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Abstract—In order to have a normal behavior in combination
of bodies of evidence, this paper proposes a new combination
rule. This rule includes the cardinality of focal set elements in
conjunctive operation and the conflict redistribution to all steps.
Based on the focal set cardinalities, the conflict redistribution
is assigned using factors. The weighted factors are computed
from the original and the conjunctive masses assigned to each
focal element. This strategy forces the conflict redistribution in
favor of the more committed hypothesis. Our method is evaluated
and compared with some numerical examples reported in the
literature. As result, this rule redistributes the conflict in favor of
the more committed hypothesis and gives intuitive interpretation
for combining multiple information sources with coherent results.

Keywords—Evidential Reasoning, Belief functions, Evidence
theory, Combination rule, Conflict redistribution.

I. INTRODUCTION

The Dempster-Shafer Theory (DST) is quite popular be-
cause it seems well-suited for representing and managing
uncertainty in a wide range of engineering problems [1],
[2]. Ever since the publication of Zadeh’s example in 1979,
Dempster’s rule has been criticized intensively especially in
the presence of highly conflicting beliefs because such beliefs
are considered to be responsible of the counterintuitive results
produced by this rule [3]. Therefore, many attempts to modify
the original Dempester’s combination rule have been made
in order to overcome this conflict. These modifications differ
in the way of modeling the conflict redistribution, used to
combine evidences. These modifications can be classified into
two classes. The first class of methods attempt to overcome the
counterintuitive behaviors by introducing some modifications
to the Dempster’s rule [4]–[9]. The main idea behind these
modifications is to transfer total or partial conflicting masses
proportionally to empty or non-empty sets according to some
combination results. The second class of methods are based
on the same fundamental principle as Dempster’s rule and, in
addition, they use a correction to original bodies of evidence
[10]–[14]. These methods are based on arithmetic average,
a distance measure or cross merging of the evidences to
be combined. However, these classes of rules have some
weaknesses. The first class favors the conflicting sources with
the bigger evidences and the second class can solve conflict
by replacing the evidences, but with inappropriately small
weighted evidence values.

In addition, another abnormal behavior has not been
pointed out in the literature. This abnormal behavior concerns
the criticism of Dempster’s rule behavior in the absence of
conflicting beliefs. So this rule always seems to be inadequate

and gives unexpected combination results of evidences. Note
that the major preceding modifications have the same behavior
in this situation because they are based only on the conflict
redistribution. We believe that the result of the combination of
belief mass assignments on different sets without their cardi-
nalities does not fit with the objective of uncertainty reasoning
over evidences accumulation. Since the combination results
cannot reflect the difference between bodies of evidence, we
cannot make this difference in decision making step using the
maximum pignistic probability criteria.

Admittedly, the Dempster’s rule modification problem has
received considerable research attention but this point has not
been addressed enough. And this work focuses on this partic-
ular issue and proposes an alternative combination rule called
Combination Rule of Evidences with Cardinalities (CREC).
The proposed rule can be classified into the first class where
the conjunctive rule and the conflict proportionalization use
both the sources information and their cardinalities. However,
the total conflict is proportionally redistributed on focal set
elements as in Dempster’s rule combination with respect
to some constraints. These constraints, which represent the
weighting factors, are the weighted sum computed from the
basic probability assignments (bpas) of the sources information
and their combination according to their cardinalities. The pro-
posed alternative combination rule is evaluated and compared
with some numerical examples reported in the literature. As a
result, this approach produces the association relationship be-
tween evidences, providing coherent results when the conflict
between sources becomes either absent or present.

The rest of this paper is organized as follows. We first
introduce the background of DS theory in Section II. Section
III provides a description of Dempster’s rule combination mod-
ification. The proposed combination rule for multiple sources
is presented in Section IV. Section V compares the CREC
rule with other similar works. Finally, Section VI concludes
the paper.

II. BRIEF OUTLINE OF THE BELIEF FUNCTION THEORY

The belief function theory (also known as Dempster-Shafer
theory) initiated from Dempster’s work and further extended
by Shafer [15]. This theory has attractive properties which
provide significantly richer information in fusion area. Based
on Shafer’s model, the frame of discernment is a set of
mutually exclusive and exhaustive hypotheses about problem
domains. From a frame of discernment Θ correspondingly, 2Θ
is the power set of Θ, then a basic belief assignment (bba) or



proper mass is defined as a mapping m(·):

m (∅) = 0 and
∑

X∈2Θ

m (X) = 1 (1)

The Dempster’s combination rule is the normalized con-
junctive operation which aims to aggregate evidences from
multiple independent sources defined within the same frame
of discernment. Based on Shafer’s model of the frame Θ,
Dempster’s rule for two sources is defined by the following
equations:

mDS(X) =
mc

12(X)

1−mc
12(∅)

(2)

mc
12(X) =

∑
X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (3)

mc
12(∅) =

∑
X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (4)

where mc
12(X) and mc

12(∅) represent the conventional con-
junctive consensus operator and the conflict of the combination
between the two sources respectively.

