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Abstract The personnel selection is a vital activity for

companies, and multi-valued neutrosophic sets (MVNSs)

can denote the fuzziness and hesitancy in the processes of

the personnel selection. The extant fuzzy TODIM (an

acronym in Portuguese of interactive and multi-criteria

decision-making) methods take advantage of distance to

denote the difference between two fuzzy sets (FSs). Nev-

ertheless, the distance measurement, which ignores the

included angle between two FSs, cannot comprehensively

reflect the difference between two FSs. To cover this

defect, a projection-based TODIM method with MVNSs

for personnel selection is established to consider the risk

preference of decision-makers and overcome the defect of

the extant fuzzy TODIM methods. The proposed TODIM

method makes use of an improved comparison method

which overcomes the deficiency of extant comparison

method. Furthermore, a projection-based difference mea-

surement is defined and utilized in the projection-based

TODIM method. We conduct a numerical example of the

personnel selection to explain the application of the pro-

jection-based TODIM method and discuss the influence of

the parameter. Finally, the proposed method is compared

with several extant methods to verify its feasibility.

Keywords Multi-criteria decision-making � Multi-valued

neutrosophic sets � Projection � TODIM method �
The personnel selection

1 Introduction

Personnel selection is an important issue for companies due

to its great influence on the development of companies.

Many researchers have utilized multi-criteria decision-

making (MCDM) methods to tackle practical personnel

selection problems [1–4]. Some of these researchers poin-

ted out that fuzzy, uncertain and incomplete information

exist in the processes of personnel selection [5, 6]. To deal

with this kind of information, they introduced the fuzzy

logic and fuzzy sets (FSs). FSs were originally defined by

Zadeh [7], and it has been greatly extended [8, 9]. For

instance, Atanassov [10] proposed intuitionistic fuzzy sets

(IFSs). To express uncertainty, Atanassov and Gargov [11]

extended IFSs and presented interval valued intuitionistic

fuzzy sets (IVIFSs). In some situations, hesitancy may exist

when decision-makers determine the membership degree

of an object. To depict this hesitant information, Torra [12]

developed hesitant fuzzy sets (HFSs). Furthermore,

Smarandache [13, 14] defined neutrosophic sets (NSs) to

reflect the truth, indeterminate and false information

simultaneously. Additionally, Wang et al. [15] pointed out

that NSs were difficult to apply in practical problems. To

overcome this defect, they proposed single-valued neutro-

sophic sets (SVNSs) [15]. Moreover, some other exten-

sions of FSs have been developed [16, 17], including

simplified NSs [18, 19] and interval valued NSs [20–22],

and combined with other theories, like graph theory

[23–27] and prospect theory [28]. In addition, the appli-

cation of sundry extensions of FSs has been studied by

researchers in a variety of fields, like decision-making

[29–33], medical service [34, 35], cloud service selection

[36] and the supplier selection [37, 38].

Multi-valued neutrosophic sets (MVNSs), as the inte-

gration of HFSs and SVNSs, have drawn researchers’
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attention. MVNSs were initially defined by Wang and Li

[39]. They [39] made use of three sets, each of which is

composed of different real numbers in ½0; 1�, to characterize
the degrees of truth-membership, indeterminacy-member-

ship and falsity-membership, respectively. MVNSs, which

combine the merits of HFSs and SVNSs, can describe fuzzy

information in more detail than FSs, IFSs, HFSs and

SVNSs. Furthermore, MVNSs have been applied in MCDM

problems. For example, Peng et al. [40] defined two

weighted power aggregation operators and established a

decision-making method with these two operators. Ye [41]

called MVNSs single-valued neutrosophic hesitant fuzzy

sets and constructed two multi-valued neutrosophic MCDM

methods with the proposed multi-valued neutrosophic

weighted averaging (MVNWA) and multi-valued neutro-

sophic weighted geometric (MVNWG) operators. Besides

the operators, the correlation coefficient of MVNSs was

proposed. Sahin and Liu [42] established a novel MCDM

method based on the proposed correlation coefficient. What

is more, Liu and Zhang [43] presented the distance mea-

surement between MVNSs and applied the VIKOR

(VlseKriterijumska Optimizacija I Kompromisno Resenje)

method to address MCDM problems under multi-valued

neutrosophic environments. In addition, the comparison

method for MVNSs was defined by Liu and Zhang [43].

MVNSs are the perfect means to represent fuzzy infor-

mation in the personnel selection processes. For example,

when the interviewer of a company evaluates a candidate,

he or she may hesitate about the degree to which he or she

thinks the candidate is capable for the position. He or she

may prefer to depict this kind of hesitant information with

several real numbers between 0 and 1 rather than one single

real number, such as f0:6; 0:7; 0:8g. Moreover, there is

hesitancy in the degree to which he or she thinks the

candidate is not competent for the position, such as he or

she describes the degree of falsity-membership as

f0:1; 0:2g. Additionally, the degree to which he or she is

not sure if the candidate is qualified for the position is a set

of several real numbers within ½0; 1�, such as f0:2; 0:3g. As
illustrated above, a personnel selection problem may

include truth-membership, indeterminacy-membership and

falsity-membership degrees at the same time, and each of

these three degrees of membership may be a set of several

different real numbers between 0 and 1. Therefore, MVNSs

are more effective in describing fuzzy and hesitant infor-

mation in personnel selection problems than FSs, IFSs,

HFSs and SVNSs.

The projection measurement is a significant tool in

MCDM. It depicts both the distance and the included angle

between two elements. Compared with the distance mea-

surement, the projection measurement can reflect the dif-

ference between two elements more exactly. The

projection measurement has been extended into many

kinds of fuzzy environments [44, 45]. For instance, Xu and

Hu [46] extended projection measurements into intuition-

istic fuzzy and interval intuitionistic fuzzy environments

and constructed MCDM methods based on the proposed

projection measurements. Furthermore, Zhang et al. [47]

introduced the intuitionistic trapezoidal fuzzy projection

measurement and developed a gray rational projection

method for MCDM problems.

To consider the risk preferences of decision-makers,

TODIM (An acronym in Portuguese of interactive and

decision-making method named Tomada de decisao inter-

ativa e multicritévio) method was developed by Gomes and

Lima [48, 49] on the basis of the prospect theory [50]. To

tackle fuzzy MCDM problems, Krohling and Souza [51]

defined the fuzzy TODIM method based on the TODIM

method in Refs. [48, 49]. Since then, the fuzzy TODIM

methods under various fuzzy environments have been

researched and applied to settle MCDM problems [52–54].

For instance, Tseng et al. [55] utilized TODIM method to

solve MCDM in the evaluation of green supply chain

practices under triangular fuzzy environments. In addition,

TODIM methods under intuitionistic fuzzy and interval

intuitionistic fuzzy environments were established by

Lourenzutti and Krohling [56] and Li et al. [57]. Zhang and

Xu [58] introduced the fuzzy TODIM method to address

hesitant fuzzy MCDM problems. Moreover, TODIM

method with neutrosophic numbers was proposed and

applied in decision-making by Zhang et al. [59].

MVNSs can be used to express the fuzzy and hesitant

information in the processes of personnel selection. Fur-

thermore, the extant comparison method of MVNSs has

some deficiencies that will be illustrated in Sect. 2.1.

Moreover, the distance measurement ignores the included

angle between objects while the projection measurement

considers the included angle between elements besides the

distance. In other words, the projection measurement can

depict difference between objects more exactly than the

distance measurement. However, the extant TODIM

methods utilize the distance measurement to depict the

difference between objects. Motivated by these, we estab-

lished a projection-based TODIM method to solve the

personnel selection problems under multi-valued neutro-

sophic environments. To do that, an improved comparison

method was defined to overcome the deficiency of the

extant comparison method. Then, we presented the pro-

jection and normalized projection measurements of

MVNSs. Subsequently, a projection-based difference

measurement was defined to denote the difference between

two MVNSs. In the proposed personnel selection method,

the projection-based difference measurement was incor-

porated with the fuzzy TODIM method to cover the

shortcoming of the extant fuzzy TODIM methods. In

addition, the improved comparison method was utilized in
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the projection-based TODIM method to judge whether

there is a gain, loss or breakeven. The projection-based

TODIM method was proven to be capable of successfully

tackling the personnel selection problems by a numerical

example. What is more, a comparative analysis certified the

feasibility of the projection-based TODIM method.

The structure of this paper is organized as follows.

Section 2 presents several related notions of MVNSs and

the fuzzy TODIM method. We define an improved com-

parison method, the projection and normalized projection

measurements, and the projection-based difference mea-

surement of MVNSs in Sect. 3. Moreover, a projection-

based TODIM method is constructed in Sect. 3. In Sect. 4,

the application of the proposed method is illustrated by a

numerical example of personnel selection. Furthermore, we

study the influence of the parameter in Sect. 4. A com-

parative analysis is also provided and discussed in Sect. 4.

Finally, in Sect. 5, we conclude the paper and provide

some directions for future research.

