k)(l2k)) = TO2
(k) ∧ TO1h

(l1l2)

≤ TO2
(k) ∧ [TO1

(l1) ∧ TO1
(l2)]

= [TO2
(k) ∧ TO1

(l1)] ∧ [TO2
(k) ∧ TO1

(l2)]

= T(O1⊠O2)(l1k) ∧ T(O1⊠O2)(l2k),

I(O1h⊠O2h)((l1k)(l2k)) = IO2
(k) ∧ IO1h

(l1l2)

≤ IO2
(k) ∧ [IO1

(l1) ∧ IO1
(l2)]

= [IO2
(k) ∧ IO1

(l1)] ∧ [IO2
(k) ∧ IO1

(l2)]

= I(O1⊠O2)(l1k) ∧ I(O1⊠O2)(l2k),

F(O1h⊠O2h)((l1k)(l2k)) = FO2
(k) ∨ FO1h

(l1l2)

≤ FO2
(k) ∨ [FO1

(l1) ∨ FO1
(l2)]

= [FO2
(k) ∨ FO1

(l1)] ∨ [FO2
(k) ∨ FO1

(l2)]

= F(O1⊠O2)(l1k) ∨ F(O1⊠O2)(l2k),

for l1k, l2k ∈ P1 ⊠ P2.

Case 3: For every k1k2 ∈ P1h, l1l2 ∈ P2h

T(O1h⊠O2h)((k1l1)(k2l2)) = TO1h
(k1k2) ∧ TO2h

(l1l2)

≤ [TO1
(k1) ∧ TO1

(k2)] ∧ [TO2
(l1) ∧ TO2

(l2)]

= [TO1
(k1) ∧ TO2

(l1)] ∧ [TO1
(k2) ∧ TO2

(l2)]

= T(O1⊠O2)(k1l1) ∧ T(O1⊠O2)(k2l2),

I(O1h⊠O2h)((k1l1)(k2l2)) = IO1h
(k1k2) ∧ IO2h

(l1l2)

≤ [IO1
(k1) ∧ IO1

(k2)] ∧ [IO2
(l1) ∧ IO2

(l2)]

= [IO1
(k1) ∧ IO2

(l1)] ∧ [IO1
(k2) ∧ IO2

(l2)]

= I(O1⊠O2)(k1l1) ∧ I(O1⊠O2)(k2l2),

F(O1h⊠O2h)((k1l1)(k2l2)) = FO1h
(k1k2) ∨ FO2h

(l1l2)

≤ [FO1
(k1) ∨ FO1

(k2)] ∨ [FO2
(l1) ∨ FO2

(l2)]

= [FO1
(k1) ∨ FO2

(l1)] ∨ [FO1
(k2) ∨ FO2

(l2)]

= F(O1⊠O2)(k1l1) ∨ F(O1⊠O2)(k2l2),

for k1l1, k2l2 ∈ P1 ⊠ P2, and h = 1, 2, . . . , r.
This completes the proof. �

12
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Definition 2.25. Let Ǧi1 = (O1, O11, O12, ..., O1r) and Ǧi2 = (O2, O21, O22, ..., O2r)
be INGSs of GSs Ǧ1 = (P1, P11, P12, . . . , P1r) and Ǧ2 = (P2, P21, P22, . . . , P2r), re-
spectively. The composition of Ǧi1 and Ǧi2, denoted by

Ǧi1 ◦ Ǧi2 = (O1 ◦O2, O11 ◦O21, O12 ◦O22, . . . , O1r ◦O2r),

is defined as:

(i)







T(O1◦O2)(kl) = (TO1
◦ TO2

)(kl) = TO1
(k) ∧ TO2

(l)
I(O1◦O2)(kl) = (IO1

◦ IO2
)(kl) = IO1

(k) ∧ IO2
(l)

F(O1◦O2)(kl) = (FO1
◦ FO2

)(kl) = FO1
(k) ∨ FO2

(l)
for all kl ∈ P1 × P2,

(ii)







T(O1h◦O2h)(kl1)(kl2) = (TO1h
◦ TO2h

)(kl1)(kl2) = TO1
(k) ∧ TO2h

(l1l2)
I(O1h◦O2h)(kl1)(kl2) = (IO1h

◦ IO2h
)(kl1)(kl2) = IO1

(k) ∧ IO2h
(l1l2)

F(O1h◦O2h)(kl1)(kl2) = (FO1h
◦ FO2h

)(kl1)(kl2) = FO1
(k) ∨ FO2h

(l1l2)
for all k ∈ P1 , l1l2 ∈ P2h,

(iii)







T(O1h◦O2h)(k1l)(k2l) = (TO1h
◦ TO2h

)(k1l)(k2l) = TO2
(l) ∧ TO1h

(k1k2)
I(O1h◦O2h)(k1l)(k2l) = (IO1h

◦ IO2h
)(k1l)(k2l) = IO2

(l) ∧ IO2h
(k1k2)

F(O1h◦O2h)(k1l)(k2l) = (FO1h
◦ FO2h

)(k1l)(k2l) = FO2
(l) ∨ FO2h

(k1k2)
for all l ∈ P2 , k1k2 ∈ P1h,

(iv)







T(O1h◦O2h)(k1l1)(k2l2) = (TO1h
◦ TO2h

)(k1l1)(k2l2) = TO1h
(k1k2) ∧ TO2

(l1) ∧ TO2
(l2)

I(O1h◦O2h)(k1l1)(k2l2) = (IO1h
◦ IO2h

)(k1l1)(k2l2) = IO1h
(k1k2) ∧ IO2

(l1) ∧ IO2
(l2)

F(O1h◦O2h)(k1l1)(k2l2) = (FO1h
◦ FO2h

)(k1l1)(k2l2) = FO1h
(k1k2) ∨ FO2

(l1) ∨ FO2
(l2)

for all k1k2 ∈ P1h , l1l2 ∈ P2h such that l1 6= l2.

Example 2.26. The composition of INGSs Ǧi1 and Ǧi2 shown in Fig. 2 is defined
as:

Ǧi1 ◦ Ǧi2 = {O1 ◦O2, O11 ◦O21, O12 ◦O22}

and is represented in Fig. 7.
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Figure 7. Ǧi1 ◦ Ǧi2

Theorem 2.27. The composition Ǧi1◦Ǧi2 = (O1◦O2, O11◦O21, O12◦O22, . . . , O1r◦
O2r) of two INGSs of GSs Ǧ1 and Ǧ2 is an INGS of Ǧ1 ◦ Ǧ2.

Proof. We consider three cases:

Case 1: For k ∈ P1, l1l2 ∈ P2h

T(O1h◦O2h)((kl1)(kl2)) = TO1
(k) ∧ TO2h

(l1l2)

≤ TO1
(k) ∧ [TO2

(l1) ∧ TO2
(l2)]

= [TO1
(k) ∧ TO2

(l1)] ∧ [TO1
(k) ∧ TO2

(l2)]

= T(O1◦O2)(kl1) ∧ T(O1◦O2)(kl2),

I(O1h◦O2h)((kl1)(kl2)) = IO1
(k) ∧ IO2h

(l1l2)

≤ IO1
(k) ∧ [IO2

(l1) ∧ IO2
(l2)]

= [IO1
(k) ∧ IO2

(l1)] ∧ [IO1
(k) ∧ IO2

(l2)]

= I(O1◦O2)(kl1) ∧ I(O1◦O2)(kl2),

F(O1h◦O2h)((kl1)(kl2)) = FO1
(k) ∨ FO2h

(l1l2)

≤ FO1
(k) ∨ [FO2

(l1) ∨ FO2
(l2)]

= [FO1
(k) ∨ FO2

(l1)] ∨ [FO1
(k) ∨ FO2

(l2)]

= F(O1◦O2)(kl1) ∨ F(O1◦O2)(kl2),

for kl1, kl2 ∈ P1 ◦ P2.

Case 2: For k ∈ P2, l1l2 ∈ P1h

T(O1h◦O2h)((l1k)(l2k)) = TO2
(k) ∧ TO1h

(l1l2)

≤ TO2
(k) ∧ [TO1

(l1) ∧ TO1
(l2)]

= [TO2
(k) ∧ TO1

(l1)] ∧ [TO2
(k) ∧ TO1

(l2)]

= T(O1◦O2)(l1k) ∧ T(O1◦O2)(l2k),

14
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I(O1h◦O2h)((l1k)(l2k)) = IO2
(k) ∧ IO1h

(l1l2)

≤ IO2
(k) ∧ [IO1

(l1) ∧ IO1
(l2)]

= [IO2
(k) ∧ IO1

(l1)] ∧ [IO2
(k) ∧ IO1

(l2)]

= I(O1◦O2)(l1k) ∧ I(O1◦O2)(l2k),

F(O1h◦O2h)((l1k)(l2k)) = FO2
(k) ∨ FO1h

(l1l2)

≤ FO2
(k) ∨ [FO1

(l1) ∨ FO1
(l2)]

= [FO2
(k) ∨ FO1

(l1)] ∨ [FO2
(k) ∨ FO1

(l2)]

= F(O1◦O2)(l1k) ∨ F(O1◦O2)(l2k),

for l1k, l2k ∈ P1 ◦ P2.

Case 3: For k1k2 ∈ P1h, l1, l2 ∈ P2 such that l1 6= l2

T(O1h◦O2h)((k1l1)(k2l2)) = TO1h
(k1k2) ∧ TO2

(l1) ∧ TO2
(l2)

≤ [TO1
(k1) ∧ TO1

(k2)] ∧ TO2
(l1) ∧ TO2

(l2)

= [TO1
(k1) ∧ TO2

(l1)] ∧ [TO1
(k2) ∧ TO2

(l2)]

= T(O1◦O2)(k1l1) ∧ T(O1◦O2)(k2l2),

I(O1h◦O2h)((k1l1)(k2l2)) = IO1h
(k1k2) ∧ IO2

(l1) ∧ IO2
(l2)

≤ [IO1
(k1) ∧ IO1

(k2)] ∧ [IO2
(l1) ∧ IO2

(l2)]

= [IO1
(k1) ∧ IO2

(l1)] ∧ [IO1
(k2) ∧ IO2

(l2)]

= I(O1◦O2)(k1l1) ∧ I(O1◦O2)(k2l2),

F(O1h◦O2h)((k1l1)(k2l2)) = FO1h
(k1k2) ∨ FO2

(l1) ∨ FO2
(l2)

≤ [FO1
(k1) ∨ FO1

(k2)] ∨ [FO2
(l1) ∨ FO2

(l2)]

= [FO1
(k1) ∨ FO2

(l1)] ∨ [FO1
(k2) ∨ FO2

(l2)]

= F(O1◦O2)(k1l1) ∨ F(O1◦O2)(k2l2),

for k1l1, k2l2 ∈ P1 ◦ P2.

All cases holds for h = 1, 2, . . . , r. This completes the proof. �

Definition 2.28. Let Ǧi1 = (O1, O11, O12, ..., O1r) and Ǧi2 = (O2, O21, O22, ..., O2r)
be INGSs of GSs Ǧ1 = (P1, P11, P12, . . . , P1r) and Ǧ2 = (P2, P21, P22, . . . , P2r), re-
spectively. The union of Ǧi1 and Ǧi2, denoted by

Ǧi1 ∪ Ǧi2 = (O1 ∪O2, O11 ∪O21, O12 ∪O22, . . . , O1r ∪O2r),

is defined as:

(i)







T(O1∪O2)(k) = (TO1
∪ TO2

)(k) = TO1
(k) ∨ TO2

(k)
I(O1∪O2)(k) = (IO1

∪ IO2
)(k) = IO1

(k) ∨ IO2
(k)

F(O1∪O2)(k) = (FO1
∪ FO2

)(k) = FO1
(k) ∧ FO2

(k)
for all k ∈ P1 ∪ P2,

(ii)







T(O1h∪O2h)(kl) = (TO1h
∪ TO2h

)(kl) = TO1h
(kl) ∨ TO2h

(kl)
I(O1h∪O2h)(kl) = (IO1h

∪ IO2h
)(kl) = IO1h

(kl) ∨ IO2h
(kl)

F(O1h∪O2h)(kl) = (FO1h
∪ FO2h

)(kl) = FO1h
(kl) ∧ FO2h

(kl)
for all kl ∈ P1h ∪ P2h.
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Example 2.29. The union of two INGSs Ǧi1 and Ǧi2 shown in Fig. 2 is defined as

Ǧi1 ∪ Ǧi2 = {O1 ∪O2, O11 ∪O21, O12 ∪O22}

and is represented in Fig. 8.
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Figure 8. Ǧi1 ∪ Ǧi2

Theorem 2.30. The union Ǧi1∪Ǧi2 = (O1∪O2, O11∪O21, O12∪O22, . . . , O1r∪O2r)
of two INGSs of the GSs Ǧ1 and Ǧ2 is an INGS of Ǧ1 ∪ Ǧ2.

Proof. Let k1k2 ∈ P1h ∪ P2h. There are two cases:

Case 1: For k1, k2 ∈ P1, by definition 2.28, TO2
(k1) = TO2

(k2) = TO2h
(k1k2) =

0, IO2
(k1) = IO2

(k2) = IO2h
(k1k2) = 0, FO2

(k1) = FO2
(k2) = FO2h

(k1k2) =
1. Thus,

T(O1h∪O2h)(k1k2) = TO1h
(k1k2) ∨ TO2h

(k1k2)

= TO1h
(k1k2) ∨ 0

≤ [TO1
(k1) ∧ TO1

(k2)] ∨ 0

= [TO1
(k1) ∨ 0] ∧ [TO1

(k2) ∨ 0]

= [TO1
(k1) ∨ TO2

(k1)] ∧ [TO1
(k2) ∨ TO2

(k2)]

= T(O1∪O2)(k1) ∧ T(O1∪O2)(k2),

I(O1h∪O2h)(k1k2) = IO1h
(k1k2) ∨ IQ2h

(k1k2)

= IO1h
(k1k2) ∨ 0

≤ [IO1
(k1) ∧ IO1

(k2)] ∨ 0

= [IO1
(k1) ∨ 0] ∧ [IO1

(k2) ∨ 0]

= [IO1
(k1) ∨ IO2

(k1)] ∧ [IO1
(k2) ∨ IO2

(k2)]

= I(O1∪O2)(k1) ∧ I(O1∪O2)(k2),
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F(O1h∪O2h)(k1k2) = FO1h
(k1k2) ∧ FO2h

(k1k2)

= FO1i
(k1k2) ∧ 1

≤ [FO1
(k1) ∨ FO1

(k2)] ∧ 1

= [FO1
(k1) ∧ 1] ∨ [FO1

(k2) ∧ 1]

= [FO1
(k1) ∧ FO2

(k1)] ∨ [FO1
(k2) ∧ FO2

(k2)]

= F(O1∪O2)(k1) ∨ F(O1∪O2)(k2),

for k1, k2 ∈ P1 ∪ P2.
Case 2: For k1, k2 ∈ P2, by definition 2.28, TO1

(k1) = TO1
(k2) = TO1h

(k1k2) =
0, IO1

(k1) = IO1
(k2) = IO1h

(k1k2) = 0, FO1
(k1) = FO1

(q2) = FO1h
(k1k2) =

1, so

T(O1h∪O2h)(k1k2) = TO1h
(k1k2) ∨ TO2i

(k1k2)

= TO2i
(k1k2) ∨ 0

≤ [TO2
(k1) ∧ TO2

(k2)] ∨ 0

= [TO2
(k1) ∨ 0] ∧ [TO2

(k2) ∨ 0]

= [TO1
(k1) ∨ TO2

(k1)] ∧ [TO1
(k2) ∨ TO2

(k2)]

= T(O1∪O2)(k1) ∧ T(O1∪O2)(k2),

I(O1h∪O2h)(q1k2) = IO1h
(k1k2) ∨ IO2h

(k1k2)

= IO2h
(k1k2) ∨ 0

≤ [IO2
(k1) ∧ IO2

(k2)] ∨ 0

= [IO2
(k1) ∨ 0] ∧ [IO2

(k2) ∨ 0]

= [IO1
(k1) ∨ IO2

(k1)] ∧ [IO1
(k2) ∨ IO2

(k2)]

= I(O1∪O2)(k1) ∧ I(O1∪O2)(k2),

F(O1h∪O2h)(k1k2) = FO1h
(k1k2) ∧ FO2h

(k1k2)

= FO2h
(k1k2) ∧ 1

≤ [FO2
(k1) ∨ FO2

(k2)] ∧ 1

= [FO2
(k1) ∧ 1] ∨ [FO2

(k2) ∧ 1]

= [FO1
(k1) ∧ FO2

(k1)] ∨ [FO1
(k2) ∧ FO2

(k2)]

= F(O1∪O2)(k1) ∨ F(O1∪O2)(k2),

for k1, k2 ∈ P1 ∪ P2.

Both cases hold ∀h ∈ {1, 2, . . . , r}. This completes the proof. �

Theorem 2.31. Let Ǧ = (P1 ∪P2, P11 ∪P21, P12 ∪P22, . . . , P1r ∪P2r) be the union

of two GSs Ǧ1 = (P1, P11, P12, ..., P1r) and Ǧ2 = (P2, P21, P22, ..., P2r). Then every

INGS Ǧi = (O,O1, O2, ..., Or) of Ǧ is union of the two INGSs Ǧi1 and Ǧi2 of GSs

Ǧ1 and Ǧ2, respectively.
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Proof. Firstly, we define O1, O2, O1h and O2h for h ∈ {1, 2, . . . , r} as:
TO1

(k) = TO(k), IO1
(k) = IO(k), FO1

(k) = FO(k), if k ∈ P1,
TO2

(k) = TO(k), IO2
(k) = IO(k), FO2

(k) = FO(k), if k ∈ P2,
TO1h

(k1k2) = TOh
(k1k2), IO1h

(k1k2) = IOh
(k1k2), FO1h

(k1k2) = FOh
(k1k2),

if k1k2 ∈ P1h,
TO2h

(k1k2) = TOh
(k1k2), IO2h

(k1k2) = IOh
(k1k2), FO2h

(k1k2) = FOh
(k1k2),

if k1k2 ∈ P2h.
Then O = O1 ∪O2 and Oh = O1h ∪O2h, h ∈ {1, 2, . . . , r}.

Now for k1k2 ∈ Plh, l = 1, 2, h = 1, 2, . . . , r,
TOlh

(k1k2) = TOh
(k1k2) ≤ TO(k1) ∧ TO(k2) = TOl

(k1) ∧ TOl
(k2),

IOlh
(k1k2) = IOh

(k1k2) ≤ IO(k1) ∧ IO(k2) = IOl
(k1) ∧ IOl

(k2),
FOlh

(k1k2) = FOh
(k1k2) ≤ FO(k1) ∨ FO(k2) = FOl

(k1) ∨ FOl
(k2), i.e.,

Ǧil = (Ol, Ol1, Ol2, ..., Olr) is an INGS of Ǧl, l = 1,2.
Thus Ǧi = (O,O1, O2, ..., Or), an INGS of Ǧ = Ǧ1 ∪ Ǧ2, is the union of the two
INGSs Ǧi1 and Ǧi2. �

Definition 2.32. Let Ǧi1 = (O1, O11, O12, ..., O1r) and Ǧi2 = (O2, O21, O22, ..., O2r)
be INGSs of GSs Ǧ1 = (P1, P11, P12, . . . , P1r) and Ǧ2 = (P2, P21, P22, . . . , P2r), re-
spectively and let P1 ∩ P2 = ∅. Join of Ǧi1 and Ǧi2, denoted by

Ǧi1 + Ǧi2 = (O1 +O2, O11 +O21, O12 +O22, . . . , O1r +O2r),

is defined as:

(i)







T(O1+O2)(k) = T(O1∪O2)(k)
I(O1+O2)(k) = I(O1∪O2)(k)
F(O1+O2)(k) = F(O1∪O2)(k)

for all k ∈ P1 ∪ P2,

(ii)







T(O1h+O2h)(kl) = T(O1h∪O2h)(kl)
I(O1h+O2h)(kl) = I(O1h∪O2h)(kl)
F(O1h+O2h)(kl) = F(O1h∪O2h)(kl)

for all kl ∈ P1h ∪ P2h,

(iii)







T(O1h+O2h)(kl) = (TO1h
+ TO2h

)(kl) = TO1
(k) ∧ TO2

(l)
I(O1h+O2h)(kl) = (IO1h

+ IO2h
)(kl) = IO1

(k) ∧ IO2
(l)

F(O1h+O2h)(kl) = (FO1h
+ FO2h

)(kl) = FO1
(k) ∨ FO2

(l)
for all k ∈ P1 , l ∈ P2.

Example 2.33. The join of two INGSs Ǧi1 and Ǧi2 shown in Fig. 2 is defined as
Ǧi1 + Ǧi2 = {O1 +O2, O11 +O21, O12 +O22} and is represented in the Fig. 9.

Theorem 2.34. The join Ǧi1+Ǧi2 = (O1+O2, O11+O21, O12+O22, . . . , O1r+O2r)
of two INGSs of GSs Ǧ1 and Ǧ2 is INGS of Ǧ1 + Ǧ2.

Proof. Let k1k2 ∈ P1h + P2h. There are three cases:

Case 1: For k1, k2 ∈ P1, by definition 2.32, TO2
(k1) = TO2

(k2) = TO2h
(k1k2) =

0, IO2
(k1) = IO2

(k2) = IO2h
(k1k2) = 0, FO2

(k1) = FO2
(k2) = FO2h

(k1k2) =
18
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Figure 9. Ǧi1 + Ǧi2

1, so,

T(O1h+O2h)(k1k2) = TO1h
(k1k2) ∨ TO2h

(k1k2)

= TO1h
(k1k2) ∨ 0

≤ [TO1
(k1) ∧ TO1

(k2)] ∨ 0

= [TO1
(k1) ∨ 0] ∧ [TO1

(q2) ∨ 0]

= [TO1
(k1) ∨ TO2

(k1)] ∧ [TO1
(k2) ∨ TO2

(k2)]

= T(O1+O2)(k1) ∧ T(O1+O2)(k2),

I(O1h+O2h)(k1k2) = IO1h
(k1k2) ∨ IO2h

(k1k2)

= IO1h
(k1k2) ∨ 0

≤ [IO1
(k1) ∧ IO1

(k2)] ∨ 0

= [IO1
(k1) ∨ 0] ∧ [IO1

(k2) ∨ 0]

= [IO1
(k1) ∨ IO2

(k1)] ∧ [IO1
(k2) ∨ IO2

(k2)]

= I(O1+O2)(k1) ∧ I(O1+O2)(k2),

F(O1h+O2h)(k1k2) = FO1h
(k1k2) ∧ FO2h

(k1k2)

= FO1h
(k1k2) ∧ 1

≤ [FO1
(k1) ∨ FO1

(k2)] ∧ 1

= [FO1
(k1) ∧ 1] ∨ [FO1

(k2) ∧ 1]

= [FO1
(k1) ∧ FO2

(k1)] ∨ [FO1
(k2) ∧ FO2

(k2)]

= F(O1+O2)(k1) ∨ F(O1+O2)(k2),

for k1, k2 ∈ P1 + P2.
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Case 2: For k1, k2 ∈ P2, by definition 2.32, TO1
(k1) = TO1

(k2) = TO1h
(k1k2) =

0, IO1
(k1) = IO1

(k2) = IO1h
(k1k2) = 0, FO1

(k1) = FO1
(k2) = FO1h

(k1k2) =
1, so

T(O1h+O2h)(k1k2) = TO1i
(k1k2) ∨ TO2i

(k1k2)

= TO2i
(k1k2) ∨ 0

≤ [TO2
(k1) ∧ TO2

(k2)] ∨ 0

= [TO2
(k1) ∨ 0] ∧ [TO2

(k2) ∨ 0]

= [TO1
(k1) ∨ TO2

(k1)] ∧ [TO1
(k2) ∨ TO2

(k2)]

= T(O1+O2)(k1) ∧ T(O1+O2)(k2),

I(O1h+O2h)(k1k2) = IO1h
(k1k2) ∨ IO2h

(k1k2)

= IO2h
(k1k2) ∨ 0

≤ [IO2
(k1) ∧ IO2

(k2)] ∨ 0

= [IO2
(k1) ∨ 0] ∧ [IO2

(k2) ∨ 0]

= [IO1
(k1) ∨ IO2

(k1)] ∧ [IO1
(k2) ∨ IO2

(k2)]

= I(O1+O2)(k1) ∧ I(O1+O2)(k2),

F(O1h+O2h)(k1k2) = FO1h
(k1k2) ∧ FO2h

(k1k2)

= FO2h
(k1k2) ∧ 1

≤ [FO2
(k1) ∨ FO2

(k2)] ∧ 1

= [FO2
(k1) ∧ 1] ∨ [FO2

(k2) ∧ 1]

= [FO1
(k1) ∧ FO2

(k1)] ∨ [FO1
(k2) ∧ FO2

(k2)]

= F(O1+O2)(k1) ∨ F(O1+O2)(k2),

for q1, q2 ∈ P1 + P2.
Case 3: For k1 ∈ P1, k2 ∈ P2, by definition 2.32,

TO1
(k2) = TO2

(k1) = 0, IO1
(k2) = IO2

(k1) = 0, FO1
(k2) = FO2

(k1) = 1, so

T(O1h+O2h)(k1k2) = TO1
(q1) ∧ TO2

(k2)

= [TO1
(k1) ∨ 0] ∧ [TO2

(k2) ∨ 0]

= [TO1
(k1) ∨ TO2

(k1)] ∧ [TO2
(k2) ∨ TO1

(k2)]

= T(O1+O2)(k1) ∧ T(O1+O2)(k2),

I(O1h+O2h)(k1k2) = IO1
(k1) ∧ IO2

(k2)

= [IO1
(k1) ∨ 0] ∧ [IO2

(k2) ∨ 0]

= [IO1
(k1) ∨ IO2

(k1)] ∧ [IO2
(k2) ∨ IO1

(k2)]

= I(O1+O2)(k1) ∧ I(O1+O2)(k2),
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F(O1h+O2h)(k1k2) = FO1
(k1) ∨ FO2

(k2)

= [FO1
(k1) ∧ 1] ∨ [FO2

(k2) ∧ 1]

= [FO1
(k1) ∧ FO2

(k1)] ∨ [FO2
(k2) ∧ FO1

(k2)]

= F(O1+O2)(k1) ∨ F(O1+O2)(k2),

for k1, k2 ∈ P1 + P2.

All these cases hold ∀h ∈ {1, 2, . . . , r}. This completes the proof. �

Theorem 2.35. If Ǧ = (P1 +P2, P11 +P21, P12 +P22, . . . , P1r +P2r) is the join of

the two GSs Ǧ1 = (P1, P11, P12, ..., P1r) and Ǧ2 = (P2, P21, P22, ..., P2r). Then each

strong INGS Ǧi = (O,O1, O2, ..., Or) of Ǧ, is join of the two strong INGSs Ǧi1 and

Ǧi2 of GSs Ǧ1 and Ǧ2, respectively.

Proof. We define Ol and Olh for l = 1, 2 and h = 1, 2, . . . , r as:
TOl

(k) = TO(k), IOk
(k) = IO(k), FOl

(k) = FO(k), if k ∈ Pl,
TOlh

(k1k2) = TOh
(k1k2), IOlh

(k1k2) = IOh
(k1k2), FOlh

(k1k2) = FOh
(k1k2), if

k1k2 ∈ Plh.

Now for k1k2 ∈ Plh, l = 1, 2, h = 1, 2, . . . , r,
TOlh

(k1k2) = TOh
(k1k2) = TO(k1) ∧ TO(k2) = TOl

(k1) ∧ TOl
(k2),

IOlh
(k1k2) = IOh

(k1k2) = IO(k1) ∧ IO(k2) = IOl
(k1) ∧ IOl

(k2),
FOlh

(k1k2) = FOh
(k1k2) = FO(k1) ∨ FO(k2) = FOl

(k1) ∨ FOl
(k2), i.e.,

Ǧil = (Ol, Ol1, Ol2, ..., Olr) is strong INGS of Ǧl, l = 1, 2.
Moreover, Ǧi is the join of Ǧi1 and Ǧi2 as shown:
According to the definitions 2.28 and 2.32, O = O1 ∪ O2 = O1 + O2 and Oh =
O1h ∪O2h = O1h +O2h, ∀k1k2 ∈ P1h ∪ P2h.
When k1k2 ∈ P1h + P2h (P1h ∪ P2h), i.e., k1 ∈ P1 and k2 ∈ P2,

TOh
(k1k2) = TO(k1) ∧ TO(k2) = TOl

(k1) ∧ TOl
(k2) = T(O1h+O2h)(k1k2),

IOh
(k1k2) = IO(k1)∧IO(k2) = IOl

(k1)∧IOl
(k2) = I(O1h+O2h)(k1k2), FOh

(k1k2) =
FO(k1) ∨ FO(k2) = FOl

(k1) ∨ FOl
(k2) = F(O1h+O2h)(k1k2),

when k1 ∈ P2, k2 ∈ P1, we get similar calculations. It’s true for h = 1, 2, . . . , r. This
completes the proof. �

3. Application

According to IMF data, 1.75 billion people are living in poverty, their living is
estimated to be less than two dollars a day. Poverty changes by region, for example in
Europe it is 3%, and in the Sub-Saharan Africa it is up to 65%. We rank the countries
of the World as poor or rich, using their GDP per capita as scale. Poor countries are
trying to catch up with rich or developed countries. But this ratio is very small, that’s
why trade of poor countries among themselves is very important. There are different
types of trade among poor countries, for example: agricultural or food items, raw
minerals, medicines, textile materials, industrials goods etc. Using INGS, we can
estimate between any two poor countries which trade is comparatively stronger than
others. Moreover, we can decide(judge) which country has large number of resources
for particular type of goods and better circumstances for its trade. We can figure out,
for which trade, an external investor can invest his money in these poor countries.
Further, it will be easy to judge that in which field these poor countries are trying to
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Table 1. IN set O of nine poor countries on globe

Poor Country T I F
Congo 0.5 0.3 0.2
Liberia 0.4 0.4 0.3
Burundi 0.4 0.4 0.4
Tanzania 0.5 0.5 0.4
Uganda 0.4 0.4 0.5

Sierra Leone 0.5 0.4 0.4
Zimbabwe 0.3 0.4 0.4
Kenya 0.5 0.3 0.3
Zambia 0.4 0.4 0.4

be better, and can be helped. It will also help in deciding that in which trade they
are weak, and should be facilitated, so that they can be independent and improve
their living standards.
We consider a set of nine poor countries in the World:

P = {Congo,Liberia,Burundi,Tanzania,Ugenda, SierriaLeone,Zimbabwe,Kenya,Zambia}.

Let O be the IN set on P , as defined in Table 1. In Table 1, symbol T demonstrates
the positive aspects of that poor country, symbol I indicates its negative aspects,
whereas F denotes the percentage of ambiguity of its problems for the World. Let
we use following alphabets for country names:
CO = Congo, L = Liberia, B = Burundi, T = Tanzania, U = Uganda, SL = Sierra
Leone, ZI = Zimbabwe, K = Kenya, ZA = Zambia. For every pair of poor countries
in set P , different trades with their T , I and F values are demonstrated in Tables
2− 8, where T , F and I indicates the percentage of occurrence, non-occurrence and
uncertainty, respectively of a particular trade between those two poor countries

Table 2. IN set of different types of trade between Congo and
other poor countries in P

Type of trade (CO, L) (CO, B) (CO, T) (CO, U) (CO, K)
Food items (0.1, 0.2, 0.3) (0.4, 0.2, 0.1) (0.2, 0.1, 0.4) (0.4, 0.3, 0.5) (0.2, 0.1, 0.3)
Chemicals (0.2, 0.4, 0.3) (0.1, 0.2, 0.1) (0.1, 0.2, 0.4) (0.3, 0.2, 0.4) (0.5, 0.1, 0.1)

Oil (0.4, 0.2, 0.1) (0.4, 0.3, 0.2) (0.5, 0.1, 0.2) (0.4, 0.2, 0.2) (0.5, 0.3, 0.1)
Raw minerals (0.3, 0.1, 0.1) (0.4, 0.3, 0.3) (0.4, 0.2, 0.2) (0.4, 0.1, 0.2) (0.5, 0.1, 0.1)

Textile products (0.2, 0.3, 0.3) (0.1, 0.3, 0.4) (0.1, 0.2, 0.4) (0.1, 0.3, 0.2) (0.2, 0.1, 0.3)
Gold and diamonds (0.4, 0.1, 0.1) (0.4, 0.2, 0.2) (0.2, 0.2, 0.4) (0.2, 0.2, 0.4) (0.1, 0.3, 0.3)
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Table 3. IN set of different types of trade between Liberia and
other poor countries in P

Type of trade (L, B) (L, T) (L, U) (L, SL) (L, ZI)
Food items (0.4, 0.2, 0.2) (0.4, 0.3, 0.2) (0.3, 0.3, 0.4) (0.3, 0.3, 0.3) (0.2, 0.3, 0.3)
Chemicals (0.2, 0.2, 0.4) (0.1, 0.4, 0.3) (0.3, 0.3, 0.3) (0.2, 0.2, 0.4) (0.1, 0.3, 0.3)

Oil (0.1, 0.1, 0.4) (0.2, 0.3, 0.3) (0.1, 0.1, 0.4) (0.2, 0.4, 0.3) (0.2, 0.2, 0.3)
Raw minerals (0.3, 0.1, 0.3) (0.2, 0.2, 0.3) (0.2, 0.1, 0.4) (0.3, 0.2, 0.3) (0.2, 0.1, 0.3)

Textile products (0.1, 0.3, 0.4) (0.1, 0.3, 0.3) (0.2, 0.1, 0.3) (0.1, 0.2, 0.3) (0.2, 0.2, 0.3)
Gold and diamonds (0.2, 0.1, 0.4) (0.2, 0.1, 0.3) (0.3, 0.1, 0.3) (0.4, 0.1, 0.1) (0.3, 0.1, 0.1)

Table 4. IN set of different types of trade between Burundi and
other poor countries in P

Type of trade (B, T) (B, U) (B, SL) (B, ZI) (B, K)
Food items (0.3, 0.2, 0.2) (0.4, 0.1, 0.2) (0.3, 0.3, 0.1) (0.3, 0.3, 0.2) (0.3, 0.2, 0.2)
Chemicals (0.1, 0.2, 0.3) (0.2, 0.1, 0.3) (0.2, 0.4, 0.3) (0.3, 0.4, 0.3) (0.3, 0.3, 0.1)

Oil (0.1, 0.1, 0.4) (0.2, 0.3, 0.4) (0.2, 0.4, 0.3) (0.2, 0.2, 0.5) (0.1, 0.3, 0.4)
Raw minerals (0.2, 0.1, 0.3) (0.4, 0.2, 0.3) (0.4, 0.2, 0.4) (0.3, 0.2, 0.2) (0.4, 0.2, 0.2)

Textile products (0.3, 0.1, 0.1) (0.2, 0.4, 0.3) (0.3, 0.2, 0.2) (0.3, 0.2, 0.1) (0.4, 0.1, 0.2)
Gold and diamonds (0.3, 0.2, 0.3) (0.3, 0.4, 0.3) (0.1, 0.4, 0.2) (0.2, 0.4, 0.2) (0.2, 0.3, 0.4)

Table 5. IN set of different types of trade between Tanzania and
other poor countries in P

Type of trade (T, U) (T, SL) (T, ZI) (T, K) (T,ZA)
Food items (0.4, 0.2, 0.1) (0.5, 0.1, 0.1) (0.3, 0.1, 0.2) (0.4, 0.3, 0.2) (0.3, 0.2, 0.2)
Chemicals (0.2, 0.3, 0.3) (0.2, 0.3, 0.4) (0.2, 0.3, 0.3) (0.4, 0.1, 0.4) (0.3, 0.4, 0.4)

Oil (0.1, 0.3, 0.3) (0.4, 0.1, 0.3) (0.3, 0.4, 0.2) ( 0.2, 0.3, 0.3) ( 0.1, 0.3, 0.3)
Raw minerals (0.3, 0.3, 0.4) (0.4, 0.3, 0.3) (0.3, 0.2, 0.1) (0.4, 0.2, 0.3) (0.3, 0.2, 0.3)

Textile products (0.2, 0.4, 0.3) (0.2, 0.4, 0.4) (0.1, 0.3, 0.4) ( 0.2, 0.3, 0.2) (0.4, 0.1, 0.2)
Gold and diamonds (0.3, 0.4, 0.3) (0.4, 0.3, 0.4) (0.3, 0.1, 0.1) (0.2, 0.2, 0.2) (0.4, 0.3, 0.3)

Table 6. IN set of different types of trade between Sierra Leone
and other poor countries in P

Type of trade (SL, ZI) (SL, K) (SL, ZA) (SL, CO) (L, K)
Food items (0.3, 0.3, 0.2) (0.4, 0.2, 0.1) (0.2, 0.4, 0.3) (0.5, 0.1, 0.1) (0.4, 0.1, 0.2)
Chemicals (0.2, 0.3, 0.4) (0.3, 0.2, 0.2) (0.2, 0.4, 0.4) (0.2, 0.2, 0.3) (0.2, 0.3, 0.3)

Oil (0.1, 0.3, 0.4) (0.2, 0.2, 0.3) (0.3, 0.4, 0.2) (0.5, 0.2, 0.1) (0.3, 0.3, 0.3)
Raw minerals (0.3, 0.2, 0.2) (0.5, 0.2, 0.1) (0.3, 0.1, 0.1) (0.3, 0.3, 0.3) (0.4, 0.1, 0.2)

Textile products (0.2, 0.4, 0.2) (0.3, 0.2, 0.3) (0.2, 0.2, 0.4) (0.2, 0.2, 0.3) (0.3, 0.3, 0.2)
Gold and diamonds (0.3, 0.1, 0.1) (0.1, 0.2, 0.4) (0.2, 0.3, 0.3) (0.4, 0.1, 0.2) (0.3, 0.2, 0.3)
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Table 7. IN set of different types of trade between Zimbabwe and
other poor countries in P

Type of trade (ZI, K) (ZI, ZA) (ZI, U) (ZI, CO)
Food items (0.3, 0.2, 0.2) (0.3, 0.1, 0.1) (0.3, 0.1, 0.1) (0.2, 0.1, 0.1)
Chemicals (0.3, 0.3, 0.2) (0.2, 0.4, 0.3) (0.3, 0.2, 0.2) (0.2, 0.1, 0.2)

Oil (0.1, 0.3, 0.3) (0.1, 0.4, 0.4) (0.3, 0.2, 0.1) (0.3, 0.1, 0.1)
Raw minerals (0.3, 0.1, 0.2) (0.3, 0.2, 0.1) (0.3, 0.2, 0.3) (0.2, 0.3, 0.1)

Textile products (0.2, 0.2, 0.2) (0.2, 0.4, 0.3) (0.2, 0.3, 0.3) (0.2, 0.3, 0.1)
Gold and diamonds (0.3, 0.3, 0.1) (0.3, 0.2, 0.1) (0.3, 0.2, 0.2) (0.3, 0.2, 0.1)

Table 8. IN set of different types of trade between Zambia and
other poor countries in P

Type of trade (ZA, CO) (ZA, L) (ZA, B) (ZA, K)
Food items (0.3, 0.1, 0.2) (0.3, 0.1, 0.2) (0.4, 0.2, 0.1) (0.3, 0.1, 0.3)
Chemicals (0.2, 0.2, 0.2) (0.2, 0.2, 0.1) (0.3, 0.2, 0.2) (0.3, 0.1, 0.1)

Oil (0.4, 0.1, 0.1) (0.2, 0.1, 0.1) (0.3, 0.2, 0.1) (0.3, 0.2, 0.2)
Raw minerals (0.3, 0.1, 0.1) (0.4, 0.1, 0.1) (0.4, 0.2, 0.2) (0.4, 0.1, 0.1)

Textile products (0.2, 0.2, 0.2) (0.2, 0.2, 0.3) (0.2, 0.3, 0.2) (0.3, 0.1, 0.2)
Gold and diamonds (0.1, 0.2, 0.4) (0.4, 0.3, 0.2) (0.2, 0.3, 0.2) (0.3, 0.2, 0.1)

Many relations can be defined on the set P , we define following relations on set P
as:
P1 = Food items, P2 = Chemicals, P3 = Oil, P4 = Raw minerals, P5 = Textile
products, P6 = Gold and diamonds, such that (P, P1, P2, P3, P4, P5, P6) is a GS.
Any element of a relation demonstrates a particular trade between those two poor
countries. As (P, P1, P2, P3, P4, P5, P6) is GS, that’s why any element can appear in
only one relation. Therefore, any element will be considered in that relation, whose
value of T is high, and values of I, F are comparatively low, using data of above
tables.
Write down T, I and F values of the elements in relations according to above data,
such that O1, O2, O3, O4, O5, O6 are IN sets on relations P1, P2, P3, P4, P5, P6,
respectively.
Let P1 = {(Burundi,Congo), (SierraLeone,Congo), (Burundi,Zambia)},P2 = {(Kenya,Congo)},
P3 = {(Congo,Zambia), (Congo,Tanzania), (Zimbabwe,Congo)},
P4 = {(Congo,Uganda), (SierraLeone,Kenya), (Zambia,Kenya)},
P5 = {(Burundi,Zimbabwe), (Tanzania,Burundi)},
P6 = {(SierraLeone,Liberia), (Uganda, SierraLeone), (Zimbabwe, SierraLeone)}.
Let O1 = {((B,CO), 0.4, 0.2, 0.1), ((SL,CO), 0.5, 0.1, 0.1), ((B,ZA), 0.4, 0.2, 0.1)},
O2 = {((K,CO), 0.5, 0.1, 0.1)},O3 = {((CO,ZA), 0.4, 0.1, 0.1), ((CO, T ), 0.5, 0.1, 0.2),
((ZI,CO), 0.3, 0.1, 0.1)},O4 = {((CO,U), 0.4, 0.1, 0.2), ((SL,K), 0.5, 0.2, 0.1), ((ZA,K), 0.4, 0.1, 0.1)},
O5 = {((B,ZI), 0.3, 0.2, 0.1), ((T,B), 0.3, 0.1, 0.1)},O6 = {((SL,L), 0.4, 0.1, 0.1), ((U, SL), 0.4, 0.2, 0.1),
((ZI, SL), 0.3, 0.1, 0.1)}. Obviously, (O, O1, O2, O3, O4, O5, O6) is an INGS as
shown in Fig. 10.
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Figure 10. INGS indicating eminent trade between any two poor countries

Every edge of this INGS demonstrates the prominent trade between two poor coun-
tries, for example prominent trade between Congo and Zambia is Oil, its T, F and
I values are 0.4, 0.1 and 0.1, respectively. According to these values, despite of
poverty, circumstances of Congo and Zambia are 40% favorable for oil trade, 10%
are unfavorable, and 10% are uncertain, that is, sometimes they may be favorable
and sometimes unfavorable. We can observe that Congo is vertex with highest ver-
tex degree for relation oil and Sierra Leone is vertex with highest vertex degree for
relation gold and diamonds. That is, among these nine poor countries, Congo is
most favorable for oil trade, and Sierra Leone is most favorable for trade of gold and
diamonds. This INGS will be useful for those investors, who are interested to invest
in these nine poor countries. For example an investor can invest in oil in Congo.
And if someone wants to invest in gold and diamonds, this INGS will help him that
Sierra Leone is most favorable.