From a given bba m, the decision functions are defined as:
The belief function Bel(X), which measures the belief that
hypothesis X is true and it is given by :

Bel(X) =
∑
Y⊆X

m(Y ) (5)

The plausibility function Pl(X) can be interpreted as a
measure of the total belief that hypothesis X can be true and
it is given by the following formula:

Pl(X) =
∑

X∩Y ̸=∅

m(Y ) (6)

The pignistic probability transformation is generally con-
sidered as a good basis for a decision rule [16], [17]. It is
defined for all X ∈ 2Θ, with X ̸= ∅ ; by:

BetP (X) =
∑
Y ∈2Θ

Y ̸=∅

|X ∩ Y |
|Y |

m(Y )

1−m(∅)
(7)

However, when fusing highly conflicting data using Demp-
sters’ combination rule, one can obtain counterintuitive results
[7], [8], [18]–[21]. So, Numerous alternative combination rules
have been proposed to avoid this abnormal behavior.

III. RELATED WORK

Rules for combining conflicting evidence have received
considerable attention for more than two decades. Therefore,
many solutions proposed alternatives to Dempster’s rule of
combinations in order to overcome the non-intuitive combi-
nation results. The counterintuitive outcome is a direct result
of managing evidential conflict which is imputed to the com-
bination rule or the involved evidences. The management of
this potential conflict has spurred multiple modifications to

Dempster’s combination rule in order to guarantee that coun-
terintuitive results will not occur. These multiple modifications
can be classified into two classes.

The approaches in the first class attempt to overcome
the counterintuitive behaviors by modifying the Dempster’s
combination rule to solve the problem of how to redistribute
and manage evidential conflict. These approaches have a
totally different basis compared to Dempster’s rule. Yager
[4] proposed a modified rule which removes the normalizing
process of Dempster’s rule. This is justified by the fact that
the conflict cannot provide any useful information. But there
are also defects in the proposed combination rule because
it assigns the conflicting mass assignments to the universal
set of the frame of discernment (degree of ignorance) and
also it is not associative. An alternative approach proposed
in [5] is tounify combination rules, by using aspects of
both Dempster’s and Yager’s combination rules according to
the evidential conflict value. Dubois and Prade rule [22] is
based on disjunctive operator and assigns the conflicting mass
assignment to the union of focal element, compelling us to
make a choice of possible combinations. But this disjunctive
rule usually causes degradations to data specificity. Smets [23]
proposed a modified method, which is equivalent to the non-
normalized version of Dempster’s rule. This method assigns
the conflicting mass assignments to an empty set, by relying on
the close-world assumption. Lefevre et al. [6] have proposed
a unified formulation for rules of combinations based on the
reallocation (convex combination) of the conflicting masses
using the conjunctive consensus. Many propositional conflict
redistribution rules emerged in order to overcome the non-
intuitive combination in Dempster-Shafer theory in highly
conflicting evidence [7]. The idea behind these rules is to
transfer total or partial conflicting masses proportionally to
non-empty set and the partial ignorance involved in the model
according to some constraints. Dezert and Smarandache [7]
proposed several proportional conflict redistribution methods
(PCR1-5) to redistribute the partial or total conflicting mass
on the focal elements implied in the local conflict. The most
efficient method is the PCR5 rule and the generalized rule
PCR6, proposed thereafter in [24]. The authors have proved
that these rules do not yield counterintuitive results in highly
conflicting situations, but these rules are not associative and the
complexity for their implementation is higher when compared
to the complexity of Dempster’s rule [8]. An alternative
combination mechanism called combination by compromise
as a consensus generator has been proposed in [11].

The second category represents the approaches that are
based on the corrective strategies when using Dempster’s
rule. Murphy proposed a combination rule [10] based on
arithmetic average of belief functions associated with the
evidences to be combined. This method is a commutative
but not associative trade-off rule and solves the disappearing
ignorance problem caused by the operation of intersection in
Dempster’s rule. However, this method does not consider the
association relationship between the evidences, which is not
reasonable in some situations. Thereafter, Deng et al. [12]
used the same idea introduced in [25], [26] and proposed
a more effective definition of evidential conflict based on
evidential distance measure. However, the previous methods
based on distance measure are applicable to a finite frame of
discernment and can improve the reliability of the combination



results compared to the first category of methods. Another
approach called Weight Evidential Rule has been proposed
in [14] to construct a new Weighted Belief Distribution to
be combined. This rule completes and enhances Dempster’s
rule by identifying,through a novel reliability perturbation
analysis,the manner to combine multiple pieces of independent
evidence that are each fully reliable and conflicting.