2 Preliminaries

This section reviews some basic concepts of MVNSs and

fuzzy TODIM method. And these concepts will be utilized

in the reminder of this study.

2.1 MVNSs

Definition 1 [39] Let X ¼ fx1; x2; . . .; xng be a non-empty

fixed set. An MVNS can be defined as:

A ¼ xt; ~tAðxtÞ;~iAðxtÞ; ~fAðxtÞ
� �� �

;

where xt 2 X and ~tAðxtÞ, ~iAðxtÞ and ~fAðxtÞ are three sets each
of which is composed of different values in ½0; 1�. Let lt, li
and lf denote the numbers of elements in ~tAðxtÞ, ~iAðxtÞ and
~fAðxtÞ, respectively. ~tAðxtÞ ¼ ftA1ðxtÞ; tA2ðxtÞ; . . .; tAltðxtÞg is

a set comprising all possible truth-membership degrees,
~iAðxtÞ ¼ fiA1ðxtÞ; iA2ðxtÞ; . . .; iAliðxtÞg is a set comprising all

possible indeterminacy-membership degrees and ~fAðxtÞ ¼
ffA1ðxtÞ; fA2ðxtÞ; . . .; fAlf ðxtÞg is a set comprising all possible

falsity-membership degrees. We assume that elements in

~tAðxtÞ, ~iAðxtÞ and ~fAðxtÞ are in increasing order in this paper

for the ease of narration.

In addition, f~tAðxtÞ;~iAðxtÞ; ~fAðxtÞg, which is an element

in A, is a multi-valued neutrosophic number (MVNN). For

convenience, an MVNN is denoted by a ¼ ~tA;~iA; ~fA
� �

.

Definition 2 [43] Let b ¼ ~tB;~iB; ~fB
� �

be an MVNN. The

score function of b can be defined as:

sðbÞ ¼ 1

lt

Xlt

k¼1

tBk
þ 1

li

Xli

g¼1

ð1� iBg
Þ þ 1

lf

Xlf

r¼1

ð1� fBr
Þ

 !,

3:

Definition 3 [43] Let b and c be two MVNNs. The

comparison method between b and c can be defined as:

1. When sðbÞ\sðcÞ, b � c;

2. When sðbÞ[ sðcÞ, b � c; and

3. When sðbÞ ¼ sðcÞ, b ¼ c.

Nevertheless, a limitation exists in the comparison

method in Definition 3. The following example depicts this

limitation.

Example 1 Let b ¼ 0:3; 0:4; 0:5f g; 0:2; 0:3f g; 0:1f gf g
and c ¼ 0:2; 0:4; 0:6f g; 0:1; 0:2f g; 0:2f gf g be two

MVNNs. It is evident that b 6¼ c. By Definition 2,

sðbÞ ¼ ð0:3þ 0:4þ 0:5Þ=3ð þ ð1� 0:2þ 1� 0:3Þ=2 þ
ð1� 0:1Þ=3Þ ¼ 0:683 and sðcÞ ¼ ð0:2þ 0:4þ 0:6Þ=3ð þ
ð0:9 þ 0:8Þ=2þ ð1� 0:2Þ=3Þ ¼ 0:683. That is to say,

sðbÞ ¼ sðcÞ. By the comparison method in Definition 3,

b ¼ c, which is against our intuition.

2.2 The fuzzy TODIM method

Krohling and Souza [51] presented a fuzzy TODIM method

considering that the traditional TODIM method cannot

address problems under fuzzy environments. The details of

the fuzzy TODIM method are introduced in the rest of this

subsection.

Let us consider an MCDM problem with m alternatives

A ¼ fA1;A2; . . .;Amg, and n criteria C ¼ fC1;C2; . . .Cng.
The decision-making matrix can be denoted as:

S ¼

S11 S12 � � � S1n
S21 S22 � � � S2n

..

. ..
. . .

. ..
.

Sm1 Sm2 � � � Smn

0

BBB@

1

CCCA
;

where Stj is a trapezoidal fuzzy number and it represents

the value of alternative At under criterion Cj. Further-

more, the weight vector of criteria is

w ¼ ðw1;w2; . . .;wnÞT , where wj � 0 ðj ¼ 1; 2; . . .; nÞ andPn
j¼1 wj ¼ 1.

Step 1 Normalize the decision matrix.

Step 2 Obtain the dominance of each alternative Ai over

each alternative Ar.

Uir ¼
Xn

j¼1

U j
ir;
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where

U j
ir ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wjuPn
j¼1 wju

r
� dðSij; SrjÞ; if ðmðSijÞ � mðSrjÞÞ[ 0

0; if ðmðSijÞ � mðSrjÞÞ ¼ 0

�1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 wju

wju

s

� dðSij; SrjÞ; if ðmðSijÞ � mðSrjÞÞ\0

8
>>>>>>><

>>>>>>>:

:

ð1Þ

wju ¼ wj

wu
and wu ¼ maxðwjÞ ðj ¼ 1; 2; . . .; nÞ. dðSij; SrjÞ

signifies the distance between Sij and Srj. mðSijÞ is the

defuzzified value defined in Ref. [51]. Here, mðSijÞ is uti-
lized to compare two fuzzy numbers. If ðmðSijÞ�
mðSrjÞÞ[ 0, it represents a gain; if ðmðSijÞ � mðSrjÞÞ ¼ 0,

it is nil; if ðmðSijÞ � mðSrjÞÞ\0, it represents a loss. The

parameter t is the decay factor of the loss and t[ 0 under

normal circumstances.

Step 3 Obtain the global value of the alternative Ai via

the following formula:

ni ¼

Pm
r¼1 Uir � min

1� i�m

Pm
r¼1 Uir

� �

max
1� i�m

Pm
r¼1 Uir

� �
� min

1� i�m

Pm
r¼1 Uir

� � :

The rank order of the alternatives can be obtained

according to the global value of each alternative. The

smaller the global value ni, the worse the alternative Ai

will be.

A shortcoming exists in this fuzzy TODIM method.

In Eq. (1), the distance measurement is utilized to

reflect the difference between two fuzzy numbers.

However, the difference between two fuzzy numbers

includes both the distance and the included angle

between them while the distance measurement ignores

the latter. In other words, the distance measurement

in this fuzzy TODIM method cannot reflect the dif-

ference between two fuzzy numbers fully and

accurately.

3 A new extended TODIM method for MCDM
problems with MVNSs

In this section, a new comparison method of MVNSs is

defined to overcome the limitation presented in Sect. 2.1.

Moreover, we propose the projection and normalized pro-

jection measurements of MVNSs. Subsequently, based on

these two measurements, a projection-based difference

measurement is presented. Finally, we construct a new

projection-based TODIM method on the basis of the pro-

jection-based difference measurement.

3.1 A new comparison method of MVNNs

Definition 4 Let b ¼ ~tB;~iB; ~fB
� �

be an MVNN. The score

function for b can be defined as:

sðbÞ ¼ 3þ 1

lt

Xlt

k¼1

tBk �
2

li

Xli

g¼1

iBg �
1

lf

Xlf

r¼1

fBr

 !,

4; ð2Þ

and the accuracy function for b can be defined as:

hðbÞ ¼

3þ 1

lt

Xlt

k¼1

tBk �
2

lilt

Xli

g¼1

Xlt

k¼1

iBgð1� tBkÞ �
1

lf li

Xlf

r¼1

Xli

g¼1

fBrð1� iBgÞ
 !,

4:

ð3Þ

Definition 5 Let b and c be two MVNNs. The compar-

ison method between b and c can be defined as:

1. When sðbÞ\sðcÞ, b � c;

2. When sðbÞ[ sðcÞ, b � c;

3. When sðbÞ ¼ sðcÞ and hðbÞ\hðcÞ, b � c;

4. When sðbÞ ¼ sðcÞ and h bð Þ[ h cð Þ, b � c; and

5. When s bð Þ ¼ s cð Þ and hðbÞ ¼ hðcÞ, b ¼ c.

Example 2 Use the data in Example 1. By Eq. (2), we

have that sðbÞ ¼ 3þ ð0:3þ 0:4þ 0:5Þ=3�ð ð0:2þ 0:3Þ�
0:1Þ=4 ¼ 0:7, sðcÞ ¼ 3þ ð0:2þ 0:4þ 0:6Þ=3� ð0:1þð
0:2Þ � 0:2Þ=4 ¼ 0:975. Therefore, sðbÞ\sðcÞ. By Defini-

tion 5, we can obtain that b � c, that is, the comparison

method in Definition 5 conquers the defect of the com-

parison method in Definition 3.

Example 3 Let b ¼ 0:3; 0:4; 0:5f g; 0:2; 0:3f g; 0:1f gf g
and c ¼ f0:4; 0:5; 0:6g:f0:2; 0:3g; f0:2gf g be two

MVNNs. By Eq. (2), we have that sðbÞ ¼ 0:7 and

sðcÞ ¼ 0:7. By Eq. (3), hðbÞ ¼ 0:756 and hðcÞ ¼ 0:775.