A big advantage of this INGS is that United Nations, IMF, World Bank, and rich
countries can be aware of the fact that in which fields of trade, these poor countries
are trying to be better and can be helped to make their economic conditions better.
Moreover, INGS of poor countries can be very beneficial for them, it may increase
trade as well as foreign aid and economic help from the World, and can present their
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better aspects before the World.

We now explain general procedure of this application by following algorithm.
Algorithm:

1. Input a vertex set P = {C1, C2, . . . , Cn} and a IN set O defined on set P .
2. Input IN set of trade of any vertex with all other vertices and calculate

T , F , and I of each pair of vertices using, T (CiCj) ≤ min(T (Ci), T (Cj)),
F (CiCj) ≤ max(F (Ci), F (Cj)), I(CiCj) ≤ min(I(Ci), I(Cj)).

3. Repeat Step 2 for each vertex in set P .
4. Define relations P1, P2, . . . , Pn on the set P such that (P, P1, P2, . . . , Pn) is

a GS.
5. Consider an element of that relation, for which its value of T is comparatively

high, and its values of F and I are low than other relations.
6. Write down all elements in relations with T , F and I values, corresponding

relations O1, O2, . . . , On are IN sets on P1, P2, P3, . . . , Pn, respectively and
(O,O1, O2, . . . , On) is an INGS.

4. Conclusions

Fuzzy graphical models are highly utilized in applications of computer science.
Especially in database theory, cluster analysis, image capturing, data mining, control
theory, neural networks, expert systems and artificial intelligence. In this research
paper, we have introduced certain operations on intuitionistic neutrosophic graph
structures. We have discussed a novel and worthwhile real-life application of intu-
itionistic neutrosophic graph structure in decision-making. We have intensions to
generalize our concepts to (1) Applications of IN soft GSs in decision-making (2)
Applications of IN rough fuzzy GSs in decision-making, (3) Applications of IN fuzzy
soft GSs in decision-making, and (4) Applications of IN rough fuzzy soft GSs in
decision-making.
Acknowledgment: The authors are thankful to Editor-in-Chief and the referees
for their valuable comments and suggestions.
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1. Introduction

The concept of neutrosophic quadruple numbers was introduced by Florentin
Smarandache [18]. It was shown in [18] how arithmetic operations of addition, sub-
traction, multiplication and scalar multiplication could be performed on the set of
neutrosophic quadruple numbers. In [1], Akinleye et.al. introduced the notion
of neutrosophic quadruple algebraic structures. Neutrosophic quadruple rings were
studied and their basic properties were presented. In the present paper, two hyper-
operations +̂ and ×̂ are defined on the neutrosophic set NQ of quadruple num-
bers to develop new algebraic hyperstructures which we call neutrosophic quadru-
ple algebraic hyperstructures. Specifically, it is shown that (NQ, ×̂) is a neutro-
sophic quadruple semihypergroup, (NQ, +̂) is a neutrosophic quadruple canonical
hypergroup and (NQ, +̂, ×̂) is a neutrosophic quadruple hyperrring and their basic
properties are presented.

Definition 1.1 ([18]). A neutrosophic quadruple number is a number of the
form (a, bT, cI, dF ) where T, I, F have their usual neutrosophic logic meanings and
a, b, c, d ∈ R or C. The set NQ defined by

NQ = {(a, bT, cI, dF ) : a, b, c, d ∈ R or C}(1.1)
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is called a neutrosophic set of quadruple numbers. For a neutrosophic quadruple
number (a, bT, cI, dF ) representing any entity which may be a number, an idea, an
object, etc, a is called the known part and (bT, cI, dF ) is called the unknown part.

Definition 1.2. Let a = (a1, a2T, a3I, a4F ), b = (b1, b2T, b3I, b4F ) ∈ NQ. We
define the following:

a+ b = (a1 + b1, (a2 + b2)T, (a3 + b3)I, (a4 + b4)F ),(1.2)

a− b = (a1 − b1, (a2 − b2)T, (a3 − b3)I, (a4 − b4)F ).(1.3)

Definition 1.3. Let a = (a1, a2T, a3I, a4F ) ∈ NQ and let α be any scalar which
may be real or complex, the scalar product α.a is defined by

α.a = α.(a1, a2T, a3I, a4F ) = (αa1, αa2T, αa3I, αa4F ).(1.4)

If α = 0, then we have 0.a = (0, 0, 0, 0) and for any non-zero scalars m and n and
b = (b1, b2T, b3I, b4F ), we have:

(m+ n)a = ma+ na,

m(a+ b) = ma+mb,

mn(a) = m(na),

−a = (−a1,−a2T,−a3I,−a4F ).

Definition 1.4 ([18]). [Absorbance Law] Let X be a set endowed with a total order
x < y, named ” x prevailed by y” or ”x less stronger than y” or ”x less preferred
than y”. x ≤ y is considered as ”x prevailed by or equal to y” or ”x less stronger
than or equal to y” or ”x less preferred than or equal to y”.

For any elements x, y ∈ X, with x ≤ y, absorbance law is defined as

x.y = y.x = absorb(x, y) = max{x, y} = y(1.5)

which means that the bigger element absorbs the smaller element (the big fish eats
the small fish). It is clear from (1.5) that

x.x = x2 = absorb(x, x) = max{x, x} = x and(1.6)

x1.x2 · · ·xn = max{x1, x2, · · · , xn}.(1.7)

Analogously, if x > y, we say that ”x prevails to y” or ”x is stronger than y” or
”x is preferred to y”. Also, if x ≥ y, we say that ”x prevails or is equal to y” or ”x
is stronger than or equal to y” or ”x is preferred or equal to y”.

Definition 1.5. Consider the set {T, I, F}. Suppose in an optimistic way we con-
sider the prevalence order T > I > F . Then we have:

TI = IT = max{T, I} = T,(1.8)

TF = FT = max{T, F} = T,(1.9)

IF = FI = max{I, F} = I,(1.10)

TT = T 2 = T,(1.11)

II = I2 = I,(1.12)

FF = F 2 = F.(1.13)
30
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Analogously, suppose in a pessimistic way we consider the prevalence order T <
I < F . Then we have:

TI = IT = max{T, I} = I,(1.14)

TF = FT = max{T, F} = F,(1.15)

IF = FI = max{I, F} = F,(1.16)

TT = T 2 = T,(1.17)

II = I2 = I,(1.18)

FF = F 2 = F.(1.19)

Except otherwise stated, we will consider only the prevalence order T < I < F
in this paper.

Definition 1.6. Let a = (a1, a2T, a3I, a4F ), b = (b1, b2T, b3I, b4F ) ∈ NQ. Then

a.b = (a1, a2T, a3I, a4F ).(b1, b2T, b3I, b4F )

= (a1b1, (a1b2 + a2b1 + a2b2)T, (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I,

(a1b4 + a2b4, a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F ).(1.20)

Theorem 1.7 ([1]). (NQ,+) is an abelian group.

Theorem 1.8 ([1]). (NQ, .) is a commutative monoid.

Theorem 1.9 ([1]). (NQ, .) is not a group.

Theorem 1.10 ([1]). (NQ,+, .) is a commutative ring.

Definition 1.11. Let NQR be a neutrosophic quadruple ring and let NQS be a
nonempty subset of NQR. Then NQS is called a neutrosophic quadruple subring of
NQR, if (NQS,+, .) is itself a neutrosophic quadruple ring. For example, NQR(nZ)
is a neutrosophic quadruple subring of NQR(Z) for n = 1, 2, 3, · · · .

Definition 1.12. Let NQJ be a nonempty subset of a neutrosophic quadruple
ring NQR. NQJ is called a neutrosophic quadruple ideal of NQR, if for all x, y ∈
NQJ, r ∈ NQR, the following conditions hold:

(i) x− y ∈ NQJ ,
(ii) xr ∈ NQJ and rx ∈ NQJ .

Definition 1.13 ([1]). Let NQR and NQS be two neutrosophic quadruple rings
and let φ : NQR→ NQS be a mapping defined for all x, y ∈ NQR as follows:

(i) φ(x+ y) = φ(x) + φ(y),
(ii) φ(xy) = φ(x)φ(y),
(iii) φ(T ) = T , φ(I) = I and φ(F ) = F ,
(iv) φ(1, 0, 0, 0) = (1, 0, 0, 0).

Then φ is called a neutrosophic quadruple homomorphism. Neutrosophic quadruple
monomorphism, endomorphism, isomorphism, and other morphisms can be defined
in the usual way.

Definition 1.14. Let φ : NQR → NQS be a neutrosophic quadruple ring homo-
morphism.
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(i) The image of φ denoted by Imφ is defined by the set

Imφ = {y ∈ NQS : y = φ(x), for some x ∈ NQR}.
(ii) The kernel of φ denoted by Kerφ is defined by the set

Kerφ = {x ∈ NQR : φ(x) = (0, 0, 0, 0)}.
Theorem 1.15 ([1]). Let φ : NQR → NQS be a neutrosophic quadruple ring
homomorphism. Then:

(1) Imφ is a neutrosophic quadruple subring of NQS,
(2) Kerφ is not a neutrosophic quadruple ideal of NQR.

Theorem 1.16 ([1]). Let φ : NQR(Z)→ NQR(Z)/NQR(nZ) be a mapping defined
by φ(x) = x + NQR(nZ) for all x ∈ NQR(Z) and n = 1, 2, 3, . . .. Then φ is not a
neutrosophic quadruple ring homomorphism.

Definition 1.17. Let H be a non-empty set and let + be a hyperoperation on H.
The couple (H,+) is called a canonical hypergroup if the following conditions hold:

(i) x+ y = y + x, for all x, y ∈ H,
(ii) x+ (y + z) = (x+ y) + z, for all x, y, z ∈ H,
(iii) there exists a neutral element 0 ∈ H such that x + 0 = {x} = 0 + x, for all

x ∈ H,
(iv) for every x ∈ H, there exists a unique element −x ∈ H such that 0 ∈

x+ (−x) ∩ (−x) + x,
(v) z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y, for all x, y, z ∈ H.
A nonempty subset A of H is called a subcanonical hypergroup, if A is a canonical

hypergroup under the same hyperaddition as that of H that is, for every a, b ∈ A,
a− b ∈ A. If in addition a+A− a ⊆ A for all a ∈ H, A is said to be normal.

Definition 1.18. A hyperring is a tripple (R,+, .) satisfying the following axioms:
(i) (R,+) is a canonical hypergroup,
(ii) (R, .) is a semihypergroup such that x.0 = 0.x = 0 for all x ∈ R, that is, 0 is

a bilaterally absorbing element,
(iii) for all x, y, z ∈ R,

x.(y + z) = x.y + x.z and (x+ y).z = x.z + y.z.

That is, the hyperoperation . is distributive over the hyperoperation +.

Definition 1.19. Let (R,+, .) be a hyperring and let A be a nonempty subset of
R. A is said to be a subhyperring of R if (A,+, .) is itself a hyperring.

Definition 1.20. Let A be a subhyperring of a hyperring R. Then

(i) A is called a left hyperideal of R if r.a ⊆ A for all r ∈ R, a ∈ A,
(ii) A is called a right hyperideal of R if a.r ⊆ A for all r ∈ R, a ∈ A,

(iii) A is called a hyperideal of R if A is both left and right hyperideal of R.

Definition 1.21. Let A be a hyperideal of a hyperring R. A is said to be normal
in R, if r +A− r ⊆ A, for all r ∈ R.

For full details about hypergroups, canonical hypergroups, hyperrings, neutro-
sophic canonical hypergroups and neutrosophic hyperrings, the reader should see
[3, 14]
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2. Development of neutrosophic quadruple canonical hypergroups
and neutrosophic quadruple hyperrings

In this section, we develop two neutrosophic hyperquadruple algebraic hyper-
structures namely neutrosophic quadruple canonical hypergroup and neutrosophic
quadruple hyperring . In what follows, all neutrosophic quadruple numbers will be
real neutrosophic quadruple numbers i.e a, b, c, d ∈ R for any neutrosophic quadru-
ple number (a, bT, cI, dF ) ∈ NQ.

Definition 2.1. Let + and . be hyperoperations on R that is x+y ⊆ R, x.y ⊆ R for
all x, y ∈ R. Let +̂ and ×̂ be hyperoperations onNQ. For x = (x1, x2T, x3I, x4F ), y =
(y1, y2T, y3I, y4F ) ∈ NQ with xi, yi ∈ R, i = 1, 2, 3, 4, define:

x+̂y = {(a, bT, cI, dF ) : a ∈ x1 + y1, b ∈ x2 + y2,

c ∈ x3 + y3, d ∈ x4 + y4},(2.1)

x×̂y = {(a, bT, cI, dF ) : a ∈ x1.y1, b ∈ (x1.y2) ∪ (x2.y1) ∪ (x2.y2), c ∈ (x1.y3)

∪(x2.y3) ∪ (x3.y1) ∪ (x3.y2) ∪ (x3.y3), d ∈ (x1.y4) ∪ (x2.y4)

∪(x3.y4) ∪ (x4.y1) ∪ (x4.y2) ∪ (x4.y3) ∪ (x4.y4)}.(2.2)

Theorem 2.2. (NQ, +̂) is a canonical hypergroup.

Proof. Let x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ), z = (z1, z2T, z3I, z4F ) ∈
NQ be arbitrary with xi, yi, zi ∈ R, i = 1, 2, 3, 4.

(i) To show that x+̂y = y+̂x, let
x+̂y = {a = (a1, a2T, a3I, a4F ) : a1 ∈ x1 + y1, a2 ∈ x2 + y2, a3 ∈ x3 + y3,

a4 ∈ x4 + y4},
y+̂x = {b = (b1, b2T, b3I, b4F ) : b1 ∈ y1 + x1, b2 ∈ y2 + x2, b3 ∈ y3 + b3,

b4 ∈ y4 + x4}.
Since ai, bi ∈ R, i = 1, 2, 3, 4, it follows that x+̂y = y+̂x.

(ii) To show that that x+̂(y+̂z) = (x+̂y)+̂z, let
y+̂z = {w = (w1, w2T,w3I, w4F ) : w1 ∈ y1 + z1, w2 ∈ y2 + z2,

w3 ∈ y3 + z3, w4 ∈ y4 + z4}. Now,

x+̂(y+̂z) = x+̂w

= {p = (p1, p2T, p3I, p4F ) : p1 ∈ x1 + w1, p2 ∈ x2 + w2, p3 ∈ x3 + w3,

p4 ∈ x4 + w4}
= {p = (p1, p2T, p3I, p4F ) : p1 ∈ x1 + (y1 + z1), p2 ∈ x2 + (y2 + z2),

p3 ∈ x3 + (y3 + z3), p4 ∈ x4 + (y4 + z4)}.
Also, let x+̂y = {u = (u1, u2T, u3I, u4F ) : u1 ∈ x1 + y1, u2 ∈ x2 + y2, u3 ∈ x3 +
y3, u4 ∈ x4 + y4} so that

(x+̂y)+̂z = u+̂z

= {q = (q1, q2T, q3I, q4F ) : q1 ∈ u1 + z1, q2 ∈ u2 + z2, q3 ∈ u3 + z3,

q4 ∈ u4 + z4}
= {q = (q1, q2T, q3I, q4F ) : q1 ∈ (x1 + y1) + z1, q2 ∈ (x2 + y2) + z2,

q3 ∈ (x3 + y3) + z3, q4 ∈ (x4 + y4) + z4}.
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Since ui, pi, qi, wi, xi, yi, zi ∈ R, i = 1, 2, 3, 4, it follows that x+̂(y+̂z) = (x+̂y)+̂z.
(iii) To show that 0 = (0, 0, 0, 0) ∈ NQ is a neutral element, consider

x+̂(0, 0, 0, 0) = {a = (a1, a2T, a3I, a4F ) : a1 ∈ x1 + 0, a2 ∈ x2 + 0, a3 ∈ x3 + 0,

a4 ∈ x4 + 0}
= {a = (a1, a2T, a3I, a4F ) : a1 ∈ {x1}, a2 ∈ {x2}, a3 ∈ {x3},

a4 ∈ {x4}}
= {x}.

Similarly, it can be shown that (0, 0, 0, 0)+̂x = {x}. Hence 0 = (0, 0, 0, 0) ∈ NQ is a
neutral element.

(iv) To show that that for every x ∈ NQ, there exists a unique element −̂x ∈ NQ
such that 0 ∈ x+̂(−̂x) ∩ (−̂x)+̂x, consider

x+̂(−̂x) ∩ (−̂x)+̂x = {a = (a1, a2T, a3I, a4F ) : a1 ∈ x1 − x1, a2 ∈ x2 − x2,
a3 ∈ x3 − x3, a4 ∈ x4 − x4} ∩ {b = (b1, b2T, b3I, b4F ) :

b1 ∈ −x1 + x1, b2 ∈ −x2 + x2, b3 ∈ −x3 + x3, b4 ∈ −x4 + x4}
= {(0, 0, 0, 0)}.

This shows that for every x ∈ NQ, there exists a unique element −̂x ∈ NQ such
that 0 ∈ x+̂(−̂x) ∩ (−̂x)+̂x.

(v) Since for all x, y, z ∈ NQ with xi, y1, zi ∈ R, i = 1, 2, 3, 4, it follows that
z ∈ x+̂y implies y ∈ −̂x+̂z and x ∈ z+̂(−̂y). Hence, (NQ, +̂) is a canonical
hypergroup. �

Lemma 2.3. Let (NQ, +̂) be a neutrosophic quadruple canonical hypergroup. Then

(1) −̂(−̂x) = x for all x ∈ NQ,
(2) 0 = (0, 0, 0, 0) is the unique element such that for every x ∈ NQ, there is an

element −̂x ∈ NQ such that 0 ∈ x+̂(−̂x),
(3) −̂0 = 0,
(4) −̂(x+̂y) = −̂x−̂y for all x, y ∈ NQ.

Example 2.4. Let NQ = {0, x, y} be a neutrosophic quadruple set and let +̂ be a
hyperoperation on NQ defined in the table below.

+̂ 0 x y
0 0 x y
x x {0, x, y} y
y y y {0, y}

Then (NQ, +̂) is a neutrosophic quadruple canonical hypergroup.

Theorem 2.5. (NQ, ×̂) is a semihypergroup.

Proof. Let x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ), z = (z1, z2T, z3I, z4F ) ∈
NQ be arbitrary with xi, yi, zi ∈ R, i = 1, 2, 3, 4.
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(i)

x×̂y = {a = (a1, a2T, a3I, a4F ) : a1 ∈ x1y1, a2 ∈ x1y2 ∪ x2y1 ∪ x2y2, a3 ∈ x1y3
∪x2y3 ∪ x3y1 ∪ x3y2 ∪ x3y3, a4 ∈ x1y4 ∪ x2y4
∪x3y4 ∪ x4y1 ∪ x4y2 ∪ x4y3 ∪ x4y4}

⊆ NQ.

(ii) To show that x×̂(y×̂z) = (x×̂y)×̂z, let

y×̂z = {w = (w1, w2T,w3I, w4F ) : w1 ∈ y1z1, w2 ∈ y1z2 ∪ y2z1 ∪ y2z2,
w3 ∈ y1z3 ∪ y2z3 ∪ y3z1 ∪ y3z2 ∪ y3z3, w4 ∈ y1z4) ∪ y2z4
∪y3z4 ∪ y4z1 ∪ y4z2 ∪ y4z3 ∪ y4z4}(2.3)

so that

x×̂(y×̂z) = x×̂w
= {p = (p1, p2T, p3I, p4F ) : p1 ∈ x1w1, p2 ∈ x1w2 ∪ x2w1 ∪ x2w2,

p3 ∈ x1w3 ∪ x2w3 ∪ x3w1 ∪ x3w2 ∪ x3y3, p4 ∈ x1w4 ∪ x2w4

∪x3w4 ∪ x4w1 ∪ x4w2 ∪ x4w3 ∪ x4w4}.(2.4)

Also, let

x×̂y = {u = (u1, u2T, u3I, u4F ) : u1 ∈ x1y1, u2 ∈ x1y2 ∪ x2y1 ∪ x2y2, u3 ∈ x1y3
∪x2y3 ∪ x3y1 ∪ x3y2 ∪ x3y3, u4 ∈ x1y4 ∪ x2y4
∪x3y4 ∪ x4y1 ∪ x4y2 ∪ x4y3 ∪ x4y4}(2.5)

so that

(x×̂y)×̂z = u×̂z
= {q = (q1, q2T, q3I, q4F ) : q1 ∈ u1z1, q2 ∈ u1z2 ∪ u2z1 ∪ u2z2,

q3 ∈ u1z3 ∪ u2z3 ∪ u3z1 ∪ u3z2 ∪ u3z3, q4 ∈ u1z4 ∪ u2z4
∪u3z4 ∪ u4z1 ∪ u4z2 ∪ u4z3 ∪ u4z4}.(2.6)

Substituting wi of (2.3) in (2.4) and also substituting ui of (2.5) in (2.6), where
i = 1, 2, 3, 4 and since pi, qi, ui, wi, xi, zi ∈ R, it follows that x×̂(y×̂z) = (x×̂y)×̂z.
Consequently, (NQ, ×̂) is a semihypergroup which we call neutrosophic quadruple
semihypergroup. �

Remark 2.6. (NQ, ×̂) is not a hypergroup.

Definition 2.7. Let (NQ, +̂) be a neutrosophic quadruple canonical hypergroup.
For any subset NH of NQ, we define

−̂NH = {−̂x : x ∈ NH}.
A nonempty subset NH of NQ is called a neutrosophic quadruple subcanonical
hypergroup, if the following conditions hold:

(i) 0 = (0, 0, 0, 0) ∈ NH,
(ii) x−̂y ⊆ NH for all x, y ∈ NH.

A neutrosophic quadruple subcanonical hypergroup NH of a netrosophic quadruple
canonical hypergroup NQ is said to be normal, if x+̂NH−̂x ⊆ NH for all x ∈ NQ.
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Definition 2.8. Let (NQ, +̂) be a neutrosophic quadruple canonical hypergroup.
For xi ∈ NQ with i = 1, 2, 3 . . . , n ∈ N, the heart of NQ denoted by NQω is defined
by

NQω =
⋃ n∑

i=1

(
xi−̂xi

)
.

In Example 2.4, NQω = NQ.

Definition 2.9. Let (NQ1, +̂) and (NQ2, +̂
′
) be two neutrosophic quadruple canon-

ical hypergroups. A mapping φ : NQ1 → NQ2 is called a neutrosophic quadruple
strong homomorphism, if the following conditions hold:

(i) φ(x+̂y) = φ(x)+̂
′
φ(y) for all x, y ∈ NQ1,

(ii) φ(T ) = T ,
(iii) φ(I) = I,
(iv) φ(F ) = F ,
(v) φ(0) = 0.

If in addition φ is a bijection, then φ is called a neutrosophic quadruple strong
isomorphism and we write NQ1

∼= NQ2.

Definition 2.10. Let φ : NQ1 → NQ2 be a neutrosophic quadruple strong ho-
momorphism of neutrosophic quadruple canonical hypergroups. Then the set {x ∈
NQ1 : φ(x) = 0} is called the kernel of φ and it is denoted by Kerφ. Also, the set
{φ(x) : x ∈ NQ1} is called the image of φ and it is denoted by Imφ.

Theorem 2.11. (NQ, +̂, ×̂) is a hyperring.

Proof. That (NQ, +̂) is a canonical hypergroup follows from Theorem 2.2. Also,
that (NQ, ×̂) is a semihypergroup follows from Theorem 2.4.

Next, let x = (x1, x2T, x3I, x4F ) ∈ NQ be arbitrary with xi, yi, zi ∈ R, i =
1, 2, 3, 4. Then

x×̂0 = {u = (u1, u2T, u3I, u4F ) : u1 ∈ x1.0, u2 ∈ x1.0 ∪ x2.0 ∪ x2.0, u3 ∈ x1.0
∪x2.0 ∪ x3.0 ∪ x3.0 ∪ x3.0, u4 ∈ x1.0 ∪ x2.0 ∪ x3.0 ∪ x4.0 ∪ x4.0
∪x4.0 ∪ x4.0}

= {u = (u1, u2T, u3I, u4F ) : u1 ∈ {0}, u2 ∈ {0}, u3 ∈ {0}, u4 ∈ {0}}
= {0}.

Similarly, it can be shown that 0×̂x = {0}. Since x is arbitrary, it follows that
x×̂0 = 0×̂x = {0}, for all x ∈ NQ. Hence, 0 = (0, 0, 0, 0) is a bilaterally absorbing
element.

To complete the proof, we have to show that x×̂(y+̂z) = (x×̂y)+̂(x×̂z), for all
x, y, z ∈ NQ. To this end, let x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ), z =
(z1, z2T, z3I, z4F ) ∈ NQ be arbitrary with xi, yi, zi ∈ R, i = 1, 2, 3, 4. Let

y+̂z = {w = (w1, w2T,w3I, w4F ) : w1 ∈ y1 + z1, w2 ∈ y2 + z2, w3 ∈ y3 + z3,

w4 ∈ y4 + z4}(2.7)
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so that

x×̂(y+̂z) = x×̂w
= {p = (p1, p2T, p3I, p4F ) : p1 ∈ x1w1, p2 ∈ x1w2 ∪ x2w1 ∪ x2w2,

p3 ∈ x1w3 ∪ x2w3 ∪ x3w1 ∪ x3w2 ∪ x3y3, p4 ∈ x1w4 ∪ x2w4

∪x3w4 ∪ x4w1 ∪ x4w2 ∪ x4w3 ∪ x4w4}.(2.8)

Substituting wi, i = 1, 2, 3, 4 of (2.7) in (2.8), we obtain the following:

p1 ∈ x1(y1 + z1),(2.9)

p2 ∈ x1(y2 + z2) ∪ x2(y1 + z1) ∪ x2(y2 + z2),(2.10)

p3 ∈ x1(y3 + z3) ∪ x2(y3 + z3) ∪ x3(y1 + z1) ∪ x3(y2 + z2) ∪ x3(y3 + z3),(2.11)

p4 ∈ x1(y4 + z4) ∪ x2(y4 + z4) ∪ x3(y4 + z4) ∪ x4(y1 + z1) ∪ x4(y2 + z2),

∪x4(y3 + z3) ∪ x4(y4 + z4).(2.12)

Also, let

x×̂y = {u = (u1, u2T, u3I, u4F ) : u1 ∈ x1y1, u2 ∈ x1y2 ∪ x2y1 ∪ x2y2,
u3 ∈ x1y3 ∪ x2y3 ∪ x3y1 ∪ x3y2 ∪ x3y3, u4 ∈ x1y4 ∪ x2y4
∪x3y4 ∪ x4y1 ∪ x4y2 ∪ x4y3 ∪ x4y4}(2.13)

x×̂z = {v = (v1, v2T, v3I, v4F ) : v1 ∈ x1z1, v2 ∈ x1z2 ∪ x2z1 ∪ x2z2,
v3 ∈ x1z3 ∪ x2z3 ∪ x3z1 ∪ x3z2 ∪ x3z3, v4 ∈ x1z4 ∪ x2z4
∪x3z4 ∪ x4z1 ∪ x4z2 ∪ x4z3 ∪ x4z4}(2.14)

so that

(x×̂y)+̂(x×̂z) = u+̂v

= {q = (q1, q2T, q3I, q4F ) : q1 ∈ u1 + v1, q2 ∈ u2 + v2,

q3 ∈ u3 + v3, q4 ∈ u4 + v4}.(2.15)

Substituting ui of (2.13) and vi of (2.14) in (2.15), we obtain the following:

q1 ∈ u1 + v1 ⊆ x1y1 + x1z1 ⊆ x1(y1 + z1),(2.16)

q2 ∈ u2 + v2 ⊆ (x1y2 ∪ x2y1 ∪ x2y2)

+(x1z2 ∪ x2z1 ∪ x2(z2)

⊆ x1(y2 + z2) ∪ x2(y1 + z1) ∪ x2(y2 + z2),(2.17)

q3 ∈ u3 + v3 ⊆ (x1y3 ∪ x2y3 ∪ x3y1) ∪ x3y2 ∪ x3y3)

+(x1z3 ∪ x2z3 ∪ x3z1) ∪ x3z2 ∪ x3z3)

⊆ x1(y3 + z3) ∪ x2(y3 + z3) ∪ x3(y1 + z1) ∪ x3(y2 + z2) ∪ x3(y3 + z3).(2.18)

q4 ∈ u4 + v4 ⊆ (x1y4 ∪ x2y4 ∪ x3y4) ∪ x4y1 ∪ x4y2) ∪ x4y3 ∪ x4y4)

+(x1z4 ∪ x2z4 ∪ x3z4) ∪ x4z1 ∪ x4z2) ∪ x4z3 ∪ x4z4)

⊆ x1(y4 + z4) ∪ x2(y4 + z4) ∪ x3(y4 + z4) ∪ x4(y1 + z1) ∪ x4(y2 + z2)

∪x4(y3 + z3) ∪ x4(y4 + z4).(2.19)

Comparing (2.9), (2.10), (2.11) and (2.12) respectively with (2.16), (2.17), (2.18)
and (2.19), we obtain pi = qi, i = 1, 2, 3, 4. Hence, x×̂(y+̂z) = (x×̂y)+̂(x×̂z), for all
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x, y, z ∈ NQ. Thus, (NQ, +̂, ×̂) is a hyperring which we call neutrosophic quadruple
hyperring. �

Theorem 2.12. (NQ, +̂, ◦) is a Krasner hyperring where ◦ is an ordinary multi-
plicative binary operation on NQ.

Definition 2.13. Let (NQ, +̂, ×̂) be a neutrosophic quadruple hyperring. A nonempty
subsetNJ ofNQ is called a neutrosophic quadruple subhyperring ofNQ, if (NJ, +̂, ×̂)
is itself a neutrosophic quadruple hyperring.
NJ is called a neutrosophic quadruple hyperideal if the following conditions hold:

(i) (NJ, +̂) is a neutrosophic quadruple subcanonical hypergroup.
(ii) For all x ∈ NJ and r ∈ NQ, x×̂r, r×̂x ⊆ NJ .

A neutrosophic quadruple hyperideal NJ of NQ is said to be normal in NQ, if
x+̂NJ−̂x ⊆ NJ , for all x ∈ NQ.

Definition 2.14. Let (NQ1, +̂, ×̂) and (NQ2, +̂
′
, ×̂′

) be two neutrosophic quadru-
ple hyperrings. A mapping φ : NQ1 → NQ2 is called a neutrosophic quadruple
strong homomorphism, if the following conditions hold:

(i) φ(x+̂y) = φ(x)+̂
′
φ(y), for all x, y ∈ NQ1,

(ii) φ(x×̂y) = φ(x)×̂′
φ(y), for all x, y ∈ NQ1,

(iii) φ(T ) = T ,
(iv) φ(I) = I,
(v) φ(F ) = F ,
(vi) φ(0) = 0.

If in addition φ is a bijection, then φ is called a neutrosophic quadruple strong
isomorphism and we write NQ1

∼= NQ2.

Definition 2.15. Let φ : NQ1 → NQ2 be a neutrosophic quadruple strong homo-
morphism of neutrosophic quadruple hyperrings. Then the set {x ∈ NQ1 : φ(x) = 0}
is called the kernel of φ and it is denoted by Kerφ. Also, the set {φ(x) : x ∈ NQ1}
is called the image of φ and it is denoted by Imφ.

Example 2.16. Let (NQ, +̂, ×̂) be a neutrosophic quadruple hyperring and let
NX be the set of all strong endomorphisms of NQ. If ⊕ and � are hyperoperations
defined for all φ, ψ ∈ NX and for all x ∈ NQ as

φ⊕ ψ = {ν(x) : ν(x) ∈ φ(x)+̂ψ(x)},
φ� ψ = {ν(x) : ν(x) ∈ φ(x)×̂ψ(x)},

then (NX,⊕,�) is a neutrosophic quadruple hyperring.

3. Characterization of neutrosophic quadruple canonical
hypergroups and neutrosophic hyperrings

In this section, we present elementary properties which characterize neutrosophic
quadruple canonical hypergroups and neutrosophic quadruple hyperrings.

Theorem 3.1. Let NG and NH be neutrosophic quadruple subcanonical hyper-
groups of a neutrosophic quadruple canonical hypergroup (NQ, +̂). Then

(1) NG ∩NH is a neutrosophic quadruple subcanonical hypergroup of NQ,
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(2) NG×NH is a neutrosophic quadruple subcanonical hypergroup of NQ.

Theorem 3.2. Let NH be a neutrosophic quadruple subcanonical hypergroup of a
neutrosophic quadruple canonical hypergroup (NQ, +̂). Then

(1) NH+̂NH = NH,
(2) x+̂NH = NH, for all x ∈ NH.

Theorem 3.3. Let (NQ, +̂) be a neutrosophic quadruple canonical hypergroup.
NQω, the heart of NQ is a normal neutrosophic quadruple subcanonical hypergroup
of NQ.

Theorem 3.4. Let NG and NH be neutrosophic quadruple subcanonical hyper-
groups of a neutrosophic quadruple canonical hypergroup (NQ, +̂).

(1) If NG ⊆ NH and NG is normal, then NG is normal.
(2) If NG is normal, then NG+̂NH is normal.