These two classes of rules have some disadvantages. The
first class of rules assume that the sources are conflicting and
favors the conflicting sources with the bigger evidences in
conflict redistribution step. And when it is not the case, these
rules have a similar behavior as Dempster’s rule. The problem
of the second class of rules can be linked to some extent by
replacing the evidences with inappropriately small weighted
evidence values computed using the distance functions. So,
these distances do not appear to be as well justified and do
not use all the information of the evidence bodies lie on [18].
In addition, these rules do not prevent the masses of the focal
elements containing a low certain information (partial or total
ignorance) in the combination process. This is due to the fact
that Dempster’s rule and its derivates implicitly assume that
all possible pair of focal elements are equally confirmed by
the combined evidence [19].

IV. THE PROPOSED COMBINATION RULE

A. Motivation

In this subsection, we point out some counterintuitive
examples showing the abnormal behavior of the above
classes of combination rules in the absence or the presence
of conflicting beliefs. So that, these rules seem to be
inadequate and give counterintuitive combination results of
evidences if the evidences of the partial or total ignorance
are null. Let us consider an example for unmanned aircraft
vehicle surveillance system and suppose two sensors have
made an Unmanned Aircraft Vehicle (UAV) observation ,
whose signature ensures that it is a v1, a v2, a v3 or a v4:
Θ =

{
v1, v2, v3, v4

}
.

Example 1: (Absence of the conflict) In the first situation,
each sensor has made an observation with the following bba’s:

m1(v1) = 0.5 m1(v2 ∪ v3) = 0.5

m2(v1 ∪ v2) = 0.5 m2(v1 ∪ v2 ∪ v4) = 0.5

Applying the rules of the first class, we obtained the same
result as Dempster’s rule of combination :

mc
12(v1) = 0.5, mc

12(v2) = 0.5

with the conventional conflicting mass mc
12(∅) = 0.

As can be seen, the UAV {v2} seems to share three times
a mass of 0.5, while {v1} only has to share twice a mass 0.5
with {v2} and {v2, v4} and is once assigned 0.5 individually.
Using the rules of the first class in this situation, the evidences
of the partial ignorance are null (mc

12(v2 ∪ v3) = 0 and
mc

12(v1 ∪ v2 ∪ v4) = 0). These rules are not suitable to allow
decision making. Thus, after computing the maximum of the
belief, the plausibility or the pignistic probability to provide a
decision from the remaining combination result, we obtained

a belief that the unmanned aircraft vehicle is likely to be
v1 or v2: (Bel(v1) = Bel(v2) = 0.5, Pl(v1) = Pl(v2) =
0.5 or BetP (v1) = BetP (v2) = 0.5). Hence this result
seems counterintuitive because m1(v1) is more precise than
m1(v2 ∪ v3) and the result does not reinforce the idea that
the unmanned aircraft vehicle is v1. The reason is that m1

has the certainty of 0.5 for {v1} (50 % of certainty) and
m2 has the certainty of 0.5 for the focal sets {v1, v2} and
{v1, v2, v3} which includes {v1}. So these last certainties
might give some additional supports in the favor of {v1}, while
that in combination step, the combined evidence for {v1} must
be larger than the certainty of m1. Moreover, no certainty is
given to {v2}. Nevertheless, certainties of {v2, v3}, {v1, v3}
and {v1, v2, v3} which both include {v2} are assigned to {v2}.
In addition, using the pignistic probability, the first class of
rules cannot makes decision because the belief on {v1, v2} and
{v1, v2, v3} are equal to zero. However, the second class of
rules can make decision based on the maximum of the pignistic
probability.

Example 2: (Presence of the conflict) Let us consider now
an observation with the following bba’s:

m1(v1) = 0.8 m1(Θ) = 0.2

m2(v1) = 0.1 m2(v3) = 0.9

m3(v1) = 0.4 m3(Θ) = 0.6

Applying the PCR6 rule [8] we obtain the following result:

m123|PCR6(v1) = 0.434, m123|PCR6(v3) = 0.4437,

m123|PCR6(Θ) = 0.1223

Clearly a proportionalization process of PCR6 rule does
not redistribute well the quantity of the conflicting mass to
the focal set element {v1} because it does not take into
account the mass fusion of the set elements {v1} for all
observations. Hence the focal element {v3} absorbs almost all
of the conflicting mass (the majority) due to the higher value of
its mass (0.9) in the conflict redistribution process despite this
single mass that confirms {v3}. This means that we are sure
that it is v3. However, this result is counterintuitive because it
does not reinforce the idea that the UAV is v1. The reason is
that most of the mass is assigned to the UAV {v1} by the three
sensors (initial confidence): m1(v1) = 0.8 m2(v1) = 0.1 and
m3(v1) = 0.4. So the PCR6 rule fails in conflict redistribution
if there is an absorbing focal element.