Hence, sðbÞ ¼ sðcÞ and hðbÞ\hðcÞ. By Definition 5, we

can obtain that b � c.

Definition 6 Let b ¼ ~tB;~iB; ~fB
� �

be an MVNN. The

complementary set negðbÞ of b can be defined as:

negðbÞ ¼ ~fB;~inegðBÞ; ~tB
� �

;

where ~inegðBÞ ¼ 1� tBliðxtÞ; 1f � tBðli�1ÞðxtÞ; . . .; 1� iB1
ðxtÞg.

3.2 The projection and normalized projection

measurements of MVNSs

In this subsection, we define a cosine measurement of the

included angle between two MVNSs. Then, a projection

measurement of MVNSs is proposed on the basis of the

cosine measurement. A normalized projection measurement
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of MVNSs is also presented to cover the defect of the pro-

posed projection measurement.

Definition 7 Let A ¼ xt; ~tAðxtÞ;~iAðxtÞ; ~fAðxtÞ
� �� �

and B ¼
xt; ~tBðxtÞ;~iBðxtÞ; ~fBðxtÞ
� �� �

be two MVNSs. The inner

product between A and B can be defined as:

A � B ¼
Xn

j¼1

1

lAt

XlAt

k¼1

tAkðxjÞ
 !

1

lBt

XlBt

k¼1

tBkðxjÞ
 ! 

þ 1

lAi

XlAi

g¼1

1� iAgðxjÞ
� �

 !
1

lBi

XlBi

g¼1

1� iBgðxjÞ
� �

 !

þ 1

lAf

XlAf

r¼1

1� fArðxjÞ
� �

 !
1

lBf

XlBf

r¼1

1� fBrðxjÞ
� �

 !!

;

where lAt, lAi, lAf are the numbers of elements in ~tAðxtÞ,
~iA xtð Þ and ~fA xtð Þ and lBt, lBi, lBf are the numbers of elements

in ~tB xtð Þ, ~iBðxtÞ and ~fBðxtÞ. The modules of A and B can be

defined as:

and the cosine of the included angle between two MVNSs

A and B can be defined as:

Theorem 1 The cosine of the included angle between two

MVNSs A and B satisfies the following properties:

1. 0�CosðA;BÞ� 1;

2. If A ¼ B, then CosðA;BÞ ¼ 1;

3. CosðA;BÞ ¼ CosðB;AÞ.

Proof Let A ¼ xt; ~tAðxtÞ;~iAðxtÞ; ~fAðxtÞ
� �� �

and B ¼ xt;f
~tBðxtÞ;~iBðxtÞ; ~fBðxtÞ
� �

g.

1. By Definition 1, tAkðxjÞ, iAgðxjÞ, tArðxjÞ 2 ½0; 1� exist for
any k 2 f1; 2; . . .; lAtg, g 2 f1; 2; . . .; lAig and r 2
1; 2; . . .; lAf
� �

and tBk xj
� �

, tBg xj
� �

, tBr xj
� �

2 0; 1½ � exist
for any k 2 1; 2; . . .; lBtf g, g 2 f1; 2; . . .; lBig and

r 2 f1; 2; . . .; lBf g. Therefore, it is true that A � B� 0,

Aj j � 0 and Bj j � 0. Thus, Cos A;Bð Þ ¼ A�B
Aj j Bj j � 0. By

the Cauchy–Schwarz inequality: y1z1 þ y2z2þð � � � þ
ynznÞ2 � y21 þ y22 þ � � � þ y2n

� �
z21 þ z22 þ � � � þ z2n
� �

, we

can obtain that 0�A � B� Aj j Bj j. That is to

say, Cos A;Bð Þ ¼ A�B
Aj j Bj j � 1. Hence, 0�Cos A;Bð Þ� 1

holds.

2. When A ¼ B, 1
lAt

PlAt
k¼1 tAkðxjÞ ¼ 1

lBt

PlBt
k¼1 tBkðxjÞ, 1

lAiPlAi
g¼1 1� iAgðxjÞ
� �

¼ 1
lBi

PlBi
g¼1 1� iBgðxjÞ
� �

and 1
lAf

PlAf
r¼1 1� fArðxjÞ
� �

¼ 1
lBf

PlBf
r¼1 1� fBrðxjÞ
� �

. Thus,

A � B ¼ Aj j2¼ Aj j Bj j. Cos A;Bð Þ ¼ A�B
Aj j Bj j ¼ 1.

3. By Eq. (4), Cos A;Bð Þ ¼ A�B
Aj j Bj j and Cos B;Að Þ ¼ B�A

Aj j Bj j.

Since A � B ¼ B � A, Cos A;Bð Þ ¼ Cos B;Að Þ.

Therefore, Theorem 1 holds.

The projection measurement of MVNSs is defined based

on the proposed cosine measurement as follows.

Aj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

j¼1

1

lAt

XlAt

k¼1

tAkðxjÞ
 !2

þ 1

lAi

XlAi

g¼1

1� iAgðxjÞ
� �

 !0

@

2

þ 1

lAf

XlAf

r¼1

1� fArðxjÞ
� �

 !2
1

A

vuuut ;

Bj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

j¼1

1

lBt

XlBt

k¼1

tBkðxjÞ
 !2

þ 1

lBi

XlBi

g¼1

1� iBgðxjÞ
� �

 !0

@

2

þ 1

lBf

XlBf

r¼1

1� fBrðxjÞ
� �

 !2
1

A;

vuuut

CosðA;BÞ¼ A �B
Aj j Bj j

¼

Pn
j¼1

1

lAt

XlAt

k¼1
tAkðxjÞ

� �
1

lBt

XlBt

k¼1
tBkðxjÞ

� �
þ 1

lAi

XlAi

g¼1
1� iAgðxjÞ
� �� �

1

lBi

XlBi

g¼1
1� iBgðxjÞ
� �� �

þ 1

lAf

XlAf

r¼1
1� fArðxjÞ
� �� �

1

lBf

XlBf

r¼1
1� fBrðxjÞ
� �� �� �
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Xn

j¼1

1

lAt

XlAt

k¼1
tAkðxjÞ

� �2

þ 1

lAi

XlAi

g¼1
1� iAgðxjÞ
� �

� � 2

þ 1

lAf

XlAf

r¼1
1� fArðxjÞ
� �

� �2
!vuut 	
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Xn

j¼1

1

lBt

XlBt

k¼1
tBkðxjÞ

� �2

þ 1

lBi

XlBi

g¼1
1� iBgðxjÞ
� �

� �2

þ 1

lBf

XlBf

r¼1
1� fBrðxjÞ
� �

� �2
 !

:

vuut

ð4Þ
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Definition 8 Let A ¼ xt; ~tAðxtÞ;~iAðxtÞ; ~fAðxtÞ
� �� �

and B ¼
xt; ~tBðxtÞ;~iBðxtÞ; ~fBðxtÞ
� �� �

be two MVNSs. Then the pro-

jection of A on B can be defined as:

It should be noted that ProjB Að Þ 6¼ ProjA Bð Þ.

Example 4 Let B ¼ x; 0:3; 0:4; 0:5f g; 0:2; 0:3f g; 0:1f gf g
and C ¼ x; 0:4; 0:5; 0:6f g; 0:2; 0:3f g; 0:2f gf g be two

MVNSs. By Eq. (5), ProjC Bð Þ ¼ 0:4	0:5þ0:75	0:75þ0:9	0:8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:52þ0:752þ0:82

p ¼
1:4825ffiffiffiffiffiffiffiffiffiffi
1:4525

p ¼ 1:230 and ProjB Cð Þ ¼ 0:4	0:5þ0:75	0:75þ0:9	0:8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:42þ0:752þ0:92

p

¼ 1:4825ffiffiffiffiffiffiffiffiffiffi
1:5325

p ¼ 1:198. It is obvious that ProjC Bð Þ 6¼ ProjB Cð Þ.

Theorem 2 Let A, B and C be three MVNSs. Then, the

projection measurement of MVNSs satisfies the following

properties:

1. 0� ProjB Að Þ� Aj j �
ffiffiffiffiffi
3n

p
;

2. If A 
 B, then ProjC Að Þ� ProjC Bð Þ; and
3. If A ¼ B, then ProjA Bð Þ ¼ ProjB Að Þ ¼ Aj j ¼ Bj j.

Proof Let A ¼ xt; ~tAðxtÞ;~iAðxtÞ; ~fAðxtÞ
� �� �

, B ¼ xt; ~tBðf
ðxtÞ;~iBðxtÞ; ~fBðxtÞÞg and C ¼ xt; ~tCðxtÞ;~iCðxtÞ; ~fCðxtÞ

� �� �
.

