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Abstract—This paper presents a new concept for mine-like
object identification. It is postulated that imagery information
coming from the sources used for identification as the reference
must undergo evaluation process. It has been simulated that, in
extremely hostile conditions, even the most reliable source may
supply the system in false information.

Therefore it is suggested that information acquired from all
sources (including the reference) should be subjected to the fusion
process.

For the purpose of the presented considerations a new criterion
of identification has been delivered.

I. INTRODUCTION

Nowadays systems of mine-like object (MLO) identification
usually require a mine searching platform to perform at least
two rounds for complete mine recognition [1], [2], [3]. During
the first one processes of detection and classification are
carried out, whereas the second one is intended for identi-
fication. The identification in most of the cases is done by
a specifically trained frogman, who after taking observation
makes the final decision whether or not the object of interest
is the mine [4]. The efficiency of such ultimate settlement de-
pends on many factors like observation conditions (including
water transparency), human perception possibilities, and also
experience in MLO recognition of the particular diver.

Experiments in application of new technologies in this area
usually aim at replacing human being with remotely-operated
platform [5], [6], equipped with video cameras, in order to
reduce the risk of loss of the human life. Unfortunately, both
of these techniques do not take into account the imperfectness
of the reference (human or machine), which is presumed to
be flawless. Reality shows that the human can be wrong, as
well as the machine, no matter if it is human-operated or au-
tonomous. Therefore an extra step: evaluation of the reference
reliability [7], [8] is required in order to avoid the decision
corruption.

Development of the Al causes that solutions based on
autonomous platforms become more and more attractive [6],
[9], since human perception constrains do not apply, while
the expert MLO recognition knowledge can be algorithmized
and implemented in the platform inference engine. Taking this
into account the reason for splitting mine recognition process
in two (or more) stages no longer exists, since information
gathered from all sensors may be associated, evaluated, and
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combined by one fusion center. In such case the decision may
be made immediately, just after the fusion is performed. Then,
the following question may be raised: "How the reference in-
formation should be treated: as typical participant of fusion or
any privileged one?”. In the literature there exist solutions [10],
known as relative conditioning rules for fusion of uncertain
information with information of significantly higher degree of
certainty (but still imperfect), which easily may be applied.

II. MINE-LIKE OBJECT INFORMATION MODEL

Considering any MLO as an information object the follow-
ing attribute table can be used in order to fully characterize that
object [2], [3]. Table I encapsulates all the important knowl-
edge about the MLO required for the tactical purposes. In
the classical reconnaissance all these values are being fulfilled
successively during detection, classification, and identification
processes.

TABLE I
CONCEPT LEXICON USED IN MLO RECOGNITION SYSTEM

’ Name ‘ ‘ Value

{MILCO, MINE, OBSTRUCTOR, UNDE-
FINED}

{UNKNOWN, ANCHOR, BOTTOM, DRIFT-
ING, UNDEFINED}

{UNKNOWN, SHALLOW, DEEP, UNDE-

ObjectType

GeneralPlacement

SpecificPlacement FINED}
M {UNKNOWN, <500kg, >500kg,
ass
UNDEFINED }
Activity {INACTIVE, ACTIVE, UNDEFINED}
Purpose {GENERAL, OPM, ZOP, HYDROACOUS-
P TIC_REFLECTOR, UNDEFINED}
Sensitivity {STANDARD, SENSITIVE, UNDEFINED}
GeneralContact {NON-CONTACT, CONTACT, UNDEFINED}
. {UNKNOWN, ACOUSTIC, HYDROSTATIC,
SpecificContact

MAGNETIC, ANTENNA, UNDEFINED}

{UNKNOWN, AUDIO, LOW_FREQUENCY,
HIGH_FREQUENCY, VERTI-

SpecificContactDetails || CAL_COMPONENT, HORI-
ZONTAL_COMPONENT, COM-
PLETE_MAGNETIC, UNDEFINED}
{UNKNOWN, SEQUENCE, IM-
Sequence PULSE_SEQUENCE, COMBINED,