Definition 3.5. Let NG and NH be neutrosophic quadruple subcanonical hy-
pergroups of a neutrosophic quadruple canonical hypergroup (NQ, +̂). The set
NG+̂NH is defined by

NG+̂NH = {x+̂y : x ∈ NG, y ∈ NH}.(3.1)

It is obvious that NG+̂NH is a neutrosophic quadruple subcanonical hypergroup
of (NQ, +̂).

If x ∈ NH, the set x+̂NH is defined by

x+̂NH = {x+̂y : y ∈ NH}.(3.2)

If x and y are any two elements of NH and τ is a relation on NH defined by
xτy if x ∈ y+̂NH, it can be shown that τ is an equivalence relation on NH and the
equivalence class of any element x ∈ NH determined by τ is denoted by [x].

Lemma 3.6. For any x ∈ NH, we have

(1) [x] = x+̂NH,
(2) [−̂x] = −̂[x].

Proof. (1)

[x] = {y ∈ NH : xτy}
= {y ∈ NH : y ∈ x+̂NH}
= x+̂NH.

(2) Obvious. �

Definition 3.7. Let NQ/NH be the collection of all equivalence classes of x ∈ NH
determined by τ . For [x], [y] ∈ NQ/NH, we define the set [x]⊕̂[y] as

[x]⊕̂[y] = {[z] : z ∈ x+̂y}.(3.3)

Theorem 3.8. (NQ/NH, ⊕̂) is a neutrosophic quadruple canonical hypergroup.

Proof. Same as the classical case and so omitted. �
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Theorem 3.9. Let (NQ, +̂) be a neutrosophic quadruple canonical hypergroup and
let NH be a normal neutrosophic quadruple subcanonical hypergroup of NQ. Then,
for any x, y ∈ NH, the following are equivalent:

(1) x ∈ y+̂NH,
(2) y−̂x ⊆ NH,
(3) (y−̂x) ∩NH 6= ∅

Proof. Same as the classical case and so omitted. �

Theorem 3.10. Let φ : NQ1 → NQ2 be a neutrosophic quadruple strong homo-
morphism of neutrosophic quadruple canonical hypergroups. Then

(1) Kerφ is not a neutrosophic quadruple subcanonical hypergroup of NQ1,
(2) Imφ is a neutrosophic quadruple subcanonical hypergroup of NQ2.

Proof. (1) Since it is not possible to have φ((0, T, 0, 0)) = φ((0, 0, 0, 0)), φ((0, 0, I, 0)) =
φ((0, 0, 0, 0)) and φ((0, 0, 0, F )) = φ((0, 0, 0, 0)), it follows that (0, T, 0, 0), (0, 0, I, 0)
and (0, 0, 0, F ) cannot be in the kernel of φ. Consequently, Kerφ cannot be a neu-
trosophic quadruple subcanonical hypergroup of NQ1.

(2) Obvious. �

Remark 3.11. If φ : NQ1 → NQ2 is a neutrosophic quadruple strong homomor-
phism of neutrosophic quadruple canonical hypergroups, then Kerφ is a subcanon-
ical hypergroup of NQ1.

Theorem 3.12. Let φ : NQ1 → NQ2 be a neutrosophic quadruple strong homo-
morphism of neutrosophic quadruple canonical hypergroups. Then

(1) NQ1/Kerφ is not a neutrosophic quadruple canonical hypergroup,
(2) NQ1/Kerφ is a canonical hypergroup.

Theorem 3.13. Let NH be a neutrosophic quadruple subcanonical hypergroup of
the neutrosophic quadruple canonical hypergroup (NQ, +̂). Then the mapping φ :
NQ → NQ/NH defined by φ(x) = x+̂NH is not a neutrosophic quadruple strong
homomorphism.

Remark 3.14. Isomorphism theorems do not hold in the class of neutrosophic
quadruple canonical hypergroups.

Lemma 3.15. Let NJ be a neutrosophic quadruple hyperideal of a neutrosophic
quadruple hyperring (NQ, +̂, ×̂). Then

(1) −̂NJ = NJ ,
(2) x+̂NJ = NJ , for all x ∈ NJ ,
(3) x×̂NJ = NJ , for all x ∈ NJ .

Theorem 3.16. Let NJ and NK be neutrosophic quadruple hyperideals of a neu-
trosophic quadruple hyperring (NQ, +̂, ×̂). Then

(1) NJ ∩NK is a neutrosophic quadruple hyperideal of NQ,
(2) NJ ×NK is a neutrosophic quadruple hyperideal of NQ,
(3) NJ+̂NK is a neutrosophic quadruple hyperideal of NQ.

Theorem 3.17. Let NJ be a normal neutrosophic quadruple hyperideal of a neu-
trosophic quadruple hyperring (NQ, +̂, ×̂). Then
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(1) (x+̂NJ)+̂(y+̂NJ) = (x+̂y)+̂NJ , for all x, y ∈ NJ ,
(2) (x+̂NJ)×̂(y+̂NJ) = (x×̂y)+̂NJ , for all x, y ∈ NJ ,
(3) x+̂NJ = y+̂NJ , for all y ∈ x+̂NJ .

Theorem 3.18. Let NJ and NK be neutrosophic quadruple hyperideals of a neu-
trosophic quadruple hyperring (NQ, +̂, ×̂) such that NJ is normal in NQ. Then

(1) NJ ∩NK is normal in NJ ,
(2) NJ+̂NK is normal in NQ,
(3) NJ is normal in NJ+̂NK.

Let NJ be a neutrosophic quadruple hyperideal of a neutrosophic quadruple
hyperring (NQ, +̂, ×̂). For all x ∈ NQ, the set NQ/NJ is defined as

NQ/NJ = {x+̂NJ : x ∈ NQ}.(3.4)

For [x], [y] ∈ NQ/NJ , we define the hyperoperations ⊕̂ and ⊗̂ on NQ/NJ as follows:

[x]⊕̂[y] = {[z] : z ∈ x+̂y},(3.5)

[x]⊗̂[y] = {[z] : z ∈ x×̂y}.(3.6)

It can easily be shown that (NQ/NH, ⊕̂, ⊗̂) is a neutrosophic quadruple hyperring.

Theorem 3.19. Let φ : NQ → NR be a neutrosophic quadruple strong homomor-
phism of neutrosophic quadruple hyperrings and let NJ be a neutrosophic quadruple
hyperideal of NQ. Then

(1) Kerφ is not a neutrosophic quadruple hyperideal of NQ,
(2) Imφ is a neutrosophic quadruple hyperideal of NR,
(3) NQ/Kerφ is not a neutrosophic quadruple hyperring,
(4) NQ/Imφ is a neutrosophic quadruple hyperring,
(5) The mapping ψ : NQ→ NQ/NJ defined by ψ(x) = x+̂NJ , for all x ∈ NQ

is not a neutrosophic quadruple strong homomorphism.

Remark 3.20. The classical isomorphism theorems of hyperrings do not hold in
neutrosophic quadruple hyperrings.

4. Conclusion

We have developed neutrosophic quadruple algebraic hyperstrutures in this pa-
per. In particular, we have developed new neutrosophic algebraic hyperstructures
namely neutrosophic quadruple semihypergroups, neutrosophic quadruple canonical
hypergroups and neutrosophic quadruple hyperrings. We have presented elementary
properties which characterize the new neutrosophic algebraic hyperstructures.

Acknowledgements. The authors thank all the anonymous reviewers for useful
observations and critical comments which have improved the quality of the paper.
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1. Introduction

In 1965, Zadeh [20] had introduced a concept of a fuzzy set as the generalization
of a crisp set. In 1986, Atanassove [1] proposed the notion of intuitionistic fuzzy set
as the generalization of fuzzy sets considering the degree of membership and non-
membership. In 1998 Smarandache [19] introduced the concept of a neutrosophic set
considering the degree of membership, the degree of indeterminacy and the degree
of non-membership. Moreover, Salama et al. [15, 16, 18] applied the concept of
neutrosophic crisp sets to topology and relation.

After that time, many researchers [2, 3, 4, 5, 7, 8, 10, 12, 13, 14] have inves-
tigated fuzzy sets in the sense of category theory, for instance, Set(H), Setf (H),
Setg(H), Fuz(H). Among them, the category Set(H) is the most useful one as the
”standard” category, because Set(H) is very suitable for describing fuzzy sets and
mappings between them. In particular, Carrega [2], Dubuc [3], Eytan [4], Goguen
[5], Pittes [12], Ponasse [13, 14] had studied Set(H) in topos view-point. However
Hur et al. investigated Set(H) in topological view-point. Moreover, Hur et al. [8]
introduced the category ISet(H) consisting of intuitionistic H-fuzzy sets and mor-
phisms between them, and studied ISet(H) in the sense of topological universe.
Recently, Lim et al [10] introduced the new category VSet(H) and investigated it
in the sense of topological universe.
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The concept of a topological universe was introduced by Nel [11], which implies a
Cartesian closed category and a concrete quasitopos. Furthermore the concept has
already been up to effective use for several areas of mathematics.

In this paper, first, we obtain some properties of neutrosophic crisp sets proposed
by Salama and Smarandache [17] in 2015. Second, we introduce the category NCSet
consisting of neutrosophic crisp sets and morphisms between them. And we prove
that the category NCSet is topological and cotopological over Set (See Theorem
4.6 and Corollary 4.8), where Set denotes the category consisting of ordinary sets
and ordinary mappings between them. Furthermore, we prove that final episinks
in NCSet are preserved by pullbacks(See Theorem 4.10) and NCSet is Cartesian
closed over Set (See Theorem 4.15).

2. Preliminaries

In this section, we list some basic definitions and well-known results from [6, 9, 11]
which are needed in the next sections.

Definition 2.1 ([9]). Let A be a concrete category and ((Yj , ξj))J a family of objects
in A indexed by a class J. For any set X, let (fj : X → Yj)J be a source of mappings
indexed by J . Then an A-structure ξ on X is said to be initial with respect to (in
short, w.r.t.) (X, (fj), (Yj , ξj))J , if it satisfies the following conditions:

(i) for each j ∈ J , fj : (X, ξ)→ (Yj , ξj) is an A-morphism,
(ii) if (Z, ρ) is an A-object and g : Z → X is a mapping such that for each j ∈ J ,

the mapping fj ◦ g : (Z, ρ)→ (Yj , ξj) is an A-morphism, then g : (Z, ρ)→ (X, ξ) is
an A-morphism.

In this case, (fj : (X, ξ)→ (Yj , ξj))J is called an initial source in A.

Dual notion: cotopological category.

Result 2.2 ([9], Theorem 1.5). A concrete category A is topological if and only if
it is cotopological.

Result 2.3 ([9], Theorem 1.6). Let A be a topological category over Set, then it is
complete and cocomplete.

Definition 2.4 ([9]). Let A be a concrete category.
(i) The A-fibre of a set X is the class of all A-structures on X.
(ii) A is said to be properly fibred over Set, it satisfies the followings:

(a) (Fibre-smallness) for each set X, the A-fibre of X is a set,
(b) (Terminal separator property) for each singleton set X, the A-fibre of X

has precisely one element,
(c) if ξ and η are A-structures on a set X such that id : (X, ξ) → (X, η) and

id : (X, η)→ (X, ξ) are A-morphisms, then ξ = η.

Definition 2.5 ([6]). A category A is said to be Cartesian closed, if it satisfies the
following conditions:

(i) for each A-object A and B, there exists a product A×B in A,
(ii) exponential objects exist in A, i.e., for each A-object A, the functor A×− :

A → A has a right adjoint, i.e., for any A-object B, there exist an A-object BA

and a A-morphism eA,B : A × BA → B (called the evaluation) such that for any
44
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A-object C and any A-morphism f : A×C → B, there exists a unique A-morphism
f̄ : C → BA such that the diagram commutes:

Definition 2.6 ([6]). A category A is called a topological universe over Set, if it
satisfies the following conditions:

(i) A is well-structured, i.e. (a) A is concrete category; (b) A satisfies the fibre-
smallness condition; (c) A has the terminal separator property,

(ii) A is cotopological over Set,
(iii) final episinks in A are preserved by pullbacks, i.e., for any episink (gj : Xj →

Y )J and any A-morphism f : W → Y , the family (ej : Uj → W )J , obtained by
taking the pullback f and gj , for each j ∈ J , is again a final episink.

3. Neutrosophic crisp sets

In [17], Salama and Smarandache introduced the concept of a neutrosophic crisp
set in a set X and defined the inclusion between two neutrosophic crisp sets, the
intersection [union] of two neutrosophic crisp sets, the complement of a neutrosophic
crisp set, neutrosophic crisp empty [resp., whole] set as more than two types. And
they studied some properties related to neutrosophic crisp set operations. However,
by selecting only one type, we define the inclusion, the intersection [union], and
neutrosophic crisp empty [resp., whole] set again and find some properties.

Definition 3.1. Let X be a non-empty set. Then A is called a neutrosophic crisp
set (in short, NCS) in X if A has the form A = (A1, A2, A3),
where A1, A2, and A3 are subsets of X,

The neutrosophic crisp empty [resp., whole] set, denoted by φN [resp., XN ] is an
NCS in X defined by φN = (φ, φ,X) [resp., XN = (X,X, φ)]. We will denote the
set of all NCSs in X as NCS(X).

In particular, Salama and Smarandache [17] classified a neutrosophic crisp set as
the followings.

A neutrosophic crisp set A = (A1, A2, A3) in X is called a:
(i) neutrosophic crisp set of Type 1 (in short, NCS-Type 1), if it satisfies

A1 ∩A2 = A2 ∩A3 = A3 ∩A1 = φ,

(ii) neutrosophic crisp set of Type 2 (in short, NCS-Type 2), if it satisfies
A1 ∩A2 = A2 ∩A3 = A3 ∩A1 = φ and A1 ∪A2 ∪A3 = X,

(iii) neutrosophic crisp set of Type 3 (in short, NCS-Type 3), if it satisfies
A1 ∩A2 ∩A3 = φ and A1 ∪A2 ∪A3 = X.

We will denote the set of all NCSs-Type 1 [resp., Type 2 and Type 3] as NCS1(X)
[resp., NCS2(X) and NCS3(X)].

Definition 3.2. Let A = (A1, A2, A3), B = (B1, B2, B3) ∈ NCS(X). Then
(i) A is said to be contained in B, denoted by A ⊂ B, if

A1 ⊂ B1, A2 ⊂ B2 and A3 ⊃ B3,
(ii) A is said to equal to B, denoted by A = B, if

A ⊂ B and B ⊂ A,
(iii) the complement of A, denoted by Ac, is an NCS in X defined as:

Ac = (A3, A
c
2, A1),
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(iv) the intersection of A and B, denoted by A ∩B, is an NCS in X defined as:

A ∩B = (A1 ∩B1, A2 ∩B2, A3 ∪B3),

(v) the union of A and B, denoted by A ∪B, is an NCS in X defined as:

A ∪B = (A1 ∪B1, A2 ∪B2, A3 ∩B3).

Let (Aj)j∈J ⊂ NCS(X), where Aj = (Aj,1, Aj,2, Aj,3). Then
(vi) the intersection of (Aj)j∈J , denoted by

⋂
j∈J Aj (simply,

⋂
Aj), is an NCS

in X defined as: ⋂
Aj = (

⋂
Aj,1,

⋂
Aj,2,

⋃
Aj,3),

(vii) the the union of (Aj)j∈J , denoted by
⋃

j∈J Aj (simply,
⋃
Aj), is an NCS in

X defined as: ⋃
Aj = (

⋃
Aj,1,

⋃
Aj,2,

⋂
Aj,3).

The followings are the immediate results of Definition 3.2.

Proposition 3.3. Let A,B,C ∈ NCS(X). Then
(1) φN ⊂ A ⊂ XN ,
(2) if A ⊂ B and B ⊂ C, then A ⊂ C,
(3) A ∩B ⊂ A and A ∩B ⊂ B,
(4) A ⊂ A ∪B and B ⊂ A ∪B,
(5) A ⊂ B if and only if A ∩B = A,
(6) A ⊂ B if and only if A ∪B = B.

Also the followings are the immediate results of Definition 3.2.

Proposition 3.4. Let A,B,C ∈ NCS(X). Then
(1) (Idempotent laws): A ∪A = A, A ∩A = A,
(2) (Commutative laws): A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws): A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C,
(4) (Distributive laws): A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws): A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (DeMorgan’s laws): (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc,
(7) (Ac)c = A,
(8) (8a) A ∪ φN = A, A ∩ φN = φN ,

(8b) A ∪XN = XN , A ∩XN = A,
(8c) Xc

N = φN , φcN = XN ,
(8d) in general, A ∪Ac 6= XN , A ∩Ac 6= φN .

Proposition 3.5. Let A ∈ NCS(X) and let (Aj)j∈J ⊂ NCS(X). Then
(1) (

⋂
Aj)

c =
⋃
Ac

j , (
⋃
Aj)

c =
⋂
Ac

j ,
(2) A ∩ (

⋃
Aj) =

⋃
(A ∩Aj), A ∪ (

⋂
Aj) =

⋂
(A ∪Aj).

Proof. (1) Aj = (Aj,1, Aj,2, Aj,3). Then
⋂
Aj = (

⋂
Aj,1,

⋂
Aj,2,

⋃
Aj,3). Thus

(
⋂
Aj)

c = (
⋃
Aj,3, (

⋂
Aj,2)c,

⋂
Aj,1) = (

⋃
Aj,3,

⋃
Ac

j,2,
⋂
Aj,1) =

⋃
Ac

j .
Similarly, the second part is proved.
(2) Let A = (A1, A2, A3). Then

A ∪ (
⋂
Aj) = (A1 ∪ (

⋂
Aj,1), A2 ∪ (

⋂
Aj,2), A3 ∩ (

⋃
Aj,3))

46



J. G. Lee et al./Ann. Fuzzy Math. Inform. 14 (2017), No. 1, 43–54

= (
⋂

(A1 ∪Aj,1),
⋂

(A2 ∪Aj,2),
⋃

(A3 ∩Aj,3)
=

⋂
(A ∪Aj).

Similarly, the first part is proved. �

Definition 3.6. Let f : X → Y be a mapping, and let A = (A1, A2, A3) ∈ NCS(X)
and B = (B1, B2, B3) ∈ NCS(Y ). Then

(i) the image of A under f , denoted by f(A), is an NCS in Y defined as:

f(A) = (f(A1), f(A2), f(A3)),

(ii) the preimage of B, denoted by f−1(B), is an NCS in X defined as:

f−1(B) = (f−1(B1), f−1(B2), f−1(B3)).

Proposition 3.7. Let f : X → Y be a mapping and let A,B,C ∈ NCS(X),
(Aj)j∈J ⊂ NCS(X) and D,E, F ∈ NCS(Y ), (Dk)k∈K ⊂ NCS(Y ). Then the
followings hold:

(1) if B ⊂ C, then f(B) ⊂ f(C) and if E ⊂ F , then f−1(E) ⊂ f−1(F ).
(2) A ⊂ f−1f(A)) and if f is injective, then A = f−1f(A)),
(3) f(f−1(D)) ⊂ D and if f is surjective, then f(f−1(D)) = D,
(4) f−1(

⋃
Dk) =

⋃
f−1(Dk), f−1(

⋂
Dk) =

⋂
f−1(Dk),

(5) f(
⋃
Aj) =

⋃
f(Aj), f(

⋂
Aj) ⊂

⋂
f(Aj),

(6) f(A) = φN if and only if A = φN and hence f(φN ) = φN , in particular if f
is surjective, then f(XN ) = YN ,

(7) f−1(YN ) = YN , f−1(φN ) = φ.

Definition 3.8 ([17]). Let A = (A1, A2, A3) ∈ NCS(X), where X is a set having
at least distinct three points. Then A is called a neutrosophic crisp point (in short,
NCP) in X, if A1, A2 and A3 are distinct singleton sets in X.

Let A1 = {p1}, A2 = {p2} and A3 = {p3}, where p1 6= p2 6= p3 ∈ X. Then
A = (A1, A2, A3) is an NCP in X. In this case, we will denote A as p = (p1, p2, p3).
Furthermore, we will denote the set of all NCPs in X as NCP (X).

Definition 3.9. Let A = (A1, A2, A3) ∈ NCS(X) and let p = (p1, p2, p3) ∈
NCP (X). Then p is said to belong to A, denoted by p ∈ A, if {p1} ⊂ A1, {p2} ⊂ A2

and {p3}c ⊃ A3, i.e., p1 ∈ A1, p2 ∈ A2 and p3 ∈ Ac
3.

Proposition 3.10. Let A = (A1, A2, A3) ∈ NCS(X). Then

A =
⋃
{p ∈ NCP (X) : p ∈ A}.

Proof. Let p = (p1, p2, p3) ∈ NCP (X). Then⋃
{p ∈ NCP (X) : p ∈ A}

= (
⋃
{p1 ∈ X : p1 ∈ A1},

⋃
{p2 ∈ X : p2 ∈ A2},

⋂
{p3 ∈ X : p3 ∈ Ac

3}
= A. �

Proposition 3.11. Let A = (A1, A2, A3), B = (B1, B2, B3) ∈ NCS(X). Then
A ⊂ B if and only if p ∈ B, for each p ∈ A.

Proof. Suppose A ⊂ B and let p = (p1, p2, p3) ∈ A. Then

A1 ⊂ B1, A2 ⊂ B2, A3 ⊃ B3
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and
p1 ∈ A1, p2 ∈ A2, p3 ∈ Ac

3.

Thus p1 ∈ B1, p2 ∈ B2, p3 ∈ Bc
3. So p ∈ B. �

Proposition 3.12. Let (Aj)j∈J ⊂ NCS(X) and let p ∈ NCP (X).
(1) p ∈

⋂
Aj if and only if p ∈ Aj for each j ∈ J .

(2) p ∈
⋃
Aj if and only if there exists j ∈ J such that p ∈ Aj.

Proof. Let Aj = (Aj,1, Aj,2, Aj,3) for each j ∈ J and let p = (p1, p2, p3).
(1) Suppose p ∈

⋂
Aj . Then p1 ∈

⋂
Aj,1, p2 ∈

⋂
Aj,2, p3 ∈

⋃
Ac

j,3. Thus
p1 ∈ Aj,1, p2 ∈ Aj,2, p3 ∈ Ac

j,3, for each j ∈ J . So p ∈ Aj for each j ∈ J .
We can easily see that the sufficient condition holds.
(2) suppose the necessary condition holds. Then there exists j ∈ J such that

p1 ∈ Aj,1, p2 ∈ Aj,2, p3 ∈ Ac
j,3.

Thus p1 ∈
⋃
Aj,1, p2 ∈

⋃
Aj,2, p3 ∈ (

⋂
Aj,3)c. So p ∈

⋃
Aj .

We can easily prove that the necessary condition holds. �

Definition 3.13. Let f : X → Y be an injective mapping, where X,Y are sets
having at least distinct three points. Let p = (p1, p2, p3) ∈ NCP (X). Then the
image of p under f , denoted by f(p), is an NCP in Y defined as:

f(p) = (f(p1), f(p2), f(p3)).

Remark 3.14. In Definition 3.13, if either X or Y has two points, or f is not
injective, then f(p) is not an NCP in Y .

Definition 3.15 ([17]). Let A = (A1, A2, A3) ∈ NCS(X) and B = (B1, B2, B3) ∈
NCS(Y ). Then the Cartesian product of A and B, denoted by A × B, is an NCS
in X × Y defined as: A×B = (A1 ×B1, A2 ×B2, A3 ×B3).

4. Properties of NCSet

Definition 4.1. A pair (X,A) is called a neutrosophic crisp space (in short, NCSp),
if A ∈ NCS(X).

Definition 4.2. A pair (X,A) is called a neutrosophic crisp space-Type j (in short,
NCSp-Type j), if A ∈ NCSj(X), j = 1, 2, 3.

Definition 4.3. Let (X,AX), (Y,AY ) be two NCSps or NCSps-Type j, j = 1, 2, 3
and let f : X → Y be a mapping. Then f : (X,AX)→ (Y,AY ) is called a morphism,
if AX ⊂ f−1(AY ), equivalently,

AX,1 ⊂ f−1(AY,1), AX,2 ⊂ f−1(AY,2) and AX,3 ⊃ f−1(AY,3),
where AX = (AX,1, AX,2, AX,3) and AY = (AY,1, AY,2, AY,3).

In particular, f : (X,AX)→ (Y,AY ) is called an epimorphism [resp., a monomor-
phism and an isomorphism], if it is surjective [resp., injective and bijective].

From Definitions 3.9, 4.3 and Proposition 3.11, it is obvious that
f : (X,AX)→ (Y,AY ) is a morphism

if and only if
p = (p1, p2, p3) ∈ f−1(AY ), for each p = (p1, p2, p3) ∈ AX , i.e.,
f(p1) ∈ AY,1, f(p2) ∈ AY,2, f(p3) /∈ AY,3, i.e.,
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f(p) = (f(p1), f(p2), f(p3)) ∈ AY .

The following is an immediate result of Definitions 4.3.

Proposition 4.4. For each NCSp or each NCSps-Type j (X,AX), j = 1, 2, 3, the
identity mapping id : (X,AX)→ (X,AX) is a morphism.

Proposition 4.5. Let (X,AX), (Y,AY ), (Z,AZ) be NCSps or NCSps-Type j, j =
1, 2, 3 and let f : X → Y , g : Y → Z be mappings. If f : (X,AX) → (Y,AY )
and f : (Y,AY ) → (Z,AZ) are morphisms, then g ◦ f : (X,AX) → (Z,AZ) is a
morphism.

Proof. Let AX = (AX,1, AX,2, AX,3), AY = (AY,1, AY,2, AY,3) and AZ = (AZ,1, AZ,2,
AZ,3). Then by the hypotheses, AX ⊂ f−1(AY ) and AY ⊂ g−1(AZ). Thus by
Definition 4.3,

AX,1 ⊂ f−1(AY,1), AX,2 ⊂ f−1(AY,2), AX,3 ⊃ f−1(AY,3)
and

AY,1 ⊂ g−1(AZ,1), AY,2 ⊂ g−1(AZ,2), AY,3 ⊃ g−1(AZ,3).
So AX,1 ⊂ f−1(g−1(AZ,1)), AX,2 ⊂ f−1(g−1(AZ,2)), AX,3 ⊃ f−1(g−1(AZ,3)).
Hence AX,1 ⊂ (g ◦ f)−1(AZ,1), AX,2 ⊂ (g ◦ f)−1(AZ,2), AX,3 ⊃ (g ◦ f)−1(AZ,2).
Therefore g ◦ f is a morphism. �

From Propositions 4.4 and 4.5, we can form the concrete category NCSet [resp.,
NCSetj] consisting of NCSs [resp., -Type j, j = 1, 2, 3] and morphisms between
them. Every NCSet [resp., NCSetj, j = 1, 2, 3]-morphism will be called a NCSet
[resp., NCSetj, j = 1, 2, 3]-mapping.

Theorem 4.6. The category NCSet is topological over Set.

Proof. Let X be any set and let ((Xj , Aj))j∈J be any families of NCSps indexed
by a class J . Suppose (fj : X → (Xj , Aj))J is a source of ordinary mappings. We

define the NCS AX in X by AX =
⋂
f−1j (Aj) and AX = (AX,1, AX,2, AX,3).

Then clearly, AX,1 =
⋂
f−1j (Aj,1), AX,2 =

⋂
f−1j (Aj,2), AX,3 =

⋃
f−1j (Aj,3).

Thus (X,AX) is an NCSp and AX,1 ⊂ f−1j (Aj,1), AX,2 ⊂ f−1j (Aj,2) and AX,3 ⊃
f−1j (Aj,3). So each fj : (X,AX)→ (Xj , Aj) is an NCSet-mapping.

Now let (Y,AY ) be any NCSp and suppose g : Y → X is an ordinary mapping
for which fj ◦ g : (Y,AY )→ (Xj , Aj) is a NCSet-mapping for each j ∈ J . Then for

each j ∈ J , AY ⊂ (fj ◦ g)−1(Aj) = g−1(f−1j (Aj)). Thus

AY ⊂ (fj ◦ g)−1(Aj) = g−1(
⋂
f−1j (Aj)) = g−1(AX).

So g : (Y,AY )→ (X,AX) is an NCSet-mapping. Hence (fj : (X,AX)→ (Xj , Aj)J
is an initial source in NCSet. This completes the proof. �

Example 4.7. (1) Let X be a set, let (Y,AY ) be an NCSp and let f : X → Y be
an ordinary mapping. Then clearly, there exists a unique NCS AX in X for which
f : (X,AX)→ (Y,AY ) is an NCSet-mapping. In fact, AX = f−1(AY ).

In this case, AX is called the inverse image under f of the NCS structure AY .
49



J. G. Lee et al./Ann. Fuzzy Math. Inform. 14 (2017), No. 1, 43–54

(2) Let ((Xj , Aj))j∈J be any family of NCSps and let X = Πj∈JXj . For each
j ∈ J , let prj : X → Xj be the ordinary projection. Then there exists a unique NCS
AX in X for which prj : (X,AX → (Xj , Aj) is an NCSet-mapping for each j ∈ J .

In this case, AX is called the product of (Aj)j∈J , denoted by

AX = ΠAj = (ΠAj,1,ΠAj,2,ΠAj,3)

and (ΠXj ,ΠAj) is called the product NCSp of ((Xj , Aj))j∈J .

In fact, AX =
⋂

j∈J pr
−1
j (Aj).

In particular, if J = {1, 2}, then A1×A2 = (A1,1×A2,1, A1,2×A2,2, A1,3×A2,3),
where A1 = (A1,1, A1,2, A1,3) ∈ NCS(X1) and A2 = (A2,1, A2,2, A2,3) ∈ NCS(X2).

The following is obvious from Result 2.2. But we show directly it.

Corollary 4.8. The category NCSet is cotopological over Set.

Proof. Let X be any set and let ((Xj , Aj))J be any family of NCSps indexed by a
class J . Suppose (fj : Xj → X)J is a sink of ordinary mappings. We define AX as
AX =

⋃
fj(Aj), where AX = (AX,1, AX,2, AX,3) and Aj = (Aj,1, Aj,2, Aj,3). Then

clearly, AX ∈ NCS(X) and each fj : (Xj , Aj)→ (X,AX) is an NCSet-mapping.
Now for each NCSp (Y,AY ), let g : X → Y be an ordinary mapping for which

each g ◦fj : (Xj , Aj)→ (Y,AY ) is an NCSet-mapping. Then clearly for each j ∈ J ,

Aj ⊂ (g ◦ fj)−1(AY ), i.e., Aj ⊂ f−1j (g−1(AY )).

Thus
⋃
Aj ⊂

⋃
f−1j (g−1(AY )). So fj(

⋃
Aj) ⊂ fj(

⋃
f−1j (g−1(AY ))). By Proposi-

tion 3.7 and the definition of AX ,

fj(
⋃
Aj) =

⋃
fj(Aj) = AX

and
fj(

⋃
f−1j (g−1(AY ))) =

⋃
(fj ◦ f−1j )(g−1(AY )) = g−1(AY ).

Hence AX ⊂ g−1(AY ). Therefore g : (X,AX)→ (Y,AY ) is an NCSet-mapping.
This completes the proof. �

The following is proved similarly as the proof of Theorem 4.6.

Corollary 4.9. The category NCSetj is topological over Set for j = 1, 2, 3.

The following is proved similarly as the proof of Corollary 4.8.

Corollary 4.10. The category NCSetj is cotopological over Set for j = 1, 2, 3.

Theorem 4.11. Final episinks in NCSet are prserved by pullbacks.

Proof. Let (gj : (Xj , Aj) → (Y,AY ))J be any final episink in NCSet and let f :
(W,AW )→ (Y,AY ) be any NCSet-mapping. For each j ∈ J , let

Uj = {(w, xj) ∈W ×Xj : f(w) = gj(xj)}.
For each j ∈ J , we define the NCS AUj = (AUj,1 , AUj,2 , AUj,3) in Uj by:

AUj,1
= AW,1 ×Aj,1, AUj,2

= AW,2 ×Aj,2, AUj,3
= AW,3 ×Aj,3.

For each j ∈ J , let ej : Uj → W and pj : Uj → Xj be ordinary projections of Uj .
Then clearly,

AUj,1
⊂ e−1j (AW,1), AUj,2

⊂ e−1j (AW,2), AUj,3
⊃ e−1j (AW,3)
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and
AUj,1 ⊂ p−1j (Aj,1), AUj,2 ⊂ p−1j (Aj,2), AUj,3 ⊃ p−1j (Aj,3).

Thus AUj
⊂ e−1j (AW ) and AUj

⊂ p−1j (Aj). So ej : (Uj , AUj
) → (W,AW ) and

pj : (Uj , AUj
)→ (Xj , Aj) are NCSet-mappings. Moreover, gh ◦ ph = f ◦ ej for each

j ∈ J , i.e., the diagram is a pullback square in NCSet:
pj(Uj , AUj

) (Xj , Aj)-

ej gj

(W,AW )

? ?

f

- (Y,AY ).

Now in order to prove that (ej)J is an episink in NCSet, i.e., each ej is surjective,
let w ∈ W . Since (gj)J is an episink, there exists j ∈ J such that gj(xj) = f(w)
for some xj ∈ Xj . Thus (w, xj) ∈ Uj and w = ej(w, xj). So (ej)J is an episink in
NCSet.

Finally, let us show that (ej)J is final in NCSet. Let A∗W be the final structure
in W w.r.t. (ej)J and let w = (w1, w2, w3) ∈ AW . Since f : (W,AW ) → (Y,AY ) is
an NCSet-mapping, by Definition 3.9,
w1 ∈ AW,1 ∩ f−1(AY,1), w2 ∈ AW,2 ∩ f−1(AY,2) and w3 ∈ Ac

W,3 ∩ (f−1(AY,3))c.
Thus
w1 ∈ AW,1, f(w1) ∈ AY,1, w2 ∈ AW,2, f(w2) ∈ AY,2 and w3 ∈ Ac

W,3, f(w3) ∈ Ac
Y,3.

Since (gj)J is final,

w1 ∈ AW,1, xj,1 ∈
⋃
J

⋃
xj,1∈g−1

j (f(w))

Aj,1,

w2 ∈ AW,2, xj,2 ∈
⋃
J

⋃
xj,2∈g−1

j (f(w))

Aj,2

and
w3 ∈ Ac

W,3, xj,3 ∈ (
⋂
J

⋂
xj,3∈g−1

j (f(w))

Aj,3)c.

So (w1, xj,1) ∈ AUj,1
, (w2, xj,2) ∈ AUj,2

and (w3, xj,3) ∈ Ac
Uj,1

. Since A∗W is the

final structure in W w.r.t. (ej)J , w ∈ A∗W , i.e., AW ⊂ A∗W . On the other hand,
since (ej : (Uj , AUj )→ (W,AW ))J is final, 1W : (W,A∗W )→ (W,AW ) is an NCSet-
mapping and thus A∗W ⊂ AW . Hence A∗W = AW . Therefore (ej)J is final. This
completes the proof. �

The following is proved similarly as the proof of Theorem 4.9.

Corollary 4.12. Final episinks in NCSetj are prserved by pullbacks, for J = 1, 2, 3.

For any singleton set {a}, NCS A{a} [resp., NCS-Type j A{a},j , for j = 1, 2, 3]
on {a} is not unique, the category NCSet [resp., NCSetj, for j = 1, 2, 3] is not
properly fibred over Set. Then by Definition 2.6, Corollary 4.8 and Theorem 4.11
[resp., Corollaries 4.10 and 4.12], we have the following result.
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Theorem 4.13. The category NCSet [resp., NCSetj, for j = 1, 2, 3] satisfies
all the conditions of a topological universe over Set except the terminal separator
property.

The following is an immediate result of Definitions 3.9 and 3.15.

Proposition 4.14. Let p = (p1, p2, p3), q = (q1, q2, q3) ∈ NCP (X) and let A =
(A1, A2, A3), B = (B1, B2, B3) ∈ NCS(X). Then (p, q) ∈ A × B if and only if
(p1, q1) ∈ A1 × B1, (p2, q2) ∈ A2 × B2 and (p3, q3) ∈ (A2 × B2)c, i.e., p3 ∈ Ac

3 or
q3 ∈ Bc

3.

Theorem 4.15. The category NCSet is Cartesian closed over Set.

Proof. It is clear that NCSet has products by Theorem 4.6. Then it is sufficient to
see that NCSet has exponential objects.

For any NCSps X = (X,AX) and Y = (Y,AY ), let Y X be the set of all ordinary
mappings from X to Y . We define the NCS AY X = (AY X ,1, AY X ,2, AY X ,3) in Y X

by: for each f = (f1, f2, f3) ∈ Y X , f ∈ AY X if and only if f(x) ∈ AY , for each
x = (x1, x2, x3) ∈ NCP (X), i.e.,

f1 ∈ AY X ,1, f2 ∈ AY X ,2, f3 /∈ AY X ,3

if and only if
f1(x1) ∈ AY,1, f2(x2) ∈ AY,2, f3(x3) /∈ AY,3.

In fact,

AY X ,1 = {f1 ∈ Y X : f1(x1) ∈ AY,1 for each x1 ∈ X},

AY X ,2 = {f2 ∈ Y X : f2(x2) ∈ AY,2 for each x2 ∈ X},

AY X ,3 = {f3 ∈ Y X : f3(x3) /∈ AY,3 for some x3 ∈ X}.
Then clearly, (Y X , AY X ) is an NCSp.

Let YX = (Y X , AY X ). Then by the definition of AY X ,
AY X ,1 ⊂ f−1(AY,1), AY X ,2 ⊂ f−1(AY,2) and AY X ,3 ⊃ f−1(AY,3).

We define eX,Y : X × Y X → Y by eX,Y (x, f) = f(x), for each (x, f) ∈ X × Y X .
Let (x, f) ∈ AX×AY X , where x = (x1, x2, x3), f = (f1, f2, f3). Then by Proposition
4.14 and the definition of eX,Y ,

(x1, f1) ∈ AX,1 ×AY X ,1, (x2, f2) ∈ AX,2 ×AY X ,2, (x3, f3) ∈ (AX,3 ×AY X ,3)c

and
eX,Y (x1, f1) = f1(x1), eX,Y (x2, f2) = f2(x2), eX,Y (x3, f3) = f3(x3).