Finally, we see that these behaviors are not accordant with
the objective of reasoning over evidences accumulation since
the results cannot reflect the difference between bodies of
evidence in the first combination step. So the results cannot tie
the decision based on the criteria as maximum of the belief,
the plausibility or the pignistic probability if the combined
evidences of the partial or total ignorance are null.

B. Definitions

To overcome the drawbacks of the preceding rules, in this
study we describe an attractive rule which integrate the car-
dinalities in the combination step called CREC (Combination
Rule of Evidence with Cardinality). Our rule is different from
the preceding rules but has the same purpose. The general idea



of the proposed combination rule is to separate the term of non-
normalized conjunctive rule into two terms with respect to the
cardinality of focal set elements. The first term corresponds
to the effective conjunctive operator of combination between
focal sets (the part in agreement). The second term represents
the hidden conflict. More precisely, a part of the mass obtained
by the non-normalized conjunctive operator is assigned to the
conflict according to the cardinality atomicity of the focal
sets involved in this conjunctive combination. This idea is
formalized by the following definitions.

For the sake of clarity, we first give some necessary
definitions before describing our combination rule.

Definition 1: (Cardinality Atomicity) Let Θ be a frame of
discernment and let Xi, Xj ∈ 2Θ be focal sets. We define the
cardinality atomicity of the focal set Xi with respect to Xj as:

ca(Xi ↑ Xj) =
|Xi ∩Xj |

|Xj |

This cardinality definition represents the number of parts
of the focal set Xi in Xj .

Definition 2: (Effective Conjunctive rule) Let Θ be a frame
of discernment. Then we define the effective conjunctive rule
(denoted by mEc(X)) associated to a focal set X as:

mEc(X) =
∑

X1,X2,··· ,Xs∈2Θ

X1∩X2∩···∩Xs=X

s∏
i=1

ca(X ↑ Xi)mi(Xi) (8)

The effective conjunctive operator allows the computation
of the first term (the part in agreement between the intersection
of focal sets) which corresponds to the combination between
focal sets evidence according to the split of the belief mass
assigned to the union of the singleton focal sets.

Definition 3: (Hidden Conflict) Let Θ be a frame of dis-
cernment. Then we define the hidden conflict (denoted by
mEc(X)) associated to a focal set X as:

mEc(X) =
∑

X1,X2,··· ,Xs∈2Θ

X1∩X2∩···∩Xs=X

(1−
s∏

i=1

ca(X ↑ Xi))
s∏

i=1

mi(Xi)

(9)

The hidden conflict represents the second term and it is
considered as a conflict arisen by the conjunctive combination
of the different intersections between focal sets.

To clear up these two concepts, let us assume m1({A}) =
0.5, m2({A,B}) = 0.5 and m3({A,B,C}) = 0.5. The
combination of the two beliefs m1 and m2 is different from the
one of the two beliefs m1 and m3. Using the above definitions,
we obtained

mEc
12(A) = ca({A} ↑ {A,B}) ·m1({A}) ·m2({A,B})

=
1

2
· 0.5 · 0.5 = 0.125

mEc
12(A) = (1− ca({A} ↑ {A,B})) ·m1({A}) ·m2({A,B})

=
1

2
· 0.5 · 0.5 = 0.125

mEc
13(A) = ca({A} ↑ {A,B,C}) ·m1({A}) ·m3({A,B,C})

=
1

3
· 0.5 · 0.5 = 0.083

mEc
13(A) = (1− ca({A} ↑ {A,B,C})) ·m1({A}) ·m3({A,B,C})

=
2

3
· 0.5 · 0.5 = 0.167

It can be seen that the effective conjunctive combination
of the beliefs in both situations gives some additional supports
to {A} but with different certainties (50% from the belief of
{A,B} and 33% from the belief of {A,B,C}). However, the
hidden conflict in the first situation is smaller than the one
in the second situation. This can be justified by the fact that
most of the mass is assigned to the belief of {B,C} in the
mass m3({A,B,C}). Hence we can distinguish between the
combination of these beliefs. In addition, it is easy to verify
that the sum of the effective conjunctive combination and the
hidden conflict represents the non-normalized conjunctive rule
result (mc

12 = 0.25).

To summarize, the mass m2 is more precise than the mass
m3 to compute the certainty of the focal element {A}. For
this reason, we give more credit to assumptions supported by
the source of information which has a lower cardinality.

Hence the above definitions of the effective conjunctive
rule and the hidden conflict yield the next result which
describes a computation for non-normalized conjunctive.