TUPLE_NUMBER, DELAY, UNDEFINED}




Unfortunately, some of these attributes are not available for
observation, and even a perfectly trained diver is incapable
of defining them all. That means that in practice the com-
plete identification (including such details as precise detonator
specification) is never reached. Therefore it is suggested to
concentrate on first four attributes, namely: ObjectType, Gen-
eralPlacement, SpecificPlacement, and Mass, which can be
assessed by visual sighting, and in the authors’ opinion are
the most important from the tactical point of view.

From the information point of view this kind of selec-
tion may be critical for any visual observation source, since
much more information, however tactically irrelevant, may be
retrieved through optical sensors. Therefore it is suggested
to treat the reference visual information source as a regular
participant of the fusion.

Since the identification, defined in terms of Table I, is
unachievable, the authors have suggested a new concept of
identification, which can be applied practically in decision
making process. According to that concept, the identification
is simply comprehended as a sort of “classification precise
enough” for decision making, while the particular value of
precision is calculated in the evaluation stage, mentioned
in Introduction. If the calculated precision situates above
the preset threshold value the object may be regarded as
identified. Otherwise, it is considered an unidentified, and
further operational investigation should be involved.

For the purpose of the considerations presented in this paper
the following MLO information structure has been established.

OBSTRUCTOR

General
Placement

Hierarchical MLO information structure

Figure 1.

Figure 1 shows the hierarchical relation tree, where the hi-
erarchy results from the logical structure of the attributes.
Namely, ObjectType is the most informative attribute, which
defines the core of the representation of MLO, while the rest
of the attributes is used to provide more details on it. Black
arrows denote typical directions of inference, whereas red,
blue, and green arrows define routes of inference referring
to specific objects of attributes determined arbitrarily. For
instance: for any anchor mine (red color) the value of the at-

tribute Mass is predefined arbitrarily as UNDEFINED, since
the Mass is only used to characterize bottom mines. Similarly:
for any bottom mine (blue color) the value of the attribute
SpecificPlacement is predefined arbitrarily as UNDEFINED,
since that very attribute is used only to characterize anchor
mines. In case of OBSTRUCTOR only one reasoning path
has been defined, the same way as for the anchor mine, since
the obstructor by definition is a minesweeper countermeasure
object, acting as an anchor mine.

III. SIMULATION OF THE SOURCE INFORMATION

Simulation of the source information is a very important
issue, which should be considered during elaboration of
the MLO recognition concept. Even though input information
does not perform a direct part of the system, it does influence
significantly on its architecture.

Considerations presented in this paper have been taken on
the level of information (not data) processing, aiming at facili-
tation of creating the Situation Awareness [11], [12] in order to
enable the operator decision making. Therefore the simulation
should have also been performed on the information level. That
means that no physical devices have been emulated, as well
as no real input signals, with respect to any concrete trans-
mission protocol, have been analyzed. Simulation was subject
to information (comprehended by human), which could have
originated from sensor subsystems (composed of detectors and
classifiers).

Simulation has been taken in two stages:

— generation of mine-like objects;

— simulation of uncertain incomplete source information;

Generation of MLO has been based on initialization of its
information representation of given characteristics with respect
to MLO model in simulation space. These characteristics had
been defined according to a finite set of values, determined
by MLO ontology. For each of possible simulation scenarios
declarations of responses of the particular sensor subsystems:
sonar, gradiometer, and video camera have been predefined
respectively.

Simulation of uncertain incomplete source information has
been based on supplying the system with these predefined
response declarations. The declaration in itself performed a
probability distribution among possible classification hypothe-
ses, provided by the particular source with respect to its
ontological limitations.