Thus by the definition of AY X ,

(x1, f1) ∈ f−1(AY,1)× f−1(AY,1),

(x2, f2) ∈ f−1(AX,2)× f−1(AX,2),

(x3, f3) ∈ (f−1(AX,3)× (f−1(AX,3))c.

So (x1, f1) ∈ e−1X,Y (AY,1), (x2, f2) ∈ e−1X,Y (AY,2) and (x3, f3) ∈ (e−1X,Y (AY,3))c. Hence

AX ×AY X ⊂ e−1X,Y (AY ). Therefore eX,Y : X×YX → Y is an NCSet-mapping.

For any Z = (Z,AZ) ∈ NCSet, let h : X× Z→ Y be an NCSet-mapping. We
define h̄ : Z → Y X by [h̄(z)](x) = h(x, z), for each z ∈ Z and each x ∈ X. Let
(x, z) ∈ AX × AZ , where x = (x1, x2, x3) and z = (z1, z2, z3). Since h : X× Z→ Y
is an NCSet-mapping,
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AX,1 ×AZ,1 ⊂ h−1(AY,1), AX,2 ×AZ,2 ⊂ h−1(AY,2), AX,3 ×AZ,3 ⊃ h−1(AY,1).
Then by Proposition 4.14,

(x1, z1) ∈ h−1(AY,1), (x2, z2) ∈ h−1(AY,2), (x3, z3) ∈ (h−1(AY,3))c.
Thus h((x1, z1)) ∈ AY,1, h((x2, z2)) ∈ AY,2, h((x3, z3)) ∈ (AY,3)c.
By the definition of h̄,

[h̄(z1)](x1) ∈ AY,1, [h̄(z2)](x2) ∈ AY,2, [h̄(z3)](x3) ∈ (AY,3)c.
By the definition of AY X ,

[h̄(z1)](AZ,1) ⊂ AY X ,1, [h̄(z2)](AZ,2) ⊂ AY X ,2, [h̄(z3)](AZ,3) ⊃ AY X ,3.

So AZ ⊂ h̄−1(AY X ). Hence h̄ : Z → YX is an NCSet-mapping. Furthermore, h̄
is the unique NCSet-mapping such that eX,Y ◦ (1X × h̄) = h. This completes the
proof. �

The following is proved similarly as the proof of Theorem 4.15.

Corollary 4.16. The category NCSetj is Cartesian closed over Set for j = 1, 2, 3.

5. Conclusions

For a non-empty set X, by defining a neutrosophic crisp set A = (A1, A2, A3) and
an intuitionistic crisp set A = (A1, A2) in X, respectively as follows:

(i) A1 ⊂ X,A2 ⊂ X,A3 ⊂ X,
(ii) A1 ⊂ Ac

3, A3 ⊂ Ac
2,

and
(i) A1 ⊂ X,A2 ⊂ X,
(ii) A1 ⊂ Ac

2,
we can form another categories NCSet∗ and ICSet. Furthermore, we will study
them in view points of a topological universe and obtain some relationship between
them.
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Abstract. Neutrosophic theory has many applications in graph theory,
bipolar single valued neutrosophic graphs (BSVNGs) is the generalization
of fuzzy graphs and intuitionistic fuzzy graphs, SVNGs. In this paper we
introduce some types of BSVNGs, such as subdivision BSVNGs, middle
BSVNGs, total BSVNGs and bipolar single valued neutrosophic line graphs
(BSVNLGs), also investigate the isomorphism, co weak isomorphism and
weak isomorphism properties of subdivision BSVNGs, middle BSVNGs,
total BSVNGs and BSVNLGs.

2010 AMS Classification: 05C99

Keywords: Bipolar single valued neutrosophic line graph, Subdivision BSVNG,
middle BSVNG, total BSVNG.

Corresponding Author: Broumi Said (broumisaid78@gmail.com)

1. Introduction

Neutrosophic set theory (NS) is a part of neutrosophy which was introduced
by Smarandache [43] from philosophical point of view by incorporating the degree
of indeterminacy or neutrality as independent component for dealing problems with
indeterminate and inconsistent information. The concept of neutrosophic set the-
ory is a generalization of the theory of fuzzy set [50], intuitionistic fuzzy sets [5],
interval-valued fuzzy sets [47] interval-valued intuitionistic fuzzy sets [6]. The con-
cept of neutrosophic set is characterized by a truth-membership degree (T), an
indeterminacy-membership degree (I) and a falsity-membership degree (f) indepen-
dently, which are within the real standard or nonstandard unit interval ]−0, 1+[.
Therefore, if their range is restrained within the real standard unit interval [0, 1] :
Nevertheless, NSs are hard to be apply in practical problems since the values of the
functions of truth, indeterminacy and falsity lie in ]−0, 1+[. The single valued neu-
trosophic set was introduced for the first time by Smarandache [43]. The concept
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of single valued neutrosophic sets is a subclass of neutrosophic sets in which the
value of truth-membership, indeterminacy membership and falsity-membership de-
grees are intervals of numbers instead of the real numbers. Later on, Wang et al. [49]
studied some properties related to single valued neutrosophic sets. The concept of
neutrosophic sets and its extensions such as single valued neutrosophic sets, interval
neutrosophic sets, bipolar neutrosophic sets and so on have been applied in a wide
variety of fields including computer science, engineering, mathematics, medicine and
economic and can be found in [9, 15, 16, 30, 31, 32, 33, 34, 35, 36, 37, 51]. Graphs
are the most powerful tool used in representing information involving relationship
between objects and concepts. In a crisp graphs two vertices are either related or
not related to each other, mathematically, the degree of relationship is either 0 or 1.
While in fuzzy graphs, the degree of relationship takes values from [0, 1]. Atanassov
[42] defined the concept of intuitionistic fuzzy graphs (IFGs) using five types of
Cartesian products. Theconcept fuzzy graphs, intuitionistic fuzzy graphs and their
extensions such interval valued fuzzy graphs, bipolar fuzzy graph, bipolar intuition-
itsic fuzzy graphs, interval valued intuitionitic fuzzy graphs, hesitancy fuzzy graphs,
vague graphs and so on, have been studied deeply by several researchers in the liter-
ature. When description of the object or their relations or both is indeterminate and
inconsistent, it cannot be handled by fuzzy intuitionistic fuzzy, bipolar fuzzy, vague
and interval valued fuzzy graphs. So, for this purpose, Smaranadache [45] proposed
the concept of neutrosophic graphs based on literal indeterminacy (I) to deal with
such situations. Later on, Smarandache [44] gave another definition for neutrosphic
graph theory using the neutrosophic truth-values (T, I, F) without and constructed
three structures of neutrosophic graphs: neutrosophic edge graphs, neutrosophic
vertex graphs and neutrosophic vertex-edge graphs. Recently, Smarandache [46]
proposed new version of neutrosophic graphs such as neutrosophic offgraph, neutro-
sophic bipolar/tripola/multipolar graph. Recently several researchers have studied
deeply the concept of neutrosophic vertex-edge graphs and presented several exten-
sions neutrosophic graphs. In [1, 2, 3]. Akram et al. introduced the concept of
single valued neutrosophic hypergraphs, single valued neutrosophic planar graphs,
neutrosophic soft graphs and intuitionstic neutrosophic soft graphs. Then, followed
the work of Broumi et al. [7, 8, 9, 10, 11, 12, 13, 14, 15], Malik and Hassan [38]
defined the concept of single valued neutrosophic trees and studied some of their
properties. Later on, Hassan et Malik [17] introduced some classes of bipolar single
valued neutrosophic graphs and studied some of their properties, also the authors
generalized the concept of single valued neutrosophic hypergraphs and bipolar sin-
gle valued neutrosophic hypergraphs in [19, 20]. In [23, 24] Hassan et Malik gave
the important types of single (interval) valued neutrosophic graphs, another impor-
tant classes of single valued neutrosophic graphs have been presented in [22] and in
[25] Hassan et Malik introduced the concept of m-Polar single valued neutrosophic
graphs and its classes. Hassan et al. [18, 21] studied the concept on regularity and
total regularity of single valued neutrosophic hypergraphs and bipolar single valued
neutrosophic hypergraphs. Hassan et al. [26, 27, 28] discussed the isomorphism
properties on SVNHGs, BSVNHGs and IVNHGs. Nasir et al. [40] introduced a new
type of graph called neutrosophic soft graphs and established a link between graphs
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and neutrosophic soft sets. The authors also studeied some basic operations of neu-
trosophic soft graphs such as union, intersection and complement. Nasir and Broumi
[41] studied the concept of irregular neutrosophic graphs and investigated some of
their related properties. Ashraf et al. [4], proposed some novels concepts of edge reg-
ular, partially edge regular and full edge regular single valued neutrosophic graphs
and investigated some of their properties. Also the authors, introduced the notion
of single valued neutrosophic digraphs (SVNDGs) and presented an application of
SVNDG in multi-attribute decision making. Mehra and Singh [39] introduced a
new concept of neutrosophic graph named single valued neutrosophic Signed graphs
(SVNSGs) and examined the properties of this concept with suitable illustration.
Ulucay et al. [48] proposed a new extension of neutrosophic graphs called neu-
trosophic soft expert graphs (NSEGs) and have established a link between graphs
and neutrosophic soft expert sets and studies some basic operations of neutrosophic
soft experts graphs such as union, intersection and complement. The neutrosophic
graphs have many applications in path problems, networks and computer science.
Strong BSVNG and complete BSVNG are the types of BSVNG. In this paper, we
introduce others types of BSVNGs such as subdivision BSVNGs, middle BSVNGs,
total BSVNGs and BSVNLGs and these are all the strong BSVNGs, also we discuss
their relations based on isomorphism, co weak isomorphism and weak isomorphism.

2. Preliminaries

In this section we recall some basic concepts on BSVNG. Let G denotes BSVNG
and G∗ = (V,E) denotes its underlying crisp graph.

Definition 2.1 ([10]). Let X be a crisp set, the single valued neutrosophic set
(SVNS) Z is characterized by three membership functions TZ(x), IZ(x) and FZ(x)
which are truth, indeterminacy and falsity membership functions, ∀x ∈ X

TZ(x), IZ(x), FZ(x) ∈ [0, 1].

Definition 2.2 ([10]). Let X be a crisp set, the bipolar single valued neutrosophic
set (BSVNS) Z is characterized by membership functions T+

Z (x), I+Z (x), F+
Z (x),

T−Z (x), I−Z (x), and F−Z (x). That is ∀x ∈ X

T+
Z (x), I+Z (x), F+

Z (x) ∈ [0, 1],

T−Z (x), I−Z (x), F−Z (x) ∈ [−1, 0].

Definition 2.3 ([10]). A bipolar single valued neutrosophic graph (BSVNG) is a
pair G = (Y, Z) of G∗, where Y is BSVNS on V and Z is BSVNS on E such that

T+
Z (βγ) ≤ min(T+

Y (β), T+
Y (γ)), I+Z (βγ) ≥ max(I+Y (β), I+Y (γ)),

I−Z (βγ) ≤ min(I−Y (β), I−Y (γ)), F−Z (βγ) ≤ min(F−Y (β), F−Y (γ)),

F+
Z (βγ) ≥ max(F+

Y (β), F+
Y (γ)), T−Z (βγ) ≥ max(T−Y (β), T−Y (γ)),

where

0 ≤ T+
Z (βγ) + I+Z (βγ) + F+

Z (βγ) ≤ 3

−3 ≤ T−Z (βγ) + I−Z (βγ) + F−Z (βγ) ≤ 0

∀ β, γ ∈ V.
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In this case, D is bipolar single valued neutrosophic relation (BSVNR) on C. The
BSVNG G = (Y, Z) is complete (strong) BSVNG, if

T+
Z (βγ) = min(T+

Y (β), T+
Y (γ)), I+Z (βγ) = max(I+Y (β), I+Y (γ)),

I−Z (βγ) = min(I−Y (β), I−Y (γ)), F−Z (βγ) = min(F−Y (β), F−Y (γ)),

F+
Z (βγ) = max(F+

Y (β), F+
Y (γ)), T−Z (βγ) = max(T−Y (β), T−Y (γ)),

∀ β, γ ∈ V (∀ βγ ∈ E). The order of BSVNG G = (A,B) of G∗, denoted by O(G), is
defined by

O(G) = (O+
T (G), O+

I (G), O+
F (G), O−T (G), O−I (G), O−F (G)),

where

O+
T (G) =

∑
α∈V

T+
A (α), O+

I (G) =
∑
α∈V

I+A (α), O+
F (G) =

∑
α∈V

F+
A (α),

O−T (G) =
∑
α∈V

T−A (α), O−I (G) =
∑
α∈V

I−A (α), O−F (G) =
∑
α∈V

F−A (α).

The size of BSVNG G = (A,B) of G∗, denoted by S(G), is defined by

S(G) = (S+
T (G), S+

I (G), S+
F (G), S−T (G), S−I (G), S−F (G)),

where

S+
T (G) =

∑
βγ∈E

T+
B (βγ), S−T (G) =

∑
βγ∈E

T−B (βγ),

S+
I (G) =

∑
βγ∈E

I+B (βγ), S−I (G) =
∑
βγ∈E

I−B (βγ),

S+
F (G) =

∑
βγ∈E

F+
B (βγ), S−F (G) =

∑
βγ∈E

F−B (βγ).

The degree of a vertex β in BSVNG G = (A,B) of G∗,, denoted by dG(β), is
defined by

dG(β) = (d+T (β), d+I (β), d+F (β), d−T (β), d−I (β), d−F (β)),

where

d+T (β) =
∑
βγ∈E

T+
B (βγ), d−T (β) =

∑
βγ∈E

T−B (βγ),

d+I (β) =
∑
βγ∈E

I+B (βγ), d−I (β) =
∑
βγ∈E

I−B (βγ),

d+F (β) =
∑
βγ∈E

F+
B (βγ), d−F (β) =

∑
βγ∈E

F−B (βγ).
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3. Types of BSVNGs

In this section we introduce the special types of BSVNGs such as subdivision,
middle and total and intersection BSVNGs, for this first we give the basic definitions
of homomorphism, isomorphism, weak isomorphism and co weak isomorphism of
BSVNGs which are very useful to understand the relations among the types of
BSVNGs.

Definition 3.1. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the homomorphism χ : G1 → G2 is
a mapping χ : V1 → V2 which satisfies the following conditions:

T+
C1

(p) ≤ T+
C2

(χ(p)), I+C1
(p) ≥ I+C2

(χ(p)), F+
C1

(p) ≥ F+
C2

(χ(p)),

T−C1
(p) ≥ T−C2

(χ(p)), I−C1
(p) ≤ I−C2

(χ(p)), F−C1
(p) ≤ F−C2

(χ(p)),

∀ p ∈ V1,
T+
D1

(pq) ≤ T+
D2

(χ(p)χ(q)), T−D1
(pq) ≥ T−D2

(χ(p)χ(q)),

I+D1
(pq) ≥ I+D2

(χ(p)χ(q)), I−D1
(pq) ≤ I−D2

(χ(p)χ(q)),

F+
D1

(pq) ≥ F+
D2

(χ(p)χ(q)), F−D1
(pq) ≤ F−D2

(χ(p)χ(q)),

∀ pq ∈ E1.

Definition 3.2. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the weak isomorphism υ : G1 → G2

is a bijective mapping υ : V1 → V2 which satisfies following conditions:
υ is a homomorphism such that

T+
C1

(p) = T+
C2

(υ(p)), I+C1
(p) = I+C2

(υ(p)), F+
C1

(p) = F+
C2

(υ(p)),

T−C1
(p) = T−C2

(υ(p)), I−C1
(p) = I−C2

(υ(p)), F−C1
(p) = F−C2

(υ(p)),

∀ p ∈ V1.

Remark 3.3. The weak isomorphism between two BSVNGs preserves the orders.

Remark 3.4. The weak isomorphism between BSVNGs is a partial order relation.

Definition 3.5. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the co-weak isomorphism κ : G1 →
G2 is a bijective mapping κ : V1 → V2 which satisfies following conditions:
κ is a homomorphism such that

T+
D1

(pq) = T+
D2

(κ(p)κ(q)), T−D1
(pq) = T−D2

(κ(p)κ(q)),

I+D1
(pq) = I+D2

(κ(p)κ(q)), I−D1
(pq) = I−D2

(κ(p)κ(q)),

F+
D1

(pq) = F+
D2

(κ(p)κ(q)), F−D1
(pq) = F−D2

(κ(p)κ(q)),

∀ pq ∈ E1.

Remark 3.6. The co-weak isomorphism between two BSVNGs preserves the sizes.

Remark 3.7. The co-weak isomorphism between BSVNGs is a partial order rela-
tion.
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Table 1. BSVNSs of BSVNG.

A T+
A I+A F+

A T−A I−A F−A
a 0.2 0.1 0.4 -0.3 -0.1 -0.4
b 0.3 0.2 0.5 -0.5 -0.4 -0.6
c 0.4 0.7 0.6 -0.2 -0.6 -0.2

B T+
B I+B F+

B T−B I−B F−B
p 0.2 0.4 0.5 -0.2 -0.5 -0.6
q 0.3 0.8 0.6 -0.1 -0.7 -0.8
r 0.1 0.7 0.9 -0.1 -0.8 -0.5

Definition 3.8. Let G1 = (C1, D1) and G2 = (C2, D2) be two BSVNGs of G∗1 =
(V1, E1) and G∗2 = (V2, E2), respectively. Then the isomorphism ψ : G1 → G2 is a
bijective mapping ψ : V1 → V2 which satisfies the following conditions:

T+
C1

(p) = T+
C2

(ψ(p)), I+C1
(p) = I+C2

(ψ(p)), F+
C1

(p) = F+
C2

(ψ(p)),

T−C1
(p) = T−C2

(ψ(p)), I−C1
(p) = I−C2

(ψ(p)), F−C1
(p) = F−C2

(ψ(p)),

∀ p ∈ V1,
T+
D1

(pq) = T+
D2

(ψ(p)ψ(q)), T−D1
(pq) = T−D2

(ψ(p)ψ(q)),

I+D1
(pq) = I+D2

(ψ(p)ψ(q)), I−D1
(pq) = I−D2

(ψ(p)ψ(q)),

F+
D1

(pq) = F+
D2

(ψ(p)ψ(q)), F−D1
(pq) = F−D2

(ψ(p)ψ(q)),

∀ pq ∈ E1.

Remark 3.9. The isomorphism between two BSVNGs is an equivalence relation.

Remark 3.10. The isomorphism between two BSVNGs preserves the orders and
sizes.

Remark 3.11. The isomorphism between two BSVNGs preserves the degrees of
their vertices.

Definition 3.12. The subdivision SVNG be sd(G) = (C,D) of G = (A,B), where
C is a BSVNS on V ∪ E and D is a BSVNR on C such that

(i) C = A on V and C = B on E,
(ii) if v ∈ V lie on edge e ∈ E, then

T+
D (ve) = min(T+

A (v), T+
B (e)), I+D(ve) = max(I+A (v), I+B (e))

I−D(ve) = min(I−A (v), I−B (e)), F−D (ve) = min(F−A (v), F−B (e))

F+
D (ve) = max(F+

A (v), F+
B (e)), T−D (ve) = max(T−A (v), T−B (e))

else
D(ve) = O = (0, 0, 0, 0, 0, 0).

Example 3.13. Consider the BSVNG G = (A,B) of a G∗ = (V,E), where V =
{a, b, c} and E = {p = ab, q = bc, r = ac}, the crisp graph of G is shown in Fig.
1. The BSVNSs A and B are defined on V and E respectively which are defined
in Table 1. The SDBSVNG sd(G) = (C,D) of a BSVNG G, the underlying crisp
graph of sd(G) is given in Fig. 2. The BSVNSs C and D are defined in Table 2.
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Figure 1. Crisp Graph of BSVNG.

Figure 2. Crisp Graph of SDBSVNG.

Table 2. BSVNSs of SDBSVNG.

C T+
C I+C F+

C T−C I−C F−C
a 0.2 0.1 0.4 -0.3 -0.1 -0.4
p 0.2 0.4 0.5 -0.2 -0.5 -0.6
b 0.3 0.2 0.5 -0.5 -0.4 -0.6
q 0.3 0.8 0.6 -0.1 -0.7 -0.8
c 0.4 0.7 0.6 -0.2 -0.6 -0.2
r 0.1 0.7 0.9 -0.1 -0.8 -0.5

D T+
D I+D F+

D T−D I−D F−D
ap 0.2 0.4 0.5 -0.2 -0.5 -0.6
pb 0.2 0.4 0.5 -0.2 -0.5 -0.6
bq 0.3 0.8 0.6 -0.1 -0.7 -0.8
qc 0.3 0.8 0.6 -0.1 -0.7 -0.8
cr 0.1 0.7 0.9 -0.1 -0.8 -0.5
ra 0.1 0.7 0.9 -0.1 -0.8 -0.5

Proposition 3.14. Let G be a BSVNG and sd(G) be the SDBSVNG of a BSVNG
G, then O(sd(G)) = O(G) + S(G) and S(sd(G)) = 2S(G).

Remark 3.15. Let G be a complete BSVNG, then sd(G) need not to be complete
BSVNG.
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Figure 3. Crisp Graph of TSVNG.

Definition 3.16. The total bipolar single valued neutrosophic graph (TBSVNG) is
T (G) = (C,D) of G = (A,B), where C is a BSVNS on V ∪ E and D is a BSVNR
on C such that

(i) C = A on V and C = B on E,
(ii) if v ∈ V lie on edge e ∈ E, then

T+
D (ve) = min(T+

A (v), T+
B (e)), I+D(ve) = max(I+A (v), I+B (e))

I−D(ve) = min(I−A (v), I−B (e)), F−D (ve) = min(F−A (v), F−B (e))

F+
D (ve) = max(F+

A (v), F+
B (e)), T−D (ve) = max(T−A (v), T−B (e))

else

D(ve) = O = (0, 0, 0, 0, 0, 0),

(iii) if αβ ∈ E, then

T+
D (αβ) = T+

B (αβ), I+D(αβ) = I+B (αβ), F+
D (αβ) = F+

B (αβ)

T−D (αβ) = T−B (αβ), I−D(αβ) = I−B (αβ), F−D (αβ) = F−B (αβ),

(iv) if e, f ∈ E have a common vertex, then

T+
D (ef) = min(T+

B (e), T+
B (f)), I+D(ef) = max(I+B (e), I+B (f))

I−D(ef) = min(I−B (e), I−B (f)), F−D (ef) = min(F−B (e), F−B (f))

F+
D (ef) = max(F+

B (e), F+
B (f)), T−D (ef) = max(T−B (e), T−B (f))

else

D(ef) = O = (0, 0, 0, 0, 0, 0).

Example 3.17. Consider the Example 3.13 the TBSVNG T (G) = (C,D) of under-
lying crisp graph as shown in Fig. 3. The BSVNS C is given in Example 3.13. The
BSVNS D is given in Table 3.

Proposition 3.18. Let G be a BSV NG and T (G) be the TBSVNG of a BSVNG
G, then O(T (G)) = O(G) + S(G) = O(sd(G)) and S(sd(G)) = 2S(G).

Proposition 3.19. Let G be a BSVNG, then sd(G) is weak isomorphic to T (G).
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Table 3. BSVNS of TBSVNG.

D T+
D I+D F+

D T−D I−D F−D
ab 0.2 0.4 0.5 -0.2 -0.5 -0.6
bc 0.3 0.8 0.6 -0.1 -0.7 -0.8
ca 0.1 0.7 0.9 -0.1 -0.8 -0.5
pq 0.2 0.8 0.6 -0.1 -0.7 -0.8
qr 0.1 0.8 0.9 -0.1 -0.8 -0.8
rp 0.1 0.7 0.9 -0.1 -0.8 -0.6
ap 0.2 0.4 0.5 -0.2 -0.5 -0.6
pb 0.2 0.4 0.5 -0.2 -0.5 -0.6
bq 0.3 0.8 0.6 -0.1 -0.7 -0.8
qc 0.3 0.8 0.6 -0.1 -0.7 -0.8
cr 0.1 0.7 0.9 -0.1 -0.8 -0.5
ra 0.1 0.7 0.9 -0.1 -0.8 -0.5

Definition 3.20. The middle bipolar single valued neutrosophic graph (MBSVNG)
M(G) = (C,D) of G, where C is a BSVNS on V ∪E and D is a BSVNR on C such
that

(i) C = A on V and C = B on E, else C = O = (0, 0, 0, 0, 0, 0),
(ii) if v ∈ V lie on edge e ∈ E, then

T+
D (ve) = T+

B (e), I+D(ve) = I+B (e), F+
D (ve) = F+

B (e)

T−D (ve) = T−B (e), I−D(ve) = I−B (e), F−D (ve) = F−B (e)

else

D(ve) = O = (0, 0, 0, 0, 0, 0),

(iii) if u, v ∈ V, then

D(uv) = O = (0, 0, 0, 0, 0, 0),

(iv) if e, f ∈ E and e and f are adjacent in G, then

T+
D (ef) = T+

B (uv), I+D(ef) = I+B (uv), F+
D (ef) = F+

B (uv)

T−D (ef) = T−B (uv), I−D(ef) = I−B (uv), F−D (ef) = F−B (uv).

Example 3.21. Consider the BSVNG G = (A,B) of a G∗, where V = {a, b, c} and
E = {p = ab, q = bc} the underlaying crisp graph is shown in Fig. 4. The BSVNSs
A and B are defined in Table 4. The crisp graph of MBSVNG M(G) = (C,D) is
shown in Fig. 5. The BSVNSs C and D are given in Table 5.

Remark 3.22. Let G be a BSVNG and M(G) be the MBSVNG of a BSVNG G,
then O(M(G)) = O(G) + S(G).

Remark 3.23. Let G be a BSVNG, then M(G) is a strong BSVNG.

Remark 3.24. Let G be complete BSVNG, then M(G) need not to be complete
BSVNG.

Proposition 3.25. Let G be a BSVNG, then sd(G) is weak isomorphic with M(G).
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Figure 4. Crisp Graph of BSVNG.

Table 4. BSVNSs of BSVNG.

A T+
A I+A F+

A T−A I−A F−A
a 0.3 0.4 0.5 -0.2 -0.1 -0.3
b 0.7 0.6 0.3 -0.3 -0.3 -0.2
c 0.9 0.7 0.2 -0.5 -0.4 -0.6

B T+
B I+B F+

B T−B I−B F−B
p 0.2 0.6 0.6 -0.1 -0.4 -0.3
q 0.4 0.8 0.7 -0.3 -0.5 -0.6

Table 5. BSVNSs of MBSVNG.

C T+
C I+C F+

C T−C I−C F−C
a 0.3 0.4 0.5 -0.2 -0.1 -0.3
b 0.7 0.6 0.3 -0.3 -0.3 -0.2
c 0.9 0.7 0.2 -0.5 -0.4 -0.6
e1 0.2 0.6 0.6 -0.1 -0.4 -0.3
e2 0.4 0.8 0.7 -0.3 -0.5 -0.6

D T+
D I+D F+

D T−D I−D F−D
pq 0.2 0.8 0.7 -0.1 -0.5 -0.6
ap 0.2 0.6 0.6 -0.1 -0.4 -0.3
bp 0.2 0.6 0.6 -0.1 -0.4 -0.3
bq 0.2 0.6 0.6 -0.3 -0.5 -0.6
cq 0.4 0.8 0.7 -0.3 -0.5 -0.6

Figure 5. Crisp Graph of MBSVNG.
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Proposition 3.26. Let G be a BSVNG, then M(G) is weak isomorphic with T (G).

Proposition 3.27. Let G be a BSVNG, then T (G) is isomorphic with G ∪M(G).

Definition 3.28. Let P (X) = (X,Y ) be the intersection graph of a G∗, let C1 and
D1 be BSVNSs on V and E, respectively and C2 and D2 be BSVNSs on X and Y
respectively. Then bipolar single valued neutrosophic intersection graph (BSVNIG)
of a BSVNG G = (C1, D1) is a BSVNG P (G) = (C2, D2) such that,

T+
C2

(Xi) = T+
C1

(vi), I
+
C2

(Xi) = I+C1
(vi), F

+
C2

(Xi) = F+
C1

(vi)

T−C2
(Xi) = T−C1

(vi), I
−
C2

(Xi) = I−C1
(vi), F

−
C2

(Xi) = F−C1
(vi)

T+
D2

(XiXj) = T+
D1

(vivj), T
−
D2

(XiXj) = T−D1
(vivj),

I+D2
(XiXj) = I+D1

(vivj), I
−
D2

(XiXj) = I−D1
(vivj),

F+
D2

(XiXj) = F+
D1

(vivj), F
−
D2

(XiXj) = F−D1
(vivj)

∀ Xi, Xj ∈ X and XiXj ∈ Y.

Proposition 3.29. Let G = (A1, B1) be a BSVNG of G∗ = (V,E), and let P (G) =
(A2, B2) be a BSVNIG of P (S). Then BSVNIG is a also BSVNG and BSVNG is
always isomorphic to BSVNIG.

Proof. By the definition of BSVNIG, we have

T+
B2

(SiSj) = T+
B1

(vivj) ≤ min(T+
A1

(vi), T
+
A1

(vj)) = min(T+
A2

(Si), T
+
A2

(Sj)),

I+B2
(SiSj) = I+B1

(vivj) ≥ max(I+A1
(vi), I

+
A1

(vj)) = max(I+A2
(Si), I

+
A2

(Sj)),

F+
B2

(SiSj) = F+
B1

(vivj) ≥ max(F+
A1

(vi), F
+
A1

(vj)) = max(F+
A2

(Si), F
+
A2

(Sj)),

T−B2
(SiSj) = T−B1

(vivj) ≥ max(T−A1
(vi), T

−
A1

(vj)) = max(T−A2
(Si), T

−
A2

(Sj)),

I−B2
(SiSj) = I−B1

(vivj) ≤ min(I−A1
(vi), I

−
A1

(vj)) = min(I−A2
(Si), I

−
A2

(Sj)),

F−B2
(SiSj) = F−B1

(vivj) ≤ min(F−A1
(vi), F

−
A1

(vj)) = min(F−A2
(Si), F

−
A2

(Sj)).

This shows that BSVNIG is a BSVNG.
Next define f : V → S by f(vi) = Si for i = 1, 2, 3, . . . , n clearly f is bijective.

Now vivj ∈ E if and only if SiSj ∈ T and T = {f(vi)f(vj) : vivj ∈ E}. Also

T+
A2

(f(vi)) = T+
A2

(Si) = T+
A1

(vi), I
+
A2

(f(vi)) = I+A2
(Si) = I+A1

(vi),

F+
A2

(f(vi)) = F+
A2

(Si) = F+
A1

(vi), T
−
A2

(f(vi)) = T−A2
(Si) = T−A1

(vi),

I−A2
(f(vi)) = I−A2

(Si) = I−A1
(vi), F

−
A2

(f(vi)) = F−A2
(Si) = F−A1

(vi),

∀ vi ∈ V,
T+
B2

(f(vi)f(vj)) = T+
B2

(SiSj) = T+
B1

(vivj),

I+B2
(f(vi)f(vj)) = I+B2

(SiSj) = I+B1
(vivj),

F+
B2

(f(vi)f(vj)) = F+
B2

(SiSj) = F+
B1

(vivj),

T−B2
(f(vi)f(vj)) = T−B2

(SiSj) = T−B1
(vivj),

I−B2
(f(vi)f(vj)) = I−B2

(SiSj) = I−B1
(vivj),

F−B2
(f(vi)f(vj)) = F−B2

(SiSj) = F−B1
(vivj),

∀ vivj ∈ E. �
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Table 6. BSVNSs of BSVNG.

A1 T+
A1

I+A1
F+
A1

T−A1
I−A1

F−A1

α1 0.2 0.5 0.5 -0.1 -0.4 -0.5
α2 0.4 0.3 0.3 -0.2 -0.3 -0.2
α3 0.4 0.5 0.5 -0.3 -0.2 -0.6
α4 0.3 0.2 0.2 -0.4 -0.1 -0.3

B1 T+
B1

I+B1
F+
B1

T−B1
I−B1

F−B1

x1 0.1 0.6 0.7 -0.1 -0.4 -0.5
x2 0.3 0.6 0.7 -0.2 -0.3 -0.6
x3 0.2 0.7 0.8 -0.3 -0.2 -0.6
x4 0.1 0.7 0.8 -0.1 -0.4 -0.5

Definition 3.30. Let G∗ = (V,E) and L(G∗) = (X,Y ) be its line graph, where
A1 and B1 be BSVNSs on V and E, respectively. Let A2 and B2 be BSVNSs on X
and Y, respectively. The bipolar single valued neutrosophic line graph (BSVNLG)
of BSVNG G = (A1, B1) is BSVNG L(G) = (A2, B2) such that,

T+
A2

(Sx) = T+
B1

(x) = T+
B1

(uxvx), I+A2
(Sx) = I+B1

(x) = I+B1
(uxvx),

I−A2
(Sx) = I−B1

(x) = I−B1
(uxvx), F−A2

(Sx) = F−B1
(x) = F−B1

(uxvx),

F+
A2

(Sx) = F+
B1

(x) = F+
B1

(uxvx), T−A2
(Sx) = T−B1

(x) = T−B1
(uxvx),

∀ Sx, Sy ∈ X and

T+
B2

(SxSy) = min(T+
B1

(x), T+
B1

(y)), I+B2
(SxSy) = max(I+B1

(x), I+B1
(y)),

I−B2
(SxSy) = min(I−B1

(x), I−B1
(y)), F−B2

(SxSy) = min(F−B1
(x), F−B1

(y)),

F+
B2

(SxSy) = max(F+
B1

(x), F+
B1

(y)), T−B2
(SxSy) = max(T−B1

(x), T−B1
(y)),

∀ SxSy ∈ Y.

Remark 3.31. Every BSVNLG is a strong BSVNG.

Remark 3.32. The L(G) = (A2, B2) is a BSVNLG corresponding to BSVNG G =
(A1, B1).

Example 3.33. Consider the G∗ = (V,E) where V = {α1, α2, α3, α4} and E =
{x1 = α1α2, x2 = α2α3, x3 = α3α4, x4 = α4α1} and G = (A1, B1) is BSVNG of
G∗ = (V,E) which is defined in Table 6. Consider the L(G∗) = (X,Y ) such that
X = {Γx1 ,Γx2 ,Γx3 ,Γx4} and Y = {Γx1Γx2 ,Γx2Γx3 ,Γx3Γx4 ,Γx4Γx1}. Let A2 and B2

be BSVNSs of X and Y respectively, then BSVNLG L(G) is given in Table 7.

Proposition 3.34. The L(G) = (A2, B2) is a BSVNLG of some BSVNG G =
(A1, B1) if and only if

T+
B2

(SxSy) = min(T+
A2

(Sx), T+
A2

(Sy)),

T−B2
(SxSy) = max(T−A2

(Sx), T−A2
(Sy)),

I+B2
(SxSy) = max(I+A2

(Sx), I+A2
(Sy)),

F−B2
(SxSy) = min(F−A2

(Sx), F−A2
(Sy)),
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Table 7. BSVNSs of BSVNLG.

A1 T+
A1

I+A1
F+
A1

T−A1
I−A1

F−A1

Γx1 0.1 0.6 0.7 -0.1 -0.4 -0.5
Γx2 0.3 0.6 0.7 -0.2 -0.3 -0.6
Γx3

0.2 0.7 0.8 -0.3 -0.2 -0.6
Γx4

0.1 0.7 0.8 -0.1 -0.4 -0.5

B1 T+
B1

I+B1
F+
B1

T−B1
I−B1

F−B1

Γx1
Γx2

0.1 0.6 0.7 -0.1 -0.4 -0.6
Γx2Γx3 0.2 0.7 0.8 -0.2 -0.3 -0.6
Γx3Γx4 0.1 0.7 0.8 -0.1 -0.4 -0.6
Γx4

Γx1
0.1 0.7 0.8 -0.1 -0.4 -0.5

I−B2
(SxSy) = min(I−A2

(Sx), I−A2
(Sy)),

F+
B2

(SxSy) = max(F+
A2

(Sx), F+
A2

(Sy)),

∀ SxSy ∈ Y.

Proof. Assume that,

T+
B2

(SxSy) = min(T+
A2

(Sx), T+
A2

(Sy)),

T−B2
(SxSy) = max(T−A2

(Sx), T−A2
(Sy)),

I+B2
(SxSy) = max(I+A2

(Sx), I+A2
(Sy)),

F−B2
(SxSy) = min(F−A2

(Sx), F−A2
(Sy)),

I−B2
(SxSy) = min(I−A2

(Sx), I−A2
(Sy)),

F+
B2

(SxSy) = max(F+
A2

(Sx), F+
A2

(Sy)),

∀ SxSy ∈ Y. Define

T+
A1

(x) = T+
A2

(Sx), I+A1
(x) = I+A2

(Sx), F+
A1

(x) = F+
A2

(Sx),

T−A1
(x) = T−A2

(Sx), I−A1
(x) = I−A2

(Sx), F−A1
(x) = F−A2

(Sx)

∀ x ∈ E. Then

I+B2
(SxSy) = max(I+A2

(Sx), I+A2
(Sy)) = max(I+A2

(x), I+A2
(y)),

I−B2
(SxSy) = min(I−A2

(Sx), I−A2
(Sy)) = min(I−A2

(x), I−A2
(y)),

T+
B2

(SxSy) = min(T+
A2

(Sx), T+
A2

(Sy)) = min(T+
A2

(x), T+
A2

(y)),

T−B2
(SxSy) = max(T−A2

(Sx), T−A2
(Sy)) = max(T−A2

(x), T−A2
(y)),

F−B2
(SxSy) = min(F−A2

(Sx), F−A2
(Sy)) = min(F−A2

(x), F−A2
(y)),

F+
B2

(SxSy) = max(F+
A2

(Sx), F+
A2

(Sy)) = max(F+
A2

(x), F+
A2

(y)).

A BSVNS A1 that yields the property

T+
B1

(xy) ≤ min(T+
A1

(x), T+
A1

(y)), I+B1
(xy) ≥ max(I+A1

(x), I+A1
(y)),

I−B1
(xy) ≤ min(I−A1

(x), I−A1
(y)), F−B1

(xy) ≤ min(F−A1
(x), F−A1

(y)),

F+
B1

(xy) ≥ max(F+
A1

(x), F+
A1

(y)), T−B1
(xy) ≥ max(T−A1

(x), T−A1
(y))

will suffice. Converse is straight forward. �
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Proposition 3.35. If L(G) be a BSVNLG of BSVNG G, then L(G∗) = (X,Y ) is
the crisp line graph of G∗.