Proposition 1: (Non-normalized Conjunctive Rule) Let Θ
be a frame of discernment and let X ∈ 2Θ be a focal set. Then
non-normalized conjunctive rule, given for mass functions
defined on 2Θ is given by:

mc(X) = mEc(X) +mEc(X) (10)

Proof 1: Proof is omitted for its simplicity.

C. Principle of CREC

Most suggested combination rules are based on the con-
flict redistribution and differ on the way they transfer this
conflicting mass. In our rule, the global conflicting mass
is distributed proportionally to all non-empty sets according
to some weighting factors. These factors are computed with
respect to the cardinality of the original evidences and those
obtained by the effective conjunctive rule. This strategy forces
the conflict redistribution in the favor of the most committed
hypothesis. The proposed rule mainly consists of four steps:
(1) we apply the effective conjunctive rule with respect to
the cardinalities; (2) we compute a total conflicting mass
which represents the conventional and the hidden conflicts;
(3) Thereafter, we calculate the weighting factors using the
masses of the sources information and those obtained from the
effective conjunctive rule. (4) Finally, we redistribute the total
conflicting mass proportionally according to these weighting
factors. These steps are formalized by the following equations
(11,12,13).

The formulation of our rule allows the redistribution of the
global conflict in a better way when compared to the preceding
classes of rules according to the coherence of the responses
obtained from the effective conjunctive operator. Hence the



CREC rule formula for multiple sources (s ≥ 2) is (∀X ̸=
∅) ∈ 2Θ

m1,2,··· ,s|CREC(X) = mEc(X)+w1,2,··· ,s(X)·Gc
1,2,··· ,s (11)

where w1,2,··· ,s(X) and Gc
1,2,··· ,s are the weighted factors and

the global conflict defined by equations (eq.12 and eq.13)
respectively.

w1,2,··· ,s(X) =
1

λ
·

 s∑
i=1

mi(X) +
∑

Y ∈2Θ

Y ̸=X

c(Y ) · ca(X ↑ Y ) ·m(Y )


(12)

where λ is the normalization term of the weighting factors so
that ∑

X∈2Θ

w1,2,··· ,s(X) = 1

and

c(Y ) =

{
1 if Y is involved in mEc(X)
0 otherwise;

A non-empty set Y is considered to be involved in effective
conjunctive rule of the focal set X if Y ∩ X = X and
mEc(X) ̸= 0.

Gc = mc
1,··· ,s(∅) +

∑
X∈2Θ

mEc
1,··· ,s(X) (13)

where mc
1,··· ,s(∅) is the conventional conflict. Thus, the global

conflict represents the conventional and the hidden conflicts.

Proposition 2: (Proper Mass) The mass m1,2,··· ,s|CREC(·)
is a proper mass.

Proof 2: A proper mass means that a mass m1,2,··· ,s|CREC(·)
must satisfy all requirements given by Eq. 1. When X is an
empty set, the value of m(X) is equal to 0. By definition, the
mass m1,2,··· ,s|CREC(X) = mEc(X) + w1,2,··· ,s(X) · Gc

1,2,··· ,s.
Hence,

∑
X∈2Θ m1,2,··· ,s|CREC(X) =

∑
X∈2Θ mEc(X) +∑

X∈2Θ

[
w1,2,··· ,s(X) ·Gc

1,2,··· ,s
]
. In addition, we have∑

X∈2Θ w1,2,··· ,s(X) = 1 due to the normalization process.
So the term

∑
X∈2Θ

[
w1,2,··· ,s(X) ·Gc

1,2,··· ,s
]

= Gc
1,2,··· ,s.

From Eq. 13, we get
∑

X∈2Θ m1,2,··· ,s|CREC(X) =∑
X∈2Θ mEc(X) + mc

1,··· ,s(ϕ) +
∑

X∈2Θ mEC
1,··· ,s(X). According

to Proposition 1, we get
∑

X∈2Θ mc(X) + mc
1,··· ,s(ϕ) which is

equals to1 (Orthogonal sum). Therefore, m1,2,··· ,s|CREC(·) is a
proper mass. �

Now, let us describe in details how this rule operates
through Example 1 (i.e., UAV example 1). The proposed rule
starts by computing the effective conjunction and the hidden
conflict masses. So we obtained the following results:

with the global conflicting mass:

Gc = mc
1,2(ϕ) +

∑
X∈2Θ

mEC
1,2(X)

