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Abstract: Divergence measure is an important tool for determining the amount of 

discrimination between two probability distributions. Since the introduction of fuzzy sets, 

divergence measures between two fuzzy sets have gained attention for their applications in 

various fields. Exponential entropy measure has some advantages over Shannon’s entropy. In 

this paper, we used the idea of Jensen Shannon divergence to define a new divergence 

measure called ‘fuzzy Jensen-exponential divergence (FJSD)’ for measuring the 

discrimination/difference between two fuzzy sets.  The measure is demonstrated to satisfy 

some very elegant properties, which shows its strength for applications in multi-criteria 

decision making problems. Further, we develop a method to solve multi-criteria decision 

making problems under fuzzy phenomenon by utilizing the proposed measure and 

demonstrate by a numerical example.  

 

Keywords - entropy, fuzzy sets, fuzzy divergence, Jensen-Shannon divergence, multi-criteria 
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1. Introduction 

In the last six decades, divergence measures have been extensively used to measure the 

difference between two probability distributions [4, 5, 15, 16 and 27] and widely applied in 

various fields. 

The notion of divergence, introduced by Kullback and Leibler [16] in 1951, provides a 

measure of discrimination between two probability distributions. After its introduction, 

various generalized measures of divergence have been proposed by researchers [28 and 31] 

and studied their properties and application in details. In 1991, Lin [18] defined a new 

divergence measure named as Jensen-Shannon divergence, which has been gained quite some 

attention from researchers/practitioners and successfully applied in variety of disciplines [1, 7 

– 9, 11, 19 and 21-24]. 

Parallel to the concept of probability theory, the notion of fuzzy sets (FSs) introduced by 

Zadeh [35] in 1965 to deal with vagueness. Since then, the theory of fuzzy set has become a 

vigorous area of research in different disciplines such as engineering, artificial intelligence, 

medical science, signal processing, and expert systems. In 1992, Bhandari and Pal [3] 

forwarded the concept of divergence measure from probabilistic to fuzzy phenomena and 

defined a divergence measure between two fuzzy sets. Fuzzy divergence measure gives fuzzy 

information measure for discrimination of a fuzzy set A  relative to some other fuzzy set B . 

This fuzzy divergence measure has wide applications in many areas such as pattern 

recognition, fuzzy clustering, signal and image processing etc. Some generalized measures of 
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fuzzy divergence have been studied by Hooda [12], Bajaj and Hooda [2], Shang and Jiang 

[29]. 

As mentioned above Jensen-Shannon divergence is an important measure from application 

point of view. This divergence measure is based on Shannon’s entropy function [30]. In 1989, 

Pal and Pal [25, 26] critically analyze the Shannon’s function and discussed its some 

limitations. To imbue these limitations, Pal and Pal [25, 26] defined a new measure of entropy 

based on exponential function. Futher, Kvålseth [17] and Verma and Sharma [34] defined 

some generalized version of exponential fuzzy entropy.  

In 1999, Fan and Xie [6] introduced the fuzzy divergence measure based on exponential 

function and studied its relation with divergence measure introduced in [3]. Ghosh et al. [7] 

developed some applications of fuzzy divergence measure in the area of automated leukocyte 

recognition.  

In this paper, we propose a new measure of divergence called ‘fuzzy Jenson-exponential 

divergence (FJED)’ between two fuzzy sets. The new divergence measure has elegant 

properties, which are stated and proved in the paper to enhance the employability of this 

measure. The strength of this extension has been demonstrated by an example of multi-criteria 

decision making. 

The paper is organized as follows: In Section 2 some basic definitions related to probability 

and fuzzy set theory are briefly given. In Section 3, the fuzzy Jenson-exponential divergence 

measure is proposed. In Section 4 some properties of the proposed fuzzy divergence measure 

are stated and proved. In Section 5 a fuzzy multi-criteria decision making method is proposed 

with the help of fuzzy Jenson-exponential divergence measure. A numerical example is also 

given to illustrate the solution process and our conclusions are presented in Section 6. 

 

2. Preliminaries 

Let  
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 denote the set of all complete finite 

discrete probability distributions.  

For any probability distribution  
1 2
, , ..., nn

p p pP   , Shannon [30] introduced the entropy 

to measure the uncertainty associated with probability distribution  as follows 

       
1=

 .log   
n

j jj

PH p p                              (1) 

Pal and Pal [26] analyzed the classical Shannon information entropy and introduced a new 

probabilistic entropy called exponential entropy given by   

                                                            1

1

1
n

p j

e j

j

H P p e




  .                                           (2) 

These authors point out that, the exponential entropy has an advantage over Shannon’s 

entropy. For the uniform probability distribution
1 1 1

, ,...,P
n n n

 
  
 

, exponential entropy has a 

fixed upper bound  

                                                          
1 1 1

lim , ,..., 1
e
H e as n
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.                         (3) 

which is not the case for Shannon’s entropy. 
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Kullback and Leibler [16] measure of divergence of a probability 

distribution
1 2( , , , )n nQ q q q   to probability distribution  

1 2
, , ..., nn

p p pP   , is 

given by 

      
1

( | ) log
n

j

j

j j

p
D P Q p

q

 .                   (4) 

In 1991, Lin [18] introduced the Jensen Shannon divergence between the two probability 

distributions  1 2, , , nP p p p and  1 2, , , nQ q q q  as 

 

             
( ) ( )

( ; )
2 2

P Q H P H Q
JSD P Q H

  
  

 
,                          (5) 

where ( )H P is the Shannon entropy. Since ( )H P is a concave function, according to Jensen’s 

inequality [10], ( ; )JSD P Q   is nonnegative and vanishes when P Q . The JSD can also be 

represents in terms of KL divergence as  

 

         
1

( ; ) | |
2 2 2

P Q P Q
JSD P Q D P D Q

     
     

    
.                     (6) 

 

Definition 1. Fuzzy set [35]: A fuzzy set A  defined in a finite universe of 

discourse  1 2
, ,...,

n
X x x x  is mathematically represented as  

                                                                  ,, XxxxA A                                             (7) 

where    1,0: XxA   is measure of belongingness or degree of membership of an 

element x  in A .  

Definition 2 Set Operations on FSs [35]:  Let  XFS denote the family of all FSs in the 

universe X , assume  XFSBA ,  given as  

  XxxxA A  |, , 

  XxxxB B  |, . 

Then some set operations defined as follows: 

(i)     ;iff XxxxBA BA    

(ii) ;andiff ABBABA   

(iii)   ;1, XxxxA A

C    

(iv)     ;|, XxxxxBA BA    

(v)     ;|, XxxxxBA BA    

where  ,  stand for max and min operators, respectively. 

In 1972, De Luca and Termini [20] defined fuzzy entropy for a fuzzy set A corresponding to 

Shannon entropy [20], given by   
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1
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       . (8) 
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Fuzzy exponential entropy for fuzzy set A  corresponding to (2) has also been introduced by 

Pal and Pal [26] as 
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 .                          (9) 

Let A  and B  be two fuzzy sets defined in X . Corresponding to the Kullback and Leibler [16] 

divergence measure, Bhandari and Pal [3] defined the fuzzy divergence measure of a fuzzy 

set B  with respect to fuzzy set A as 
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 .                     (10) 

Fan and Xie [6] proposed the fuzzy divergence measure based on exponential function as 
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    .          (11) 

In the next section, motivated by the idea of Jensen-Shannon divergence, we propose a new 

measure called ‘fuzzy Jensen-exponential divergence’ (FJED) to measure the difference 

between two fuzzy sets.  Some properties of the proposed FJED are also studied here.  

3. Fuzzy Jensen-Exponential Divergence (FJED) 

Definition 3.1. Single Element Universe set: Let { , ( ) | }
A

A x Xx x     and 

{ , ( ) | }
B

B x Xx x     be the two fuzzy sets defined in a single element universe of 

discourse { }X x .  We define the fuzzy Jensen-exponential divergence measure between two 

FSs A  and B  , as  

 * ( ) ( )
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e e
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. (12) 

Theorem 3.1: For all , ( ),A B FS X  the fuzzy Jenson-exponential divergence measure 
*
( || )FJED A B  in (12) satisfies the following properties: 

(i) *( || ) 0FJED A B  , 

(ii) *( || ) 0FJED A B   if and only if A B , 

(iii) *
( || )0 1A BFJED  . 

Proof: (i) It follows from Jensen inequality [10]. 
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(ii)  Let A B , then it is obvious *( || ) 0FJED A B  . 

Conversely, let 
*( || ) 0FJED A B   

( ) ( )
0

2 2
e e

e
H A H BA B

H
  
     

   


     (13) 

Since  e H  is a concave function [26], then from Jensen inequality [10] expression (13) 

holds if and only if A B . 

(iii) *
( || )A BFJED attains the highest value for the following cases: 

       1,0 , 0,1  or 0,1 , 1,0 ,A B A B     

which gives the required results, i.e., *0 1( || )FJED A B  . 

This completes the proof.                                                                                                           □ 

In the above definition, we assumed single element universe set. Now, here we extended this 

notion to finite universe of set.  

Definition 3.2: Let { , ( ) | }
A j jA x Xx x     and { , ( ) | }

B j jB x Xx x     be two fuzzy sets in 

the universe of discourse  1 2
, ,...,

n
X x x x , then the fuzzy Jenson-exponential divergence 

measure between A and B, is given by 
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In the next section, we prove some elegant properties of the proposed measure given by (14). 

For proving the properties, we will assume that the finite universe of discourse  X   is 

partitioned into two disjoint sets 
1X  and

2X , such that 

                                                 ,|1 jBjA xxXxxX                                                (15) 

                                               
jBjA xxXxxX   ,|2 .                                            (16) 
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4. Properties of Fuzzy Jensen Exponential Divergence 

The measure given by (10) has the following important properties: 

Theorem 4.1: For all , ( )A B FS X ,  

(i)    || ||A A B B A BFJED FJED , 
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(v)      || || ||FJED B A B FJED B A B FJED A B  . 
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From (17) and (18), we get 
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(ii)  The proof follows on similar lines as part (i). 

(iii) Using measure given by (10), shown as 
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On adding (19) and (20), we get 

     || || || .FJED A A B FJED A A B FJED A B   

(v)  The proof is as similar as part (iv).  

 

This completes the proof.                            □ 

Theorem 4.2: For all , ( )A B FS X ,  

(i)    || ||C CFJED A B FJED A B , 

(ii)        || || || ||C C C CFJSD A B FJSD A B FJSD A B FJSD A B   . 

where
CA and

CB are the complement of fuzzy set A and B, respectively. 

Proof: Consider the expression  

(i)    || ||C CFJED A B FJED A B                                                                                     (21) 
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This proves (i). 

(ii) The proof of (ii) is on similar lines as part (i). 

 

Theorem 4.3: For all , , ( )A B C FS X ,  

(i)      || || ||FJED A B C FJED A C FJED B C  , 

(ii)      || || ||FJED A B C FJED A C FJED B C  , 

(iii)        || || || ||FJED A B C FJED A B C FJED A C FJED B C   . 

Proof: (i) Consider the expression  

     || || ||FJSD A C FJSD B C FJSD A B C                                                                   (22) 
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This proves (i). 

 (ii) The proof is on similar lines as part (i). 

 

(iii) Let us assume 

 ||FJED A B C  

        
1

1

( ) ( ) 2 ( ) ( )
exp

2 2

2 ( ) ( ) ( ) ( )
    exp

2 2

( )exp 1 ( ) 1 ( ) log ( )

     + ( )exp 1 (

j j j jC CA B A B

j j j jC CA B A B

j j j jA B A B A B A B

jC C

n e

x x x x

x x x x

x x x x

x x

   

   

   

 

    
    
        
 

    
       

     



  

  



  

       

1

) 1 ( ) exp ( )

2

n

j

j j jC Cx x 



 
 
 
 
 
 
 
 
  
  
  

  
 

 
 

 
 

 
    

 



        

      

( ) ( ) 2 ( ) ( )
exp

2 2

2 ( ) ( ) ( ) ( )
exp

2 2
1

( )exp 1 ( ) 1 ( ) exp ( )1

     + ( ) exp 1 ( ) 1 ( ) exp ( )   

2

A j C j A j C j

A j C j A j C j

A j A j A j A j

C j C j C j C j

x x x x

x x x x

x x x xn e

x x x x

   

   

   

   

      
    
    
 

      
    
    


   

    




1jx X

  
  
  
  
  
  

 
 


 

  
  

 
 
   

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 
 

        

      

( ) ( ) 2 ( ) ( )
exp

2 2

2 ( ) ( ) ( ) ( )
exp

2 2

( )exp 1 ( ) 1 ( ) exp ( )

     + ( )exp 1 ( ) 1 ( ) exp ( )
     

2

B j C j B j C j

B j C j B j C j

B j B j B j B j

C j C j C j C j

x x x x

x x x x

x x x x

x x x x

   

   

   

   

      
    
    
 

      
    
    

    

   

  





2jx X

 
 
 
 
 
 
  
 
 
 

  
         

 .    

(23) 

and 

 ||FJED A B C   

        

   

( ) ( ) 2 ( ) ( )
exp

2 2

2 ( ) ( ) ( ) ( )
exp

2 2
1

( )exp 1 ( ) 1 ( ) exp ( )1

     + ( )exp 1 ( ) 1 ( )     

A B j C j A B j C j

A B j C j A B j C j

A B j A B j A B j A B j

C j C j C j

x x x x

x x x x

x x x xn e

x x x

   

   

   

  

      
    
    
 

      
    
    

  

  



  

1

exp ( )

2

C j

n

j

x



 
 
 
 
 
 
 

  
  
  
  
  
  
  

  

              

        

      

( ) ( ) 2 ( ) ( )
exp

2 2

2 ( ) ( ) ( ) ( )
exp

2 2
1

( )exp 1 ( ) 1 ( ) exp ( )1

     + ( ) exp 1 ( ) 1 ( ) exp ( )     

2

B j C j B j C j

B j C j B j C j

B j B j B j B j

C j C j C j C j

x x x x

x x x x

x x x xn e

x x x x

   

   

   

   



      
    
    
 

      
    
    

   

    




1jx X

 
 
 
 
 
 
 
 
  
  
  
 
  
   

    

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17 
 

             

      

( ) ( ) 2 ( ) ( )
exp

2 2

2 ( ) ( ) ( ) ( )
exp

2 2

( )exp 1 ( ) 1 ( ) exp ( )

     + ( ) exp 1 ( ) 1 ( ) exp ( )

2

A j C j A j C j

A j C j A j C j

A j A j A j A j

C j C j C j C j

x x x x

x x x x

x x x x

x x x x

   

   

   

   

      
    
    
 

      
    
    

 
   
 
    
 
 
 

2jx X


 
 
 
 
 

 



 


 


 


 


 


  

 .     

(24) 

Adding (23) and (24), we obtain the required result.     

  

This completes the proof.                                  □      

 

5. Application of FJED to Fuzzy Multi-Criteria Decision Making  

5.1 Fuzzy Multi-criteria Decision Making Problem:  
 

Decision making is a process of selecting the best option (or options) from a finite number of 

feasible options. It is a very common activity that usually occurs in our daily life and plays an 

important role in business, finance, management, economics, social and political science, 

engineering and computer science, biology and medicine etc. 

Multi criteria decision making (MCDM) refers to select optimal option from a finite number 

of feasible options under several criteria. To find the most preferred option, the decision 

maker provides his/her preference information for the options. 

In many real life decision making problems, the available information is vague or imprecise. 

To adequately solve decision problems with vague or imprecise information, fuzzy set theory 

has become powerful tool. In the literature, a number of multiple criteria decision making 

theories and methods under fuzzy environment have been proposed for effectively solving the 

multi criteria decision making problems and various applications have been cited in the 

literature [13, 32, 33]. 

Let  1 2, ,..., mM M M M be a set of options and let  nCCCC ...,,, 21 be a set of criteria. 

For decision making, the decision maker characterized each option in terms of FSs by 

assigning appropriate values to  functions. Suppose that the characteristics of the 

option i
M  in terms of the set of criteria C  are presented by FS shown as follows: 

                             , | , 1,2,..., and 1,2,...,
i j ij j

FS M C C C i m j n     ,            (25) 

where ij  indicates the degree with which the option i
M  satisfies the criterion jC  and 

 1,0ij , njmi ...,,2,1and...,,2,1  . 

We introduce a four-step algorithm to solve above fuzzy multi-criteria decision making 

problem using the measure defined in (14). 
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5.2 Algorithm: 

Step 1: Finding the positive ideal and negative ideal solutions denoted by M   and M  , 

respectively given by: 

                                                     1 2, ,..., nM   

   ,                                            (25) 

                                                    1 2, ,..., nM   

   ,                                             (26) 

where  

                                                              

max

.

min

j ij
i

j ij
i

 

 











                                                  (27) 

 

Step 2: Calculating the values of ( | )iFJSD M M
  and ( | )iFJSD MM   by the following 

formulas respectively: 
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Step 3: Calculate the relative fuzzy Jensen-exponential divergence  i
FJED M  of options 

i
M with respect to M   and M  , where 
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.                           (30) 
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Step 4: Rank the options , 1,2,...,
i

M i m , according to the values of  iFJED M , 

mi ...,,2,1 , in ascending order. The leading i
M , with smallest value of  iFJED M , is the 

best option. 

In order to illustrate the applicability of the proposed algorithm, we consider below an 

example of investment company decision-making problem.  

Example [33]: Consider an investment company problem. Assume that an investment 

company desires to invest a definite amount of money in the best option among five options: 

(i) a car company
1M , (ii) a food company

2M , (iii) a computer company
3M , (iv) an arms 

company 
4M  and (v) a TV company

5M . The investment company wants to take a decision 

according to the following four criteria:  

i. 
1C , the risk analysis,  

ii. 2C , the growth analysis, 

iii. 
3C , the social-political impact analysis, 

iv. 
4C , the environmental impact analysis.  

After evaluation of options, the decision maker forms the following fuzzy sets, given by 

 1 1 2 3 4,0.5 , ,0.6 , ,0.3 , ,0.2 ,M C C C C  

 2 1 2 3 4,0.7 , ,0.7 , ,0.7 , ,0.4 ,M C C C C  

 3 1 2 3 4,0.6 , ,0.5 , ,0.5 , ,0.6 ,M C C C C  

 4 1 2 3 4,0.8 , ,0.6 , ,0.3 , ,0.2 ,M C C C C  

 5 1 2 3 4,0.6 , ,0.4 , ,0.7 , ,0.5M C C C C . 

We need to find a ranking of the feasible options, with a view to find the best option. 

Step 1:  Obtaining the M  and M   given by 

 1 2 3 4,0.8 , ,0.7 , ,0.7 , ,0.6 ,M C C C C   

 1 2 3 4,0.5 , ,0.4 , ,0.3 , ,0.2 .M C C C C   

Step 2:   Using (28) and (29) to calculate ( | )iFJSD M M
  and ( | )iFJSD MM  , respectively, we 

have the following tables: 
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       Table 1:  
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Table 2:  
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Step 3. Calculating the relative fuzzy Jensen-exponential divergence measure  iFJED M  of 

iM ’s with respect to M   and M   by using (30). We obtain the following table: 

 

 

              Table 3 

 

 

                  ********************************************** 

 

 

 

 

Based on Table 3, the ranking order of options is given by, 

2 5 3 4 1M M M M M . 

Therefore, 
2M  is the most preferable option, which is in agreement as obtained in [33]. 

6.  Conclusion 

In this paper, we proposed a new information measure called ‘fuzzy Jensen-exponential 

divergence’ in the setting of fuzzy set theory. A number of properties of the proposed 

measure have been stated and proved. Then, based on fuzzy Jensen-exponential divergence, 

we have developed an algorithm to deal the problems of multi-criteria decision making with 

fuzzy information. Further study of this measure will be reported separately. 
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Table 1: Values of ( | )iFJSD M M
    

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Values of ( | )iFJSD MM   

1( | )FJSD MM   0.0038 

2( | )FJSD MM   0.0315 

3( | )FJSD MM   0.0211 

4( | )FJSD MM   0.0125 

5( | )FJSD MM   0.0249 

 

 

 

 

Table 3: Values of Relative  iFJED M  

 1FJED M  0.9143 

 2FJED M  0.1319 

1( | )FJSD M M
  0.0403 

2( | )FJSD M M
  0.0048 

3( | )FJSD M M
  0.0116 

4( | )FJSD M M
  0.0316 

5( | )FJSD M M
  0.0135 

Table
Click here to download Table: Tables.pdf 

http://www.editorialmanager.com/ncaa/download.aspx?id=133803&guid=9517ac06-e620-4272-947f-a44acd19e2c9&scheme=1


 3FJED M  0.3548 

 4FJED M  0.7158 

 5FJED M  0.3507 

 

 