Proof. Since L(G) is a BSVNLG,

T+
A2

(Sx) = T+
B1

(x), I+A2
(Sx) = I+B1

(x), F+
A2

(Sx) = F+
B1

(x),

T−A2
(Sx) = T−B1

(x), I−A2
(Sx) = I−B1

(x), F−A2
(Sx) = F−B1

(x)

∀ x ∈ E, Sx ∈ X if and only if x ∈ E, also

T+
B2

(SxSy) = min(T+
B1

(x), T+
B1

(y)), I+B2
(SxSy) = max(I+B1

(x), I+B1
(y)),

I−B2
(SxSy) = min(I−B1

(x), I−B1
(y)), F−B2

(SxSy) = min(F−B1
(x), F−B1

(y)),

F+
B2

(SxSy) = max(F+
B1

(x), F+
B1

(y)), T−B2
(SxSy) = max(T−B1

(x), T−B1
(y)),

∀ SxSy ∈ Y . Then Y = {SxSy : Sx ∩ Sy 6= φ, x, y ∈ E, x 6= y}. �

Proposition 3.36. The L(G) = (A2, B2) be a BSVNLG of BSVNG G if and only
if L(G∗) = (X,Y ) is the line graph and

T+
B2

(xy) = min(T+
A2

(x), T+
A2

(y)), I+B2
(xy) = max(I+A2

(x), I+A2
(y)),

I−B2
(xy) = min(I−A2

(x), I−A2
(y)), F−B2

(xy) = min(F−A2
(x), F−A2

(y)),

F+
B2

(xy) = max(F+
A2

(x), F+
A2

(y)), T−B2
(xy) = max(T−A2

(x), T−A2
(y)),

∀ xy ∈ Y.

Proof. It follows from propositions 3.34 and 3.35. �

Proposition 3.37. Let G be a BSVNG, thenM(G) is isomorphic with sd(G)∪L(G).

Theorem 3.38. Let L(G) = (A2, B2) be BSVNLG corresponding to BSVNG G =
(A1, B1).

(1) If G is weak isomorphic onto L(G) if and only if ∀ v ∈ V, x ∈ E and G∗ to
be a cycle, such that

T+
A1

(v) = T+
B1

(x), I+A1
(v) = T+

B1
(x), F+

A1
(v) = T+

B1
(x),

T−A1
(v) = T−B1

(x), I−A1
(v) = T−B1

(x), F−A1
(v) = T−B1

(x).

(2) If G is weak isomorphic onto L(G), then G and L(G) are isomorphic.

Proof. By hypothesis, G∗ is a cycle. Let V = {v1, v2, v3, . . . , vn} and E = {x1 =
v1v2, x2 = v2v3, . . . , xn = vnv1}, where P : v1v2v3 . . . vn is a cycle, characterize a

BSVNS A1 by A1(vi) = (pi, qi, ri, p
′

i, q
′

i, r
′

i) and B1 by B1(xi) = (ai, bi, ci, a
′

i, b
′

i, c
′

i)
for i = 1, 2, 3, . . . , n and vn+1 = v1. Then for pn+1 = p1, qn+1 = q1, rn+1 = r1,

ai ≤ min(pi, pi+1), bi ≥ max(qi, qi+1), ci ≥ max(ri, ri+1),

a
′

i ≥ max(p
′

i, p
′

i+1), b
′

i ≤ min(q
′

i, q
′

i+1), c
′

i ≤ min(r
′

i, r
′

i+1),

for i = 1, 2, 3, . . . , n.
Now let X = {Γx1

,Γx2
, . . . ,Γxn} and Y = {Γx1

Γx2
,Γx2

Γx3
, . . . ,ΓxnΓx1

}. Then
for an+1 = a1, we obtain

A2(Γxi) = B1(xi) = (ai, bi, ci, a
′

i, b
′

i, c
′

i)
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andB2(ΓxiΓxi+1) = (min(ai, ai+1),max(bi, bi+1),max(ci, ci+1),max(a
′

i, a
′

i+1),min(b
′

i, b
′

i+1),

min(c
′

i, c
′

i+1)) for i = 1, 2, 3, . . . , n and vn+1 = v1. Since f preserves adjacency, it in-
duce permutation π of {1, 2, 3, . . . , n},

f(vi) = Γvπ(i)vπ(i)+1

and

vivi+1 → f(vi)f(vi+1) = Γvπ(i)vπ(i)+1
Γvπ(i+1)vπ(i+1)+1

,

for i = 1, 2, 3, . . . , n− 1. Thus

pi = T+
A1

(vi) ≤ T+
A2

(f(vi)) = T+
A2

(Γvπ(i)vπ(i)+1
) = T+

B1
(vπ(i)vπ(i)+1) = aπ(i).

Similarly, p
′

i ≥ a
′

π(i), qi ≥ bπ(i), ri ≥ cπ(i), q
′

i ≤ b
′

π(i), r
′

i ≤ c
′

π(i) and

ai = T+
B1

(vivi+1) ≤ T+
B2

(f(vi)f(vi+1))

= T+
B2

(Γvπ(i)vπ(i)+1
Γvπ(i+1)vπ(i+1)+1

)

= min(T+
B1

(vπ(i)vπ(i)+1), T+
B1

(vπ(i+1)vπ(i+1)+1))

= min(aπ(i), aπ(i)+1).

Similarly, bi ≥ max(bπ(i), bπ(i)+1), ci ≥ max(cπ(i), cπ(i)+1), a
′

i ≥ max(a
′

π(i), a
′

π(i)+1),

b
′

i ≤ min(b
′

π(i), b
′

π(i)+1) and c
′

i ≤ min(c
′

π(i), c
′

π(i)+1) for i = 1, 2, 3, . . . , n. Therefore

pi ≤ aπ(i), qi ≥ bπ(i), ri ≥ cπ(i), p
′

i ≥ a
′

π(i), q
′

i ≤ b
′

π(i), r
′

i ≤ c
′

π(i)

and

ai ≤ min(aπ(i), aπ(i)+1), a
′

i ≥ max(a
′

π(i), a
′

π(i)+1),

bi ≥ max(bπ(i), bπ(i)+1), b
′

i ≤ min(b
′

π(i), b
′

π(i)+1),

ci ≥ max(cπ(i), cπ(i)+1), ci ≤ min(c
′

π(i), c
′

π(i)+1)

thus

ai ≤ aπ(i), bi ≥ bπ(i), ci ≥ cπ(i), a
′

i ≥ a
′

π(i), b
′

i ≤ b
′

π(i), c
′

i ≤ c
′

π(i)

and so

aπ(i) ≤ aπ(π(i)), bπ(i) ≥ bπ(π(i)), cπ(i) ≥ cπ(π(i))
a

′

π(i) ≥ a
′

π(π(i)), b
′

π(i) ≤ b
′

π(π(i)), c
′

π(i) ≤ c
′

π(π(i))

∀ i = 1, 2, 3, . . . , n. Next to extend,

ai ≤ aπ(i) ≤ . . . ≤ aπj(i) ≤ ai, a
′

i ≥ a
′

π(i) ≥ . . . ≥ a
′

πj(i) ≥ a
′

i

bi ≥ bπ(i) ≥ . . . ≥ bπj(i) ≥ bi, b
′

i ≤ b
′

π(i) ≤ . . . ≤ b
′

πj(i) ≤ b
′

i

ci ≥ cπ(i) ≥ . . . ≥ cπj(i) ≥ ci, c
′

i ≤ c
′

π(i) ≤ . . . ≤ c
′

πj(i) ≤ c
′

i

where πj+1 identity. Hence

ai = aπ(i), bi = bπ(i), ci = cπ(i), a
′

i = a
′

π(i), b
′

i = b
′

π(i), c
′

i = c
′

π(i)

∀ i = 1, 2, 3, . . . , n. Thus we conclude that

ai ≤ aπ(i+1) = ai+1, bi ≥ bπ(i+1) = bi+1, ci ≥ cπ(i+1) = ci+1

a
′

i ≥ a
′

π(i+1) = a
′

i+1, b
′

i ≤ b
′

π(i+1) = b
′

i+1, c
′

i ≤ c
′

π(i+1) = c
′

i+1
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which together with

an+1 = a1, bn+1 = b1, cn+1 = c1, a
′

n+1 = a
′

1, b
′

n+1 = b
′

1, c
′

n+1 = c
′

1

which implies that

ai = a1, bi = b1, ci = c1, a
′

i = a
′

1, b
′

i = b
′

1, c
′

i = c
′

1

∀ i = 1, 2, 3, . . . , n. Thus we have

a1 = a2 = . . . = an = p1 = p2 = . . . = pn

a
′

1 = a
′

2 = . . . = a
′

n = p
′

1 = p
′

2 = . . . = p
′

n

b1 = b2 = . . . = bn = q1 = q2 = . . . = qn

b
′

1 = b
′

2 = . . . = b
′

n = q
′

1 = q
′

2 = . . . = q
′

n

c1 = c2 = . . . = cn = r1 = r2 = . . . = rn

c
′

1 = c
′

2 = . . . = c
′

n = r
′

1 = r
′

2 = . . . = r
′

n

Therefore (a) and (b) holds, since converse of result (a) is straight forward. �

4. Conclusion

The neutrosophic graphs have many applications in path problems, networks and
computer science. Strong BSVNG and complete BSVNG are the types of BSVNG. In
this paper, we discussed the special types of BSVNGs, subdivision BSVNGs, middle
BSVNGs, total BSVNGs and BSVNLGs of the given BSVNGs. We investigated
isomorphism properties of subdivision BSVNGs, middle BSVNGs, total BSVNGs
and BSVNLGs.
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1. Introduction

The concept of neutrosophic set (NS) developed by Smarandache [5, 6, 7] is a
more general platform which extends the concepts of the classic set and fuzzy set,
intuitionistic fuzzy set and interval valued intuitionistic fuzzy set. Neutrosophic set
theory is applied to various part. For further particulars I refer readers to the site
http://fs.gallup.unm.edu/neutrosophy.htm. Agboola et al. [1] studied neutrosophic
ideals of neutrosophic BCI-algebras. Agboola et al. [2] also introduced the con-
cept of neutrosophic BCI/BCK-algebras, and presented elementary properties of
neutrosophic BCI/BCK-algebras.

In this paper, we introduce the notion of (Φ, Ψ)-neutrosophic subalgebra of a
BCK/BCI-algebra X for Φ,Ψ ∈ {∈, q,∈ ∨ q}, and investigate related properties.
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We provide characterizations of an (∈,∈)-neutrosophic subalgebra and an (∈,∈∨ q)-
neutrosophic subalgebra. Given special sets, so called neutrosophic ∈-subsets, neu-
trosophic q-subsets and neutrosophic ∈ ∨ q-subsets, we provide conditions for the
neutrosophic ∈-subsets, neutrosophic q-subsets and neutrosophic ∈ ∨ q-subsets to
be subalgebras. We consider conditions for a neutrosophic set to be a (q, ∈ ∨ q)-
neutrosophic subalgebra.

2. Preliminaries

By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the axioms:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(a2) (x ∗ (x ∗ y)) ∗ y = 0,
(a3) x ∗ x = 0,
(a4) x ∗ y = y ∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X. If a BCI-algebra X satisfies the axiom

(a5) 0 ∗ x = 0 for all x ∈ X,
then we say that X is a BCK-algebra. A nonempty subset S of a BCK/BCI-algebra
X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S.

We refer the reader to the books [3] and [4] for further information regarding
BCK/BCI-algebras.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [6]) is a structure
of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an
indeterminate membership function, and AF : X → [0, 1] is a false membership
function. For the sake of simplicity, we shall use the symbol A = (AT , AI , AF ) for
the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.

3. Neutrosophic subalgebras of several types

Given a neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈ (0, 1] and γ ∈ [0, 1),
we consider the following sets:

T∈(A;α) := {x ∈ X | AT (x) ≥ α},
I∈(A;β) := {x ∈ X | AI(x) ≥ β},
F∈(A; γ) := {x ∈ X | AF (x) ≤ γ},
Tq(A;α) := {x ∈ X | AT (x) + α > 1},
Iq(A;β) := {x ∈ X | AI(x) + β > 1},
Fq(A; γ) := {x ∈ X | AF (x) + γ < 1},
T∈∨ q(A;α) := {x ∈ X | AT (x) ≥ α or AT (x) + α > 1},
I∈∨ q(A;β) := {x ∈ X | AI(x) ≥ β or AI(x) + β > 1},
F∈∨ q(A; γ) := {x ∈ X | AF (x) ≤ γ or AF (x) + γ < 1}.
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We say T∈(A;α), I∈(A;β) and F∈(A; γ) are neutrosophic ∈-subsets; Tq(A;α), Iq(A;β)
and Fq(A; γ) are neutrosophic q-subsets; and T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ)
are neutrosophic ∈∨ q-subsets. For Φ ∈ {∈, q,∈∨ q}, the element of TΦ(A;α) (resp.,
IΦ(A;β) and FΦ(A; γ)) is called a neutrosophic TΦ-point (resp., neutrosophic IΦ-
point and neutrosophic FΦ-point) with value α (resp., β and γ). It is clear that

T∈∨ q(A;α) = T∈(A;α) ∪ Tq(A;α),(3.1)

I∈∨ q(A;β) = I∈(A;β) ∪ Iq(A;β),(3.2)

F∈∨ q(A; γ) = F∈(A; γ) ∪ Fq(A; γ).(3.3)

Proposition 3.1. For any neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈
(0, 1] and γ ∈ [0, 1), we have

α ∈ [0, 0.5] ⇒ T∈∨ q(A;α) = T∈(A;α),(3.4)

β ∈ [0, 0.5] ⇒ I∈∨ q(A;β) = I∈(A;β),(3.5)

γ ∈ [0.5, 1] ⇒ F∈∨ q(A; γ) = F∈(A; γ),(3.6)

α ∈ (0.5, 1] ⇒ T∈∨ q(A;α) = Tq(A;α),(3.7)

β ∈ (0.5, 1] ⇒ I∈∨ q(A;β) = Iq(A;β),(3.8)

γ ∈ [0, 0.5) ⇒ F∈∨ q(A; γ) = Fq(A; γ).(3.9)

Proof. If α ∈ [0, 0.5], then 1−α ∈ [0.5, 1] and α ≤ 1−α. It is clear that T∈(A;α) ⊆
T∈∨ q(A;α) by (3.1). If x /∈ T∈(A;α), then AT (x) < α ≤ 1 − α, i.e., x /∈ Tq(A;α).
Hence x /∈ T∈∨ q(A;α), and so T∈∨ q(A;α) ⊆ T∈(A;α). Thus (3.4) is valid. Similarly,
we have the result (3.5). If γ ∈ [0.5, 1], then 1 − γ ∈ [0, 0.5] and γ ≥ 1 − γ. It is
clear that F∈(A; γ) ⊆ F∈∨ q(A; γ) by (3.3). Let z ∈ F∈∨ q(A; γ). Then z ∈ F∈(A; γ)
or z ∈ Fq(A; γ). If z /∈ F∈(A; γ), then AF (z) > γ ≥ 1− γ, i.e., AF (z) + γ > 1. Thus
z /∈ Fq(A; γ), and so z /∈ F∈∨ q(A; γ). This is a contradiction. Hence z ∈ F∈(A; γ),
and therefore F∈∨ q(A; γ) ⊆ F∈(A; γ). Let β ∈ (0.5, 1]. Then β > 1 − β. Note
that Iq(A;β) ⊆ I∈∨ q(A;β) by (3.2). Let y ∈ I∈∨ q(A;β). Then y ∈ I∈(A;β) or
y ∈ Iq(A;β). If y /∈ Iq(A;β), then AI(y) + β ≤ 1 and so AI(y) ≤ 1 − β < β,
i.e., y /∈ I∈(A;β). Thus y /∈ I∈∨ q(A;β), a contradiction. Hence y ∈ Iq(A;β).
Therefore I∈∨ q(A;β) ⊆ Iq(A;β). This shows that (3.8) is true. The result (3.7) is
proved by the similar way. Let γ ∈ [0, 0.5) and z ∈ F∈∨ q(A; γ). Then 1 − γ > γ
and z ∈ F∈(A; γ) or z ∈ Fq(A; γ). If z /∈ Fq(A; γ), then AF (z) + γ ≥ 1 and so
AF (z) ≥ 1−γ > γ, i.e., z /∈ F∈(A; γ). Thus z /∈ F∈∨ q(A; γ), which is a contradiction.
Hence F∈∨ q(A; γ) ⊆ Fq(A; γ). The reverse inclusion is by (3.3). �

Definition 3.2. Given Φ,Ψ ∈ {∈, q,∈ ∨ q}, a neutrosophic set A = (AT , AI , AF )
in a BCK/BCI-algebra X is called a (Φ, Ψ)-neutrosophic subalgebra of X if the
following assertions are valid.

x ∈ TΦ(A;αx), y ∈ TΦ(A;αy) ⇒ x ∗ y ∈ TΨ(A;αx ∧ αy),

x ∈ IΦ(A;βx), y ∈ IΦ(A;βy) ⇒ x ∗ y ∈ IΨ(A;βx ∧ βy),

x ∈ FΦ(A; γx), y ∈ FΦ(A; γy) ⇒ x ∗ y ∈ FΨ(A; γx ∨ γy)

(3.10)

for all x, y ∈ X, αx, αy, βx, βy,∈ (0, 1] and γx, γy ∈ [0, 1).
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Theorem 3.3. A neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra X is
an (∈, ∈)-neutrosophic subalgebra of X if and only if it satisfies:

(∀x, y ∈ X)

 AT (x ∗ y) ≥ AT (x) ∧AT (y)

AI(x ∗ y) ≥ AI(x) ∧AI(y)

AF (x ∗ y) ≤ AF (x) ∨AF (y)

 .(3.11)

Proof. Assume that A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic subalgebra of X.
If there exist x, y ∈ X such that AT (x ∗ y) < AT (x) ∧AT (y), then

AT (x ∗ y) < αt ≤ AT (x) ∧AT (y)

for some αt ∈ (0, 1]. It follows that x, y ∈ T∈(A;αt) but x ∗ y /∈ T∈(A;αt). Hence
AT (x ∗ y) ≥ AT (x) ∧AT (y) for all x, y ∈ X. Similarly, we show that

AI(x ∗ y) ≥ AI(x) ∧AI(y)

for all x, y ∈ X. Suppose that there exist a, b ∈ X and γf ∈ [0, 1] be such that
AF (a∗b) > γf ≥ AF (a)∨AF (b). Then a, b ∈ F∈(A; γf ) and a∗b /∈ F∈(A; γf ), which
is a contradiction. Therefore AF (x ∗ y) ≤ AF (x) ∨AF (y) for all x, y ∈ X.

Conversely, let A = (AT , AI , AF ) be a neutrosophic set in X which satisfies the
condition (3.11). Let x, y ∈ X be such that x ∈ T∈(A;αx) and y ∈ T∈(A;αy). Then
AT (x) ≥ αx and AT (y) ≥ αy, which imply that AT (x∗y) ≥ AT (x)∧AT (y) ≥ αx∧αy,
that is, x ∗ y ∈ T∈(A;αx ∧ αy). Similarly, if x ∈ I∈(A;βx) and y ∈ I∈(A;βy) then
x ∗ y ∈ I∈(A;βx ∧ βy). Now, let x ∈ F∈(A; γx) and y ∈ F∈(A; γy) for x, y ∈ X.
Then AF (x) ≤ γx and AF (y) ≤ γy, and so AF (x ∗ y) ≤ AF (x) ∨ AF (y) ≤ γx ∨ γy.
Hence x ∗ y ∈ F∈(A; γx ∨γy). Therefore A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic
subalgebra of X. �

Theorem 3.4. If A = (AT , AI , AF ) is an (∈, ∈)-neutrosophic subalgebra of a
BCK/BCI-algebra X, then neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ)
are subalgebras of X for all α, β ∈ (0, 1] and γ ∈ [0, 1) whenever they are nonempty.

Proof. Let x, y ∈ Tq(A;α). Then AT (x) +α > 1 and AT (y) +α > 1. It follows that

AT (x ∗ y) + α ≥ (AT (x) ∧AT (y)) + α

= (AT (x) + α) ∧ (AT (y) + α) > 1

and so that x ∗ y ∈ Tq(A;α). Hence Tq(A;α) is a subalgebra of X. Similarly,
we can prove that Iq(A;β) is a subalgebra of X. Now let x, y ∈ Fq(A; γ). Then
AF (x) + γ < 1 and AF (y) + γ < 1, which imply that

AF (x ∗ y) + γ ≤ (AF (x) ∨AF (y)) + γ

= (AF (x) + α) ∨ (AF (y) + α) < 1.

Hence x ∗ y ∈ Fq(A; γ) and Fq(A; γ) is a subalgebra of X. �

Theorem 3.5. If A = (AT , AI , AF ) is a (q, ∈ ∨ q)-neutrosophic subalgebra of a
BCK/BCI-algebra X, then neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ)
are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0, 5) whenever they are
nonempty.
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Proof. Let x, y ∈ Tq(A;α). Then x ∗ y ∈ T∈∨ q(A;α), and so x ∗ y ∈ T∈(A;α) or
x∗y ∈ Tq(A;α). If x∗y ∈ T∈(A;α), then AT (x∗y) ≥ α > 1−α since α > 0.5. Hence
x ∗ y ∈ Tq(A;α). Therefore Tq(A;α) is a subalgebra of X. Similarly, we prove that
Iq(A;β) is a subalgebra of X. Let x, y ∈ Fq(A; γ). Then x ∗ y ∈ F∈∨ q(A; γ), and so
x ∗ y ∈ F∈(A; γ) or x ∗ y ∈ Fq(A; γ). If x ∗ y ∈ F∈(A; γ), then AF (x ∗ y) ≤ γ < 1− γ
since γ ∈ [0, 0, 5). Hence x ∗ y ∈ Fq(A; γ), and therefore Fq(A; γ) is a subalgebra of
X. �

We provide characterizations of an (∈, ∈∨ q)-neutrosophic subalgebra.

Theorem 3.6. A neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra X is
an (∈, ∈∨ q)-neutrosophic subalgebra of X if and only if it satisfies:

(∀x, y ∈ X)

 AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5}

AI(x ∗ y) ≥
∧
{AI(x), AI(y).0.5}

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5}

 .(3.12)

Proof. Suppose that A = (AT , AI , AF ) is an (∈, ∈∨ q)-neutrosophic subalgebra of
X and let x, y ∈ X. If AT (x) ∧AT (y) < 0.5, then AT (x ∗ y) ≥ AT (x) ∧AT (y). For,
assume that AT (x ∗ y) < AT (x) ∧AT (y) and choose αt such that

AT (x ∗ y) < αt < AT (x) ∧AT (y).

Then x ∈ T∈(A;αt) and y ∈ T∈(A;αt) but x ∗ y /∈ T∈(A;αt). Also AT (x ∗ y) +αt <
1, i.e., x ∗ y /∈ Tq(A;αt). Thus x ∗ y /∈ T∈∨ q(A;αt), a contradiction. Therefore
AT (x ∗ y) ≥

∧
{AT (x), AT (y), 0.5} whenever AT (x) ∧ AT (y) < 0.5. Now suppose

that AT (x)∧AT (y) ≥ 0.5. Then x ∈ T∈(A; 0.5) and y ∈ T∈(A; 0.5), which imply that
x∗y ∈ T∈∨ q(A; 0.5). Hence AT (x∗y) ≥ 0.5. Otherwise, AT (x∗y)+0.5 < 0.5+0.5 = 1,
a contradiction. Consequently, AT (x ∗ y) ≥

∧
{AT (x), AT (y), 0.5} for all x, y ∈ X.

Similarly, we know that AI(x ∗ y) ≥
∧
{AI(x), AI(y), 0.5} for all x, y ∈ X. Suppose

that AF (x)∨AF (y) > 0.5. If AF (x∗y) > AF (x)∨AF (y) := γf , then x, y ∈ F∈(A; γf ),
x ∗ y /∈ F∈(A; γf ) and AF (x ∗ y) + γf > 2γf > 1, i.e., x ∗ y /∈ Fq(A; γf ). This is a
contradiction. Hence AF (x∗y) ≤

∨
{AF (x), AF (y), 0.5} whenever AF (x)∨AF (y) >

0.5. Now, assume that AF (x) ∨ AF (y) ≤ 0.5. Then x, y ∈ F∈(A; 0.5) and so
x∗y ∈ F∈∨ q(A; 0.5). Thus AF (x∗y) ≤ 0.5 or AF (x∗y)+0.5 < 1. If AF (x∗y) > 0.5,
then AF (x ∗ y) + 0.5 > 0.5 + 0.5 = 1, a contradiction. Thus AF (x ∗ y) ≤ 0.5, and
so AF (x ∗ y) ≤

∨
{AF (x), AF (y), 0.5} whenever AF (x) ∨ AF (y) ≤ 0.5. Therefore

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5} for all x, y ∈ X.

Conversely, let A = (AT , AI , AF ) be a neutrosophic set in X which satisfies the
condition (3.12). Let x, y ∈ X and αx, αy, βx, βy, γx, γy ∈ [0, 1]. If x ∈ T∈(A;αx)
and y ∈ T∈(A;αy), then AT (x) ≥ αx and AT (y) ≥ αy. If AT (x ∗ y) < αx ∧αy, then
AT (x) ∧AT (y) ≥ 0.5. Otherwise, we have

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5} = AT (x) ∧AT (y) ≥ αx ∧ αy,

a contradiction. It follows that

AT (x ∗ y) + αx ∧ αy > 2AT (x ∗ y) ≥ 2
∧
{AT (x), AT (y), 0.5} = 1

and so that x ∗ y ∈ Tq(A;αx ∧ αy) ⊆ T∈∨ q(A;αx ∧ αy). Similarly, if x ∈ I∈(A;βx)
and y ∈ I∈(A;βy), then x ∗ y ∈ I∈∨ q(A;βx ∧ βy). Now, let x ∈ F∈(A; γx) and
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y ∈ F∈(A; γy). Then AF (x) ≤ γx and AF (y) ≤ γy. If AF (x ∗ y) > γx ∨ γy, then
AF (x) ∨AF (y) ≤ 0.5 because if not, then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5} ≤ AF (x) ∨AF (y) ≤ γx ∨ γy,

which is a contradiction. Hence

AF (x ∗ y) + γx ∨ γy < 2AF (x ∗ y) ≤ 2
∨
{AF (x), AF (y), 0.5} = 1,

and so x ∗ y ∈ Fq(A; γx ∨ γy) ⊆ F∈∨ q(A; γx ∨ γy). Therefore A = (AT , AI , AF ) is an
(∈, ∈∨ q)-neutrosophic subalgebra of X. �

Theorem 3.7. If A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-neutrosophic subalgebra of a
BCK/BCI-algebra X, then neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ)
are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5) whenever they are
nonempty.

Proof. Assume that Tq(A;α), Iq(A;β) and Fq(A; γ) are nonempty for all α, β ∈
(0.5, 1] and γ ∈ [0, 0.5). Let x, y ∈ Tq(A;α). Then AT (x)+α > 1 and AT (y)+α > 1.
It follows from Theorem 3.6 that

AT (x ∗ y) + α ≥
∧
{AT (x), AT (y), 0.5}+ α

=
∧
{AT (x) + α,AT (y) + α, 0.5 + α}

> 1,

that is, x ∗ y ∈ Tq(A;α). Hence Tq(A;α) is a subalgebra of X. By the similar way,
we can induce that Iq(A;β) is a subalgebra of X. Now, let x, y ∈ Fq(A; γ). Then
AF (x) + γ < 1 and AF (y) + γ < 1. Using Theorem 3.6, we have

AF (x ∗ y) + γ ≤
∨
{AF (x), AF (y), 0.5}+ γ

=
∨
{AF (x) + γ,AF (y) + γ, 0.5 + γ}

< 1,

and so x ∗ y ∈ Fq(A; γ). Therefore Fq(A; γ) is a subalgebra of X. �

Theorem 3.8. For a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X, if the nonempty neutrosophic ∈∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ)
are subalgebras of X for all α, β ∈ (0, 1] and γ ∈ [0, 1), then A = (AT , AI , AF ) is an
(∈, ∈∨ q)-neutrosophic subalgebra of X.

Proof. Let T∈∨ q(A;α) be a subalgebra of X and assume that

AT (x ∗ y) <
∧
{AT (x), AT (y), 0.5}

for some x, y ∈ X. Then there exists α ∈ (0, 0.5] such that

AT (x ∗ y) < α ≤
∧
{AT (x), AT (y), 0.5}.

It follows that x, y ∈ T∈(A;α) ⊆ T∈∨ q(A;α), and so that x ∗ y ∈ T∈∨ q(A;α). Hence
AT (x ∗ y) ≥ α or AT (x ∗ y) + α > 1. This is a contradiction, and so

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5}
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for all x, y ∈ X. Similarly, we show that

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 0.5}

for all x, y ∈ X. Now let F∈∨ q(A; γ) be a subalgebra of X and assume that

AF (x ∗ y) >
∨
{AF (x), AF (y), 0.5}

for some x, y ∈ X. Then

AF (x ∗ y) > γ ≥
∨
{AF (x), AF (y), 0.5},(3.13)

for some γ ∈ [0.5, 1), which implies that x, y ∈ F∈(A; γ) ⊆ F∈∨ q(A; γ). Thus
x∗y ∈ F∈∨ q(A; γ). From (3.13), we have x∗y /∈ F∈(A; γ) and AF (x∗y)+γ > 2γ ≥ 1,
i.e., x ∗ y /∈ Fq(A; γ). This is a contradiction, and hence

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5}

for all x, y ∈ X. Using Theorem 3.6, we know that A = (AT , AI , AF ) is an (∈,
∈∨ q)-neutrosophic subalgebra of X. �

Theorem 3.9. If A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-neutrosophic subalgebra of
a BCK/BCI-algebra X, then nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α),
I∈∨ q(A;β) and F∈∨ q(A; γ) are subalgebras of X for all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1).

Proof. Assume that T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ) are nonempty for all
α, β ∈ (0, 0.5] and γ ∈ [0.5, 1). Let x, y ∈ I∈∨ q(A;β). Then

x ∈ I∈(A;β) or x ∈ Iq(A;β),

and

y ∈ I∈(A;β) or y ∈ Iq(A;β).

Hence we have the following four cases:

(i) x ∈ I∈(A;β) and y ∈ I∈(A;β),
(ii) x ∈ I∈(A;β) and y ∈ Iq(A;β),

(iii) x ∈ Iq(A;β) and y ∈ I∈(A;β),
(iv) x ∈ Iq(A;β) and y ∈ Iq(A;β).

The first case implies that x ∗ y ∈ I∈∨ q(A;β). For the second case, y ∈ Iq(A;β)
induces AI(y) > 1−β ≥ β, that is, y ∈ I∈(A;β). Thus x∗y ∈ I∈∨ q(A;β). Similarly,
the third case implies x∗y ∈ I∈∨ q(A;β). The last case induces AI(x) > 1−β ≥ β and
AI(y) > 1−β ≥ β, that is, x ∈ I∈(A;β) and y ∈ I∈(A;β). Hence x∗y ∈ I∈∨ q(A;β).
Therefore I∈∨ q(A;β) is a subalgebra of X for all β ∈ (0, 0.5]. By the similar way, we
show that T∈∨ q(A;α) is a subalgebra of X for all α ∈ (0, 0.5]. Let x, y ∈ F∈∨ q(A; γ).
Then

AF (x) ≤ γ or AF (x) + γ < 1,

and

AF (y) ≤ γ or AF (y) + γ < 1.

If AF (x) ≤ γ and AF (y) ≤ γ, then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5} ≤

∨
{γ, 0.5} = γ
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by Theorem 3.6, and so x∗y ∈ F∈(A; γ) ⊆ F∈∨ q(A; γ). If AF (x) ≤ γ and AF (y)+γ <
1, then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5} ≤

∨
{γ, 1− γ, 0.5} = γ

by Theorem 3.6. Thus x ∗ y ∈ F∈(A; γ) ⊆ F∈∨ q(A; γ). Similarly, if AF (x) + γ < 1
and AF (y) ≤ γ, then x ∗ y ∈ F∈∨ q(A; γ). Finally, assume that AF (x) + γ < 1 and
AF (y) + γ < 1. Then

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5} ≤

∨
{1− γ, 0.5} = 0.5 < γ

by Theorem 3.6. Hence x ∗ y ∈ F∈(A; γ) ⊆ F∈∨ q(A; γ). Consequently, F∈∨ q(A; γ) is
a subalgebra of X for all γ ∈ [0.5, 1). �

Theorem 3.10. If A = (AT , AI , AF ) is a (q, ∈ ∨ q)-neutrosophic subalgebra of
a BCK/BCI-algebra X, then nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α),
I∈∨ q(A;β) and F∈∨ q(A; γ) are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5).

Proof. Assume that T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ) are nonempty for all
α, β ∈ (0.5, 1] and γ ∈ [0, 0.5). Let x, y ∈ T∈∨ q(A;α). Then

x ∈ T∈(A;α) or x ∈ Tq(A;α).

and

y ∈ T∈(A;α) or y ∈ Tq(A;α).

If x ∈ Tq(A;α) and y ∈ Tq(A;α), then obviously x ∗ y ∈ T∈∨ q(A;α). Suppose that
x ∈ T∈(A;α) and y ∈ Tq(A;α). Then AT (x) + α ≥ 2α > 1, i.e., x ∈ Tq(A;α). It
follows that x ∗ y ∈ T∈∨ q(A;α). Similarly, if x ∈ Tq(A;α) and y ∈ T∈(A;α), then
x ∗ y ∈ T∈∨ q(A;α). Now, let x, y ∈ F∈∨ q(A; γ). Then

x ∈ F∈(A; γ) or x ∈ Fq(A; γ),

and

y ∈ F∈(A; γ) or y ∈ Fq(A; γ).

If x ∈ Fq(A; γ) and y ∈ Fq(A; γ), then clearly x ∗ y ∈ F∈∨ q(A; γ). If x ∈ F∈(A; γ)
and y ∈ Fq(A; γ), then AF (x)+γ ≤ 2γ < 1, i.e., x ∈ Fq(A; γ). It follows that x∗y ∈
F∈∨ q(A; γ). Similarly, if x ∈ Fq(A; γ) and y ∈ F∈(A; γ), then x ∗ y ∈ F∈∨ q(A; γ).
Finally, assume that x ∈ F∈(A; γ) and y ∈ F∈(A; γ). Then AF (x) + γ ≤ 2γ < 1
and AF (y) + γ ≤ 2γ < 1, that is, x ∈ Fq(A; γ) and y ∈ Fq(A; γ). Therefore x ∗ y ∈
F∈∨ q(A; γ). Consequently, T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ) are subalgebras
of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5). �

Given a neutrosophic set A = (AT , AI , AF ) in a set X, we consider:

X1
0 := {x ∈ X | AT (x) > 0, AI(x) > 0, AF (x) < 1}.

Theorem 3.11. If a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is an (∈,∈)-neutrosophic subalgebra of X, then the set X1

0 is a subalgebra of X.
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Proof. Let x, y ∈ X1
0 . Then AT (x) > 0, AI(x) > 0, AF (x) < 1, AT (y) > 0,

AI(y) > 0 and AF (y) < 1. Suppose that AT (x∗y) = 0. Note that x ∈ T∈(A;AT (x))
and y ∈ T∈(A;AT (y)). But x ∗ y /∈ T∈(A;AT (x) ∧ AT (y)) because AT (x ∗ y) =
0 < AT (x) ∧ AT (y). This is a contradiction, and thus AT (x ∗ y) > 0. By the
similar way, we show that AI(x ∗ y) > 0. Note that x ∈ F∈(A;AF (x)) and y ∈
F∈(A;AF (y)). If AF (x ∗ y) = 1, then AF (x ∗ y) = 1 > AF (x) ∨ AF (y), and so
x ∗ y /∈ F∈(A;AF (x) ∨AF (y)). This is impossible. Hence x ∗ y ∈ X1

0 , and therefore
X1

0 is a subalgebra of X. �

Theorem 3.12. If a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is an (∈, q)-neutrosophic subalgebra of X, then the set X1

0 is a subalgebra of X.

Proof. Let x, y ∈ X1
0 . Then AT (x) > 0, AI(x) > 0, AF (x) < 1, AT (y) > 0,

AI(y) > 0 and AF (y) < 1. If AT (x ∗ y) = 0, then

AT (x ∗ y) +AT (x) ∧AT (y) = AT (x) ∧AT (y) ≤ 1.

Hence x∗y /∈ Tq(A;AT (x)∧AT (y)), which is a contradiction since x ∈ T∈(A;AT (x))
and y ∈ T∈(A;AT (y)). Thus AT (x∗y) > 0. Similarly, we get AI(x∗y) > 0. Assume
that AF (x ∗ y) = 1. Then

AF (x ∗ y) +AF (x) ∨AF (y) = 1 +AF (x) ∨AF (y) ≥ 1,

that is, x ∗ y /∈ Fq(A;AF (x) ∨ AF (y)). This is a contradiction because of x ∈
F∈(A;AF (x)) and y ∈ F∈(A;AF (y)). Hence AF (x∗y) < 1. Consequently, x∗y ∈ X1

0

and X1
0 is a subalgebra of X. �

Theorem 3.13. If a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is a (q,∈)-neutrosophic subalgebra of X, then the set X1

0 is a subalgebra of X.

Proof. Let x, y ∈ X1
0 . Then AT (x) > 0, AI(x) > 0, AF (x) < 1, AT (y) > 0, AI(y) >

0 and AF (y) < 1. It follows that AT (x)+1 > 1, AT (y)+1 > 1, AI(x)+1 > 1, AI(y)+
1 > 1, AF (x) + 0 < 1 and AF (y) + 0 < 1. Hence x, y ∈ Tq(A; 1)∩ Iq(A; 1)∩Fq(A; 0).
If AT (x∗y) = 0 or AI(x∗y) = 0, then AT (x∗y) < 1 = 1∧1 or AI(x∗y) < 1 = 1∧1.
Thus x∗y /∈ Tq(A; 1∧1) or x∗y /∈ Iq(A; 1∧1), a contradiction. Hence AT (x∗y) > 0
and AI(x∗y) > 0. If AF (x∗y) = 1, then x∗y /∈ Fq(A; 0∨0) which is a contradiction.
Thus AF (x ∗ y) < 1. Therefore x ∗ y ∈ X1

0 and the proof is complete. �

Theorem 3.14. If a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is a (q, q)-neutrosophic subalgebra of X, then the set X1

0 is a subalgebra of X.