= 0 + (0.292 + 0.396) = 0.688

The weighting factors are given by

w1,2(v1) = 0.2972

w1,2(v2) = 0.2162

w1,2(v1 ∪ v2) = 0.1622

w1,2(v2 ∪ v3) = 0.1622

w1,2(v1 ∪ v2 ∪ v4) = 0.1622

After computing all weighting factors, we compute the final
beliefs using Eq. (11). The result is therefore given by

m1,2|CREC(v1) = mEc(v1) + w1,2(v1) ·Gc
1,2

= 0.208 + 0.2972 · 0.688 = 0.412

m1,2|CREC(v2) = mEc(v2) + w1,2(v2) ·Gc
1,2

= 0.1042 + 0.2162 · 0.688 = 0.252

m1,2|CREC(v1 ∪ v2) = mEc(v1 ∪ v2) + w1,2(v1 ∪ v2) ·Gc
1,2

= 0.112

m1,2|CREC(v2 ∪ v3) =mEc(v2 ∪ v3) + w1,2(v2 ∪ v3) ·Gc
1,2

= 0.112

m1,2|CREC(v1 ∪ v2 ∪ v4) = mEc(v1 ∪ v2 ∪ v4) + w1,2(v1 ∪ v2 ∪ v4) ·Gc
1,2

= 0.112

Clearly, from this result, we can observe that the effective
combined mass and the weighted factor of the focal set {v1}
are bigger than those of {v2}. This is due to the fact that the
effective combined mass mEc

12 (v1) is computed with respect to
the masses of the focal sets {v1}, {v1 ∪ v2}, {v1 ∪ v2,∪v4}.
Whereas the combined mass mEc

12 (v2) is computed from the
masses of focal sets {v1 ∪ v2}, {v2 ∪ v3} and {v1 ∪ v2,∪v4}.
As a result, our rule effectively exploits only the little certain
information of the masses, that support the focal element {v3}
with a higher cardinality.

In the same way, the combination results for examples 2
are:
m1,2|CREC(v1) = 0.467, m1,2|CREC(v3) = 0.3211,
m1,2|CREC(v1 ∪ v2 ∪ v3 ∪ v4) = 0.2119.

Note that the idea of our rule does not correspond to the
principle of insufficient reason [17]: a mass assigned to the
union of n atomic sets is split equally among these n sets
because we save a strength of the belief functions which states
that the mass assigned to a set is not split between its elements
but remains with all the elements (the complete masses of sets
are used in effective conjunction operator).

Reconsider Example 1 and let us suppose now that the
mass to the sets {v2, v3}, {v1, v2} and {v1, v2, v4} are split
between their elements. This split gives the following bba’s:

m1(v1) = 0.5 m2(v1) = 0.4167

m1(v2) = 0.25 m2(v2) = 0.4167

m1(v3) = 0.25 m2(v3) = 0

m1(v4) = 0 m2(v4) = 0.1666

Applying Dempster’s, Murphy’s, PCR6 and CREC rules,
we obtained the different combined mass results as the one



mEc
12(v1) = ca({v1} ↑ {v1, v2}) · m1({v1}) · m2({v1, v2}) + ca({v1} ↑ {v1, v2, v4}) · m1({v1}) · m2({v1, v2, v4})

= 1
2 · 0.5 · 0.5 + 1

3 · 0.5 · 0.5 = 0.125 + 0.0825 = 0.208

mEc
12(v1) = (1 − ca({v1} ↑ {v1, v2})) · m1({v1}) · m2({v1, v2}) + (1 − ca({v1} ↑ {v1, v2, v4})) · m1({v1}) · m2({v1, v2, v4})

= 1
2 · 0.5 · 0.5 + 2

3 · 0.5 · 0.5 = 0.0.125 + 0.167 = 0.292

mEc
12(v2) = ca({v2} ↑ {v2, v3}) · ca({v2} ↑ {v1, v2}) · m1({v2, v3}) · m2({v1, v2})

+ca({v2} ↑ {v2, v3}) · ca({v2} ↑ {v1, v2, v4}) · m1({v2, v3}) · m2({v1, v2, v4}) = 1
2 · 1

2 · 0.5 · 0.5 + 1
2 · 1

3 · 0.5 · 0.5

= 0.0625 + 0.042 = 0.1042

mEc
12(v2) = (1 − ca({v2} ↑ {v2, v3}) · ca({v2} ↑ {v1, v2}) · m1({v2, v3}) · m2({v1, v2})

+(1 − ca({v2} ↑ {v2, v3}) · ca({v2} ↑ {v1, v2, v4})) · m1({v2, v3}) · m2({v1, v2, v4}) = 3
4 · 0.5 · 0.5 + 5

6 · 0.5 · 0.5

= 0.1875 + 0.2083 = 0.396

TABLE I. COMBINED RESULT FOR SPLITED MASS

Rule Combined mass

v1 v2 v3 v4

Dempster’s 0.666 0.333 0 0
PCR6 0.515 0.328 0.103 0.054
Murphy’s 0.611 0.323 0.045 0.0201
CREC 0.523 0.333 0.086 0.058

given by the CREC rule without split of the sets as reported
in Table I.

