Heisenberg Uncertainty Principle Extended to n-plets

FLORENTIN SMARANDACHE, University of New Mexico — All measurable properties of a physical system come in n-plets; as one measures a member of the n-plets very accurately, consequently the other left $n-1$ members of the n-plets are measured very inaccurately. If there is a minimum uncertainty in a member’s measurement, there is a maximum uncertainty in the other $n-1$ members’ measurements. The product of the n uncertainties corresponding respectively to the measurements of the n members is constant: $u_1\cdot u_2\cdot \ldots \cdot u_n = h = 6.626 \times 10^{-34} \text{ kg m}^2\text{s}^{-1}$ where h is Planck’s constant.

- Open Question: If possible to simultaneously measure m members of the n-plets very accurately, for $2 \leq m \leq n-1$ would consequently result that the other left $n - m$ members of the n-plets are measured very inaccurately?