Proof. Let x, y ∈ X1
0 . Then AT (x) > 0, AI(x) > 0, AF (x) < 1, AT (y) > 0, AI(y) >

0 and AF (y) < 1. Hence AT (x)+1 > 1, AT (y)+1 > 1, AI(x)+1 > 1, AI(y)+1 > 1,
AF (x) + 0 < 1 and AF (y) + 0 < 1. Hence x, y ∈ Tq(A; 1) ∩ Iq(A; 1) ∩ Fq(A; 0). If
AT (x ∗ y) = 0 or AI(x ∗ y) = 0, then

AT (x ∗ y) + 1 ∧ 1 = 0 + 1 = 1

or

AI(x ∗ y) + 1 ∧ 1 = 0 + 1 = 1,

and so x ∗ y /∈ Tq(A; 1 ∧ 1) or x ∗ y /∈ Iq(A; 1 ∧ 1). This is impossible, and thus
AT (x ∗ y) > 0 and AI(x ∗ y) > 0. If AF (x ∗ y) = 1, then AF (x ∗ y) + 0 ∨ 0 = 1, that
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is, x ∗ y /∈ Fq(A; 0 ∨ 0). This is a contradiction, and so AF (x ∗ y) < 1. Therefore
x ∗ y ∈ X1

0 and the proof is complete. �

Theorem 3.15. If a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is a (q, q)-neutrosophic subalgebra of X, then A = (AT , AI , AF ) is neutrosophic
constant on X1

0 , that is, AT , AI and AF are constants on X1
0 .

Proof. Assume that AT is not constant on X1
0 . Then there exist y ∈ X1

0 such
that αy = AT (y) 6= AT (0) = α0. Then either αy > α0 or αy < α0. Suppose
αy < α0 and choose α1, α2 ∈ (0, 1] such that 1 − α0 < α1 ≤ 1 − αy < α2. Then
AT (0) + α1 = α0 + α1 > 1 and AT (y) + α2 = αy + α2 > 1, which imply that
0 ∈ Tq(A;α1) and y ∈ Tq(A;α2). Since

AT (y ∗ 0) + α1 ∧ α2 = AT (y) + α1 = αy + α1 ≤ 1,

we get y ∗ 0 /∈ Tq(A;α1 ∧ α2), which is a contradiction. Next assume that αy > α0.
Then AT (y) + (1− α0) = αy + 1− α0 > 1 and so y ∈ Tq(A; 1− α0). Since

AT (y ∗ y) + (1− α0) = AT (0) + 1− α0 = α0 + 1− α0 = 1,

we have y ∗ y /∈ Tq(A; (1 − α0) ∧ (1 − α0)). This is impossible. Therefore AT is
constant on X1

0 . Similarly, AI is constant on X1
0 . Finally, suppose that AF is not

constant on X1
0 . Then γy = AF (y) 6= AF (0) = γ0 for some y ∈ X1

0 , and we have
two cases:

(i) γy < γ0 and (ii) γy > γ0.

The first case implies that AF (y)+1−γ0 = γy +1−γ0 < 1, that is, y ∈ Fq(A; 1−γ0).
Hence y∗y ∈ Fq(A; (1−γ0)∨(1−γ0)), i.e., 0 ∈ Fq(A; 1−γ0), which is a contradiction
since AF (0) + 1− γ0 = 1. For the second case, there exist γ1, γ2 ∈ (0, 1) such that

1− γ0 > γ1 > 1− γy > γ2.

Then AF (y) + γ2 = γy + γ2 < 1, i.e., y ∈ Fq(A; γ2), and AF (0) + γ1 = γ0 + γ1 < 1,
i.e., 0 ∈ Fq(A; γ1). It follows that y ∗ 0 ∈ Fq(A; γ1 ∨ γ2). But

AF (y ∗ 0) + γ1 ∨ γ2 = AF (y) + γ1 = γy + γ1 > 1,

and so y ∗ 0 /∈ Fq(A; γ1 ∨ γ2). This is a contradiction. Therefore AF is constant on
X1

0 . This completes the proof. �

We provide conditions for a neutrosophic set to be a (q,∈∨ q)-neutrosophic sub-
algebra.

Theorem 3.16. For a subalgebra S of a BCK/BCI-algebra X, let A = (AT , AI , AF )
be a neutrosophic set in X such that

(∀x ∈ S) (AT (x) ≥ 0.5, AI(x) ≥ 0.5, AF (x) ≤ 0.5) ,(3.14)

(∀x ∈ X \ S) (AT (x) = 0, AI(x) = 0, AF (x) = 1) .(3.15)

Then A = (AT , AI , AF ) is a (q,∈∨ q)-neutrosophic subalgebra of X.

Proof. Assume that x ∈ Iq(A;βx) and y ∈ Iq(A;βy) for all x, y ∈ X and βx, βy ∈
[0, 1]. Then AI(x) + βx > 1 and AI(y) + βy > 1. If x ∗ y /∈ S, then x ∈ X \ S or
y ∈ X \S since S is a subalgebra of X. Hence AI(x) = 0 or AI(y) = 0, which imply
that βx > 1 or βy > 1. This is a contradiction, and so x ∗ y ∈ S. If βx ∧ βy > 0.5,
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then AI(x ∗ y) + βx ∧ βy > 1, i.e., x ∗ y ∈ Iq(A;βx ∧ βy). If βx ∧ βy ≤ 0.5, then
AI(x∗y) ≥ 0.5 ≥ βx∧βy, i.e., x∗y ∈ I∈(A;βx∧βy). Hence x∗y ∈ I∈∨ q(A;βx∧βy).
Similarly, if x ∈ Tq(A;αx) and y ∈ Tq(A;αy) for all x, y ∈ X and αx, αy ∈ [0, 1],
then x ∗ y ∈ T∈∨ q(A;αx ∧ αy). Now let x, y ∈ X and γx, γy ∈ [0, 1] be such that
x ∈ Fq(A; γx) and y ∈ Fq(A; γy). Then AF (x) + γx < 1 and AF (y) + γy < 1. It
follows that x∗y ∈ S. In fact, if not then x ∈ X\S or y ∈ X\S since S is a subalgebra
of X. Hence AF (x) = 1 or AF (y) = 1, which imply that γx < 0 or γy < 0. This is
a contradiction, and so x ∗ y ∈ S. If γx ∨ γy ≥ 0.5, then AF (x ∗ y) ≤ 0.5 ≤ γx ∨ γy,
that is, x ∗ y ∈ F∈(A; γx ∨ γy). If γx ∨ γy < 0.5, then AF (x ∗ y) + γx ∨ γy < 1,
that is, x ∗ y ∈ Fq(A; γx ∨ γy). Hence x ∗ y ∈ F∈∨ q(A; γx ∨ γy), and consequently
A = (AT , AI , AF ) is a (q,∈∨ q)-neutrosophic subalgebra of X. �

Combining Theorems 3.5 and 3.16, we have the following corollary.

Corollary 3.17. For a subalgebra S of X, if A = (AT , AI , AF ) is a neutrosophic set
in X satisfying conditions (3.14) and (3.15), then Tq(A;α), Iq(A;β) and Fq(A; γ)
are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0, 5) whenever they are
nonempty.

Theorem 3.18. Let A = (AT , AI , AF ) be a (q,∈ ∨ q)-neutrosophic subalgebra of
X in which AT , AI and AF are not constant on X1

0 . Then there exist x, y, z ∈ X
such that AT (x) ≥ 0.5, AI(y) ≥ 0.5 and AF (z) ≤ 0.5. In particular, AT (x) ≥ 0.5,
AI(y) ≥ 0.5 and AF (z) ≤ 0.5 for all x, y, z ∈ X1

0 .

Proof. Assume that AT (x) < 0.5 for all x ∈ X. Since there exists a ∈ X1
0 such that

αa = AT (a) 6= AT (0) = α0, we have αa > α0 or αa < α0. If αa > α0, then we
can choose δ > 0.5 such that α0 + δ < 1 < αa + δ. It follows that a ∈ Tq(A; δ),
AT (a ∗ a) = AT (0) = α0 < δ = δ ∧ δ and AT (a ∗ a) + δ ∧ δ = AT (0) + δ = α0 + δ < 1
so that a ∗ a /∈ T∈∨ q(A; δ ∧ δ). This is a contradiction. Now if αa < α0, we can take
δ > 0.5 such that αa + δ < 1 < α0 + δ. Then 0 ∈ Tq(A; δ) and a ∈ Tq(A; 1), but
a ∗ 0 /∈ T∈∨ q(A; 1 ∧ δ) since AT (a) < 0.5 < δ and AT (a) + δ = αa + δ < 1. This is
also a contradiction. Thus AT (x) ≥ 0.5 for some x ∈ X. Similarly, we know that
AI(y) ≥ 0.5 for some y ∈ X. Finally, suppose that AF (z) > 0.5 for all z ∈ X. Note
that γc = AF (c) 6= AF (0) = γ0 for some c ∈ X1

0 . It follows that γc < γ0 or γc > γ0.
We first consider the case γc < γ0. Then γ0 + ε > 1 > γc + ε for some ε ∈ [0, 0.5),
and so c ∈ Fq(A; ε). Also AF (c ∗ c) = AF (0) = γ0 > ε and AF (c ∗ c) + ε ∨ ε =
AF (0) + ε = γ0 + ε > 1 which shows that c ∗ c /∈ F∈∨ q(A; ε ∨ ε). This is impossible.
Now, if γc > γ0, then we can take ε ∈ [0, 0.5) and so that γ0 + ε < 1 < γc + ε.
It follows that 0 ∈ Fq(A; ε) and c ∈ Fq(A; 0). Since AF (c ∗ 0) = AF (c) = γc > ε
and AF (c ∗ 0) + ε = AF (c) + ε = γc + ε > 1, we have c ∗ 0 /∈ F∈∨ q(A; ε). This
is a contradiction, and therefore AF (z) < 0.5 for some z ∈ X. We now show that
AT (0) ≥ 0.5, AI(0) ≥ 0.5 and AF (0) ≤ 0.5. Suppose that AT (0) = α0 < 0.5. Since
there exists x ∈ X such that AT (x) = αx ≥ 0.5, it follows that α0 < αx. Choose α1 ∈
[0, 1] such that α1 > α0 and α0 +α1 < 1 < αx+α1. Then AT (x)+α1 = αx+α1 > 1,
and so x ∈ Tq(A;α1). Now we have AT (x∗x) +α1∧α1 = AT (0) +α1 = α0 +α1 < 1
and AT (x ∗ x) = AT (0) = α0 < α1 = α1 ∧ α1. Thus x ∗ x /∈ T∈∨ q(A;α1 ∧ α1), a
contradiction. Hence AT (0) ≥ 0.5. Similarly, we have AI(0) ≥ 0.5. Assume that
AF (0) = γ0 > 0.5. Note that AF (z) = γz ≤ 0.5 for some z ∈ X. Hence γz < γ0, and
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so we can take γ1 ∈ [0, 1] such that γ1 < γ0 and γ0 +γ1 > 1 > γz +γ1. It follows that
AF (z)+γ1 = γz+γ1 < 1, that is, z ∈ Fq(A; γ1). Also AF (z∗z) = AF (0) = γ0 > γ1 =
γ1∨γ1, i.e., z∗z /∈ F∈(A; γ1∨γ1), and AF (z∗z)+γ1∨γ1 = AF (0)+γ1 = γ0 +γ1 > 1,
i.e., z ∗ z /∈ Fq(A; γ1 ∨ γ1). Thus z ∗ z /∈ F∈∨ q(A; γ1 ∨ γ1), a contradiction. Hence
AF (0) ≤ 0.5. We finally show that AT (x) ≥ 0.5, AI(y) ≥ 0.5 and AF (z) ≤ 0.5
for all x, y, z ∈ X1

0 . We first assume that AI(y) = βy < 0.5 for some y ∈ X1
0 ,

and take β > 0 such that βy + β < 0.5. Then AI(y) + 1 = βy + 1 > 1 and
AI(0) + β + 0.5 > 1, which imply that y ∈ Iq(A; 1) and 0 ∈ Iq(A;β + 0.5). But
y ∗ 0 /∈ I∈∨ q(A;β + 0.5) since AI(y ∗ 0) = AI(y) < β + 0.5 < 1 ∧ (β + 0.5) and
AI(y ∗0)+1∧(β+0.5) = AI(y)+β+0.5 = βy +β+0.5 < 1. This is a contradiction.
Hence AI(y) ≥ 0.5 for all y ∈ X1

0 . Similarly, we induces AT (x) ≥ 0.5 for all
x ∈ X1

0 . Suppose AF (z) = γz > 0.5 for some z ∈ X1
0 , and take γ ∈ (0, 0.5) such

that γz > 0.5 + γ. Then z ∈ Fq(A; 0) and AF (0) + 0.5 − γ ≤ 1 − γ < 1, i.e.,
0 ∈ Fq(A; 0.5−γ). But AF (z ∗0) = AF (z) > 0.5 > 0.5−γ and AF (z ∗0) + 0.5−γ =
AF (z) + 0.5− γ = γz + 0.5− γ > 1, which imply that z ∗ 0 /∈ F∈∨ q(A; 0.5− γ). This
is a contradiction, and the proof is complete. �
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1. Introduction

The concept of neutrosophic set (NS) developed by Smarandache [17, 18, 19]
is a more general platform which extends the concepts of the classic set and fuzzy
set (see [20], [21]), intuitionistic fuzzy set (see [1]) and interval valued intuitionistic
fuzzy set (see [2]). Neutrosophic set theory is applied to various part (see [4], [5],
[8], [9], [10], [11], [12], [13], [15], [16]). For further particulars, we refer readers to
the site http://fs.gallup.unm.edu/neutrosophy.htm. Barbhuiya [3] introduced and
studied the concept of (∈, ∈ ∨q)-intuitionistic fuzzy ideals of BCK/BCI-algebras.
Jun [7] introduced the notion of neutrosophic subalgebras in BCK/BCI-algebras
with several types. He provided characterizations of an (∈,∈)-neutrosophic sub-
algebra and an (∈,∈ ∨ q)-neutrosophic subalgebra. Given special sets, so called
neutrosophic ∈-subsets, neutrosophic q-subsets and neutrosophic ∈ ∨ q-subsets, he
considered conditions for the neutrosophic ∈-subsets, neutrosophic q-subsets and
neutrosophic ∈∨ q-subsets to be subalgebras. He discussed conditions for a neutro-
sophic set to be a (q, ∈∨ q)-neutrosophic subalgebra.
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In this paper, we give relations between an (∈, ∈∨ q)-neutrosophic subalgebra and
a (q, ∈∨ q)-neutrosophic subalgebra. We discuss characterization of an (∈, ∈∨ q)-
neutrosophic subalgebra by using neutrosophic ∈-subsets. We provide conditions
for an (∈, ∈∨ q)-neutrosophic subalgebra to be a (q, ∈∨ q)-neutrosophic subalgebra.
We investigate properties on neutrosophic q-subsets and neutrosophic ∈∨ q-subsets.

2. Preliminaries

By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2, 0) satisfying the axioms:

(a1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(a2) (x ∗ (x ∗ y)) ∗ y = 0,
(a3) x ∗ x = 0,
(a4) x ∗ y = y ∗ x = 0 ⇒ x = y,

for all x, y, z ∈ X. If a BCI-algebra X satisfies the axiom

(a5) 0 ∗ x = 0 for all x ∈ X,

then we say that X is a BCK-algebra. A nonempty subset S of a BCK/BCI-algebra
X is called a subalgebra of X if x ∗ y ∈ S for all x, y ∈ S.

We refer the reader to the books [6] and [14] for further information regarding
BCK/BCI-algebras.

For any family {ai | i ∈ Λ} of real numbers, we define

∨
{ai | i ∈ Λ} :=

{
max{ai | i ∈ Λ} if Λ is finite,
sup{ai | i ∈ Λ} otherwise.

∧
{ai | i ∈ Λ} :=

{
min{ai | i ∈ Λ} if Λ is finite,
inf{ai | i ∈ Λ} otherwise.

If Λ = {1, 2}, we will also use a1 ∨ a2 and a1 ∧ a2 instead of
∨
{ai | i ∈ Λ} and∧

{ai | i ∈ Λ}, respectively.
Let X be a non-empty set. A neutrosophic set (NS) in X (see [18]) is a structure

of the form:

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

where AT : X → [0, 1] is a truth membership function, AI : X → [0, 1] is an
indeterminate membership function, and AF : X → [0, 1] is a false membership
function. For the sake of simplicity, we shall use the symbol A = (AT , AI , AF ) for
the neutrosophic set

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}.
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3. Neutrosophic subalgebras of several types

Given a neutrosophic set A = (AT , AI , AF ) in a set X, α, β ∈ (0, 1] and γ ∈ [0, 1),
we consider the following sets:

T∈(A;α) := {x ∈ X | AT (x) ≥ α},
I∈(A;β) := {x ∈ X | AI(x) ≥ β},
F∈(A; γ) := {x ∈ X | AF (x) ≤ γ},
Tq(A;α) := {x ∈ X | AT (x) + α > 1},
Iq(A;β) := {x ∈ X | AI(x) + β > 1},
Fq(A; γ) := {x ∈ X | AF (x) + γ < 1},
T∈∨ q(A;α) := {x ∈ X | AT (x) ≥ α or AT (x) + α > 1},
I∈∨ q(A;β) := {x ∈ X | AI(x) ≥ β or AI(x) + β > 1},
F∈∨ q(A; γ) := {x ∈ X | AF (x) ≤ γ or AF (x) + γ < 1}.

We say T∈(A;α), I∈(A;β) and F∈(A; γ) are neutrosophic ∈-subsets; Tq(A;α), Iq(A;β)
and Fq(A; γ) are neutrosophic q-subsets; and T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ)
are neutrosophic ∈∨ q-subsets. For Φ ∈ {∈, q,∈∨ q}, the element of TΦ(A;α) (resp.,
IΦ(A;β) and FΦ(A; γ)) is called a neutrosophic TΦ-point (resp., neutrosophic IΦ-
point and neutrosophic FΦ-point) with value α (resp., β and γ) (see [7]).

It is clear that

T∈∨ q(A;α) = T∈(A;α) ∪ Tq(A;α),(3.1)

I∈∨ q(A;β) = I∈(A;β) ∪ Iq(A;β),(3.2)

F∈∨ q(A; γ) = F∈(A; γ) ∪ Fq(A; γ).(3.3)

Definition 3.1 ([7]). Given Φ,Ψ ∈ {∈, q,∈∨ q}, a neutrosophic setA = (AT , AI , AF )
in a BCK/BCI-algebra X is called a (Φ, Ψ)-neutrosophic subalgebra of X if the fol-
lowing assertions are valid.

x ∈ TΦ(A;αx), y ∈ TΦ(A;αy) ⇒ x ∗ y ∈ TΨ(A;αx ∧ αy),

x ∈ IΦ(A;βx), y ∈ IΦ(A;βy) ⇒ x ∗ y ∈ IΨ(A;βx ∧ βy),

x ∈ FΦ(A; γx), y ∈ FΦ(A; γy) ⇒ x ∗ y ∈ FΨ(A; γx ∨ γy)

(3.4)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

Lemma 3.2 ([7]). A neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X is an (∈, ∈∨ q)-neutrosophic subalgebra of X if and only if it satisfies:

(∀x, y ∈ X)

 AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5}

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 0.5}

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5}

 .(3.5)

Theorem 3.3. A neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra X is
an (∈, ∈∨ q)-neutrosophic subalgebra of X if and only if the neutrosophic ∈-subsets
T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras of X for all α, β ∈ (0, 0.5] and
γ ∈ [0.5, 1).
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Proof. Assume that A = (AT , AI , AF ) is an (∈, ∈ ∨ q)-neutrosophic subalgebra of
X. For any x, y ∈ X, let α ∈ (0, 0.5] be such that x, y ∈ T∈(A;α). Then AT (x) ≥ α
and AT (y) ≥ α. It follows from (3.5) that

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5} ≥ α ∧ 0.5 = α

and so that x ∗ y ∈ T∈(A;α). Thus T∈(A;α) is a subalgebra of X for all α ∈ (0, 0.5].
Similarly, I∈(A;β) is a subalgebra of X for all β ∈ (0, 0.5]. Now, let γ ∈ [0.5, 1) be
such that x, y ∈ F∈(A; γ). Then AF (x) ≤ γ and AF (y) ≤ γ. Hence

AF (x ∗ y) ≤
∨
{AFx), AF (y), 0.5} ≤ γ ∨ 0.5 = γ

by (3.5), and so x ∗ y ∈ F∈(A; γ). Thus F∈(A; γ) is a subalgebra of X for all
γ ∈ [0.5, 1).

Conversely, let α, β ∈ (0, 0.5] and γ ∈ [0.5, 1) be such that T∈(A;α), I∈(A;β) and
F∈(A; γ) are subalgebras of X. If there exist a, b ∈ X such that

AI(a ∗ b) <
∧
{AI(a), AI(b), 0.5},

then we can take β ∈ (0, 1) such that

AI(a ∗ b) < β <
∧
{AI(a), AI(b), 0.5}.(3.6)

Thus a, b ∈ I∈(A;β) and β < 0.5, and so a ∗ b ∈ I∈(A;β). But, the left inequality in
(3.6) induces a ∗ b /∈ I∈(A;β), a contradiction. Hence

AI(x ∗ y) ≥
∧
{AI(x), AI(y), 0.5}

for all x, y ∈ X. Similarly, we can show that

AT (x ∗ y) ≥
∧
{AT (x), AT (y), 0.5}

for all x, y ∈ X. Now suppose that

AF (a ∗ b) >
∨
{AF (a), AF (b), 0.5}

for some a, b ∈ X. Then there exists γ ∈ (0, 1) such that

AF (a ∗ b) > γ >
∨
{AF (a), AF (b), 0.5}.

It follows that γ ∈ (0.5, 1) and a, b ∈ F∈(A; γ). Since F∈(A; γ) is a subalgebra of X,
we have a ∗ b ∈ F∈(A; γ) and so AF (a ∗ b) ≤ γ. This is a contradiction, and thus

AF (x ∗ y) ≤
∨
{AF (x), AF (y), 0.5}

for all x, y ∈ X. Using Lemma 3.2, A = (AT , AI , AF ) is an (∈, ∈∨ q)-neutrosophic
subalgebra of X. �

Using Theorem 3.3 and [7, Theorem 3.8], we have the following corollary.

Corollary 3.4. For a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X, if the nonempty neutrosophic ∈∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and F∈∨ q(A; γ)
are subalgebras of X for all α, β ∈ (0, 1] and γ ∈ [0, 1), then the neutrosophic ∈-
subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are subalgebras of X for all α, β ∈ (0, 0.5]
and γ ∈ [0.5, 1).
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Theorem 3.5. Given neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X, the nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and F∈(A; γ) are sub-
algebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5) if and only if the following
assertion is valid.

(∀x, y ∈ X)

 AT (x ∗ y) ∨ 0.5 ≥ AT (x) ∧AT (y)

AI(x ∗ y) ∨ 0.5 ≥ AI(x) ∧AI(y)

AF (x ∗ y) ∧ 0.5 ≤ AF (x) ∨AF (y)

 .(3.7)

Proof. Assume that the nonempty neutrosophic ∈-subsets T∈(A;α), I∈(A;β) and
F∈(A; γ) are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5). Suppose
that there are a, b ∈ X such that AT (a ∗ b) ∨ 0.5 < AT (a) ∧ AT (b) := α. Then
α ∈ (0.5, 1] and a, b ∈ T∈(A;α). Since T∈(A;α) is a subalgebra of X, it follows that
a ∗ b ∈ T∈(A;α), that is, AT (a ∗ b) ≥ α which is a contradiction. Thus

AT (x ∗ y) ∨ 0.5 ≥ AT (x) ∧AT (y)

for all x, y ∈ X. Similarly, we know that AI(x ∗ y) ∨ 0.5 ≥ AI(x) ∧ AI(y) for
all x, y ∈ X. Now, if AF (x ∗ y) ∧ 0.5 > AF (x) ∨ AF (y) for some x, y ∈ X, then
x, y ∈ F∈(A; γ) and γ ∈ [0, 0.5) where γ = AF (x) ∨ AF (y). But, x ∗ y /∈ F∈(A; γ)
which is a contradiction. Hence AF (x ∗ y) ∧ 0.5 ≤ AF (x) ∨AF (y) for all x, y ∈ X.

Conversely, let A = (AT , AI , AF ) be a neutrosophic set in X satisfying the con-
dition (3.7). Let x, y, a, b ∈ X and α, β ∈ (0.5, 1] be such that x, y ∈ T∈(A;α) and
a, b ∈ I∈(A;β). Then

AT (x ∗ y) ∨ 0.5 ≥ AT (x) ∧AT (y) ≥ α > 0.5,

AI(a ∗ b) ∨ 0.5 ≥ AI(a) ∧AI(b) ≥ β > 0.5.

It follows that AT (x ∗ y) ≥ α and AI(a ∗ b) ≥ β, that is, x ∗ y ∈ T∈(A;α) and
a ∗ b ∈ I∈(A;β). Now, let x, y ∈ X and γ ∈ [0, 0.5) be such that x, y ∈ F∈(A; γ).
Then AF (x ∗ y) ∧ 0.5 ≤ AF (x) ∨ AF (y) ≤ γ < 0.5 and so AF (x ∗ y) ≤ γ, i.e.,
x ∗ y ∈ F∈(A; γ). This completes the proof. �

We consider relations between a (q, ∈ ∨ q)-neutrosophic subalgebra and an (∈,
∈∨ q)-neutrosophic subalgebra.

Theorem 3.6. In a BCK/BCI-algebra, every (q, ∈∨ q)-neutrosophic subalgebra is
an (∈, ∈∨ q)-neutrosophic subalgebra.

Proof. LetA = (AT , AI , AF ) be a (q, ∈∨ q)-neutrosophic subalgebra of aBCK/BCI-
algebra X and let x, y ∈ X. Let αx, αy ∈ (0, 1] be such that x ∈ T∈(A;αx) and
y ∈ T∈(A;αy). Then AT (x) ≥ αx and AT (y) ≥ αy. Suppose x∗y /∈ T∈∨ q(A;αx∧αy).
Then

AT (x ∗ y) < αx ∧ αy,(3.8)

AT (x ∗ y) + (αx ∧ αy) ≤ 1.(3.9)

It follows that

AT (x ∗ y) < 0.5.(3.10)
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Combining (3.8) and (3.10), we have

AT (x ∗ y) <
∧
{αx, αy, 0.5}

and so

1−AT (x ∗ y) > 1−
∧
{αx, αy, 0.5}

=
∨
{1− αx, 1− αy, 0.5}

≥
∨
{1−AT (x), 1−AT (y), 0.5}.

Hence there exists α ∈ (0, 1] such that

1−AT (x ∗ y) ≥ α >
∨
{1−AT (x), 1−AT (y), 0.5}.(3.11)

The right inequality in (3.11) induces AT (x) + α > 1 and AT (y) + α > 1, that is,
x, y ∈ Tq(A;α). Since A = (AT , AI , AF ) is a (q, ∈ ∨ q)-neutrosophic subalgebra
of X, we have x ∗ y ∈ T∈∨ q(A;α). But, the left inequality in (3.11) implies that
AT (x ∗ y) +α ≤ 1, i.e., x ∗ y /∈ Tq(A;α), and AT (x ∗ y) ≤ 1−α < 1− 0.5 = 0.5 < α,
i.e., x ∗ y /∈ T∈(A;α). Hence x ∗ y /∈ T∈∨ q(A;α), a contradiction. Thus x ∗ y ∈
T∈∨ q(A;αx ∧ αy). Similarly, we can show that if x ∈ I∈(A;βx) and y ∈ I∈(A;βy)
for βx, βy ∈ (0, 1], then x ∗ y ∈ I∈∨ q(A;βx ∧ βy). Now, let γx, γy ∈ [0, 1) be such
that x ∈ F∈(A; γx) and y ∈ F∈(A; γy). AF (x) ≤ γx and AF (y) ≤ γy. If x ∗ y /∈
F∈∨ q(A; γx ∨ γy), then

AF (x ∗ y) > γx ∨ γy,(3.12)

AF (x ∗ y) + (γx ∨ γy) ≥ 1.(3.13)

It follows that

AF (x ∗ y) >
∨
{γx, γy, 0.5}

and so that

1−AF (x ∗ y) < 1−
∨
{γx, γy, 0.5}

=
∧
{1− γx, 1− γy, 0.5}

≤
∧
{1−AF (x), 1−AF (y), 0.5}.

Thus there exists γ ∈ [0, 1) such that

1−AF (x ∗ y) ≤ γ <
∧
{1−AF (x), 1−AF (y), 0.5}.(3.14)

It follows from the right inequality in (3.14) that AF (x) + γ < 1 and AF (y) + γ < 1,
that is, x, y ∈ Fq(A; γ), which implies that x ∗ y ∈ F∈∨ q(A; γ). But, we have
x ∗ y /∈ F∈∨ q(A; γ) by the left inequality in (3.14). This is a contradiction, and so
x ∗ y ∈ F∈∨ q(A; γx ∨ γy). Therefore A = (AT , AI , AF ) is an (∈, ∈∨ q)-neutrosophic
subalgebra of X. �

The following example shows that the converse of Theorem 3.6 is not true.
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Table 1. Cayley table of the operation ∗

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 1
2 2 1 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

X AT (x) AI(x) AF (x)
0 0.6 0.8 0.3
1 0.2 0.3 0.6
2 0.2 0.3 0.6
3 0.7 0.1 0.7
4 0.4 0.4 0.9

Example 3.7. Consider a BCK-algebra X = {0, 1, 2, 3, 4} with the following Cay-
ley table.
Let A = (AT , AI , AF ) be a neutrosophic set in X defined by
Then

T∈(A;α) =

 {0, 3} if α ∈ (0.4, 0.5],
{0, 3, 4} if α ∈ (0.2, 0.4],
X if α ∈ (0, 0.2],

I∈(A;β) =


{0} if β ∈ (0.4, 0.5],
{0, 4} if β ∈ (0.3, 0.4],
{0, 1, 2, 4} if β ∈ (0.1, 0.3],
X if β ∈ (0, 0.1],

F∈(A; γ) =


X if γ ∈ (0.9, 1),
{0, 1, 2, 3} if γ ∈ [0.7, 0.9),
{0, 1, 2} if γ ∈ [0.6, 0.7),
{0} if γ ∈ [0.5, 0.6),

which are subalgebras of X for all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1). Using Theorem
3.3, A = (AT , AI , AF ) is an (∈, ∈∨ q)-neutrosophic subalgebra of X. But it is not
a (q, ∈∨ q)-neutrosophic subalgebra of X since 2 ∈ Tq(A; 0.83) and 3 ∈ Tq(A; 0.4),
but 2 ∗ 3 = 2 /∈ T∈∨ q(A; 0.4).

We provide conditions for an (∈, ∈∨ q)-neutrosophic subalgebra to be a (q, ∈∨ q)-
neutrosophic subalgebra.

Theorem 3.8. Assume that any neutrosophic TΦ-point and neutrosophic IΦ-point
has the value α and β in (0, 0.5], respectively, and any neutrosophic FΦ-point has
the value γ in [0.5, 1) for Φ ∈ {∈, q,∈ ∨ q}. Then every (∈, ∈ ∨ q)-neutrosophic
subalgebra is a (q, ∈∨ q)-neutrosophic subalgebra.

Proof. Let X be a BCK/BCI-algebra and let A = (AT , AI , AF ) be an (∈, ∈∨ q)-
neutrosophic subalgebra of X. For x, y, a, b ∈ X, let αx, αy, βa, βb ∈ (0, 0.5] be
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such that x ∈ Tq(A;αx), y ∈ Tq(A;αy), a ∈ Iq(A;βa) and b ∈ Tq(A;βb). Then
AT (x) + αx > 1, AT (y) + αy > 1, AI(a) + βa > 1 and AI(b) + βb > 1. Since
αx, αy, βa, βb ∈ (0, 0.5], it follows that AT (x) > 1− αx ≥ αx, AT (y) > 1− αy ≥ αy,
AI(a) > 1−βa ≥ βa and AI(b) > 1−βb ≥ βb, that is, x ∈ T∈(A;αx), y ∈ T∈(A;αy),
a ∈ I∈(A;βa) and b ∈ I∈(A;βb). Also, let x ∈ Fq(A; γx) and y ∈ Fq(A; γy) for
x, y ∈ X and γx, γy ∈ [0.5, 1). Then AF (x) + γx < 1 and AF (y) + γy < 1, and so
AF (x) < 1−γx ≤ γx and AF (y) < 1−γy ≤ γy since γx, γy ∈ [0.5, 1). This shows that
x ∈ F∈(A; γx) and y ∈ F∈(A; γy). It follows from (3.4) that x∗y ∈ T∈∨ q(A;αx∧αy),
a∗b ∈ I∈∨ q(A;βa∧βb), and x∗y ∈ F∈∨ q(A; γx∨γy). Consequently, A = (AT , AI , AF )
is a (q, ∈∨ q)-neutrosophic subalgebra of X. �

Theorem 3.9. Both (∈, ∈)-neutrosophic subalgebra and (∈∨ q, ∈∨ q)-neutrosophic
subalgebra are an (∈, ∈∨ q)-neutrosophic subalgebra.

Proof. It is clear that (∈, ∈)-neutrosophic subalgebra is an (∈, ∈∨ q)-neutrosophic
subalgebra. Let A = (AT , AI , AF ) be an (∈∨ q, ∈∨ q)-neutrosophic subalgebra of
X. For any x, y, a, b ∈ X, let αx, αy, βa, βb ∈ (0, 1] be such that x ∈ T∈(A;αx),
y ∈ T∈(A;αy), a ∈ I∈(A;βa) and b ∈ I∈(A;βb). Then x ∈ T∈∨ q(A;αx), y ∈
T∈∨ q(A;αy), a ∈ I∈∨ q(A;βa) and b ∈ I∈∨ q(A;βb) by (3.1) and (3.2). It follows
that x ∗ y ∈ T∈∨ q(A;αx ∧ αy) and a ∗ b ∈ I∈∨ q(A;βa ∧ βb). Now, let x, y ∈ X and
γx, γy ∈ [0, 1) be such that x ∈ F∈(A; γx) and y ∈ F∈(A; γy). Then x ∈ F∈∨ q(A; γx)
and y ∈ F∈∨ q(A; γy) by (3.3). Hence x ∗ y ∈ F∈∨ q(A; γx ∨ γy). Therefore A =
(AT , AI , AF ) is an (∈, ∈∨ q)-neutrosophic subalgebra of X. �

The converse of Theorem 3.9 is not true in general. In fact, the (∈, ∈ ∨ q)-
neutrosophic subalgebra A = (AT , AI , AF ) in Example 3.7 is neither an (∈, ∈)-
neutrosophic subalgebra nor an (∈∨ q, ∈∨ q)-neutrosophic subalgebra.

Theorem 3.10. For a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X, if the nonempty neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ) are sub-
algebras of X for all α, β ∈ (0.5, 1] and γ ∈ (0, 0.5), then

x ∈ T∈(A;αx), y ∈ T∈(A;αy) ⇒ x ∗ y ∈ Tq(A;αx ∨ αy),

x ∈ I∈(A;βx), y ∈ I∈(A;βy) ⇒ x ∗ y ∈ Iq(A;βx ∨ βy),

x ∈ F∈(A; γx), y ∈ F∈(A; γy) ⇒ x ∗ y ∈ Fq(A; γx ∧ γy)

(3.15)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0.5, 1] and γx, γy ∈ (0, 0.5).

Proof. Let x, y, a, b, u, v ∈ X and αx, αy, βa, βb ∈ (0.5, 1] and γu, γv ∈ (0, 0.5) be
such that x ∈ T∈(A;αx), y ∈ T∈(A;αy), a ∈ I∈(A;βa), b ∈ I∈(A;βb), u ∈ F∈(A; γu)
and v ∈ F∈(A; γv). Then AT (x) ≥ αx > 1 − αx, AT (y) ≥ αy > 1 − αy, AI(a) ≥
βa > 1− βa, AI(b) ≥ βb > 1− βb, AF (u) ≤ γu < 1− γu and AF (v) ≤ γv < 1− γv.
It follows that x, y ∈ Tq(A;αx ∨ αy), a, b ∈ Iq(A;βa ∨ βb) and u, v ∈ Fq(A; γu ∧ γv).
Since αx∨αy, βa∨βb ∈ (0.5, 1] and γu∧γv ∈ (0, 0.5), we have x∗y ∈ Tq(A;αx∨αy),
a ∗ b ∈ Iq(A;βa ∨ βb) and u ∗ v ∈ Fq(A; γu ∧ γv) by hypothesis. This completes the
proof. �

The following corollary is by Theorem 3.10 and [7, Theorem 3.7].

Corollary 3.11. Every (∈, ∈∨ q)-neutrosophic subalgebra A = (AT , AI , AF ) in a
BCK/BCI-algebra X satisfies the condition (3.15).
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Corollary 3.12. Every (q, ∈ ∨ q)-neutrosophic subalgebra A = (AT , AI , AF ) in a
BCK/BCI-algebra X satisfies the condition (3.15).

Proof. It is by Theorem 3.6 and Corollary 3.11. �

Theorem 3.13. For a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-algebra
X, if the nonempty neutrosophic q-subsets Tq(A;α), Iq(A;β) and Fq(A; γ) are sub-
algebras of X for all α, β ∈ (0, 0.5] and γ ∈ (0.5, 1), then

x ∈ Tq(A;αx), y ∈ Tq(A;αy) ⇒ x ∗ y ∈ T∈(A;αx ∨ αy),

x ∈ Iq(A;βx), y ∈ Iq(A;βy) ⇒ x ∗ y ∈ I∈(A;βx ∨ βy),

x ∈ Fq(A; γx), y ∈ Fq(A; γy) ⇒ x ∗ y ∈ F∈(A; γx ∧ γy)

(3.16)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0, 0.5] and γx, γy ∈ (0.5, 1).