This shows that the CREC rule can make the difference
between beliefs in combination steps and the results satisfy
the requirements of combination where other rules draw the
same combined masses without showing this difference. Thus
our rule refines combination results according to the cardinality
of the focal sets, yielding a more intuitive final result.

V. NUMERICAL SIMULATION RESULTS

The first part of this section describes the analysis of some
well-known examples discussed in the previous published
methods. The second part is reserved to the comparison of
the CREC rule and some ones of each class.

A. The CREC Rule Behavior for Well-known examples

In this subsection, we are going to show the behavior of
our rule to combine belief functions in Shafer’s model. These
well-known examples are the counter-examples to Dempster’s
rule.

Example 3: (Zadeh’s Paradox) Let us have Θ =
{v1, v2, v3} and two beliefs assignments m1(v1) =
0.9; m1(v2) = 0.1 and m2(v2) = 0.1; m2(v3) = 0.9.
Using the CREC formula for 2 sources (s = 2) described
in section IV, we obtain mEc

12(v1) = mEc
12(v3) = 0.4455 and

mEc
12(v2) = 0.1090. This result is intuitive and it is similar to

the one obtained in all class of combination rules published in
literature. A low belief proposition v2 acquires the lowest value
after combination, whereas high belief value of v1 and v3 dos
not vanish into zero as in Dempster’s rule. Thus the CREC
rule does not give the total certainty to a minority opinion.

Example 4: (Certainty Convergence) [11] Suppose that a
body of evidence gives m1(v1) = 0.5; m1(v2) = 0.5 and the
other does m2(v1) = 0.5; m2(v1 ∪ v2) = 0.5. Applying the

CREC rule, one has mEc
12(v1) = 0.625, mEc

12(v2) = 0.275 and
mEc

12(v1 ∪ v2) = 0.1. From the result, it can be seen that the
CREC rule has a normal behavior and somewhat reflects the
certainty convergence to the focal element {v1} because both
bodies of evidence have certainty of 0.5 for this focal element.

Example 5: (Loss of Majority Opinion) This example is
also adopted from [11]. Let us consider the Shafer’s model
on Θ = {v1, v2, v3} and three beliefs assignments m1(v1) =
0.9, m1(v1 ∪ v3) = 0.1 ; m2(v1 ∪ v2) = 0.8; m2(v1 ∪ v3) =
0.2 and m3(v2) = 0.5; m3(v3) = 0.5. Combining these
masses using Dempster’s rule gives m123(v1) = 0, due to
the fact that the third belief function does not have the v1
in its focal elements. Hence with the CREC rule, one has
mEc

12(v1) = 0.285, mEc
12(v2) = 0.1583, mEc

12(v3) = 0.2083,
mEc

12(v1 ∪ v2) = 0.2533, mEc
12(v1 ∪ v3) = 0.095. As can be

seen, our rule does not exclude the elements {v1, v2} which are
supported by many bodies of evidence with null ones. So the
majority opinion is reflected since mEc

12(v1∪v3) < mEc
12(v2) <

mEc
12(v3) < mEc

12(v1 ∪ v2) < mEc
12(v1). In addition, this result

indicates that small values of the obtained combined masses
are preferable because the plausibility of the focal element
{v3} is not too weak when compared to the results obtained
from Murphy’s rule (m123|Murphy(v3) = 0.0477).

Example 6: (Unearned Certainty) In this example, we
combine two beliefs assignments: m1(v1) = 0.5, m1(v2 ∪
v3) = 0.5 and m2(v1 ∪ v2) = 0.5; m2(v3) = 0.5. From
these bodies of evidence, the combined mass can be obtained
as: mEc

12(v1) = 0.2969, mEc
12(v2) = 0.1771, mEc

12(v3) =
0.2969, mEc

12(v1 ∪ v2) = 0.1146, mEc
12(v2 ∪ v3) = 0.1146.

In this case, the combined mass mEc
12(v1) = 0.2969 (resp.

mEc
12(v3) = 0.2969) seems to be naturally intuitive, because

both m1(v1) = 0.5 and m2(v1∪v2) = 0.5 give some additional
supports to {v1} (resp. {v3}) in respect to its weighed factor
w12(v1) = 0.25 (resp.w12(v3) = 0.25). However, the com-
bined mass result mEc

12(v2) = 0.1771 is obtained by effective
conjunctive operator and its weighed factor w12(v2) = 0.167.
So, the part conflict redistribution for the focal set {v2} is
weaker than the part of the focal set element {v1} (resp. {v3}).

Example 7: (Experts Problem) [8] In this example, three
experts are able to express their opinion only in the form of
partial or total ignorance. Let us Θ = {v1, v2, v3} and the
opinions on Θ are: m1(v1∪v2) = 0.7, m1(Θ) = 0.3, m2(v1∪
v3) = 0.6, m2(Θ) = 0.4, m3(v2 ∪ v3) = 0.5, m3(Θ) = 0.3.
The application of the CREC rule gives the following results:



mEc
12(v1) = 0.0175, mEc

12(v2) = 0.0117, mEc
12(v3) = 0.0075,

mEc
12(v1 ∪ v2) = 0.2811, mEc

12(v1 ∪ v3) = 0.2308, mEc
12(v2 ∪

v3) = 0.1894 and mEc
12(Θ) = 0.2620. These results are more

in accordance with the conclusion that the beliefs obtained for
the singleton focal sets are lower focal sets are lower than
the masses of the union sets. The reason is that the CREC
rule uses the split of evidence based on the cardinality instead
of the total evidence. Contrary, in Dempster’s rule and the
two classes, the conjunctive operator favors the singleton sets
compared to the union ones in this case.

Example 8: (True and False) [27] In this example, we have
total conflict between two beliefs. Let us Θ = {v1, v2} and the
opinion on Θ are: m1(v1) = 1, m1(v2) = 0 and m2(v1) =
0, m2(v2) = 1. The CREC rule yields the following result:
mEc

12(v1) = 0.5 and mEc
12(v2) = 0.5. This result is reasonable.

However, Dempster’s rule is not applicable and the major rules
of the preceding classes produce the same result except for
the disjunctive rule [22] which leads to the vacuous belief
assignment (m(Θ) = 1).

Example 9: (Vacuous belief assignment) Unfortunately,
our rule does not preserve the vacuous belief assignment
(Disappearing Ignorance: m(Θ = 1)) when some sources
become totally ignorant. The disappearing ignorance property
in Dempster’s rule is an advantage in combination process
because only the evidences without ignorance are combined.
However, some authors [10], [19], [20] have criticized this
property caused by conjunctive operation and specified that
the counterintuitive results of Dempster’s rule is caused by
this ignorance. We presume that the disappearing ignorance is
not justified in all situations of beliefs combination especially
if the belief assignment of some focal sets are represented only
by vacuous belief assignment of one source (they are missing
in other sources). As illustration, let us consider again our
UAV’s example and the following two bba’s:

m1(v1) = 0.5 m1(v2 ∪ v4) = 0.5 m2(Θ) = 1

For this example, the application of the first class rules
yield the first belief assignments (m1(·)) which neglects
completely the UAV’s belief supporting {v3} (mc

12(Θ) =
0). However, the CREC rule produces: mEc

12(v1) = 0.295,
mEc

12(v2 ∪ v4}) = 0.477, and mEc
12(Θ) = 0.227. As can be

seen our rule cannot suppress or neglect the weakest belief
committed to the UAV v3 which can be supported by the
second totally ignorant source (m2(Θ) = 1).

B. Comparison of Combination Rules

Let us compare the CREC rule to one of the preceding
class of rules for three counterintuitive examples. Hence we
suggested for comparison Dempster’s rule, PCR6 (class 1), and
Murphy’s rule (class 2) in order to show the behavior of these
rules.

First, reconsider Θ = {v1, v2, v3, v4} provided in Example
1 with the following bba’s:

m1(v1) = 0.6 m2(v1) = 0

m1(v2) = 0 m2(v2) = 0.6

m1(v1 ∪ v2) = 0 m2(v1 ∪ v2) = 0.4

m1(v1 ∪ v2 ∪ v3 ∪ v4) = 0.4 m2(v1 ∪ v2 ∪ v3 ∪ v4) = 0

TABLE II. COMPARATIVE RESULTS FOR DECISION MAKING

Rule Criteria

Bel(·) Pl(·) BetP (·)
UAV v1 v2 v1 v2 v1 v2

Dempster’s 0.375 0.375 0.625 0.625 0.5 0.5
PCR6 0.420 0.420 0.580 0.580 0.5 0.5
Murphy’s 0.402 0.402 0.598 0.598 0.488 0.488
CREC 0.357 0.267 0.733 0.643 0.515 0.426

TABLE III. COMPARATIVE RESULTS FOR DECISION MAKING WITH THE
NOVEL OBSERVATION

Rule Criteria

Bel(·) Pl(·) BetP (·)
UAV v1 v2 v1 v2 v1 v2

Dempster’s 0.375 0.375 0.625 0.625 0.5 0.5
PCR6 0.420 0.420 0.580 0.580 0.5 0.5
Murphy’s 0.402 0.402 0.598 0.598 0.491 0.491
CREC 0.345 0.271 0.729 0.655 0.513 0.440

On the given numerical example, the results obtained are
reported in Table II. As can be seen, