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Abstract. Fuzzy sets are the most signi�cant tools to handle uncertain data
while neutrosophic sets are the generalizations of fuzzy sets in the sense to
handle uncertain, incomplete, inconsistent, indeterminate, false data. In this
paper, we introduced fuzzy subspaces and neutrosophic subspaces (generaliza-
tion of fuzzy subspaces) by applying group actions.Further, we de�ne fuzzy
transitivity and neutrosophic transitivty in this paper. Fuzzy orbits and neu-
trosophic orbits are introduced as well. We also studied some basic properties
of fuzzy subspaces as well as neutrosophic subspaces.

1. Introduction

The theory of fuzzy set was �rst proposed by Zadeh in the seminal paper [22] in
1965. Theconcept of fuzzy set is used successfully to modelling uncertain informa-
tion in several areas of real life. A fuzzy set is de�ned by a membership function �
with the range in unit interval [0; 1]. The theory and applications of fuzzy sets and
logics have been studied extensively in several aspects in the last few decads such as
control, reasoning, pattern recognition, and computer vision etc. The mathemat-
ical framework of fuzzy sets become an important area for the research in several
phenomnon such as medical diagnosis, engineering, social sciences etc. Literature
on fuzzy sets can be seen in a wide range in [7; 24; 25; 26].
The degree of membership of an element in a fuzzy set is single value between

0 and 1. Thus it may not always be true that the degree of non-membership of
an element in a fuzzy set is equal to 1 minus the membership degree because there
is some kind of hesitation degree. Therefore, in 1986, Atanassov [1] introduced
an extension of fuzzy sets called intuitionistic fuzzy set. An intuitionistic fuzzy
sets incorporate the hesitation degree called hesitation margin and this hesitation
margin is de�ning as 1 minus the sum of membership and non-membership degree.
Therefore the intuitionistic fuzzy set is de�ned by a membership degree � as well as
a non-membership function � with same range [0; 1]. The concpet of Intuitionistic
fuzzy sets have been applied successfully in several �elds such as medical diagnosis,
sale analysis, product marketing, �nancial services, psychological investigations,
pattern recoginition, machine learning decision making etc.
Smarandache [14] in 1980, introduced a new theory called Neutrosophy, which

is basically a branch of philosophy that focuse on the origion, nature, and scope of
neutralities and their interactions with di¤erent ideational spectra. On the basis
of neutrosophy, he proposed the concpet of neutrosophic set which is characterized
by a degree of truth membership T , a degree of indeterminacy membership I and
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a degree falsehood membership F . A neutrosophic set is powerful mathematical
tool which generalizes the concept of classical sets, fuzzy sets [22], intuitionistic
fuzzy sets [2], interval valued fuzzy sets [15], paraconsistent sets [14], dialetheist
sets [14], paradoxist sets [14], and tautological sets [14]. Neutrosophic sets can han-
dle the indeterminate, imprecise and inconsistent information that exists around
our daily life. Wang et al. [17] introduced single valued neutrosophic sets in order
to use them easily in scienti�c and engineering areas that gives an extra possi-
bility to represent uncertain, incomplete, imprecise, and inconsistent information.
Hanafy et:al further studied the correlation coe¢ cient of neutrosophic sets [5; 6]. Ye
[18] de�ned the correlation coe¢ cient for single valued neutrosophic sets. Broumi
and Smaradache conducted study on the correlation coe¢ cient of interval neutro-
sophic set in [2]. Salama et al. [12] focused on neutrosophic sets and netrosophic
topological spaces. Some more literature about neutrosophic set is presented in
[4; 8; 10; 11; 13; 16; 19; 20; 23].
The notions of a G-spaces [3] were introduced as a consequence of an action of

a group on an ordinary set under certain relues and conditions. Over the passed
history of Mathematics and Algebra, the theory of group action [3] has proven to
be an applicable and e¤ective mathematical framework for the study of several
types of structures to make connection among them. The applications of group
action can be found in di¤erent areas of science such as physics, chemistry, biology,
computer science, game theory, cryptography etc which has been worked out very
well. The abstraction provided by group actions is an important one, because it
allows geometrical ideas to be applied to more abstract objects. Several objects
and things have found in mathematics which have natural group actions de�ned on
them. Speci�cally, groups can act on other groups, or even on themselves. Despite
this important generalization, the theory of group actions comprise a wide-reaching
theorems, such as the orbit stabilizer theorem, which can be used to prove deep
results in several other �elds.

2. Literature Review and Basic Concpets

De�nition 1. [22]Let X be a space of points and let x 2 X . A fuzzy set A
in X is characterized by a membership function � which is de�ned by a mapping
� : X ! [0; 1]. The fuzzy set can be represented as

A = fhx; � (x)i : x 2 Xg :

De�nition 2. [14]Let X be a space of points and let x 2 X . A neutrosophic set
A in X is characterized by a truth membership

function T , an indeterminacy membership function I , and a falsity membership
function F . T; I; F are real standard or non-standard subsets of ]0�; 1+[, and
T; I; F : X ! ]0�; 1+[. The neutrosophic set can be represented as

A = fhx; T (x) ; I (x) ; F (x)i : x 2 Xg :

There is no restriction on the sum of T; I; F , so 0� � T + I + F � 3+.
From philosophical point of view, the neutrosophic set takes the value from real

standard or non-standard subsets of ]0�; 1+[. Thus it is necessary to take the
interval [0; 1] instead of ]0�; 1+[ for technical applications. It is di¢ cuilt to apply
]0�; 1+[ in the real life applications such as engineering and scienti�c problems.
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De�nition 3. [3]Let 
 be a non empty set and G be a group. Let � : 
�G �! 

be a mapping. Then � is called an action of G on 
 if for all ! 2 
 and g; h 2 G

(1) � (� (!; g) ; h) = � (!; gh)
(2) � (!; 1) = !, where 1 is the identity element in G:
Usually we write !g instead of � (!; g) : Therefore (1) and (2) becomes as

(1) (!
g

)h = (!)gh. For all ! 2 
 and g�h 2 G:
(2) !1 = !.
A set 
 with an action of some group G on it is called a G-space or a G-set. It

basically means a triplet (
; G; �).

De�nition 4. [3]Let 
 be a G-space and 
1 6= � be a subset of 
: Then 
1 is
called a G-subspace of 
 if !g 2 
1 for all ! 2 
1 and g 2 G:

De�nition 5. [3]Let 
 be a G-space. We say that 
 is transitive G-space if for
any �; � 2 
, there exist g 2 G such that �g = �:

3. Fuzzy Subspace

De�nition 6. Let 
 be a G-space. Let � : 
 ! [0; 1] be a mapping. Then � is

called a fuzzy subspace of 
 if � (!g) � � (!) and �
�
!g

�1
�
� � (!) for all ! 2 


and g 2 G.

Example 1. Let 
 = (Z4;+) and G = f0; 2g � Z4. Let � : 
 � G ! 
 be an
action of G on 
 de�ned by !g = ! + g for all ! 2 
 and g 2 G. Then 
 is a
G-space. We de�ne � : 
! [0; 1] by

� (0) =
1

2
and � (1) = � (2) = � (3) = 1

Then clearly � is a fuzzy subspace of 
.

De�nition 7. Let 
� be a fuzzy subspace of the G-space 
. Then � is called
transitive fuzzy subspace if for any �; � from 
, there exist g 2 G such that � (�g) =
� (�).

Example 2. Let 
 = G = (Z4;+). Let � : 
 � G ! 
 be an action of G on 

de�ned by !g = ! + g for all ! 2 
 and g 2 G. We de�ne � : 
! [0; 1] by

� (0) =
1

2
and � (1) = � (2) = � (3) = 1

Then clearly � is a transitive fuzzy subspace of 
.

Theorem 1. If 
 is transitive G-space, then � is also transitive fuzzy subspace.

Proof. Suppose that 
 is transitive G-space. Then for any �; � 2 
, there exist
g 2 G such that �g = �. This by taking � on both sides, we get � (�g) = � (�) for
all �; � 2 
. Hence by de�nition � is a transitive fuzzy subspace of 
. �
De�nition 8. A transitive fuzzy subspace of 
 is called fuzzy orbit.

Example 3. Consider above Example, clearly � is a fuzzy orbit of 
.

Theorem 2. Every fuzzy orbit is trivially a fuzzy subspace but the converse may
not be true.

For converse, see the following Example.
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Example 4. Let 
 = S3 =
�
e; y; x; x2; xy; x2y

	
and G = fe; yg � S3. Let � :


 � G ! 
 be an action of G on 
 de�ned by �� = �� for all � 2 
 and � 2 G:
Then clearly 
 is a G-space. Let � : 
! [0; 1] be de�ned as � (e) = � (y) = � (x) =
�
�
x2
�
= � (xy) = �

�
x2y

�
= 2

5 . Thus � is a fuzzy subspace of 
 but � is not a
transitive fuzzy subspace of 
 as � has the following fuzzy orbits:

�1 =

�
� (e) = � (y) =

2

5

�
;

�2 =

�
� (x) = �

�
x2
�
=
2

5

�
;

�3 =

�
� (xy) = �

�
x2y

�
=
2

5

�
:

De�nition 9. Let 
 be a G-space and 
� be a fuzzy subspace. Let � 2 
. The fuzzy
stablizer is denoted by G�(�) and is de�ned to be G�(�) = fg 2 G : � (�g) = � (�)g :

Example 5. Consider the above Example. Then

G�(e) = G�(y) = G�(x) = G�(x2) = G�(xy) = G�(x2y) = feg .

Theorem 3. If G� is G-stablizer, then G�(�) is a fuzzy stablizer.

Theorem 4. Let G�(�) be a fuzzy stablizer. Then G�(�) � G�:

Remark 1. Let G�(�) be a fuzzy stablizer. Then G�(�) � G:

4. Neutrosophic Subspace

De�nition 10. Let 
 be a G-space. Let A : 
! [0; 1]
3 be a mapping. Then A is

called a neutrosophic subspace of 
 if The following conditions are hold.

(1) T (!g) � T (!) and T
�
!g

�1
�
� T (!),

(2) I (!g) � I (!) and I
�
!g

�1
�
� I (!) and

(3) F (!g) � F (!) and F
�
!g

�1
�
� F (!) for all ! 2 
 and g 2 G.

Example 6. Let 
 = G = (Z4;+). Let � : 
 � G ! 
 be an action of G on 

which is de�ned by !g = ! + g. Then 
 is a G-space under this action of G. Let
A : 
! [0; 1]

3 be a mapping which is de�ned by

T (0) = 0:5, T (1) = T (2) = T (3) = 1;

and

I (0) = 0:3 and I (1) = I (2) = I (3) = 0:1;

and

F (0) = 0:4 and F (1) = F (2) = F (3) = 0:2:

Thus clearly A is a neutrosophic subspace as A satis�es conditions (1), (2) and
(3).

Theorem 5. A neutrosophic subspace is trivially the generalization of fuzzy sub-
space.
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De�nition 11. Let A be a neutrosophic subspace of the G-space 
. Then A is
called fuzzy transitive subspace if for any �; � from 
, there exist g 2 G such that

F (�g) = F (�) ;

F (�g) = F (�) ;

F (�g) = F (�) :

Example 7. Let 
 = G = (Z4;+). Let � : 
 � G ! 
 be an action of G on 

de�ned by !g = ! + g for all ! 2 
 and g 2 G. We de�ne A : 
! [0; 1]

3 by

T (0) =
1

2
and T (1) = T (2) = T (3) = 1;

I (0) =
1

3
and I (1) = I (2) = I (3) = 1;

F (0) =
1

4
and F (1) = F (2) = F (3) = 1:

Then clearly A is a neutrosophic transitive subspace of 
.

Theorem 6. If 
 is transitive G-space, then A is also neutrosophic transitive
subspace.

Proof. Suppose that 
 is transitive G-space. Then for any �; � 2 
, there exist
g 2 G such that �g = �. This by taking T on both sides, we get T (�g) = T (�)
for all �; � 2 
. Simialry, we can prove it for the other two components I and F .
Hence by de�nition A is a neutrosophic transitive subspace of 
. �
De�nition 12. A neutrosophic transitive subspace of 
 is called neutrosophic orbit.

Example 8. Consider above Example 7, clearly A is a neutrosophic orbit of 
.

Theorem 7. All neutrosophic orbits are trivially the generalization of fuzzy orbits.

Theorem 8. Every neutrosophic orbit is trivially a neutrosophic subspace but the
converse may not be true.

For converse, see the following Example.

Example 9. Let 
 = S3 =
�
e; y; x; x2; xy; x2y

	
and G = fe; yg � S3. Let � :


 � G ! 
 be an action of G on 
 de�ned by �� = �� for all � 2 
 and � 2 G:
Then clearly 
 is a G-space. Let A : 
! [0; 1] be de�ned as

T (e) = T (y) = T (x) = T
�
x2
�
= T (xy) = T

�
x2y

�
=
2

5
;

I (e) = I (y) = I (x) = I
�
x2
�
= I (xy) = I

�
x2y

�
=
3

7
;

F (e) = F (y) = F (x) = F
�
x2
�
= F (xy) = F

�
x2y

�
=
4

9
:

Thus A is a neutrosophic subspace of 
 but A is not a neutrosophic transitive
subspace of 
 as A has the following neutrosophic orbits:

T1 =

�
� (e) = � (y) =

2

5

�
; I1 =

�
I (e) = I (y) =

3

7

�
; F1 =

�
F (e) = F (y) =

4

9

�
;

�2 =

�
� (x) = �

�
x2
�
=
2

5

�
; I2 =

�
I (x) = I

�
x2
�
=
3

7

�
; F2 =

�
F (x) = F

�
x2
�
=
4

9

�
;

�3 =

�
� (xy) = �

�
x2y

�
=
2

5

�
; I3 =

�
I (xy) = I

�
x2y

�
=
3

7

�
; F3 =

�
F (xy) = F

�
x2y

�
=
4

9

�
:
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De�nition 13. Let 
 be a G-space and A be a neutrosophic subspace. Let � 2 
.
The neutrosophic stablizer is denoted by GA(�) and is de�ned to be

GA(�) = fg 2 G : T (�g) = T (�) ; I (�g) = I (�) ; F (�g) = F (�)g :

Example 10. Consider the above Example 9. Then

GA(e) = GA(y) = GA(x) = GA(x2) = GA(xy) = GA(x2y) = feg .

Theorem 9. If G� is G-stablizer, then GA(�) is a neutrosophic stablizer.

Theorem 10. Every neutrosophic stablizer is a generalization of fuzzy stablizer.

Theorem 11. Let GA(�) be a neutrosophic stablizer. Then GA(�) � G�:

Remark 2. Let GA(�) be a neutrosophic stablizer. Then GA(�) � G:

5. Conclusion

In this paper, we introduced fuzzy subspaces and neutrosophic subspaces (gen-
eralization of fuzzy subspaces) by applying group actions.Further, we de�ne fuzzy
transitivity and neutrosophic transitivty in this paper. Fuzzy orbits and neutro-
sophic orbits are introduced as well. We also studied some basic properties of fuzzy
subspaces as well as neutrosophic subspaces. In the near future, we are applying
these concepts in the �eld of physics, chemistry and other related �elds to �nd the
uncertainty in symmetries.
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