IV. MINE-LIKE OBJECT RECOGNITION MODEL

Mine-like object recognition model defines processes re-
quired for creation of Situation Awareness for the purpose
of decision making. It manages multiple subprocesses like:
acquiring information from the sources, correlation of the
acquired information with information already existing in the
system, creation of MLO classification hypotheses, validation
of the created hypotheses, evaluation, and calculating proba-
bilities required for decision-making.

Certainly, some of the above mentioned perform complex
separate problems, not entirely related to the fusion issues.



Therefore in the following subsections only the closely asso-
ciated to fusion and identification problems, will be discussed.

A. Information correlation

Correlation of the acquired information with other infor-
mation, already existing in the system, enables to decrease
significantly redundancy in databases, and in the consequence
to prevent from system overloading. It is worth of notice
that for the purpose of this paper the term “correlation”
is comprehended as an operation of finding linkage among
datasets, not as a specific operation of data generalization, like
in tactical links (e.g. Link-16) [13], [14], [15].

In the presented model the correlation takes place immedi-
ately after acquiring information from the sources and refers
to:

— sources (source correlation), which leads to information
update

— data/information (data/information correlation), which in
turn leads to information fusion.

In case of the source correlation it is being verified if the
source identifier of the currently processed MLO is identical
with any of the source identifiers referring to the MLOs
already existing in the system. If the verification is positive
the processed MLO follows the position verification. If the
positions are corresponding (with respect to the presumed
tolerance) information update is proceeded, i.e. the previous
source information (time stamp, exact position, etc.) is over-
written with the currently processed. If any verification fails
a new MLO is initiated in the system and added to the MLO
source list.

The information correlation follows directly when the
source correlation is finalized. Unlike the source correlation
information correlation operates on the fusion list, that is the
list of MLO which have already been processed. In situation
where at least two MLOs are of the same positions (with re-
spect to the presumed tolerance), after the fusion is performed,
they are treated as one and only one record is introduced to
the fusion list. This record contains such information like time
stamp, current position of the fused object, attribute values
of the fused object, and the list of all fusion participants.
”Individual” MLOs, that is MLOs which cannot be correlated
with any other from the source list are rewritten directly to
the fusion list. Thus the fusion list contains the complete set
of the classified MLOs, and should be regarded as the main
list the operator works on.

For simplicity, kinematic information fusion has been re-
alized with usage of the rule of the representative, since the
main effort of the research described in this paper is laid on
the MLO identification, not the state estimation.

B. Definition of classification hypotheses

Information acquired from the sources are expressed with
usage of the concept lexicons [12], [16], [17] used by classi-
fiers corresponding to the particular sources. Thus, considering
diverse types of sensors it is justified to assume they are
ontologically different. Classes distinguished by the particular

sources perform prior hypotheses, and they result directly
from the characteristics of the utilized detectors and classifiers.
Table II presents an example of such hypotheses, defined for
the side sonar.

TABLE 11
EXAMPLE PRIOR HYPOTHESES DEFINED FOR THE SIDE SONAR

’ Hypothesis ‘ Code(OT,GP,SP.M) ‘ Description

Hy {1,1,10,10} unknown MLO

H, {2,1,10,10} unknown mine

Ho {1,2,2,10} shallow-water anchor MLO
Hs {1,3,10,1} bottom MLO

Hy {3,1,10,10} obstructor

H, {10,10,10,10} undefined object

If observations are performed by multiple sources it is
probable that they provide information referring to the same
MLO. In such case, in order to unify the tactical view, a
fusion mechanism is performed, which in turn results in
creation of the secondary hypotheses, as a product of prior
hypotheses, already existing in the system. Table III performs
a hypothesis table for combination of information acquired
from two sensors: S7 and Ss.

TABLE III

HYPOTHESIS TABLE FOR TWO SENSORS: S1 AND So

S1
s {1,1,10,10} | {1,2,2,10} | {1,3,10,1} {3,1,10,10}

2

{1,1,10,10} || {1,1,10,10} | {1,2,2,10} | {1,3,10,1} {3,1,10,10}
{122,10} || {1,22,10} | {1,2,2,10} | {1.X.2,1} {3.2,2,10}
{1,3,10,1} {1,3,10,1} | {1.X.2,1} | {1,3,10,1} {3,3,10,1}
{3,1,10,10} || {3,1,10,10} | {3.2,2,10} | {3.3.10,1} {3,1,10,10}

Blue color depicts an example secondary hypothesis, which
as mentioned does not reside in the ontology of any of the
sources. In this very case it denotes a shallow-water obstructor,
that is the object of structure similar to an anchor mine,
however unlike the mine it is not filled with explosives, and its
purpose is minesweeper countermeasure. It is worth of notice
that separately none of the sensors enables such precise MLO
interpretation.

C. Hypothesis validation

The created secondary hypotheses should undergo verifi-
cation, which is to define if they are possible in reality (i.e.
attribute values are mutually consistent) or not. An example
of logically inconsistent hypothesis has been presented in
Table III assigned with a label {1,X,1,1}. Red color depicts
abstract hypotheses of contradictory attribute values.

Except of the obvious unreal hypotheses also hypotheses
specifically defined by the user may be erased, as required
in this stage. As hypothesis validation is open for custom
user modification, it gives an opportunity to utilize expert



knowledge in such fields as: underwater weapon, acoustic
detection, magnetic detection, and visual observation. By
appropriate definition of acceptable secondary hypotheses pos-
sible information conflicts may be resolved instantly.

An example of user-defined inconsistent hypothesis has
been presented in Table III assigned with a label {3,3,10,1}. At
first glance, the statement seems to be correct as information
that the MLO is OBSTRUCTOR may be easily associated with
other information that the MLO is BOTTOM-placed. However,
after realizing the definition of the obstructor and its similarity
to an anchor object it becomes obvious that these two evi-
dences do not fit to each other, and the hypothesis {3,3,10,1}
should not be taken into account in further considerations.

D. Calculation of recognition probabilities

After reading sensor data declaration of probabilities re-
ferring to subsequent hypotheses are being made. As the
hypotheses encompass multiple MLO features these probabil-
ities should be calculated with respect to the values of MLO
attributes.

In the proposed solution the above mentioned recognition
probabilities have been calculated according to the following
formula:

P(M;|My) = Por(M;|My) - Pap(M;|My) -
-Psp(M;|My) - Par(M;| My) (D

where:
i denotes MLO index: ¢+ = 1,2,..., N;
N denotes number of detected mines;
k denotes simulated mine index (i.e. M} denotes simu-
lated mine);
OT, GP, SP and M denote: ObjectType, GeneralPlace-
ment, SpecificPlacement, and Mass, respectively.

This denotes that for any MLO hypothesis the resulting
probability performs a product of partial probabilities referring
to that MLO hypothesis.

Even though the order of the attributes and their semantics
indicate a sort of hierarchy, where ObjectType performs the
most important attribute, the operator of multiplication in the
formula (1) makes each of the attribute introduce potentially
identical contribution to the resulting recognition probability.
This operation is intentional and comes from the fact that
the tactical meaning of the particular contributor does not
have anything to do with conditioning of measurements. Thus,
although SpecificPlacement may seem to be less important
attribute than ObjectType it may turn out that the measurement
and the correct classification of SpecificPlacement is much
easier to be taken than the measurement and the classification
of ObjectType. Besides, the inference engine may take ad-
vantage of the information of seemingly second-rate attribute
SpecificPlacement in order to update or even to correct the
current value of the fist-rate ObjectType.

E. Integration of multiple-source information

Even though the presented concept in itself does not impose
any particular requirements on fusion techniques, based on

the analysis of gathered information, in the authors’ opinion
some solutions are preferable over the others. In general, the
environment where the measurements are taken is hostile for
observation. Utilization of information sources working in
three different domains (i.e. magnetic, acoustic, and video)
does imply that different factors may obscure readouts from
some sensors without affecting the others. Besides, even single
source MLO classification is usually made upon very uncertain
and incomplete data, which comes from the fact that only a
few features of the observed objects may be revealed during
observation. This brings to the conclusion that the selected
fusion technique should be able to deal with information
originated from ontologically different sources with relatively
high degree of conflict.