Proof. Let x, y, a, b, u, v ∈ X and αx, αy, βa, βb ∈ (0, 0.5] and γu, γv ∈ (0.5, 1)
be such that x ∈ Tq(A;αx), y ∈ Tq(A;αy), a ∈ Iq(A;βa), b ∈ Iq(A;βb), u ∈
Fq(A; γu) and v ∈ Fq(A; γv). Then x, y ∈ Tq(A;αx ∨ αy), a, b ∈ Iq(A;βa ∨ βb) and
u, v ∈ Fq(A; γu ∧ γv). Since αx ∨ αy, βa ∨ βb ∈ (0, 0.5] and γu ∧ γv ∈ (0.5, 1), it
follows from the hypothesis that x ∗ y ∈ Tq(A;αx ∨ αy), a ∗ b ∈ Iq(A;βa ∨ βb) and
u ∗ v ∈ Fq(A; γu ∧ γv). Hence

AT (x ∗ y) > 1− (αx ∨ αy) ≥ αx ∨ αy, that is, x ∗ y ∈ T∈(A;αx ∨ αy),

AI(a ∗ b) > 1− (βa ∨ βb) ≥ βa ∨ βb, that is, a ∗ b ∈ I∈(A;βa ∨ βb),
AF (u ∗ v) < 1− (γu ∧ γv) ≤ γu ∧ γv, that is, u ∗ v ∈ F∈(A; γu ∧ γv).

Consequently, the condition (3.16) is valid for all x, y ∈ X, αx, αy, βx, βy ∈ (0, 0.5]
and γx, γy ∈ (0.5, 1). �

Theorem 3.14. Given a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-
algebra X, if the nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and
F∈∨ q(A; γ) are subalgebras of X for all α, β ∈ (0, 0.5] and γ ∈ [0.5, 1), then the
following assertions are valid.

x ∈ Tq(A;αx), y ∈ Tq(A;αy) ⇒ x ∗ y ∈ T∈∨ q(A;αx ∨ αy),

x ∈ Iq(A;βx), y ∈ Iq(A;βy) ⇒ x ∗ y ∈ I∈∨ q(A;βx ∨ βy),

x ∈ Fq(A; γx), y ∈ Fq(A; γy) ⇒ x ∗ y ∈ F∈∨ q(A; γx ∧ γy)

(3.17)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0, 0.5] and γx, γy ∈ [0.5, 1).

Proof. Let x, y, a, b, u, v ∈ X and αx, αy, βa, βb ∈ (0, 0.5] and γu, γv ∈ [0.5, 1) be
such that x ∈ Tq(A;αx), y ∈ Tq(A;αy), a ∈ Iq(A;βa), b ∈ Iq(A;βb), u ∈ Fq(A; γu)
and v ∈ Fq(A; γv). Then x ∈ T∈∨ q(A;αx), y ∈ T∈∨ q(A;αy), a ∈ I∈∨ q(A;βa),
b ∈ I∈∨ q(A;βb), u ∈ F∈∨ q(A; γu) and v ∈ F∈∨ q(A; γv). It follows that x, y ∈
T∈∨ q(A;αx ∨ αy), a, b ∈ I∈∨ q(A;βa ∨ βb) and u, v ∈ F∈∨ q(A; γu ∧ γv) which imply
from the hypothesis that x ∗ y ∈ T∈∨ q(A;αx ∨ αy), a ∗ b ∈ I∈∨ q(A;βa ∨ βb) and
u ∗ v ∈ F∈∨ q(A; γu ∧ γv). This completes the proof. �

Corollary 3.15. Every (∈, ∈∨ q)-neutrosophic subalgebra A = (AT , AI , AF ) of a
BCK/BCI-algebra X satisfies the condition (3.17).

Proof. It is by Theorem 3.14 and [7, Theorem 3.9]. �
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Theorem 3.16. Given a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-
algebra X, if the nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and
F∈∨ q(A; γ) are subalgebras of X for all α, β ∈ (0.5, 1] and γ ∈ [0, 0.5), then the
following assertions are valid.

x ∈ Tq(A;αx), y ∈ Tq(A;αy) ⇒ x ∗ y ∈ T∈∨ q(A;αx ∨ αy),

x ∈ Iq(A;βx), y ∈ Iq(A;βy) ⇒ x ∗ y ∈ I∈∨ q(A;βx ∨ βy),

x ∈ Fq(A; γx), y ∈ Fq(A; γy) ⇒ x ∗ y ∈ F∈∨ q(A; γx ∧ γy)

(3.18)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0.5, 1] and γx, γy ∈ [0, 0.5).

Proof. It is similar to the proof Theorem 3.14. �

Corollary 3.17. Every (q, ∈ ∨ q)-neutrosophic subalgebra A = (AT , AI , AF ) of a
BCK/BCI-algebra X satisfies the condition (3.18).

Proof. It is by Theorem 3.16 and [7, Theorem 3.10]. �

Combining Theorems 3.14 and 3.16, we have the following corollary.

Corollary 3.18. Given a neutrosophic set A = (AT , AI , AF ) in a BCK/BCI-
algebra X, if the nonempty neutrosophic ∈ ∨ q-subsets T∈∨ q(A;α), I∈∨ q(A;β) and
F∈∨ q(A; γ) are subalgebras of X for all α, β ∈ (0, 1] and γ ∈ [0, 1), then the following
assertions are valid.

x ∈ Tq(A;αx), y ∈ Tq(A;αy) ⇒ x ∗ y ∈ T∈∨ q(A;αx ∨ αy),

x ∈ Iq(A;βx), y ∈ Iq(A;βy) ⇒ x ∗ y ∈ I∈∨ q(A;βx ∨ βy),

x ∈ Fq(A; γx), y ∈ Fq(A; γy) ⇒ x ∗ y ∈ F∈∨ q(A; γx ∧ γy)

for all x, y ∈ X, αx, αy, βx, βy ∈ (0, 1] and γx, γy ∈ [0, 1).

Conclusions

We have considered relations between an (∈, ∈∨ q)-neutrosophic subalgebra and
a (q, ∈∨ q)-neutrosophic subalgebra. We have discussed characterization of an (∈,
∈∨ q)-neutrosophic subalgebra by using neutrosophic ∈-subsets, and have provided
conditions for an (∈, ∈∨ q)-neutrosophic subalgebra to be a (q, ∈∨ q)-neutrosophic
subalgebra. We have investigated properties on neutrosophic q-subsets and neutro-
sophic ∈∨ q-subsets. Our future research will be focused on the study of generaliza-
tion of this paper.
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1. Introduction

In 1975, Zadeh [35] introduced the notion of interval-valued fuzzy sets as an
extension of fuzzy sets [34] in which the values of the membership degrees are inter-
vals of numbers instead of the numbers. Interval-valued fuzzy sets provide a more
adequate description of uncertainty than traditional fuzzy sets. It is therefore im-
portant to use interval-valued fuzzy sets in applications, such as fuzzy control. One
of the computationally most intensive part of fuzzy control is defuzzification [19].
Atanassov [12] proposed the extended form of fuzzy set theory by adding a new com-
ponent, called, intuitionistic fuzzy sets. Smarandache [26, 27] introduced the concept
of neutrosophic sets by combining the non-standard analysis. In neutrosophic set,
the membership value is associated with three components: truth-membership (t),
indeterminacy-membership (i) and falsity-membership (f), in which each member-
ship value is a real standard or non-standard subset of the non-standard unit interval
]0−, 1+[ and there is no restriction on their sum. Smarandache [28] and Wang et al.
[29] presented the notion of single-valued neutrosophic sets to apply neutrosophic
sets in real life problems more conveniently. In single-valued neutrosophic sets, three
components are independent and their values are taken from the standard unit in-
terval [0, 1]. Wang et al. [30] presented the concept of interval-valued neutrosophic
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sets, which is more precise and more flexible than the single-valued neutrosophic set.
An interval-valued neutrosophic set is a generalization of the concept of single-valued
neutrosophic set, in which three membership (t, i, f) functions are independent, and
their values belong to the unit interval [0, 1].

Kauffman [18] gave the definition of a fuzzy graph. Fuzzy graphs were narrated
by Rosenfeld [22]. After that, some remarks on fuzzy graphs were represented by
Bhattacharya [13]. He showed that all the concepts on crisp graph theory do not
have similarities in fuzzy graphs. Wu [32] discussed fuzzy digraphs. The concept of
fuzzy k-competition graphs and p-competition fuzzy graphs was first developed by
Samanta and Pal in [23], it was further studied in [11, 21, 25]. Samanta et al. [24]
introduced the generalization of fuzzy competition graphs, called m-step fuzzy com-
petition graphs. Samanta et al. [24] also introduced the concepts of fuzzy m-step
neighbourhood graphs, fuzzy economic competition graphs, and m-step economic
competition graphs. The concepts of bipolar fuzzy competition graphs and intu-
itionistic fuzzy competition graphs are discussed in [21, 25]. Hongmei and Lianhua
[16], gave definition of interval-valued fuzzy graphs. Akram et al. [1, 2, 3, 4] have
introduced several concepts on interval-valued fuzzy graphs and interval-valued neu-
trosophic graphs. Akram and Shahzadi [6] introduced the notion of neutrosophic
soft graphs with applications. Akram [7] introduced the notion of single-valued neu-
trosophic planar graphs. Akram and Shahzadi [8] studied properties of single-valued
neutrosophic graphs by level graphs. Recently, Akram and Nasir [5] have discussed
some concepts of interval-valued neutrosophic graphs. In this paper, we first in-
troduce the concept of interval-valued neutrosophic competition graphs. We then
discuss certain types, including k-competition interval-valued neutrosophic graphs,
p-competition interval-valued neutrosophic graphs and m-step interval-valued neu-
trosophic competition graphs. Moreover, we present the concept of m-step interval-
valued neutrosophic neighbourhood graphs.

We have used standard definitions and terminologies in this paper. For other
notations, terminologies and applications not mentioned in the paper, the readers
are referred to [6, 9, 10, 13, 14, 15, 17, 20, 26, 33, 36].

2. Interval-Valued Neutrosophic Competition Graphs

Definition 2.1 ([35]). The interval-valued fuzzy set A in X is defined by

A = {(s, [tlA(s), t
u
A(s)]) : s ∈ X},

where, tlA(s) and tuA(s) are fuzzy subsets of X such that tlA(s) ≤ tuA(s) for all x ∈ X .
An interval-valued fuzzy relation on X is an interval-valued fuzzy set B in X ×X .

Definition 2.2 ([30, 31]). The interval-valued neutrosophic set (IVN-set) A in X

is defined by

A = {(s, [tlA(s), t
u
A(s)], [i

l
A(s), i

u
A(s)], [f

l
A(s), f

u
A(s)]) : s ∈ X},

where, tlA(s), t
u
A(s), i

l
A(s), i

u
A(s), f

l
A(s), and fu

A(s) are neutrosophic subsets of X
such that tlA(s) ≤ tuA(s), i

l
A(s) ≤ iuA(s) and f l

A(s) ≤ fu
A(s) for all s ∈ X . An interval-

valued neutrosophic relation (IVN-relation) on X is an interval-valued neutrosophic
set B in X ×X .
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Definition 2.3 ([5]). An interval-valued neutrosophic digraph (IVN-digraph) on a

non-empty setX is a pairG = (A,
−→
B ), (in short, G), where A = ([tlA, t

u
A], [i

l
A, i

u
A],[f

l
A,

fu
A]) is an IVN-set on X and B = ([tlB , t

u
B], [i

l
B,i

u
B],[f

l
B,f

u
B]) is an IVN-relation on X ,

such that:
(i) tlB

−−−→
(s, w) ≤ tlA(s) ∧ tlA(w), tuB

−−−→
(s, w) ≤ tuA(s) ∧ tuA(w),

(ii) ilB
−−−→
(s, w) ≤ ilA(s) ∧ ilA(w), iuB

−−−→
(s, w) ≤ iuA(s) ∧ iuA(w),

(iii) f l
B

−−−→
(s, w) ≤ f l

A(s)∧ f l
A(w), fu

B

−−−→
(s, w) ≤ fu

A(s)∧ fu
A(w), for all s, w ∈ X .

Example 2.4. We construct an IVN-digraph G = (A,
−→
B ) on X = {a, b, c} as shown

in Fig. 1.

b

b

b

a
([
0.
2,
0.
4]
, [
0.
3,
0.
5]
, [
0.
6,
0.
7]
)

b([0.6, 0.8], [0.3, 0.8], [0.2, 0.9])

c([0.1, 0.2], [0.2, 0.4], [0.3, 0.7])

([0.
1, 0

.2],
[0.2

, 0.3
], [0

.1, 0
.6])

([0.1, 0.2], [0.1, 0.3], [0.2, 0.6])

([
0.
1,
0.
2]
, [
0.
2,
0.
3]
, [
0.
2,
0.
5]
)

-

Figure 1. IVN-digraph

Definition 2.5. Let
−→
G be an IVN-digraph then interval-valued neutrosophic out-

neighbourhoods (IVN-out-neighbourhoods) of a vertex s is an IVN-set

N
+(s) = (X+

s , [t
(l)+

s , t
(u)+

s ], [i
(l)+

s , i
(u)+

s ], [f
(l)+

s , t
(u)+

s ]),

where

X+
s = {w|[tlB

−−−→
(s, w) > 0, tuB

−−−→
(s, w) > 0], [ilB

−−−→
(s, w) > 0, iuB

−−−→
(s, w) > 0], [f l

B

−−−→
(s, w) > 0,

fu
B

−−−→
(s, w) > 0]},

such that t
(l)+

s : X+
s → [0, 1], defined by t

(l)+

s (w) = tlB
−−−→
(s, w), t

(u)+

s : X+
s → [0, 1],

defined by t
(u)+

s (w) = tuB
−−−→
(s, w), i

(l)+

s : X+
s → [0, 1], defined by i

(l)+

s (w) = ilB
−−−→
(s, w),

i
(u)+

s : X+
s → [0, 1], defined by i

(u)+

s (w) = iuB
−−−→
(s, w), f

(l)+

s : X+
s → [0, 1], defined by

f
(l)+

s (w) = f l
B

−−−→
(s, w), f

(u)+

s : X+
s → [0, 1], defined by f

(u)+

s (w) = fu
B

−−−→
(s, w).

Definition 2.6. Let
−→
G be an IVN-digraph then interval-valued neutrosophic in-

neighbourhoods (IVN-in-neighbourhoods) of a vertex s is an IVN-set

N
−(s) = (X−

s , [t
(l)−

s , t
(u)−

s ], [i
(l)−

s , i
(u)−

s ], [f
(l)−

s , t
(u)−

s ]),

where

X−

s = {w|[tlB
−−−→
(w, s) > 0, tuB

−−−→
(w, s) > 0], [ilB

−−−→
(w, s) > 0, iuB

−−−→
(w, s) > 0], [f l

B

−−−→
(w, s) > 0,

fu
B

−−−→
(w, s) > 0]},
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such that t
(l)−

s : X−

s → [0, 1], defined by t
(l)−

s (w) = tlB
−−−→
(w, s), t

(u)−

s : X−

s → [0, 1],

defined by t
(u)−

s (w) = tuB
−−−→
(w, s), i

(l)−

s : X−

s → [0, 1], defined by i
(l)−

s (w) = ilB
−−−→
(w, s),

i
(u)−

s : X−

s → [0, 1], defined by i
(u)−

s (w) = iuB
−−−→
(w, s), f

(l)−

s : X−

s → [0, 1], defined by

f
(l)−

s (w) = f l
B

−−−→
(w, s), f

(u)−

s : X−

s → [0, 1], defined by f
(u)−

s (w) = fu
B

−−−→
(w, s).

Example 2.7. Consider an IVN-digraph G = (A,
−→
B ) on X = {a, b, c} as shown in

Fig. 2.

b

b b

a([0.2, 0.4], [0.3, 0.5], [0.6, 0.7])

b([0
.6
,0
.8
],[0

.3
,0
.8
],[0

.2
,0
.9
])

c([0
.1
, 0
.2
], [0

.2
, 0
.4
], [0

.3
, 0
.7
])

([0.1, 0.2], [0.2, 0.3], [0.1, 0.6])

([
0.
1,
0.
2]
, [
0.
1,
0.
3]
, [
0.
2,
0.
6]
)

([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])

Figure 2. IVN-digraph

We have Table 1 and Table 2 representing interval-valued neutrosophic out and
in-neighbourhoods, respectively.

Table 1. IVN-out-neighbourhoods

s N
+(s)

a {(b, [0.1,0.2],[0.2,0.3],[0.1,0.6]), (c, [0.1,0.2],[0.1,0.3],[0.2,0.6])}
b ∅

c {(b, [0.1,0.2],[0.2,0.3],[0.2,0.5])}

Table 2. IVN-in-neighbourhoods

s N
−(s)

a ∅

b {(a, [0.1,0.2],[0.2,0.3],[0.1,0.6]), (c, [0.1,0.2],[0.2,0.3],[0.2,0.5])}
c {(a, [0.1,0.2],[0.1,0.3],[0.2,0.6])}

Definition 2.8. The height of IVN-set A = (s, [tlA, t
u
A], [i

l
A, i

u
A], [f

l
A, f

u
A]) in universe

of discourse X is defined as: for all s ∈ X ,

h(A) = ([hl
1(A), h

u
1 (A)], [h

l
2(A), h

u
2 (A)], [h

l
3(A), h

u
3 (A)]),

= ([sup
s∈X

tlA(s), sup
s∈X

tuA(s)], [sup
s∈X

ilA(s), sup
s∈X

iuA(s)], [ inf
s∈X

f l
A(s), inf

s∈X
fu
A(s)]).
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Definition 2.9. An interval-valued neutrosophic competition graph (IVNC-graph)

of an interval-valued neutrosophic graph (IVN-graph)
−→
G = (A,

−→
B ) is an undirected

IVN-graph C
−−→
(G) = (A,W ) which has the same vertex set as in

−→
G and there is an

edge between two vertices s and w if and only if N+(s) ∩ N
+(w) 6= ∅. The truth-

membership, indeterminacy-membership and falsity-membership values of the edge
(s, w) are defined as: for all s, w ∈ X ,

(i) tlW (s, w) = (tlA(s) ∧ tlA(w))h
l
1(N

+(s) ∩ N
+(w),

tuW (s, w) = (tuA(s) ∧ tuA(w))h
u
1 (N

+(s) ∩ N
+(w),

(ii) ilW (s, w) = (ilA(s) ∧ ilA(w))h
l
2(N

+(s) ∩ N
+(w),

iuW (s, w) = (iuA(s) ∧ iuA(w))h
u
2 (N

+(s) ∩ N
+(w),

(iii) f l
W (s, w) = (f l

A(s) ∧ f l
A(w))h

l
3(N

+(s) ∩ N
+(w),

fu
W (s, w) = (fu

A(s) ∧ fu
A(w))h

u
3 (N

+(s) ∩ N
+(w).

Example 2.10. Consider an IVN-digraph G = (A,
−→
B ) on X = {a, b, c} as shown

in Fig. 3.

b

b

b

a([0.2, 0.4], [0.3, 0.5], [0.6, 0.7])

b([0
.6
,0
.8
],[0

.3
,0
.8
],[0

.2
,0
.9
])

c([0.1, 0.2], [0.2, 0.4], [0.3, 0.7])

([0.1, 0.2], [0.2, 0.3], [0.1, 0.6])

([
0.
1,
0.
2]
, [
0.
1,
0.
3]
, [
0.
2,
0.
6]
)

([0.1, 0.
2], [0.2,

0.3], [0.2
, 0.5])

Figure 3. IVN-digraph

We have Table 3 and Table 4 representing interval-valued neutrosophic out and
in-neighbourhoods, respectively.

Table 3. IVN-out-neighbourhoods
s N

+(s)
a {(b, [0.1,0.2],[0.2,0.3],[0.1,0.6]), (c, [0.1,0.2],[0.1,0.3],[0.2,0.6])}
b ∅

c {(b, [0.1,0.2],[0.2,0.3],[0.2,0.5])}

Table 4. IVN-in-neighbourhoods
s N

−(s)
a ∅

b {(a, [0.1,0.2],[0.2,0.3],[0.1,0.6]), (c, [0.1,0.2],[0.2,0.3],[0.2,0.5])}
c {(a, [0.1,0.2],[0.1,0.3],[0.2,0.6])}
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Then IVNC-graph of Fig. 3 is shown in Fig. 4.

b b

b

a(
[0
.2
, 0
.4
],
[0
.3
, 0
.5
],
[0
.6
, 0
.7
])

b([0.6, 0.8], [0.3, 0.8], [0.2, 0.9])

c([0.1, 0.2], [0.2, 0.4], [0.3, 0.7])

([0.01, 0.04], [0.04, 0.12], [0.06, 0.42])

Figure 4. IVNC-graph

Definition 2.11. Consider an IVN-graph G = (A, B), where A = ([Al
1, A

u
1 ], [A

l
2,

Au
2 ], [A

l
3, A

u
3 )] and B = ([Bl

1, B
u
1 ], [B

l
2, B

u
2 ], [B

l
3, B

u
3 )]. then, an edge (s, w), s, w

∈ X is called independent strong, if

1

2
[Al

1(s) ∧ Al
1(w)] < Bl

1(s, w),
1

2
[Au

1 (s) ∧Au
1 (w)] < Bu

1 (s, w),

1

2
[Al

2(s) ∧ Al
2(w)] < Bl

2(s, w),
1

2
[Au

2 (s) ∧Au
2 (w)] < Bu

2 (s, w),

1

2
[Al

3(s) ∧ Al
3(w)] > Bl

3(s, w),
1

2
[Au

3 (s) ∧Au
3 (w)] > Bu

3 (s, w).

Otherwise, it is called weak.

We state the following theorems without their proofs.

Theorem 2.12. Suppose
−→
G is an IVN-digraph. If N+(s) ∩ N

+(w) contains only

one element of
−→
G , then the edge (s, w) of C(

−→
G ) is independent strong if and only if

|[N+(s) ∩ N
+(w)]|tl > 0.5, |[N+(s) ∩ N

+(w)]|tu > 0.5,

|[N+(s) ∩N
+(w)]|il > 0.5, |[N+(s) ∩ N

+(w)]|iu > 0.5,

|[N+(s) ∩ N
+(w)]|f l < 0.5, |[N+(s) ∩ N

+(w)]|fu < 0.5.

Theorem 2.13. If all the edges of an IVN-digraph
−→
G are independent strong, then

Bl
1(s, w)

(Al
1(s) ∧ Al

1(w))
2
> 0.5,

Bu
1 (s, w)

(Au
1 (s) ∧ Au

1 (w))
2
> 0.5,

Bl
2(s, w)

(Al
2(s) ∧ Al

2(w))
2
> 0.5,

Bu
2 (s, w)

(Au
2 (s) ∧ Au

2 (w))
2
> 0.5,

Bl
3(s, w)

(Al
3(s) ∧ Al

3(w))
2
< 0.5,

Bu
3 (s, w)

(Au
3 (s) ∧ Au

3 (w))
2
< 0.5,

for all edges (s, w) in C(
−→
G ).

Definition 2.14. The interval-valued neutrosophic open-neighbourhood (IVN-open-
neighbourhood) of a vertex s of an IVN-graph G = (A,B) is IVN-set N(s) = (Xs,
[tls, t

u
s ], [i

l
s, i

u
s ], [f

l
s, f

u
s ]), where
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Xs = {w|[Bl
1(s, w) > 0, Bu

1 (s, w) > 0], [Bl
2(s, w) > 0, Bu

2 (s, w) > 0], [Bl
3(s, w) > 0,

Bu
3 (s, w) > 0]},

and tls : Xs → [0, 1] defined by tls(w) = Bl
1(s, w), tus : Xs → [0, 1] defined by

tus (w) = Bu
1 (s, w), i

l
s : Xs → [0, 1] defined by ils(w) = Bl

2(s, w), i
u
s : Xs → [0, 1]

defined by ius (w) = Bu
2 (s, w), f

l
s : Xs → [0, 1] defined by f l

s(w) = Bl
3(s, w), f

u
s :

Xs → [0, 1] defined by fu
s (w) = Bu

3 (s, w). For every vertex s ∈ X , the interval-

valued neutrosophic singleton set, Ăs = (s, [Al′
1 , A

u′
1 ], [Al′

2 , A
u′
2 ], [Al′

3 , A
u′
3 ) such that:

Al′
1 : {s} → [0, 1], Au′

1 : {s} → [0, 1], Al′
2 : {s} → [0, 1], Au′

2 : {s} → [0, 1], Al′
3 : {s} →

[0, 1], Au′
3 : {s} → [0, 1], defined by Al′

1 (s) = Al
1(s), A

u′
1 (s) = Au

1 (s), A
l′
2 (s) = Al

2(s),
Au′

2 (s) = Au
2 (s), A

l′
3 (s) = Al

3(s) and Au′
3 (s) = Au

3 (s), respectively. The interval-
valued neutrosophic closed-neighbourhood (IVN-closed-neighbourhood) of a vertex
s is N[s] = N(s) ∪ As.

Definition 2.15. Suppose G = (A, B) is an IVN-graph. Interval-valued neu-
trosophic open-neighbourhood graph (IVN-open-neighbourhood-graph) of G is an
IVN-graph N(G) = (A, B′) which has the same IVN-set of vertices in G and has an
interval-valued neutrosophic edge between two vertices s, w ∈ X in N(G) if and only
if N(s)∩N(w) is a non-empty IVN-set in G. The truth-membership, indeterminacy-
membership, falsity-membership values of the edge (s, w) are given by:

Bl′
1 (s, w) = [Al

1(s) ∧ Al
1(w)]h

l
1(N(s) ∩ N(w)),

Bl′
2 (s, w) = [Al

2(s) ∧ Al
2(w)]h

l
2(N(s) ∩ N(w)),

Bl′
3 (s, w) = [Al

3(s) ∧ Al
3(w)]h

l
3(N(s) ∩ N(w)),

Bu′
1 (s, w) = [Au

1 (s) ∧ Au
1 (w)]h

u
1 (N(s) ∩N(w)),

Bu′
2 (s, w) = [Au

2 (s) ∧ Au
2 (w)]h

u
2 (N(s) ∩N(w)),

Bu′
3 (s, w) = [Au

3 (s) ∧ Au
3 (w)]h

u
3 (N(s) ∩N(w)), respectively.

Definition 2.16. Suppose G = (A, B) is an IVN-graph. Interval-valued neutro-
sophic closed-neighbourhood graph (IVN-closed-neighbourhood-graph) of G is an
IVN-graph N(G) = (A, B′) which has the same IVN-set of vertices in G and has an
interval-valued neutrosophic edge between two vertices s, w ∈ X in N[G] if and only
if N[s] ∩N[w] is a non-empty IVN-set in G. The truth-membership, indeterminacy-
membership, falsity-membership values of the edge (s, w) are given by:

Bl′
1 (s, w) = [Al

1(s) ∧ Al
1(w)]h

l
1(N[s] ∩ N[w]),

Bl′
2 (s, w) = [Al

2(s) ∧ Al
2(w)]h

l
2(N[s] ∩ N[w]),

Bl′
3 (s, w) = [Al

3(s) ∧ Al
3(w)]h

l
3(N[s] ∩ N[w]),

Bu′
1 (s, w) = [Au

1 (s) ∧ Au
1 (w)]h

u
1 (N[s] ∩N[w]),

Bu′
2 (s, w) = [Au

2 (s) ∧ Au
2 (w)]h

u
2 (N[s] ∩N[w]),

Bu′
3 (s, w) = [Au

3 (s) ∧ Au
3 (w)]h

u
3 (N[s] ∩N[w]), respectively.

We now discuss the method of construction of interval-valued neutrospohic com-
petition graph of the Cartesian product of IVN-digraph in following theorem which
can be proof using similar method as used in [21], hence we omit its proof.
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Theorem 2.17. Let C(
−→
G1) = (A1, B1) and C(

−→
G2) = (A2, B2) be two IVNC-graphs

of IVN-digraphs
−→
G1 = (A1,

−→
L1) and

−→
G2 = (A2,

−→
L2), respectively. Then C(

−→
G1✷

−→
G2) =

G
C(

−→
G1)∗✷C(

−→
G2)∗

∪ G✷, where G
C(

−→
G1)∗✷C(

−→
G2)∗

is an IVN-graph on the crisp graph

(X1 ×X2, EC(
−→
G1)∗

✷E
C(

−→
G2)∗

), C(
−→
G1)

∗ and C(
−→
G2)

∗ are the crisp competition graphs

of
−→
G1 and

−→
G2, respectively. G✷ is an IVN-graph on (X1 ×X2, E

✷) such that:

(1) E✷ = {(s1, s2)(w1, w2) : w1 ∈ N
−(s1)

∗, w2 ∈ N
+(s2)

∗}
E

C(
−→
G1)∗

✷E
C(

−→
G2)∗

= {(s1, s2)(s1, w2) : s1 ∈ X1, s2w2 ∈ E
C(

−→
G2)∗

}

∪{(s1, s2)(w1, s2) : s2 ∈ X2, s1w1 ∈ E
C(

−→
G1)∗

}.

(2) tlA1✷A2
= tlA1

(s1) ∧ tlA2
(s2), ilA1✷A2

= ilA1
(s1) ∧ ilA2

(s2), f l
A1✷A2

=

f l
A1

(s1) ∧ f l
A2

(s2),
tuA1✷A2

= tuA1
(s1) ∧ tuA2

(s2), iuA1✷A2
= iuA1

(s1) ∧ iuA2
(s2), fu

A1✷A2
=

fu
A1

(s1) ∧ fu
A2

(s2).

(3) tlB((s1, s2)(s1, w2)) = [tlA1
(s1)∧t

l
A2

(s2)∧t
l
A2

(w2)]×∨a2
{tlA1

(s1)∧t
l
−→
L2

(s2a2)∧

tl−→
L2

(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.

(4) ilB((s1, s2)(s1, w2)) = [ilA1
(s1)∧ilA2

(s2)∧ilA2
(w2)]×∨a2

{ilA1
(s1)∧il−→

L2

(s2a2)∧

il−→
L2

(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.

(5) f l
B((s1, s2)(s1, w2)) = [f l

A1
(s1)∧f

l
A2

(s2)∧f
l
A2

(w2)]×∨a2
{f l

A1
(s1)∧f

l
−→
L2

(s2a2)∧

f l
−→
L2

(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.

(6) tuB((s1, s2)(s1, w2)) = [tuA1
(s1)∧t

u
A2

(s2)∧t
u
A2

(w2)]×∨a2
{tuA1

(s1)∧t
u
−→
L2

(s2a2)∧

tu−→
L2

(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.

(7) iuB((s1, s2)(s1, w2)) = [iuA1
(s1)∧iuA2

(s2)∧iuA2
(w2)]×∨a2

{iuA1
(s1)∧iu−→

L2

(s2a2)∧

iu−→
L2

(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.

(8) fu
B((s1, s2)(s1, w2)) = [fu

A1
(s1)∧f

u
A2

(s2)∧f
u
A2

(w2)]×∨a2
{fu

A1
(s1)∧f

u
−→
L2

(s2a2)∧

fu
−→
L2

(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.

(9) tlB((s1, s2)(w1, s2)) = [tlA1
(s1)∧t

l
A1

(w1)∧t
l
A2

(s2)]×∨a1
{tlA2

(s2)∧t
l
−→
L1

(s1a1)∧

tl−→
L1

(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.

(10) ilB((s1, s2)(w1, s2)) = [ilA1
(s1)∧ilA1

(w1)∧ilA2
(s2)]×∨a1

{ilA2
(s2)∧il−→

L1

(s1a1)∧

il−→
L1

(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.
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(11) f l
B((s1, s2)(w1, s2)) = [f l

A1
(s1)∧f

l
A1

(w1)∧f
l
A2

(s2)]×∨a1
{tlA2

(s2)∧f
l
−→
L1

(s1a1)∧

f l
−→
L1

(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.

(12) tuB((s1, s2)(w1, s2)) = [tuA1
(s1)∧t

u
A1

(w1)∧t
u
A2

(s2)]×∨a1
{tuA2

(s2)∧t
u
−→
L1

(s1a1)∧

tu−→
L1

(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.

(13) iuB((s1, s2)(w1, s2)) = [iuA1
(s1)∧iuA1

(w1)∧iuA2
(s2)]×∨a1

{iuA2
(s2)∧iu−→

L1

(s1a1)∧

iu−→
L1

(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.

(14) fu
B((s1, s2)(w1, s2)) = [fu

A1
(s1)∧f

u
A1

(w1)∧f
u
A2

(s2)]×∨a1
{tuA2

(s2)∧f
u
−→
L1

(s1a1)∧

fu
−→
L1

(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

✷E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.

(15) tlB((s1, s2)(w1, w2)) = [tlA1
(s1) ∧ tlA1

(w1) ∧ tlA2
(s2) ∧ tlA2

(w2)] × [tlA1
(s1) ∧

tl−→
L1

(w1s1) ∧ tlA2
(w2) ∧ tl−→

L2

(s2w2)],

(s1, w1)(s2, w2) ∈ E✷.
(16) ilB((s1, s2)(w1, w2)) = [ilA1

(s1) ∧ ilA1
(w1) ∧ ilA2

(s2) ∧ ilA2
(w2)] × [ilA1

(s1) ∧

il−→
L1

(w1s1) ∧ ilA2
(w2) ∧ il−→

L2

(s2w2)],

(s1, w1)(s2, w2) ∈ E✷.
(17) f l

B((s1, s2)(w1, w2)) = [f l
A1

(s1) ∧ f l
A1

(w1) ∧ f l
A2

(s2) ∧ f l
A2

(w2)] × [f l
A1

(s1) ∧

f l
−→
L1

(w1s1) ∧ f l
A2

(w2) ∧ f l
−→
L2

(s2w2)],

(s1, w1)(s2, w2) ∈ E✷.
(18) tuB((s1, s2)(w1, w2)) = [tuA1

(s1) ∧ tuA1
(w1) ∧ tuA2

(s2) ∧ tuA2
(w2)] × [tuA1

(s1) ∧
tu−→
L1

(w1s1) ∧ tuA2
(w2) ∧ tu−→

L2

(s2w2)],

(s1, w1)(s2, w2) ∈ E✷.
(19) iuB((s1, s2)(w1, w2)) = [iuA1

(s1) ∧ iuA1
(w1) ∧ iuA2

(s2) ∧ iuA2
(w2)] × [iuA1

(s1) ∧
iu−→
L1

(w1s1) ∧ iuA2
(w2) ∧ iu−→

L2

(s2w2)],

(s1, w1)(s2, w2) ∈ E✷.
(20) fu

B((s1, s2)(w1, w2)) = [fu
A1

(s1) ∧ fu
A1

(w1) ∧ fu
A2

(s2) ∧ fu
A2

(w2)] × [fu
A1

(s1) ∧
fu
−→
L1

(w1s1) ∧ fu
A2

(w2) ∧ fu
−→
L2

(s2w2)],

(s1, w1)(s2, w2) ∈ E✷.

A. k-competition interval-valued neutrosophic graphs

We now discuss an extension of IVNC-graphs, called k-competition IVN-graphs.

Definition 2.18. The cardinality of an IVN-set A is denoted by

|A| =
([

|A|tl , |A|tu
]

,
[

|A|il , |A|iu
]

,
[

|A|f l , |A|fu

])

.

Where
[

|A|tl , |A|tu
]

,
[

|A|il , |A|iu
]

and
[

|A|f l , |A|fu

]

represent the sum of truth-
membership values, indeterminacy-membership values and falsity-membership val-
ues, respectively, of all the elements of A.

107



Muhammad Akram et al./Ann. Fuzzy Math. Inform. 14 (2017), No. 1, 99–120

Example 2.19. The cardinality of an IVN-set A = {(a, [0.5, 0.7], [0.2, 0.8], [0.1,
0.3]), (b, [0.1, 0.2], [0.1, 0.5], [0.7, 0.9]), (c, [0.3, 0.5], [0.3, 0.8], [0.6, 0.9])} in X = {a,
b, c} is

|A| =
([

|A|tl , |A|tu
]

,
[

|A|il , |A|iu
]

,
[

|A|f l , |A|fu

])

= ([0.9, 1.4], [0.6, 2.1], [1.4, 2.1]).

We now discuss k-competition IVN-graphs.

Definition 2.20. Let k be a non-negative number. Then k-competition IVN-graph

Ck(
−→
G ) of an IVN-digraph

−→
G = (A,

−→
B ) is an undirected IVN-graph G = (A, B)

which has same IVN-set of vertices as in
−→
G and has an interval-valued neutro-

sophic edge between two vertices s, w ∈ X in Ck(
−→
G ) if and only if |(N+(s) ∩

N
+(w))|tl > k, |(N+(s) ∩ N

+(w))|tu > k, |(N+(s) ∩ N
+(w))|il > k, |(N+(s) ∩

N
+(w))|iu > k, |(N+(s) ∩ N

+(w))|f l > k and |(N+(s) ∩ N
+(w))|fu > k. The

interval-valued truth-membership value of edge (s, w) in Ck(
−→
G) is tlB(s, w) =

kl

1
−k

kl

1

[tlA(s) ∧ tlA(w)]h
l
1(N

+(s) ∩ N
+(w)), where kl1 = |(N+(s) ∩ N

+(w))|tl and tuB(s,

w) =
ku

1
−k

ku

1

[tuA(s) ∧ tuA(w)]h
u
1 (N

+(s) ∩ N
+(w)), where ku1 = |(N+(s) ∩ N

+(w))|tu , the

interval-valued indeterminacy-membership value of edge (s, w) in Ck(
−→
G) is ilB(s,

w) =
kl

2
−k

kl

2

[ilA(s) ∧ ilA(w)]h
l
2(N

+(s) ∩ N
+(w)), where kl2 = |(N+(s) ∩ N

+(w))|il , and

iuB(s, w) =
ku

2
−k

ku

2

[iuA(s)∧ iuA(w)]h
u
2 (N

+(s)∩N
+(w)), where ku2 = |(N+(s)∩N

+(w))|iu ,

the interval-valued falsity-membership value of edge (s, w) in Ck(
−→
G) is f l

B(s, w) =
kl

3
−k

kl

3

[f l
A(s)∧ f l

A(w)]h
l
3(N

+(s)∩N
+(w)), where kl3 = |(N+(s)∩N

+(w))|f l , and fu
B(s,

w) =
ku

3
−k

ku

3

[fu
A(s) ∧ fu

A(w)]h
u
3 (N

+(s) ∩ N
+(w)), where ku3 = |(N+(s) ∩ N

+(w))|fu .

Example 2.21. Consider an IVN-digraph G = (A,
−→
B ) on X = {s, w, a, b, c}, such

that A = {(s, [0.4, 0.5], [0.5, 0.7], [0.8, 0.9]), (w, [0.6, 0.7], [0.4, 0.6], [0.2, 0.3]), (a,
[0.2, 0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1, 0.6], [0.2, 0.6]), (c, [0.2, 0.7], [0.3, 0.5],

[0.2, 0.6])}, and B = {(
−−−→
(s, a), [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), (

−−−→
(s, b), [0.2, 0.4], [0.1, 0.5],

[0.2, 0.6]), (
−−−→
(s, c), [0.2, 0.5], [0.3, 0.5], [0.2, 0.6]), (

−−−→
(w, a), [0.2, 0.5], [0.2, 0.5], [0.2, 0.3]),

(
−−−→
(w, b), [0.2, 0.6], [0.1, 0.6], [0.2, 0.3]), (

−−−→
(w, c), [0.2, 0.7], [0.3, 0.5], [0.2, 0.3])}, as shown

in Fig. 5.
We calculate N

+(s) = {(a, [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.4], [0.1, 0.5],
[0.2, 0.6]), (c, [0.2, 0.5], [0.3, 0.5], [0.2, 0.6])} and N

+(w) = {(a, [0.2, 0.5], [0.2, 0.5],
[0.2, 0.3]), (b, [0.2, 0.6], [0.1, 0.6], [0.2, 0.3]), (c, [0.2, 0.7], [0.3, 0.5], [0.2, 0.3])}. There-
fore, N

+(s) ∩ N
+(w) = {(a, [0.1, 0.4], [0.2, 0.5], [0.2, 0.3]), (b, [0.2, 0.4], [0.1, 0.5],

[0.2, 0.3]), (c, [0.2, 0.5], [0.3, 0.5], [0.2, 0.3)}. So, kl1 = 0.5, ku1 = 1.3, kl2 = 0.6,
ku2 = 1.5, kl3 = 0.6 and ku3 = 0.9. Let k = 0.4, then, tlB(s, w) = 0.02, tuB(s,
w) = 0.56, ilB(s, w) = 0.06, iuB(s, w) = 0.82, f l

B(s, w) = 0.02 and fu
B(s, w) = 0.11.

This graph is depicted in Fig. 6.
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b

b

b

b

b

s([0.4, 0.5], [0.5, 0.7], [0.8, 0.9])

w([0.6, 0.7], [0.4, 0.6], [0.2, 0.3])

a([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

c([0.2, 0.7], [0.3, 0.5], [0.2, 0.6])

b([0.2, 0.6], [0.1, 0.6], [0.2, 0.6])

([0.1, 0
.4], [0.

3, 0.6],
[0.2, 0.

6])

([0.2, 0.4], [0.1, 0.5], [0.2, 0.6])

([0.2, 0.5], [0.3, 0.5], [0.2, 0.6])

([0.2,
0.5], [

0.2, 0
.5], [0

.2, 0.3
])

([0.
2, 0

.6],
[0.1

, 0.6
], [0

.2, 0
.3])

([0.2, 0.7], [0.3, 0.5], [0.2, 0.3])

Figure 5. IVN-digraph

b b

b b b

s([0.4, 0.5], [0.5, 0.7], [0.8, 0.9]) w(
[0.
6,
0.7

], [
0.4

, 0
.6]
, [0

.2,
0.3

])

a([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

c([0.2, 0.7], [0.3, 0.5], [0.2, 0.6])

b([0.2, 0.6], [0.1, 0.6], [0.2, 0.6])

([0.02, 0.56], [0.06, 0.82], [0.02, 0.11])

Figure 6. 0.4-Competition IVN-graph

Theorem 2.22. Let
−→
G = (A,

−→
B ) be an IVN-digraph. If

hl
1(N

+(s) ∩N
+(w)) = 1, hl

2(N
+(s) ∩ N

+(w)) = 1, hl
3(N

+(s) ∩ N
+(w)) = 1,

hu
1 (N

+(s) ∩N
+(w)) = 1, hu

2 (N
+(s) ∩ N

+(w)) = 1, hu
3 (N

+(s) ∩ N
+(w)) = 1,

and

|(N+(s) ∩ N
+(w))|tl > 2k, |(N+(s) ∩N

+(w))|il > 2k, |(N+(s) ∩ N
+(w))|f l < 2k,

|(N+(s) ∩ N
+(w))|tu > 2k, |(N+(s) ∩ N

+(w))|iu > 2k, |(N+(s) ∩ N
+(w))|fu < 2k,

Then the edge (s, w) is independent strong in Ck(
−→
G).

Proof. Let
−→
G = (A,

−→
B ) be an IVN-digraph. Let Ck(

−→
G) be the corresponding

k-competition IVN-graph.
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If hl
1(N

+(s) ∩N
+(w)) = 1 and |(N+(s) ∩ N

+(w))|tl > 2k, then kl1 > 2k. Thus,

tlB(s, w) =
kl1 − k

kl1
[tlA(s) ∧ tlA(w)]h

l
1(N

+(s) ∩ N
+(w))

or, tlB(s, w) =
kl1 − k

kl1
[tlA(s) ∧ tlA(w)]

tlB(s, w)

[tlA(s) ∧ tlA(w)]
=

kl1 − k

kl1
> 0.5.

If hu
1 (N

+(s) ∩ N
+(w)) = 1 and |(N+(s) ∩ N

+(w))|tu > 2k, then ku1 > 2k. Thus,

tuB(s, w) =
ku1 − k

ku1
[tuA(s) ∧ tuA(w)]h

u
1 (N

+(s) ∩ N
+(w))

or, tuB(s, w) =
ku1 − k

ku1
[tuA(s) ∧ tuA(w)]

tuB(s, w)

[tuA(s) ∧ tuA(w)]
=

ku1 − k

ku1
> 0.5.

If hl
2(N

+(s) ∩N
+(w)) = 1 and |(N+(s) ∩ N

+(w))|il > 2k, then kl2 > 2k. Thus,

ilB(s, w) =
kl2 − k

kl2
[ilA(s) ∧ ilA(w)]h

l
2(N

+(s) ∩N
+(w))

or, ilB(s, w) =
kl2 − k

kl2
[ilA(s) ∧ ilA(w)]

ilB(s, w)

[ilA(s) ∧ ilA(w)]
=

kl2 − k

kl2
> 0.5.

If hu
2 (N

+(s) ∩ N
+(w)) = 1 and |(N+(s) ∩ N

+(w))|iu > 2k, then ku2 > 2k. Thus,

iuB(s, w) =
ku2 − k

ku2
[iuA(s) ∧ iuA(w)]h

u
2 (N

+(s) ∩ N
+(w))

or, iuB(s, w) =
ku2 − k

ku2
[iuA(s) ∧ iuA(w)]

iuB(s, w)

[iuA(s) ∧ iuA(w)]
=

ku2 − k

ku2
> 0.5.

If hl
3(N

+(s) ∩N
+(w)) = 1 and |(N+(s) ∩ N

+(w))|f l < 2k, then kl3 < 2k. Thus,

f l
B(s, w) =

kl3 − k

kl3
[f l

A(s) ∧ f l
A(w)]h

l
3(N

+(s) ∩N
+(w))

or, f l
B(s, w) =

kl3 − k

kl3
[f l

A(s) ∧ f l
A(w)]

f l
B(s, w)

[f l
A(s) ∧ f l

A(w)]
=

kl3 − k

kl3
< 0.5.

110



Muhammad Akram et al./Ann. Fuzzy Math. Inform. 14 (2017), No. 1, 99–120

If hu
3 (N

+(s) ∩ N
+(w)) = 1 and |(N+(s) ∩ N

+(w))|fu < 2k, then ku3 < 2k. Thus,

fu
B(s, w) =

ku3 − k

ku3
[fu

A(s) ∧ fu
A(w)]h

u
3 (N

+(s) ∩ N
+(w))

or, fu
B(s, w) =

ku3 − k

ku3
[fu

A(s) ∧ fu
A(w)]

fu
B(s, w)

[fu
A(s) ∧ fu

A(w)]
=

ku3 − k

ku3
< 0.5.

So, the edge (s, w) is independent strong in Ck(
−→
G). �

B. p-competition interval-valued neutrosophic graphs

We now define another extension of IVNC-graphs, called p-competition IVN-graphs.

Definition 2.23. The support of an IVN-set A = (s, [tlA, t
u
A], [i

l
A, i

u
A], [f

l
A, f

u
A]) in

X is the subset of X defined by

supp(A) = {s ∈ X : [tlA(s) 6= 0, tuA(s) 6= 0], [ilA(s) 6= 0, iuA(s) 6= 0], [f l
A(s) 6= 1,

fu
A(s) 6= 1]}

and |supp(A)| is the number of elements in the set.

Example 2.24. The support of an IVN-set A = {(a, [0.5, 0.7], [0.2, 0.8], [0.1, 0.3]),
(b, [0.1, 0.2], [0.1, 0.5], [0.7, 0.9]), (c, [0.3, 0.5], [0.3, 0.8], [0.6, 0.9]), (d, [0, 0], [0, 0],
[1, 1])} in X = {a, b, c, d} is supp(A) = {a, b, c} and |supp(A)| = 3.

We now define p-competition IVN-graphs.

Definition 2.25. Let p be a positive integer. Then p-competition IVN-graphC
p(
−→
G)

of the IVN-digraph
−→
G = (A,

−→
B ) is an undirected IVN-graph G = (A, B) which

has same IVN-set of vertices as in
−→
G and has an interval-valued neutrosophic edge

between two vertices s, w ∈ X in C
p(
−→
G) if and only if |supp(N+(s) ∩ N

+(w))| ≥

p. The interval-valued truth-membership value of edge (s, w) in C
p(
−→
G) is tlB(s,

w) = (i−p)+1
i

[tlA(s) ∧ tlA(w)]h
l
1(N

+(s) ∩ N
+(w)), and tuB(s, w) = (i−p)+1

i
[tuA(s) ∧

tuA(w)]h
u
1 (N

+(s) ∩ N
+(w)), the interval-valued indeterminacy-membership value of

edge (s, w) in C
p(
−→
G) is ilB(s, w) =

(i−p)+1
i

[ilA(s) ∧ ilA(w)]h
l
2(N

+(s) ∩ N
+(w)), and

iuB(s, w) = (i−p)+1
i

[iuA(s) ∧ iuA(w)]h
u
2 (N

+(s) ∩ N
+(w)), the interval-valued falsity-

membership value of edge (s, w) in C
p(
−→
G) is f l

B(s, w) =
(i−p)+1

i
[f l

A(s) ∧ f l
A(w)]h

l
3

(N+(s) ∩N+(w)), and fu
B(s, w) =

(i−p)+1
i

[fu
A(s)∧ fu

A(w)]h
u
3 (N

+(s) ∩N
+(w)), where

i = |supp(N+(s) ∩ N
+(w))|.

Example 2.26. Consider an IVN-digraph G = (A,
−→
B ) on X = {s, w, a, b, c}, such

that A = {(s, [0.4, 0.5], [0.5, 0.7], [0.8, 0.9]), (w, [0.6, 0.7], [0.4, 0.6], [0.2, 0.3]), (a,
[0.2, 0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1, 0.6], [0.2, 0.6]), (c, [0.2, 0.7], [0.3, 0.5],

[0.2, 0.6])}, and B = {(
−−−→
(s, a), [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), (

−−−→
(s, b), [0.2, 0.4], [0.1, 0.5],

[0.2, 0.6]), (
−−−→
(s, c), [0.2, 0.5], [0.3, 0.5], [0.2, 0.6]), (

−−−→
(w, a), [0.2, 0.5], [0.2, 0.5], [0.2, 0.3]),

(
−−−→
(w, b), [0.2, 0.6], [0.1, 0.6], [0.2, 0.3]), (

−−−→
(w, c), [0.2, 0.7], [0.3, 0.5], [0.2, 0.3])}, as shown

in Fig. 7.
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b

b

b

b

b

s([0.4
, 0.5]

, [0.5
, 0.7]

, [0.8
, 0.9]

)

w
([
0
.6
,0
.7
],
[0
.4
,0
.6
],
[0
.2
,0
.3
])

a([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

c([0
.2, 0

.7],
[0.3

, 0.5
], [0

.2, 0
.6])

b([0
.2
, 0
.6], [0

.1
, 0
.6], [0

.2
, 0
.6])

([0.1, 0.4], [0.3, 0.6], [0.2, 0.6])

([0.2, 0.4], [0.1, 0.5], [0.2, 0.6])

([0
.2
, 0
.5], [0

.3
, 0
.5], [0

.2
, 0
.6])

([0.2, 0.5], [0.2, 0.5], [0.2, 0.3])

([0.2, 0.6], [0.1, 0.6], [0.2, 0.3])

([0.2, 0.7], [0.3, 0.5], [0.2, 0.3])

Figure 7. IVN-digraph

We calculate N
+(s) = {(a, [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.4], [0.1, 0.5],

[0.2, 0.6]), (c, [0.2, 0.5], [0.3, 0.5], [0.2, 0.6])} and N
+(w) = {(a, [0.2, 0.5], [0.2, 0.5],

[0.2, 0.3]), (b, [0.2, 0.6], [0.1, 0.6], [0.2, 0.3]), (c, [0.2, 0.7], [0.3, 0.5], [0.2, 0.3])}. There-
fore, N

+(s) ∩ N
+(w) = {(a, [0.1, 0.4], [0.2, 0.5], [0.2, 0.3]), (b, [0.2, 0.4], [0.1, 0.5],

[0.2, 0.3]), (c, [0.2, 0.5], [0.3, 0.5], [0.2, 0.3)}. Now, i = |supp(N+(s) ∩ N
+(w))| = 3.

For p = 3, we have, tlB(s, w) = 0.02, tuB(s, w) = 0.08, ilB(s, w) = 0.04, iuB(s,
w) = 0.1, f l

B(s, w) = 0.01 and fu
B(s, w) = 0.03. This graph is depicted in Fig. 8.

b b

b b b

s([0.4, 0.5], [0.5, 0.7], [0.8, 0.9]) w(
[0.
6,
0.7

], [
0.4

, 0
.6]
, [0

.2,
0.3

])

a([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

c([0.2, 0.7], [0.3, 0.5], [0.2, 0.6])

b([0.2, 0.6], [0.1, 0.6], [0.2, 0.6])

([0.02, 0.08], [0.04, 0.1], [0.01, 0.03])

Figure 8. 3-Competition IVN-graph

We state the following theorem without its proof.

Theorem 2.27. Let
−→
G = (A,

−→
B ) be an IVN-digraph. If

hl
1(N

+(s) ∩N
+(w)) = 1, hl

2(N
+(s) ∩ N

+(w)) = 1, hl
3(N

+(s) ∩ N
+(w)) = 0,

hu
1 (N

+(s) ∩N
+(w)) = 1, hu

2 (N
+(s) ∩ N

+(w)) = 1, hu
3 (N

+(s) ∩ N
+(w)) = 0,
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in C
[ i
2
](
−→
G), then the edge (s, w) is strong, where i = |supp(N+(s) ∩N

+(w))|. (Note
that for any real number s, [s]=greatest integer not esceeding s.)

C. m-step interval-valued neutrosophic competition graphs

We now define another extension of IVNC-graph known as m-step IVNC-graph. We
will use the following notations:
Pm
s,w : An interval-valued neutrosophic path of length m from s to w.

−→
P m

s,w : A directed interval-valued neutrosophic path of length m from s to w.

N
+
m(s) : m-step interval-valued neutrosophic out-neighbourhood of vertex s.

N
−

m(s) : m-step interval-valued neutrosophic in-neighbourhood of vertex s.
Nm(s) : m-step interval-valued neutrosophic neighbourhood of vertex s.
Nm(G): m-step interval-valued neutrosophic neighbourhood graph of the IVN-graph
G.
Cm

−−→
(G): m-step IVNC-graph of the IVN-digraph

−→
G .

Definition 2.28. Suppose
−→
G = (A,

−→
B ) is an IVN-digraph. The m-step IVN-

digraph of
−→
G is denoted by

−→
Gm = (A, B), where IVN-set of vertices of

−→
G is same

with IVN-set of vertices of
−→
Gm and has an edge between s and w in

−→
Gm if and only

if there exists an interval-valued neutrosophic directed path
−→
P m

s,w in
−→
G .

Definition 2.29. Them-step interval-valued neutrosophic out-neighbourhood (IVN-

out-neighbourhood) of vertex s of an IVN-digraph
−→
G = (A,

−→
B ) is IVN-set

N
+
m(s) = (X+

s , [t
(l)+

s , t
(u)+

s ], [i
(l)+

s , i
(u)+

s ], [f
(l)+

s , f
(u)+

s ]), where

X+
s = {w| there exists a directed interval-valued neutrosophic path of length m

from s to w,
−→
P m

s,w}, t
(l)+

s : X+
s → [0, 1], t

(u)+

s : X+
s → [0, 1], i

(l)+

s : X+
s → [0,

1], i
(u)+

s : X+
s → [0, 1], f

(l)+

s : X+
s → [0, 1] f

(u)+

s : X+
s → [0, 1] are defined

by t
(l)+

s = min{tl
−−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

s,w}, t
(u)+

s = min{tu
−−−−−→
(s1, s2),

(s1, s2) is an edge of
−→
P m

s,w}, i
(l)+

s = min{il
−−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

s,w},

i
(u)+

s = min{iu
−−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

s,w}, f
(l)+

s = min{f l
−−−−−→
(s1, s2), (s1,

s2) is an edge of
−→
P m

s,w}, f
(u)+

s = min{fu
−−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

s,w},
respectively.

Example 2.30. Consider an IVN-digraphG = (A,
−→
B ) on X = {s, w, a, b, c, d}, such

that A = {(s, [0.4, 0.5], [0.5, 0.7], [0.8, 0.9]), (w, [0.6, 0.7], [0.4, 0.6], [0.2, 0.3]), (a,
[0.2, 0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1, 0.6], [0.2, 0.6]), (c, [0.2, 0.7], [0.3, 0.5],

[0.2, 0.6]), d([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])}, and B = {(
−−−→
(s, a), [0.1, 0.4], [0.3, 0.6], [0.2,

0.6]), (
−−−→
(a, c), [0.2, 0.6], [0.3, 0.5], [0.2, 0.6]), (

−−−→
(a, d), [0.2, 0.6], [0.3, 0.5], [0.2, 0.4]),

(
−−−→
(w, b), [0.2, 0.6], [0.1, 0.6], [0.2, 0.3]), (

−−→
(b, c), [0.2, 0.4], [0.1, 0.2], [0.1, 0.3]), (

−−−→
(b, d),

[0.1, 0.3], [0.1, 0.2], [0.2, 0.4])}, as shown in Fig. 9.
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b b

b b
s([0.4, 0.5], [0.5, 0.7], [0.8, 0.9]) w([0.6, 0.7], [0.4, 0.6], [0.2, 0.3])

a
([0

.2
, 0
.6], [0

.3
, 0
.6], [0

.2
, 0
.6])

c([0.2, 0.7], [0.3, 0.5], [0.2, 0.6])

b([0
.2
,0
.6],[0

.1
,0
.6],[0

.2
,0
.6])

b b
d([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

([0
.1
, 0
.4
], [
0.
3,
0.
6]
, [0
.2
, 0
.6
])

([0.2, 0.6], [0.1, 0.6], [0.2, 0.3])

([0.2, 0.6], [0.3, 0.5], [0.2, 0.4])

([0.2, 0.6], [0.3, 0.5], [0.2, 0.6])

([0
.2,

0.4
], [
0.1

, 0
.2]
, [0

.1,
0.3

])

([
0.
1,
0.
3]
, [
0.
1,
0.
2]
, [
0.
2,
0.
4]
)

Figure 9. IVN-digraph

We calculate 2-step IVN-out-neighbourhoods as, N+
2 (s) = {(c, [0.1, 0.4], [0.3, 0.5],

[0.2, 0.6]), (d, [0.1, 0.4], [0.3, 0.5], [0.2, 0.4])} and N
+
2 (w) = {(c, [0.2, 0.4], [0.1, 0.2],

[0.1, 0.3]), (d, [0.1, 0.3], [0.1, 0.2], [0.2, 0.3])}.

Definition 2.31. The m-step interval-valued neutrosophic in-neighbourhood (IVN-

in-neighbourhood) of vertex s of an IVN-digraph
−→
G = (A,

−→
B ) is IVN-set

N
−

m(s) = (X−

s , [t
(l)−

s , t
(u)−

s ], [i
(l)−

s , i
(u)−

s ], [f
(l)−

s , f
(u)−

s ]), where

X−

s = {w| there exists a directed interval-valued neutrosophic path of length m

from w to s,
−→
P m

w,s}, t
(l)−

s : X−

s → [0, 1], t
(u)−

s : X−

s → [0, 1], i
(l)−

s : X−

s → [0,

1], i
(u)−

s : X−

s → [0, 1], f
(l)−

s : X−

s → [0, 1] f
(u)−

s : X−

s → [0, 1] are defined

by t
(l)−

s = min{tl
−−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

w,s}, t
(u)−

s = min{tu
−−−−−→
(s1, s2),

(s1, s2) is an edge of
−→
P m

w,s}, i
(l)−

s = min{il
−−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

w,s},

i
(u)−

s = min{iu
−−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

w,s}, f
(l)−

s = min{f l
−−−−−→
(s1, s2), (s1,

s2) is an edge of
−→
P m

w,s}, f
(u)−

s = min{fu
−−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

w,s},
respectively.

Example 2.32. Consider an IVN-digraphG = (A,
−→
B ) on X = {s, w, a, b, c, d}, such

that A = {(s, [0.4, 0.5], [0.5, 0.7], [0.8, 0.9]), (w, [0.6, 0.7], [0.4, 0.6], [0.2, 0.3]), (a,
[0.2, 0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1, 0.6], [0.2, 0.6]), (c, [0.2, 0.7], [0.3, 0.5],

[0.2, 0.6]), d([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])}, and B = {(
−−−→
(s, a), [0.1, 0.4], [0.3, 0.6], [0.2,

0.6]), (
−−−→
(a, c), [0.2, 0.6], [0.3, 0.5], [0.2, 0.6]), (

−−−→
(a, d), [0.2, 0.6], [0.3, 0.5], [0.2, 0.4]),

(
−−−→
(w, b), [0.2, 0.6], [0.1, 0.6], [0.2, 0.3]), (

−−→
(b, c), [0.2, 0.4], [0.1, 0.2], [0.1, 0.3]), (

−−−→
(b, d),

[0.1, 0.3], [0.1, 0.2], [0.2, 0.4])}, as shown in Fig. 10.
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b b

b b
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.2
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c([0.2, 0.7], [0.3, 0.5], [0.2, 0.6])

b([0
.2
,0
.6],[0

.1
,0
.6],[0

.2
,0
.6])

b b
d([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

([0.
1, 0

.4],
[0.3

, 0.6
], [0

.2, 0
.6])

([0.2, 0.6], [0.1, 0.6], [0.2, 0.3])
([0.2, 0.6], [0.3, 0.5], [0.2, 0.4])

([0.2, 0.6], [0.3, 0.5], [0.2, 0.6])

([0
.2,

0.4
], [
0.1

, 0
.2]
, [0

.1,
0.3

])

([
0.
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0.
3]
, [
0.
1,
0.
2]
, [
0.
2,
0.
4]
)

Figure 10. IVN-digraph

We calculate 2-step IVN-in-neighbourhoods as, N−

2 (s) = {(c, [0.1,0.4], [0.3,0.5],
[0.2,0.6]), (d, [0.1,0.4], [0.3,0.5], [0.2,0.4])} and N

−

2 (w) = {(c, [0.2,0.4], [0.1,0.2],
[0.1,0.3]), (d, [0.1,0.3], [0.1,0.2], [0.2,0.3])}.

Definition 2.33. Suppose
−→
G = (A,

−→
B ) is an IVN-digraph. The m-step IVNC-

graph of IVN-digraph
−→
G is denoted by Cm(

−→
G) = (A, B) which has same IVN-set

of vertices as in
−→
G and has an edge between two vertices s, w ∈ X in Cm(

−→
G) if and

only if (N+
m(s) ∩ N

+
m(w)) is a non-empty IVN-set in

−→
G . The interval-valued truth-

membership value of edge (s, w) in Cm(
−→
G ) is tlB(s, w) = [tlA(s)∧ tlA(w)]h

l
1(N

+
m(s)∩

N
+
m(w)), and tuB(s, w) = [tuA(s) ∧ tuA(w)]h

u
1 (N

+
m(s) ∩ N

+
m(w)), the interval-valued

indeterminacy-membership value of edge (s, w) in Cm(
−→
G) is ilB(s, w) = [ilA(s) ∧

ilA(w)]h
l
2(N

+
m(s) ∩ N

+
m(w)), and iuB(s, w) = [iuA(s) ∧ iuA(w)]h

u
2 (N

+
m(s) ∩ N

+
m(w)), the

interval-valued falsity-membership value of edge (s, w) in Cm(
−→
G) is f l

B(s, w) =
[f l

A(s) ∧ f l
A(w)]h

l
3(N

+
m(s) ∩ N

+
m(w)), and fu

B(s, w) = [fu
A(s) ∧ fu

A(w)]h
u
3 (N

+
m(s) ∩

N
+
m(w)).

The 2−step IVNC-graph is illustrated by the following example.

Example 2.34. Consider an IVN-digraphG = (A,
−→
B ) on X = {s, w, a, b, c, d}, such

that A = {(s, [0.4, 0.5], [0.5, 0.7], [0.8, 0.9]), (w, [0.6, 0.7], [0.4, 0.6], [0.2, 0.3]), (a,
[0.2, 0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1, 0.6], [0.2, 0.6]), (c, [0.2, 0.7], [0.3, 0.5],

[0.2, 0.6]), d([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])}, and B = {(
−−−→
(s, a), [0.1, 0.4], [0.3, 0.6], [0.2,

0.6]), (
−−−→
(a, c), [0.2, 0.6], [0.3, 0.5], [0.2, 0.6]), (

−−−→
(a, d), [0.2, 0.6], [0.3, 0.5], [0.2, 0.4]),

(
−−−→
(w, b), [0.2, 0.6], [0.1, 0.6], [0.2, 0.3]), (

−−→
(b, c), [0.2, 0.4], [0.1, 0.2], [0.1, 0.3]), (

−−−→
(b, d),

[0.1, 0.3], [0.1, 0.2], [0.2, 0.4])}, as shown in Fig. 11.
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b b

b b

s([0.4, 0.5], [0.5, 0.7], [0.8, 0.9]) w([0.6, 0.7], [0.4, 0.6], [0.2, 0.3])

a
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,0
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b b
d([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

([0
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0.4
], [0

.3,
0.6

], [0
.2,

0.6
]) ([0.2, 0.6], [0.1, 0.6], [0.2, 0.3])

([0.2, 0.6], [0.3, 0.5], [0.2, 0.4])

([0.2, 0.6], [0.3, 0.5], [0.2, 0.6])

([0
.2,

0.4
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0.1

, 0
.2]
, [0

.1,
0.3

])

([
0.
1,
0.
3]
, [
0.
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0.
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, [
0.
2,
0.
4]
)

Figure 11. IVN-digraph

We calculate N
+
2 (s) = {(c, [0.1, 0.4], [0.3, 0.5], [0.2, 0.6]), (d, [0.1, 0.4], [0.3, 0.5],

[0.2, 0.4])} and N
+
2 (w) = {(c, [0.2, 0.4], [0.1, 0.2], [0.1, 0.3]), (d, [0.1, 0.3], [0.1, 0.2],

[0.2, 0.3])}. Therefore, N
+
2 (s) ∩ N

+
2 (w) = {(c, [0.1, 0.4], [0.1, 0.2], [0.2, 0.6]), (d,

[0.1, 0.3], [0.1, 0.2], [0.2, 0.4])}. Thus, tlB(s, w) = 0.04, tuB(s, w) = 0.20, ilB(s,
w) = 0.04, iuB(s, w) = 0.12, f l

B(s, w) = 0.04 and fu
B(s, w) = 0.12. This graph

is depicted in Fig. 12.

b b

b bs([0.4, 0.5], [0.5, 0.7], [0.8, 0.9]) w([0.6, 0.7], [0.4, 0.6], [0.2, 0.3])

a([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

c([0.2, 0.7], [0.3, 0.5], [0.2, 0.6])

b([0.2, 0.6], [0.1, 0.6], [0.2, 0.6])

b b
d([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

([0.04, 0.20], [0.04, 0.12], [0.04, 0.12])

Figure 12. 2-Step IVNC-graph

If a predator s attacks one prey w, then the linkage is shown by an edge
−−−→
(s, w)

in an IVN-digraph. But, if predator needs help of many other mediators s1, s2, . . . ,
sm−1, then linkage among them is shown by interval-valued neutrosophic directed

path
−→
P m

s,w in an IVN-digraph. So, m-step prey in an IVN-digraph is represented by
a vertex which is the m-step out-neighbourhood of some vertices. Now, the strength
of an IVNC-graphs is defined below.

Definition 2.35. Let
−→
G = (A,

−→
B ) be an IVN-digraph. Let w be a common ver-

tex of m-step out-neighbourhoods of vertices s1, s2, . . . , sl. Also, let
−→
Bl

1(u1, v1),
−→
Bl

1(u2, v2), . . . ,
−→
Bl

1(ur, vr) and
−→
Bu

1 (u1, v1),
−→
Bu

1 (u2, v2), . . . ,
−→
Bu

1 (ur, vr) be the mini-

mum interval-valued truth-membership values,
−→
Bl

2(u1, v1),
−→
Bl

2(u2, v2),. . . ,
−→
Bl

2(ur, vr)

and
−→
Bu

2 (u1, v1),
−→
Bu

2 (u2, v2), . . . ,
−→
Bu

2 (ur, vr) be the minimum indeterminacy-membership
116



Muhammad Akram et al./Ann. Fuzzy Math. Inform. 14 (2017), No. 1, 99–120

values,
−→
Bl

3(u1, v1),
−→
Bl

3(u2, v2), . . . ,
−→
Bl

3(ur, vr) and
−→
Bu

3 (u1, v1),
−→
Bu

3 (u2, v2), . . . ,
−→
Bu

3 (ur,

vr) be the maximum false-membership values, of edges of the paths
−→
P m

s1,w
,
−→
P m

s2,w
,

. . . ,
−→
P m

sr ,w
, respectively. The m-step prey w ∈ X is strong prey if

−→
Bl

1(ui, vi) > 0.5,
−→
Bl

2(ui, vi) > 0.5,
−→
Bl

3(ui, vi) < 0.5,
−→
Bu

1 (ui, vi) > 0.5,
−→
Bu

2 (ui, vi) > 0.5,
−→
Bu

3 (ui, vi) < 0.5, for all i = 1, 2, . . . , r.

The strength of the prey w can be measured by the mapping S : X → [0, 1], such
that:

S(w) =
1

r

{

r
∑

i=1

[
−→
Bl

1(ui, vi)] +

r
∑

i=1

[
−→
Bu

1 (ui, vi)] +

r
∑

i=1

[
−→
Bl

2(ui, vi)]

+

r
∑

i=1

[
−→
Bu

2 (ui, vi)]−

r
∑

i=1

[
−→
Bl

3(ui, vi)]−

r
∑

i=1

[
−→
Bu

3 (ui, vi)]

}

.

Example 2.36. Consider an IVN-digraph
−→
G = (A,

−→
B ) as shown in Fig. 11, the

strength of the prey c is equal to

(0.2 + 0.2) + (0.6 + 0.4) + (0.1 + 0.1) + (0.6 + 0.2)− (0.2 + 0.1)− (0.3 + 0.3)

2
= 1.5

> 0.5.

Hence, c is strong 2-step prey.

We state the following theorem without its proof.

Theorem 2.37. If a prey w of
−→
G = (A,

−→
B ) is strong, then the strength of w,

S(w) > 0.5.

Remark 2.38. The converse of the above theorem is not true, i.e. if S(w) > 0.5,
then all preys may not be strong. This can be explained as:

Let S(w) > 0.5 for a prey w in
−→
G . So,

S(w) =
1

r

{

r
∑

i=1

[
−→
Bl

1(ui, vi)] +

r
∑

i=1

[
−→
Bu

1 (ui, vi)] +

r
∑

i=1

[
−→
Bl

2(ui, vi)]

+

r
∑

i=1

[
−→
Bu

2 (ui, vi)]−

r
∑

i=1

[
−→
Bl

3(ui, vi)]−

r
∑

i=1

[
−→
Bu

3 (ui, vi)]

}

.

Hence,
{

r
∑

i=1

[
−→
Bl

1(ui, vi)] +

r
∑

i=1

[
−→
Bu

1 (ui, vi)] +

r
∑

i=1

[
−→
Bl

2(ui, vi)]

+
r

∑

i=1

[
−→
Bu

2 (ui, vi)]−
r

∑

i=1

[
−→
Bl

3(ui, vi)]−
r

∑

i=1

[
−→
Bu

3 (ui, vi)]

}

>
r

2
.
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This result does not necessarily imply that
−→
Bl

1(ui, vi) > 0.5,
−→
Bl

2(ui, vi) > 0.5,
−→
Bl

3(ui, vi) < 0.5,
−→
Bu

1 (ui, vi) > 0.5,
−→
Bu

2 (ui, vi) > 0.5,
−→
Bu

3 (ui, vi) < 0.5, for all i = 1, 2, . . . , r.

Since, all edges of the directed paths
−→
P m

s1,w
,
−→
P m

s2,w
,. . . ,

−→
P m

sr ,w
, are not strong. So,

the converse of the above statement is not true i.e., if S(w) > 0.5, the prey w of
−→
G

may not be strong. Now, m-step interval-valued neutrosophic neighbouhood graphs
are defines below.

Definition 2.39. Them-step IVN-out-neighbourhood of vertex s of an IVN-digraph
−→
G = (A,

−→
B ) is IVN-set

Nm(s) = (Xs, [t
l
s, t

u
s ], [i

l
s, i

u
s ], [f

l
s, f

u
s ]), where

Xs = {w| there exists a directed interval-valued neutrosophic path of length m from
s to w, Pm

s,w}, t
l
s : Xs → [0, 1], tus : Xs → [0, 1], ils : Xs → [0, 1], ius : Xs → [0, 1],

f l
s : Xs → [0, 1], fu

s : Xs → [0, 1], are defined by tls = min{tl(s1, s2), (s1, s2) is
an edge of Pm

s,w}, t
u
s = min{tu(s1, s2), (s1, s2) is an edge of Pm

s,w}, i
l
s = min{il(s1,

s2), (s1, s2) is an edge of Pm
s,w}, i

u
s = min{iu(s1, s2), (s1, s2) is an edge of Pm

s,w},

f l
s = min{f l(s1, s2), (s1, s2) is an edge of Pm

s,w}, f
u
s = min{fu(s1, s2), (s1, s2) is an

edge of Pm
s,w}, respectively.

Definition 2.40. Suppose G = (A, B) is an IVN-graph. Then m-step interval-

valued neutrosophic neighbouhood graph Nm(G) is defined by Nm(G) = (A, B́)

where A = ([Al
1, A

u
1 ], [Al

2, Au
2 ], [Al

3, Au
3 ]), B́ = ([B́l

1, B́
u
1 ], [B́

l
2, B́

u
2 ], [B́l

3, B́
u
3 ]),

B́l
1 : X ×X → [0, 1], B́u

1 : X ×X → [0, 1], B́l
2 : X ×X → [0, 1], B́u

2 : X ×X → [0,

1], B́l
3 : X ×X → [0, 1], and B́u

3 : X ×X → [0,−1] are such that:

B́l
1(s, w) = Al

1(s) ∧ Al
1(w)h

l
1(Nm(s) ∩ Nm(w)),

B́l
2(s, w) = Al

2(s) ∧ Al
2(w)h

l
2(Nm(s) ∩ Nm(w)),

B́l
3(s, w) = Al

3(s) ∧ Al
3(w)h

l
3(Nm(s) ∩ Nm(w)),

B́u
1 (s, w) = Au

1 (s) ∧ Au
1 (w)h

u
1 (Nm(s) ∩ Nm(w)),

B́u
2 (s, w) = Au

2 (s) ∧ Au
2 (w)h

u
2 (Nm(s) ∩ Nm(w)),

B́u
3 (s, w) = Au

3 (s) ∧ Au
3 (w)h

u
3 (Nm(s) ∩ Nm(w)), respectively.

We state the following theorems without thier proofs.

Theorem 2.41. If all preys of
−→
G = (A,

−→
B ) are strong, then all edges of Cm(

−→
G) =

(A, B) are strong.

A relation is established between m-step IVNC-graph of an IVN-digraph and
IVNC-graph of m-step IVN-digraph.

Theorem 2.42. If
−→
G is an IVN-digraph and

−→
Gm is the m-step IVN-digraph of

−→
G ,

then C(
−→
Gm) = Cm(

−→
G).

Theorem 2.43. Let
−→
G = (A,

−→
B ) be an IVN-digraph. If m > |X | then Cm(

−→
G) =

(A,B) has no edge.
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Theorem 2.44. If all the edges of IVN-digraph
−→
G = (A,

−→
B ) are independent strong,

then all the edges of Cm(
−→
G) are independent strong.

3. Conclusions

Graph theory is an enjoyable playground for the research of proof techniques in
discrete mathematics. There are many applications of graph theory in different fields.
We have introduced IVNC-graphs and k-competition IVN-graphs, p-competition
IVN-graphs and m-step IVNC-graphs as the generalized structures of IVNC-graphs.
We have described interval-valued neutrosophic open and closed-neighbourhood.
Also we have established some results related to them. We aim to extend our
research work to (1) Interval-valued fuzzy rough graphs; (2) Interval-valued fuzzy
rough hypergraphs, (3) Interval-valued fuzzy rough neutrosophic graphs, and (4)
Decision support systems based on IVN-graphs.

Acknowledgment: The authors are thankful to Editor-in-Chief and the referees
for their valuable comments and suggestions.
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