1. By Theorem 1, Cos A;Bð Þ 2 ½0; 1�. Since 0� Aj j
�

ffiffiffiffiffi
3n

p
, ProjB Að Þ ¼ Aj jCos A;Bð Þ 2 0; Aj j½ �. Therefore,

0� ProjB Að Þ� Aj j �
ffiffiffiffiffi
3n

p
.

2. When A 
 B, 1
lAt

PlAt
k¼1 tAkðxjÞ� 1

lBt

PlBt
k¼1 tBkðxjÞ, 1

lAiPlAi
g¼1 1� iAgðxjÞ
� �

� 1
lBi

PlBi
g¼1 1� iBgðxjÞ
� �

and 1
lAf

PlAf
r¼1 1� fArðxjÞ
� �

� 1
lBf

PlBf
r¼1 1� fBrðxjÞ
� �

. Hence,

Therefore, it is true that ProjC Að Þ ¼ A�C
Cj j � B�C

Cj j ¼
ProjC Bð Þ.

3. By Theorem 1, Cos A;Bð Þ ¼ Cos B;Að Þ ¼ 1 when

A ¼ B. Moreover, Aj j ¼ Bj j. Thus, ProjA Bð Þ ¼ Bj jCos
B;Að Þ ¼ Aj jCos A;Bð Þ ¼ ProjB Að Þ ¼ Aj j ¼ Bj j.

Therefore, Theorem 2 is true.

The projection measurement is proposed to reflect

the degree that one object is close to another [60].

Generally speaking, the larger ProjB Að Þ is, the closer

A is to B. Nevertheless, the situation is opposite

sometimes.

Example 5 Let A ¼ x; 0:5; 0:6; 0:7f g; 0:2; 0:3f g; 0:3f gf g
and B ¼ x; 0:4; 0:5; 0:6f g; 0:2; 0:3f g; 0:2f gf g be two

MVNSs. By Eq. (5), ProjB Að Þ ¼ 0:6	0:5þ0:75	0:75þ0:7	0:8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:52þ0:752þ0:82

p ¼
1:4225ffiffiffiffiffiffiffiffiffiffi
1:4525

p ¼ 1:180 and ProjB Bð Þ ¼ 0:5	0:5þ0:75	0:75þ0:8	0:8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:52þ0:752þ0:82

p ¼
1:4525ffiffiffiffiffiffiffiffiffiffi
1:4525

p ¼ 1:205. It is obvious that ProjB Að Þ[ ProjB Bð Þ.
According to the projection value, A is closer to B than

B itself, which does not conform to our intuition.

To cover this deficiency, the normalized projection

measurement of MVNSs is presented motivated by Ref.

[60] as follows.

Definition 9 Let B ¼ xt; ~tBðxtÞ;~iBðxtÞ; ~fBðxtÞ
� �� �

and

C ¼ xt; ~tCðxtÞ;~iCðxtÞ; ~fCðxtÞ
� �� �

be two MVNSs. Then, the

normalized projection of B on C can be defined as:

ProjB Að Þ¼ Aj jCos A;Bð Þ

¼

Pn
j¼1

1

lAt

XlAt

k¼1
tAkðxjÞ

� �
1

lBt

XlBt

k¼1
tBkðxjÞ

� �
þ 1

lAi

XlAi

g¼1
1� iAgðxjÞ
� �

� �
1

lBi

XlBi

g¼1
1� iBgðxjÞ
� �

� �
þ 1

lAf

XlAf

r¼1
1� fArðxjÞ
� �

� �
1

lBf

XlBf

r¼1
1� fBrðxjÞ
� �

� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1
1
lBt

PlBt
k¼1 tBkðxjÞ

	 
2
þ 1

lBi

PlBi
g¼1 1� iBgðxjÞ
� �	 
2

þ 1
lBf

PlBf
r¼1 1� fBrðxjÞ
� �	 
2� �s : ð5Þ

A � C ¼
Xn

j¼1

1

lAt

XlAt

k¼1

tAkðxjÞ
 !

1

lCt

XlCt

k¼1

tCkðxjÞ
 !

þ
 

1

lAi

XlAi

g¼1

1� iAgðxjÞ
� �

 !
1

lCi

XlCi

g¼1

1� iCgðxjÞ
� �

 !

þ 1

lAf

XlAf

r¼1

1� fArðxjÞ
� �

 !
1

lCf

XlCf

r¼1

1� fCrðxjÞ
� �

 !!

�
Xn

j¼1

1

lBt

XlBt

k¼1

tBkðxjÞ
 !

1

lCt

XlCt

k¼1

tCkðxjÞ
 ! 

þ 1

lBi

XlBi

g¼1

1� iBgðxjÞ
� �

 !
1

lCi

XlCi

g¼1

1� iCgðxjÞ
� �

 !

þ 1

lBf

XlBf

r¼1

1� fBrðxjÞ
� �

 !
1

lCf

XlCf

r¼1

1� fCrðxjÞ
� �

 !!

¼ B � C:
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NProjC Bð Þ ¼ ProjC Bð Þ= Cj j
ProjC Bð Þ= Cj j þ 1� ProjC Bð Þ= Cj jj j

¼ ProjC Bð Þ
ProjC Bð Þ þ Cj j � ProjC Bð Þj j : ð6Þ

Theorem 3 Let A, B and C be three MVNSs. Then,

1. 0�NProjB Að Þ� 1;

2. If A ¼ B, then NProjB Að Þ ¼ 1; and

3. If A 
 B 
 C, then NProjC Að Þ�NProjC Bð Þ.

Proof Let A ¼ xt; ~tAðxtÞ;~iAðxtÞ; ~fAðxtÞ
� �� �

, B ¼ xt; ~tBðf
ðxtÞ;~iBðxtÞ; ~fBðxtÞÞg and C ¼ xt; ~tCðxtÞ;~iCðxtÞ; ~fCðxtÞ

� �� �
.

1. By Theorem 2, ProjB Að Þ� 0. Therefore, NProjB Að Þ ¼
ProjB Að Þ

ProjB Að Þþ Bj j�ProjB Að Þj j � 0. Furthermore, 0� ProjB Að Þ

� ProjB Að Þ þ Bj j�j ProjB Að Þj. It is true that

NProjB Að Þ ¼ ProjB Að Þ
ProjB Að Þþ Bj j�ProjB Að Þj j � 1. Hence,

0�NProjB Að Þ� 1 holds.

2. By Theorem 2, ProjA Bð Þ ¼ ProjB Að Þ ¼ Aj j ¼ Bj j when
A ¼ B. Thus, NProjB Að Þ ¼ ProjB Að Þ

ProjB Að Þþ Bj j�ProjB Að Þj j ¼
Bj j

Bj jþ0
¼ 1.

3. When A 
 B 
 C, 1
lAt

PlAt
k¼1 tAkðxjÞ � 1

lBt

PlBt
k¼1 tBkðxjÞ

� 1
lCt

PlCt
k¼1 tCkðxjÞ, 1

lAi

PlAi
g¼1 1� iAgðxjÞ
� �

� 1
lBi

PlBi
g¼1

1� iBgðxjÞ
� �

� 1
lCi

PlCi
g¼1 1� iCgðxjÞ
� �

and 1
lAf

PlAf
r¼1

1� fArðxjÞ
� �

� 1
lBf

PlBf
r¼1 1� fBrðxjÞ
� �

� 1
lCf

PlCf
r¼1 1�ð

fCrðxjÞÞ. Therefore, Aj j � Bj j � Cj j. By Theorem 2,

NProjC Að Þ� Aj j � Cj j and NProjC Bð Þ� Bj j � Cj j. It

can be obtained that NProjC Að Þ ¼
ProjC Að Þ

ProjC Að Þþ Cj j�ProjC Að Þj j ¼
ProjC Að Þ

Cj j and NProjC Bð Þ ¼
ProjC Bð Þ

ProjC Bð Þþ Cj j�ProjC Bð Þj j ¼
ProjC Bð Þ

Cj j . By Theorem 2,

ProjC Að Þ� ProjC Bð Þ. Hence, NProjC Að Þ�NProjC Bð Þ.

Example 6 Let A ¼ x; 0:1; 0:2; 0:3f g; 0:4; 0:5f g; 0:6f gf g,
B ¼ x; 0:3; 0:5; 0:7f g; 0:3; 0:4f g; 0:4f gf g and C ¼ x;f
0:5; 0:6; 0:7f g; 0:3; 0:4f g; 0:3f gg be three MVNSs. By

Eq. (5), ProjB Að Þ ¼ 0:2	0:5þ0:55	0:65þ0:4	0:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:52þ0:652þ0:62

p ¼ 0:6975ffiffiffiffiffiffiffiffiffiffi
1:0325

p ¼
0:686, Bj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0325

p
, ProjC Að Þ ¼ 0:2	0:6þ0:55	0:65þ0:4	0:7ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:62þ0:652þ0:72
p

¼ 0:7575ffiffiffiffiffiffiffiffiffiffi
1:2725

p ¼ 0:672, and Cj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2725

p
. By Eq. (6),

NProjB Að Þ¼ 0:686
0:686þ

ffiffiffiffiffiffiffiffiffiffi
1:0325

p
�0:686j j¼0:675 and NProjC Að Þ¼

0:672
�

0:672þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2725�0:672

p�� ��� �
¼0:596. Therefore,

NProjC Að Þ\NProjB Að Þ, that is, A is closer to B than to C.

3.3 The projection-based difference measurement

of MVNSs

In this subsection, a difference measurement of MVNSs is

defined based on the projection and normalized projection

measurements in Sect. 3.2 to denote the difference between

two MVNSs.

Definition 10 Let B ¼ xt; ~tBðxtÞ;~iBðxtÞ; ~fBðxtÞ
� �� �

and

C ¼ xt; ~tCðxtÞ;~iCðxtÞ; ~fCðxtÞ
� �� �

be two MVNSs. Then, the

projection-based difference between B and C can be

defined as:

Diff B;Cð Þ ¼ NProjI Bð Þ � NProjI Cð Þ: ð7Þ

where I is any MVNS satisfying B 
 I and C 
 I.

Theorem 4 Let B ¼ xt; ~tBðxtÞ;~iBðxtÞ; ~fBðxtÞ
� �� �

and C ¼
xt; ~tCðxtÞ;~iCðxtÞ; ~fCðxtÞ
� �� �

be two MVNSs. The projection-

based difference between B and C can be defined as:

Diff B;Cð Þ ¼ ProjI Bð Þ � ProjI Cð Þ
Ij j : ð8Þ

Proof By Definition 10, B 
 I and C 
 I. Therefore,

Bj j � Ij j and Cj j � Ij j. By Theorem 2, it is true that

ProjI Bð Þ� Bj j � Ij j and ProjI Cð Þ� Cj j � Ij j. By Eq. (6),

NProjI Bð Þ ¼ ProjI Bð Þ
ProjI Bð Þþ Ij j�ProjI Bð Þj j ¼

ProjI Bð Þ
Ij j and NProjI Cð Þ

¼ ProjI Cð Þ
ProjI Cð Þþ Ij j�ProjI Cð Þj j ¼

ProjI Cð Þ
Ij j . Thus, by Eq. (7), Diff

B;Cð Þ ¼ NProjI Bð Þ � NProjI Cð Þ ¼ ProjI Bð Þ�ProjI Cð Þ
Ij j .

Theorem 5 The projection-based difference measure-

ment between two MVNSs B and C satisfies the following

properties:

1. �1�Diff B;Cð Þ� 1;

2. If B ¼ C, then Diff B;Cð Þ ¼ 0;

3. If B 
 C, then Diff B;Cð Þ� 0;

4. If C 
 B, then Diff B;Cð Þ� 0;

5. Diff B;Cð Þ þ Diff C;Bð Þ ¼ 0;

6. If Diff B;Cð Þ þ Diff C;Bð Þ ¼ 0, then Diff B;Cð Þ ¼
Diff C;Bð Þ ¼ 0; and

7. If Diff B;Cð Þ[ 0 and Diff C;Dð Þ[ 0, then Diff B;Dð Þ
[ 0.

Proof

1. By Theorem 3, 0�NProjI Bð Þ� 1 and 0�NProjI
Cð Þ� 1. Thus, Diff B;Cð Þ ¼ ProjI Bð Þ � ProjI Cð Þ 2
½�1; 1�.

2. When B ¼ C, we have that NProjI Bð Þ ¼ NProjI Cð Þ.
Hence, Diff B;Cð Þ ¼ NProjI Bð Þ � NProjI Cð Þ ¼ 0.
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3. By Theorem 3, NProjI Bð Þ�NProjI Cð Þ when B 
 C.

Therefore, Diff B;Cð Þ ¼ NProjI Bð Þ � NProjI Cð Þ� 0.

4. By Theorem 3, NProjI Bð Þ�NProjI Cð Þ when C 
 B.

Therefore, Diff B;Cð Þ ¼ NProjI Bð Þ � NProjI Cð Þ� 0.

5. By Eq. (7), Diff B;Cð Þ ¼ NProjI Bð Þ � NProjI Cð Þ and

Diff C;Bð Þ ¼ NProjI Cð Þ � NProjI Bð Þ. Therefore, Diff
B;Cð Þ þ Diff C;Bð Þ ¼ NProjI Bð Þ � NProjI Cð Þð Þþ
NProjI Cð Þ � NProjI Bð Þð Þ ¼ 0.

6. By (3), Diff B;Cð Þ þ Diff C;Bð Þ ¼ 0. When Diff B;Cð Þ
¼ Diff C;Bð Þ, Diff B;Cð Þ ¼ Diff C;Bð Þ ¼ 0.

7. When Diff B;Cð Þ[ 0, NProjI Bð Þ � NProjI Cð Þ[ 0,

that is NProjI Bð Þ[NProjI Cð Þ. When Diff C;Dð Þ[
0, NProjI Cð Þ � NProjI Dð Þ[ 0, that is NProjI Cð Þ[
NProjI Dð Þ. Thus, NProjI Bð Þ[NProjI Cð Þ[NProjI
Dð Þ, and Diff B;Dð Þ ¼ NProjI Bð Þ � NProjI Dð Þ[ 0.

Therefore, Theorem 4 holds.

Example 7 Let A ¼ x; 0:1; 0:2; 0:3f g; 0:4; 0:5f g; 0:6f gf g
and B ¼ x; 0:3; 0:5; 0:7f g; 0:3; 0:4f g; 0:4f gf g be two

MVNSs. Let I ¼ x; 0:7f g; 0:3f g; 0:4f gf g. It is obvious that
A 
 I and B 
 I. By Eq. (5), ProjI Að Þ ¼
0:2	0:7þ0:55	0:7þ0:4	0:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:72þ0:72þ0:62
p ¼ 0:765ffiffiffiffiffiffi

1:34
p ¼ 0:661, ProjI Bð Þ ¼

0:5	0:7þ0:65	0:7þ0:6	0:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:72þ0:72þ0:62

p ¼ 1:165ffiffiffiffiffiffi
1:34

p ¼ 1:006, and Ij j ¼
ffiffiffiffiffiffiffiffiffi
1:34

p
. By

Eq. (6), NProjI Að Þ ¼ 0:661ffiffiffiffiffiffi
1:34

p ¼ 0:571 and NProjI Bð Þ ¼
1:006ffiffiffiffiffiffi
1:34

p ¼ 0:869. Consequently, by Eq. (7), Diff A;Bð Þ¼
NProjI Að Þ �NProjI Bð Þ ¼ 0:571� 0:869 ¼ �0:298.

3.4 A projection-based TODIM method for MCDM

problems

In this subsection, we construct a projection-based

TODIM method for MCDM problems with MVNSs to

cover the shortage demonstrated in Sect. 2.2. The pro-

jection-based TODIM method introduces the projection-

based difference measurement to depict the distinction

between objects.

Assume there are m alternatives A ¼ fA1;A2; . . .Amg
and n criteria C ¼ fC1;C2; . . .Cng. To find the most

desirable alternative, m alternatives are evaluated by

decision-makers concerning n criteria. Considering the

fuzziness, the evaluations are transformed into

MVNNs, and the transformed decision matrix can be

denoted as:

U ¼

U11 U12 � � � U1n

U21 U22 � � � U2n

..

. ..
. . .

. ..
.

Um1 Um2 � � � Umn

0

BBB@

1

CCCA
;

where Urj ¼ ~trj;~irj; ~frj
� �

~trj ¼ t1rj; t
2
rj; . . .; t

lTrj
rj

n o
; ~irj ¼

	

i1rj; i
2
rj; . . .; i

lIrj
rj

n o
; ~frj ¼ f 1rj; f

2
rj; . . .; f

lFrj
rj

n o
Þ is the evaluation

in the form of MVNNs for the alternative Ar r ¼ 1; 2;ð
. . .;mÞ under the criterion Cj j ¼ 1; 2; . . .; nð Þ. Moreover,

the weight vector of criteria is w ¼ ðw1;w2; . . .;wnÞT ,
where wj � 0 j ¼ 1; 2; . . .; nð Þ and

Pn
j¼1 wj ¼ 1.

The procedure of the projection-based TODIM method

is introduced in the rest of this subsection:

Step 1 Normalize the decision matrix.

Since cost and benefit criteria may exist in an MCDM

problem simultaneously, the decision matrix needs to be

normalized. When Cj is a cost criterion, Urj should be

normalized by utilizing the complementary set of MVNNs

in Definition 6. When Cj is a benefit criterion, Urj is

unnecessary to be normalized. The formula of normaliza-

tion is defined as:

Nrj ¼ Trj; Irj;Frj

� �

¼ Urj if Cj is a benefit criterion

neg Urj

� �
if Cj is a cost criterion:


ð9Þ

where Trj ¼ T1
rj; T

2
rj; . . .; T

lTrj
rj

n o
, Irj ¼ I1rj; I

2
rj; . . .; I

lIrj
rj

n o
and

Frj ¼ F1
rj;F

2
rj; . . .;F

lFrj
rj

n o
. lTrj , lIrj and lFrj

are the number of

elements in Trj, Irj and Frj, respectively.

Step 2 Calculate the ideal alternative.

Here, the ideal alternative is defined as:

I ¼ max
r;j

T
lTrj
rj

	 
 �
; max

r;j
I
lIrj
rj

	 
 �
; max

r;j
F
lFrj
rj

	 
 � �
:

ð10Þ

It is evident that Nrj 
 I holds for any r 2 1; 2; . . .; nf g and

j 2 1; 2; . . .;mf g.

Step 3 Calculate score values.

The score value sðNrjÞ r ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nð Þ
of Nrj can be calculated by the definition of the score

function in Definition 4.

Step 4 Calculate accuracy values.

The accuracy value hðNrjÞ r ¼ 1; 2; . . .;m; j ¼ð
1; 2; . . .; nÞ of Nrj can be calculated by the accuracy func-

tion in Definition 5.

Step 5 Obtain projection values.

The projection value Proj
j
I ðrÞ r ¼ 1; 2; . . .;m; j ¼ð

1; 2; . . .; nÞ of alternative Ar on I concerning the criterion Cj

can be obtained by Eq. (5).
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Step 6 Obtain the projection-based difference matrices.

The projection-based difference Diff jg rð Þ r ¼ 1; 2; . . .;ð
m; g ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ between alterna-

tives Ar and Ag concerning the criterion Cj can be obtained

by Eq. (8), and the projection-based difference matrices

can be obtained.

Step 7 Obtain partial dominance matrices.

The partial dominance matrix U j under the criterion Cj

is composed of partial dominance degrees U j
rg r ¼ 1; 2;ð

. . .;m; g ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ of the alternative Ar

over the alternative Ag concerning the criterion Cj. The

partial dominance degree U j
rg can be calculated utilizing

the obtained projection-based difference matrices:

U j
rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffixjuPn
j¼1 xju

r
� Diff jg rð Þ; Nrj � Ngj

0; Nrj ¼ Ngj

�1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 xju

xju

s

� Diff jr gð Þ; Nrj � Ngj

8
>>>>>>><

>>>>>>>:

; ð11Þ

where xju ¼ xj

xu
and xu ¼ maxðxjÞ j ¼ 1; 2; . . .; nð Þ. If

Nrj � Ngj, it can be thought as a gain; if Nrj ¼ Ngj, it is

breakeven; if Nrj � Ngj, it can be thought as a loss. The

parameter t is the decay factor of the loss and t[ 0.

Step 8 Obtain the final dominance matrix U.

The final dominance matrix U is composed of domi-

nance degrees. The dominance degree Urg r ¼ 1; 2;ð
. . .;m; g ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nÞ denotes the degree

that the alternative Ai is better than the alternative Ar and

can be obtained by:

Urg ¼
Xn

j¼1

U j
rg: ð12Þ

Step 9 Calculate the global values.

The global value nr r ¼ 1; 2; . . .;mð Þ of the alternative Ar

can be obtained by:

nr ¼

Pm
g¼1 Urg � min

1� r�m

Pm
g¼1 Urg

	 


max
1� r�m

Pm
g¼1 Urg

	 

� min

1� r�m

Pm
g¼1 Urg

	 
 : ð13Þ

Step 10 Rank the alternatives.

The ranking order of the alternatives can be obtained

according to the global values. The bigger the global value

of an individual alternative, the better the alternative will

be.

4 An numerical example

In this section, a numerical example of the personnel

selection problem from Ref. [61] is provided to demon-

strate the applicability of the projection-based TODIM

method.

Personnel selection is considered as a significant issue

for companies because of its influence on the quantity of

products and services. Personnel selection is a process of

selecting employees whose skills mostly match the posi-

tion. This process can be thought as an MCDM one: can-

didates are evaluated by the company under several

criteria, including the oral communication skill, the

working experience and the general aptitude. Moreover, in

view of the fuzziness and hesitancy in the selection pro-

cess, it would be better to introduce MVNSs to denote

evaluations.

Here, let us consider a personnel selection problem that

a manufacturing company plans to employ a sales super-

visor. After preliminary election from dozens of candi-

dates, four candidates enter the final round interview

Ar r ¼ 1; 2; 3; 4ð Þ. The company interviews the four candi-

dates and evaluated these candidates under three criteria:

(1) C1 is the oral communication skill; (2) C2 is the

working experience; (3) C3 is the general aptitude. The

weight vector of criteria is given by the company as

w ¼ 0:35; 0:25; 0:4ð ÞT . The evaluations of the four candi-

dates under each criterion are transformed into MVNNs,

and Table 1 lists the transformed decision-making matrix.

4.1 The steps of the proposed method

Step 1 Normalize the decision matrix.

Since all these criteria are benefit ones, it is unnecessary

to normalize the decision-making matrix.

Table 1 The transformed decision-making matrix

C1 C2 C3

A1 0:3; 0:4; 0:5f g; 0:1f g; 0:3; 0:4f gf g 0:5; 0:6f g; 0:2; 0:3f g; 0:3; 0:4f gf g 0:2; 0:3f g; 0:1; 0:2f g; 0:5; 0:6f gf g
A2 0:6; 0:7f g; 0:1; 0:2f g; 0:2; 0:3f gf g 0:6; 0:7f g; 0:1f g; 0:3f gf g 0:6; 0:7f g; 0:1; 0:2f g; 0:1; 0:2f gf g
A3 0:5; 0:6f g; 0:4f g; 0:2; 0:3f gf g 0:6f g; 0:3f g; 0:4f gf g 0:5; 0:6f g; 0:1f g; 0:3f gf g
A4 0:7; 0:8f g; 0:1f g; 0:1; 0:2f gf g 0:6; 0:7f g; 0:1f g; 0:2f gf g 0:3; 0:5f g; 0:2f g; 0:1; 0:2; 0:3f gf g
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Step 2 Calculate the ideal alternative.

By Eq. (10), the ideal alternative I can be calculated as

I ¼ 0:8f g; 0:1f g; 0:1f gf g.

Step 3 Calculate score values.

By Eq. (1), we can obtain the score value of each

alternative concerning each criterion and these score values

are presented in Table 2.

Step 4 Calculate accuracy values.

By Eq. (2), we can obtain the accuracy value of each

alternative concerning each criterion and these accuracy

values are presented in Table 3.

Step 5 Obtain projection values.

The projection value Proj
j
I rð Þ r ¼ 1; 2; 3; 4; j ¼ 1; 2; 3ð Þ

of alternative Ar on I concerning criterion Cj can be

obtained by Eq. (5), and these projection values are shown

in Table 4.

Step 6 Obtain the projection-based difference matrices.

The projection-based difference

Diff jg rð Þ r ¼ 1; 2; 3; 4; g ¼ 1; 2; 3; 4; j ¼ 1; 2; 3; 4ð Þ

between alternative Ar and Ag with respect to criterion Cj

can be obtained by Eq. (7), and the projection-based dif-

ference matrices can be obtained:

Diff1 ¼

0 �0:1084 0:0265 �0:2035

0:1084 0 0:135 �0:0951

�0:0265 �0:135 0 �0:2301

0:2035 0:0951 0:2301 0

0

BBB@

1

CCCA
;

Diff2 ¼

0 �0:115 0:0221 �0:155

0:115 0 0:1372 �0:04

�0:0221 �0:1372 0 �0:177

0:1549 0:0398 0:177 0

0

BBB@

1

CCCA
;

and Diff3 ¼

0 �0:3009 �0:2257 �0:1726

0:3009 0 0:0752 0:1283

0:2257 �0:0752 0 0:0531

0:1726 �0:1283 �0:0531 0

0

BBB@

1

CCCA
:

Step 7 Obtain partial dominance matrices.

We can obtain the partial dominance partial dominance

degrees U j
rg r ¼ 1; 2; 3; 4; g ¼ 1; 2; 3; 4; j ¼ 1; 2; 3ð Þ by

Eq. (11), and the obtained partial dominance matrices are

listed as follows:

U1 ¼

0 �0:1832 0:0157 �0:344

0:0641 0 0:0798 �0:1608

�0:045 �0:2281 0 �0:3889

0:1204 0:0563 0:1361 0

0

BBB@

1

CCCA
;

U2 ¼

0 �0:2301 0:0111 �0:3097

0:0575 0 0:0686 �0:0796

�0:0442 �0:2743 0 �0:354

0:0774 0:0199 0:0885 0

0

BBB@

1

CCCA
;

and U3 ¼

0 �0:4757 �0:3568 �0:2729

0:1903 0 0:0476 0:0812

0:1427 �0:1189 0 0:0336

0:1091 �0:2029 �0:084 0

0

BBB@

1

CCCA
:

Step 8 Obtain the final dominance matrix U.

The dominance degree Urg r ¼ 1; 2; 3; 4; g ¼ 1; 2; 3; 4ð Þ
can be obtained by Eq. (12), and the final dominance

matrix is:

U ¼

0 �0:8891 �0:33 �0:9266
0:312 0 0:196 �0:1593
0:0536 �0:6214 0 �0:7093
0:307 �0:1267 0:1407 0

0

BB@

1

CCA:

Step 9 Calculate the global values.

The global value ni i ¼ 1; 2; 3; 4ð Þ can be obtained by

Eq. (13): n1 ¼ 0, n2 ¼ 1, n3 ¼ 0:3482 and n4 ¼ 0:9889.

Step 10 Rank the alternatives.

Since n2 [ n4 [ n3 [ n1, the ranking order of the four

candidates is A2 � A4 � A3 � A1. Thus, the best candidate

is A2.

Table 2 The score value of

each alternative concerning

each criterion

C1 C2 C3

A1 0.7125 0.675 0.6

A2 0.775 0.787 0.8

A3 0.625 0.65 0.7625

A4 0.85 0.8125 0.7

Table 3 The accuracy value of

each alternative concerning

each criterion

C1 C2 C3

A1 0.7412 0.7656 0.6394

A2 0.8331 0.8275 0.8544

A3 0.76 0.77 0.7975

A4 0.8913 0.85 0.75

Table 4 The projection value

of each alternative on

I concerning each criterion

C1 C2 C3

A1 1.1408 1.1308 0.9113

A2 1.3038 1.3038 1.3636

A3 1.1009 1.0976 1.2506

A4 1.4468 1.3636 1.1707
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4.2 The influences of the parameter t

In this subsection, the influence of the parameter t is

investigated and discussed in detail.

As narrated in Sect. 3.4, the value of the parameter t in

Eq. (11) can influence the partial dominance degrees when

there is a loss. That is to say, the value of t can affect the

shape of the prospect value function. To show this influ-

ence, Fig. 1 depicts the prospect value functions with two

different values of t, i.e., t ¼ 1 [62] and t ¼ 2:5 [51]. In

Fig. 1, the horizontal axis represents the projection-based

difference between two alternatives concerning the same

criterion and the vertical axis represents the corresponding

partial dominance degree.

From Fig. 1, the value of t does influence the shape of

the prospect value function. The shapes of the prospect

value functions with t ¼ 1 and t ¼ 2:5 are same in the first

quadrant, while the prospect value functions with t ¼ 1 and

t ¼ 2:5 in the third quadrant have different shapes. More-

over, the shape is deeper when t ¼ 1 than that when

t ¼ 2:5. The reasons for this phenomenon are explained as

follows. From Eq. (11), it is easy to see that the value of

t cannot influence the partial dominance degrees when

there is a gain, that is, the value of t makes no difference to

the shape of the prospect value function in the first quad-

rant. In addition, From Eq. (11), we know that the greater

the value of t, the greater the value of the partial dominance

degree will be when there is a loss. Therefore, it is rea-

sonable that the shape of the prospect value function is

affected by the value of t, and the shape will become

shallower with the increase of t.

Furthermore, the influence of the parameter t on the

ranking order is investigated by comparing the ranking

orders obtained with varying values of t. As the value of

t changes from 0.001 to 50, the corresponding ranking

order of the four candidates can be obtained and compared.

Table 5 lists the value of t, the corresponding global val-

ues, and the ranking order of the candidates.

From Table 5, the ranking order of these four candidates

may be distinct with the change of the value of t. When

t� 2, a same ranking order is obtained with the change of t

and the candidate A2 is the best one while the candidate A1

is the least desirable. A ranking order, which is different

from the order when t� 2, is obtained when 3� t. The best

candidate becomes A4 and A1 is still the worst candidate.

The reason for these differences is listed as follows. From

Eq. (11), we can know that when t� 1, the losses are

amplified and the degree of amplification increases as the

value of t decreases. When t[ 1, the losses are attenuated

and the degree of attenuation increases as the increase of t.

In this numerical example, the losses are attenuated when

1\t� 2, and the degree of attenuation is too small to make

the ranking order of the four candidates different from the

order when t� 1. What is more, when 3� t, the degree of

attenuation becomes bigger than that when 1\t� 2, and

the attenuation of losses makes the candidate A4 become

better than the candidate A2.

In general, the value of t reflects the risk preference of

decision-makers and may eventually influence not only the

shape of the prospect value function but also the ranking

order of the four candidates.

4.3 Comparative analysis

In this subsection, we conduct a comparative analysis

aiming to certify the feasibility of the projection-based

TODIM method. The comparative analysis compares the

proposed projection-based TODIM method with three

other MCDM methods under multi-valued neutrosophic

Table 5 Ranking orders with

different values of t
t The global value ni Ranking order

t ¼ 0:001 n1 ¼ 0, n2 ¼ 1, n3 ¼ 0:3722, n4 ¼ 0:976 A2 � A4 � A3 � A1

t ¼ 0:1 n1 ¼ 0, n2 ¼ 1, n3 ¼ 0:3692, n4 ¼ 0:9776 A2 � A4 � A3 � A1

t ¼ 1 n1 ¼ 0, n2 ¼ 1, n3 ¼ 0:3482, n4 ¼ 0:9889 A2 � A4 � A3 � A1

t ¼ 2 n1 ¼ 0, n2 ¼ 1, n3 ¼ 0:3331, n4 ¼ 0:9971 A2 � A4 � A3 � A1

t ¼ 3 n1 ¼ 0, n2 ¼ 0:9973, n3 ¼ 0:3218, n4 ¼ 1 A4 � A2 � A3 � A1

t ¼ 10 n1 ¼ 0, n2 ¼ 0:9817, n3 ¼ 0:2877, n4 ¼ 1 A4 � A2 � A3 � A1

t ¼ 50 n1 ¼ 0, n2 ¼ 0:9713, n3 ¼ 0:2649, n4 ¼ 1 A4 � A2 � A3 � A1
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Fig. 1 The prospect value functions with t ¼ 1 and t ¼ 2:5
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environments. The first MCDM method is the method

proposed by Ye [41]. Ye [41] defined the MVNWA

operator and established an MCDM method utilizing the

proposed operator. Furthermore, the ranking order of the

method in Ref. [41] is obtained by the cosine between the

collective value and the ideal element 1f g; 0f g; 0f gf g. The
second method is the method proposed by Sahin and Liu

[42]. Sahin and Liu [42] presented an MCDM method

based on the proposed correlation coefficient. Moreover,

the correlation coefficient in Ref. [42] adds some elements

in MVNSs to make two MVNSs be of same length. The

third method is the method proposed by Wang et al. [39].

Wang et al. [39] constructed a TODIM method which is

based on the distance measurement. These three methods

are used to solve the personnel selection problem in this

numerical example, and Table 6 lists the ranking orders of

these three methods and the proposed method.

From Table 6, the best candidate is A4 for the first

method with the MVNWA operator, while A2 is the best

one for the rest three methods. The worst candidate is A1

for the first two methods and the proposed method, while

A3 is the worst one for the third method. We give the

reasons why the differences exist as follows.

The first method does not consider the risk preference of

decision-makers, while the proposed method does. There-

fore, it is reasonable that the ranking order of the first

method may not be the same as that of the proposed

method. In the second method, the selection of the ele-

ments added to MVNNs reflects the risk preference of

decision-makers to a certain extent. In addition, the com-

parison method used in the second method differs from that

in the proposed method. The ranking orders of these two

methods may be different with the change of t though the

ranking orders of the second method and the proposed

method are same in Table 6. The third method makes use

of the distance measurement, while the proposed method

takes advantage of the projection-based difference mea-

surement. The distance measurement cannot take into

account the included angle between two MVNNs, while the

projection-based difference measurement can. In addition,

different comparison methods are used in the third method

and the proposed method. Consequently, the third method

and the proposed method may have different ranking

orders even with the same value of t.

Generally speaking, the proposed method can effec-

tively tackle MCDM problems (such as personnel selec-

tion) under multi-valued neutrosophic environments.

Compared with extant methods, the proposed method takes

into account the risk preference and considers both the

distance and the included angle between two MVNNs.

What is more, the proposed method utilizes an improved

comparison method which covers the defect of the extant

comparison method. The ranking order of the proposed

method is more in line with decision-makers’ preferences

than those obtained by extant methods.

5 Conclusion

MVNSs can better depict fuzzy information in practical

problems than FSs, IFSs, NSs and HFSs. Compared with

the distance measurement, the projection measurement can

reflect more information about the difference between two

MVNSs. Furthermore, TODIM method, which considers

the risk preferences of decision-makers, is significant in

solving MCDM problems. In this study, we defined an

improved comparison method, the projection and normal-

ized projection measurements, and the projection-based

difference measurement for MVNSs. Moreover, a novel

MCDM method was established by incorporating the pro-

jection-based difference measurement with the fuzzy

TODIM method. The proposed projection-based TODIM

method was verified to be applicable and feasible by a

numerical example of personnel selection and a compara-

tive analysis. In addition, we discussed the influence of the

parameter t.

The contribution of this study can be concluded as fol-

lows. First, this study utilized MVNSs to depict the fuzzy

and hesitant information in the personnel selection pro-

cesses. Second, an improved comparison method of

MVNSs was defined to cover the defect of the extant

comparison method. Third, the projection and normalized

projection measurements were extended to multi-valued

neutrosophic environments. Fourth, we presented a pro-

jection-based difference measurement of MVNSs based on

the proposed projection and normalized projection mea-

surements. Fifth, the projection measurement was com-

bined with TODIM method and a projection-based TODIM

method was constructed. The projection-based TODIM

method more fully considers the difference between

MVNSs than the fuzzy TODIM with the distance

measurement.

There are several directions for future research. Firstly,

this study utilizes the projection-based TODIM method in

the personnel selection. In addition to the personnel

selection, MCDM problems in a variety of other fields can

be addressed with the projection-based TODIM method,

Table 6 Ranking orders of the four methods

Method Ranking order

The first method with MVNWA operator [41] A4 � A2 � A3 � A1

The second method [42] A2 � A4 � A3 � A1

The third method (t ¼ 1) [39] A2 � A4 � A1 � A3

The proposed method (t ¼ 1) A2 � A4 � A3 � A1

Neural Comput & Applic

123



including medical diagnosis, the selection of supplier, and

the selection of renewable energy. Secondly, this study

considers the risk preferences of decision-makers, while

the interrelationships among criteria are ignored. In our

future research, the method will be improved to cover this

deficiency. Thirdly, in our numerical example, three cri-

teria are taken for example. However, in practical appli-

cation, many other criteria should be considered. A

comprehensive framework for the personnel selection

problems including all relevant criteria should be con-

structed on the basis of prior studies and the proposed

personnel selection method in future research.
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4. Afshari RA, Nikolić M, Ćoćkalo D (2014) Applications of fuzzy

decision making for personnel selection problem: a review. J Eng

Manag Compet 4(2):68–77

5. Zhang S-F, Liu S-Y (2011) A GRA-based intuitionistic fuzzy

multi-criteria group decision making method for personnel

selection. Expert Syst Appl 38(9):11401–11405

6. Sang X, Liu X, Qin J (2015) An analytical solution to fuzzy

TOPSIS and its application in personnel selection for knowledge-

intensive enterprise. Appl Soft Comput 30:190–204

7. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

8. Zhou H, Wang J-Q, Zhang H-Y (2015) Grey stochastic multi-

criteria decision-making based on regret theory and TOPSIS. Int J

Mach Learn Cybern. doi:10.1007/s13042-015-0459-x

9. Wang C, Wang J (2016) A multi-criteria decision-making method

based on triangular intuitionistic fuzzy preference information.

Intell Autom Soft Comput 22(3):473–482

10. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst

20(1):87–96

11. Atanassov K, Gargov G (1989) Interval valued intuitionistic

fuzzy sets. Fuzzy Sets Syst 31(3):343–349

12. Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529–539

13. Smarandache F (1998) Neutrosophy: neutrosophic probability,

set, and logic. American Research Press, Rehoboth, pp 1–105

14. Smarandache F (1999) A unifying field in logics: neutrosophic

logic. Neutrosophy, neutrosophic set, probability. American

Research Press, Rehoboth, pp 1–141

15. Wang H, Smarandache F, Zhang Y, Sunderraman R (2010)

Single valued neutrosophic sets. Multispace Multistruct

4:410–413

16. Tian Z, Wang J, Wang J, Zhang H (2016) A likelihood-based

qualitative flexible approach with hesitant fuzzy linguistic

information. Cognit Comput. doi:10.1007/s12559-016-9400-1

17. Zhou H, Wang J-Q, Zhang H-Y (2016) Multi-criteria decision-

making approaches based on distance measures for linguistic

hesitant fuzzy sets. J Oper Res Soc. doi:10.1057/jors.2016.41

18. Wu X, Wang J, Peng J, Chen X (2016) Cross-entropy and pri-

oritized aggregation operator with simplified neutrosophic sets

and their application in multi-criteria decision-making problems.

Int J Fuzzy Syst. doi:10.1007/s40815-016-0180-2

19. Ye J (2014) A multicriteria decision-making method using

aggregation operators for simplified neutrosophic sets. J Intell

Fuzzy Syst 26(5):2459–2466

20. Tian ZP, Zhang HY, Wang J, Wang JQ, Chen XH (2016) Multi-

criteria decision-making method based on a cross-entropy with

interval neutrosophic sets. Int J Syst Sci 47(15):3598–3608

21. Zhang H, Ji P, Wang J, Chen X (2015) An improved weighted

correlation coefficient based on integrated weight for interval

neutrosophic sets and its application in multi-criteria decision

making problems. Int J Comput Intell Syst 8(6):1027–1043

22. Zhang H, Wang J, Chen X (2016) An outranking approach for

multi-criteria decision-making problems with interval-valued

neutrosophic sets. Neural Comput Appl 27(3):615–627

23. Broumi S, Talea M, Bakali A, Smarandache F (2016) Single

valued neutrosophic graphs. J New Theory 10:86–101

24. Broumi S, Talea M, Bakali A, Smarandache F (2016) On bipolar

single valued neutrosophic graphs. J New Theory 11:84–102

25. Broumi S, Smarandache F, Talea M, Bakali A (2016) An intro-

duction to bipolar single valued neutrosophic graph theory. Appl

Mech Mater 841:184–191

26. Broumi S, Bakali A, Talea M, Smarandache F (2016) Isolated

single valued neutrosophic graphs. Neutrosophic Sets Syst

11:74–78

27. Broumi S, Talea M, Smarandache F, Bakali A (2016) Single

valued neutrosophic graphs: degree, order and size. In: IEEE

world congress on computational intelligence (accepted)
28. Zhou H, Wang J-q, Zhang H-y (2016) Grey stochastic multi-

criteria decision-making approach based on prospect theory and

distance measures (in press)
29. Tian Z, Wang J, Wang J, Chen X (2015) Multi-criteria decision-

making approach based on gray linguistic weighted Bonferroni

mean operator. Int Trans Oper Res. doi:10.1111/itor.12220

30. Zhang H, Ji P, Wang J, Chen X (2016) A neutrosophic normal

cloud and its application in decision-making. Cognit Comput.

doi:10.1007/s12559-016-9394-8

31. Tian Z-P, Wang J, Wang J-Q, Zhang H-Y (2016) An improved

MULTIMOORA approach for multi-criteria decision-making

based on interdependent inputs of simplified neutrosophic lin-

guistic information. Neural Comput Appl. doi:10.1007/s00521-

016-2378-5

32. Tian Z, Wang J, Wang J, Zhang H (2016) Simplified neutro-

sophic linguistic multi-criteria group decision-making approach

to green product development. Group Decis Negot. doi:10.1007/

s10726-016-9479-5

33. Tian Z, Wang J, Zhang H, Wang J (2016) Multi-criteria decision-

making based on generalized prioritized aggregation operators

under simplified neutrosophic uncertain linguistic environment.

Int J Mach Learn Cybern. doi:10.1007/s13042-016-0552-9

34. Ma Y, Wang J, Wang J, Wu X (2016) An interval neutrosophic

linguistic multi-criteria group decision-making method and its

application in selecting medical treatment options. Neural Com-

put Appl. doi:10.1007/s00521-016-2203-1

35. Ye J, Fu J (2016) Multi-period medical diagnosis method using a

single valued neutrosophic similarity measure based on tangent

function. Comput Methods Programs Biomed 123:142–149

Neural Comput & Applic

123

http://dx.doi.org/10.1155/2015/612767
http://dx.doi.org/10.1007/s13042-015-0459-x
http://dx.doi.org/10.1007/s12559-016-9400-1
http://dx.doi.org/10.1057/jors.2016.41
http://dx.doi.org/10.1007/s40815-016-0180-2
http://dx.doi.org/10.1111/itor.12220
http://dx.doi.org/10.1007/s12559-016-9394-8
http://dx.doi.org/10.1007/s00521-016-2378-5
http://dx.doi.org/10.1007/s00521-016-2378-5
http://dx.doi.org/10.1007/s10726-016-9479-5
http://dx.doi.org/10.1007/s10726-016-9479-5
http://dx.doi.org/10.1007/s13042-016-0552-9
http://dx.doi.org/10.1007/s00521-016-2203-1


36. Ma H, Hu Z, Li K, Zhang H (2016) Toward trustworthy cloud

service selection: a time-aware approach using interval neutro-

sophic set. J Parallel Distrib Comput 96:75–94

37. Karsak EE, Dursun M (2015) An integrated fuzzy MCDM

approach for supplier evaluation and selection. Comput Ind Eng

82:82–93
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