Keeping in mind the above mentioned, the authors have
decided to use the evidential approach [18], [19], [20], [21],
[22]. Particularly, for the purpose of the numerical experiments
described in the next section, Dezert-Smarandache Theory
(DSmT) has been applied. As a natural extension of Dempster-
Shafer Theory, DSmT has been designed typically for dealing
with fusion problems, where the mass referring to conflict-
ing information is relatively high [22]. This seems to be a
strong argument for using that framework. Additionally, unlike
other approaches DSmT distinguishes so called conditioning
rules (for fusion of uncertain information with certain (e.g
confirmed) information ) [25], [26] from combination rules
(for fusion of multiple pieces of uncertain information) [24].
There are over 20 different rules of combination and about the
same number of conditioning rules.

It is worth of notice that DSmT as a sort of evidential
approach does not operate on probability in itself. Instead
of probability distribution there are so called basic belief
assignments (bba) [22], [23], and the decision is made based
on the calculated belief and plausibility functions, which may
be regarded as respective substitutes for lower and upper
probability in ULP model. In order to operate on bba a
trivial transformation of probabilities to bba has been made by
mapping them 1 to 1. This operation is completely justified as
one realizes that bba performs a kind of subjective probability
distribution. On the other hand, keeping in mind that in fact the
recognition probabilities are just estimates established upon
the finite number of trials, the term “subjective probability”
seems to be more adequate than simply “probability”.

As it was previously postulated by the authors, the fallible
reference information should be combined with the rest of
the sensor-originated information. For this reason the classical
rule of combination DSmC has been used. According to
this rule all possible intersection of the prior hypotheses are
taken into account. The conflicting hypotheses i.e. intrinsically
inconsistent e.g. ANCHORNBOTTOM are excluded from
further considerations.

Table IV performs example evidence table presented to il-
lustrate how the values of the resulting subjective probabilities
are calculated.



TABLE IV
EVIDENCE TABLE FOR TWO SENSORS: S1 AND S2

S

S Y {1,1,10,10} | {1.2,1,10} | {1,3,10.1} | ... | {3.1,10,10}
2

[0.1] [0.5] [0.3] [0.1]
{1,1,10,10} [0.1] 0.01 0.05 0.03 0.01
{1,2,1,10} [0.5] 0.05 0.25 0.15 0.05
{1,3,10,1} [0.3] 0.03 0.15 0.09 0.03
{3.1,10,10} [0.1] 0.01 0.05 0.03 0.01

F. Defining prior probabilities

In case of the defined attribute values like: MILCO, MINE,
OBSTRUCTOR, etc. the numerical values of the respective
recognition probabilities should be defined directly based
on the available sensor data, technical specification of the
information sources, and knowledge about conditioning of the
measurements. In case of undefined attribute values, denoted
by UNDEFINED, the subsequent values of probability should
be calculated as complements of the sum of all the known
values.

It is worth of comment on what basis the above mentioned
prior probabilities should be defined is none of the sensor data,
technical specification or any further knowledge is existing. In
such case it is suggested to acquire such distributions by means
of live experiments with usage of fake MLOs which as far as
possible behave like their real substitutes.

V. NUMERICAL EXPERIMENTS

In order to verify the proposed solution a number of
numerical experiments has been conducted. For this reason
an information source simulator had been created in Matlab
language. The developed software enabled to simulate up-
coming information from the following sources: side sonar,
gradiometer, and video camera under good and bad measuring
conditions. The particular information sources differed from
each other on: values of MLO recognition prior probabilities,
and also a number of attributes subject to classification.

A. Experiments with diverse information sources

The first experiment aimed at checking the correctness
of the simulated information sources with respect to their
distinctive parameters. It was assumed that the measurements
would be taken under good conditions i.e. water transparency
was sufficient to take full advantage of the video sensor.

In the experiment a mine-like object of type MILCO has
been initiated, and then the observation module has been
started. The results of the simulation and observation have
been registered for each of the sensors. In the following steps
the experiment has been repeated with different values of
the MLO attributes. The results of the experiment have been
presented in Figure 2.

Figure 2 presents a comparison of the recognition prob-
abilities calculated for the three information sources: side
sonar, gradiometer and video camera. Purple and red points

5000

—8—gradiometer

=d—video camera

Figure 2. Recognition probabilities estimated for the simulated information
sources

denote that for the particular set of the simulated MLO
attributes incorrect classifications have been made, i.e. the ob-
jects have not been recognized as simulated, wherein purple
denotes adequate but imprecise decisions while red denotes
incorrect decisions. In such cases the depicted values of
recognition probabilities refer to the correct characteristics,
however they have not been selected as final decisions.
the last simulated MLO for each of the sensor refers to
MILCO/BOTTOM/UNDEFINED/UNKNOWN, which is in-
trinsically inconsistent. This case has been included intention-
ally for the test purposes, and results in incorrect decisions for
each sensor classifier, as expected.

An introductory analysis reveals significant differences in
MLO recognition performance for the particular sensors.
the magnetic sensor (gradiometer) enabled defining only two
of four basic attributes of the observed object (ObjectType and
Mass). Therefore only in six of fourteen cases the simulated
MLO was classified correctly by using this sensor. In ma-
jority of the rest of the cases (five of eight) the object was
recognized incorrectly, and only in three cases the recognition
was appropriate, however not precise. the average certainty
of the classification by this sensor was P5=0.417, which in
comparison with average certainty of classification by side
sonar (Pg=0.476) was relatively high.

A detailed analysis of the gradiometer performance shows
that the reason for the misclassification (except of inconsistent
characteristics object case) is ontologically based, rather than
caused by imprecisely defined values of the prior probabilities.
Application of that sensor enables only coarse classification of
MLO due to the fact that hypotheses referring to more precise
classification are not supported by the sensor ontology, and in
the consequence, by the measurements.

Application of the side sonar enabled defining three of four
MLO attributes (ObjectType, GeneralPlacement, and Mass).
Thus the characteristics of the classified bottom mines were
retrieved precisely as simulated, since SpecificPlacement does
not perform a descriptive attribute of the bottom mine. None



of the considered case resulted in incorrect classification,
but four cases of imprecisely retrieved characteristics, due to
the structural similarity of the obstructor and the anchor mine.

Based on the results of the conducted experiments the av-
erage certainty of classification by video camera (P=0.728)
could be estimated. This value has been calculated as the arith-
metic mean of the recognition probability by video camera,
obtained for each possible realization of MLO. In the follow-
ing considerations this value has been effectively utilized in
identification criterion.

B. Experiments with fusion of reliable information

The second experiment aimed at checking the correctness of
the information integration model. Particularly, the emphasis
was placed on combination of imagery information from
video camera with other sensor information. Similarly, as in
the previous experiment, good observation conditions were
assumed.

In the experiment a mine-like object of type MILCO has
been initiated, and then the observation module has been
started. the results of the simulation and observation have
been registered for each of the sensors. In the following steps
the experiment has been repeated with different values of
the MLO attributes. the results of recognition of the simulated
objects have been arranged in the following couples of sensors:
{acoustic, video}, {magnetic, video}, {acoustic, magnetic},
and the triplet: {acoustic, magnetic, video}. The results of
the experiment have been presented in Figure 3.
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Figure 3. Recognition probabilities estimated for multiple fusion cases -
good observation conditions

Figure 2 presents a comparison of the fusion results obtained
for the sets of sensors mentioned above. Similarly, as in
the previous experiment, red and purple points denote incor-
rect and imprecise classifications, respectively. Additionally,
there has been introduced the mean value of the recognition
probability calculated for the video camera, during the first
experiment. This value separates the area of precise classi-
fication with a high degree of certainty (green colored) from
the area, where objects were classified correctly but unsteadily,

appropriately but not precise or incorrectly at all. Taking into
account the purpose of the experiment the significant sets
are those, which contain video camera. the pair {acoustic,
magnetic} has been introduced just as a reference for the rest
of the results.

An introductory analysis reveals that the qualitative dif-
ferences among the particular sensors influence significantly
on the performance of the fusion. In other words, the more
attributes can be defined by using particular sensors, the more
adequate the decision is, and the higher the certainty of that
decision is. Using the calculated mean value from the first
experiment as the threshold for identification, it is easy to
notice that only in four cases of observation performed by
the side sonar and the video camera the object could be
regarded as identified. By using three sensors this number
could be raised to five, while in other cases no identifiable
object situation has been registered.

Analyzing the mean values of the registered certainties one
can notice that the differences among diverse sets are not
as explicit as they seemed during the introductory analysis.
The calculated mean values were as follows:

— {side sonar, video camera}: Pg.=0.599,

— {gradiometer, video camera}: P, c=0.591,

— {side sonar, gradiometer}: Pg5=0.426,

{sonar, gradiometer, video camera}: Pgc1c=0.586.

This is due to the ontological differences among the sensors.
the gradiometer is the sensor of the poorest classification
performance, since it is impossible to define GeneralPlace-
ment by using it. Coupling this sensor with the video camera
or the side sonar will increase significantly the recognition
potential, however still it will be poorer than the potential of
the individual sonar or video camera (Pg < Pgic < Pc).
This is due to the fact that the gradiometer does not support
any of the hypotheses in which placement of the object (gen-
eral and specific) is taken into account. but the side sonar and
the video camera do. Therefore in case of simulation of any
precisely defined object (including defining GeneralPlacement
and SpecificPlacement) degradation of recognition quality for
the gradiometer is the biggest. For a comparison, in case of
simulation of less precisely defined object the values of of
certainty derived from the fusion of the gradiometer with other
sensor are relatively high.

Analyzing the results obtained for three sensors it is easy
to find cases, where application of the triplet led to better
performance than any of the couple. This seems to be quite
natural and could be expected in all cases, however did
not happen. Moreover, it is possible to find cases, where
despite the fact that all sources have interpreted the observed
MLO identically, the fusion of two provided better (in terms
of recognition probability) results than the fusion of three
consistent pieces of information. This phenomenon is also
ontologically based. Increase of the sensor number affects
the increase of the number of the created secondary hypothe-
ses. the secondary hypotheses (by definition) are not supported
directly by the sensor data, however they may be feasible,
thus should be verified. During evaluation certain values of



probability are assigned to these hypotheses, which results in
relatively smaller values of probability assigned to the most
probable hypothesis. Certainly, with a sufficient number of
sensors this process saturates and no more feasible secondary
hypotheses are created. Nevertheless, increasing the sensor
number from two to three such phenomenon is still observed.
It is worth of notice that in case of precisely defined object
MINE/BOTTOM/UNDEFINED/<500kg the value of recogni-
tion probability referring to the sensor triplet was the greatest
due to the fact that bottom mine can be precisely described
by the gradiometer.

C. Experiments with fusion of unreliable information

The third experiment, similarly as the previous one, aimed
at checking the correctness of the information integration
model. However, this time inconvenient observation conditions
were assumed i.e. water transparency was insufficient to take
full advantage of the video sensor. the experiment procedure
was exactly the same as described in the previous sections.
The results of the experiment have been presented in Figure 4.
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Figure 4. Recognition probabilities estimated for multiple fusion cases - bad
observation conditions

Inconvenient observation conditions affect significantly
the performance of classification with usage of the video
camera, and in the consequence the fusion of information
gathered from the camera and other sources. For the purpose
of clarification there has been also introduced a plot referring
to the recognition probability obtain for the individual video
camera. This allows to observe the degradation of recognition
quality for the fusion when “the best” source fails or works
in extremely inconvenient conditions.

Integration of ontologically different information is not an
easy fusion problem. the resulting concept lexicon performs
a union of the fusion participant’s lexicons. the difficulty
arises when the source of reacher lexicon starts to provide
information of lower quality than the source of poorer lexicon.
An example of such case is examining the mine-like object
identification using video camera in inconvenient observation
conditions. Simulation of such case has proven a significant

degradation of the recognition performance, which caused
that in none of the cases MLO could be regarded as iden-
tified. The calculated mean value for the video camera was
Pc=0.274, which degraded the quality of the subsequent
sensor sets:

— {side sonar, video camera}: Pg o =0.322

— {gradiometer, video camera}: Pg,c =0.289

— {sonar, gradiometer, video camera}: Psygic =0.327.

Assuming that the lower water transparency had not affected
the performances of the rest of the sensors, i.e. the mean values
Ps=0.476 and P;=0.417 had not changed, the obtained
results may be regarded as moderately satisfactory. Although
the above fusion mean values were greater than P¢ they did
not approach significantly the mean value for the side sonar
(Pg), which in such case performed the best” source.

VI. MINE-LIKE OBJECT IDENTIFICATION CRITERION

Based on the results of the conducted numerical experiments
the following criterion of MLO identification can be proposed.

VP(S),3P(Thr) = max{P(S)} :
P(®) > P(Thr) — ID

2)
P(®) < P(Thr) — unID

For any set of sensors, each of which is described with
a recognition probability, the one of the maximum average
value of the recognition probability is selected as the reference
source, and the maximum average value of probability is
selected as the threshold. Thus, for any scenario case where
the resulting recognition probability (referring to the final
decision) is above the threshold the respective mine-like object
is regarded as identified.

VII. CONCLUSION

The results of the conducted research works have proven
that application of a reliable information source of the required
classification characteristics, working in ideal conditions, en-
ables achieving high quality decision making in terms of
adequacy and precision. However, it is unacceptable to claim
that this source provides absolutely infallible information, and
the decision made upon it is certain. Additionally, it has been
simulated that, in extremely hostile conditions, even the most
reliable source of information may supply the system in false
information. This, in turn, leads to conclusion that identifi-
cation of mine-like objects performed in the traditional way
is an ill-posed problem, since it is based on the presumption
that the reference source provides true information with 100%
certainty.

In the authors’ opinion information coming from sources
hitherto considered as perfect should be integrated with other
sensor-originated information. This will increase the quality of
the elaborated decision (in terms of adequacy and certainty),
and in turn, based on sufficiently high degree of certainty, ac-
cording to the proposed criterion of identification, the observed
object may be identified if that certainty exceeds the preset
threshold.



Definition of prior conditional probabilities is another very
important problem. In the literature one may find solutions,
where conditional probabilities are distinguished from a priori
probabilities. However, for the purpose of this paper such
kind of distinction is not necessary. Therefore these values
have been predefined arbitrarily as a presumed product of
these two probabilities. It is also the authors’ opinion that
the precise definition of the prior probabilities is not critical for
resolving the considered problem. It will be sufficient if they
reveal the true nature of the sources (particularly: classifiers
corresponding to these sources). This requirement seems to
be very reasonable from the technical point of view, keeping
in mind that defining any probability is always approximation
due to the finite set of trials. Instead of that, as presented, it is
suggested to apply a combination of two approaches: ontolog-
ical and evidential in order to gain precision of the elaborated
results if the source information is reliable (by ontology)
and the reasonably adequate approximate result if the source
information is unreliable (by Theory of Evidence).
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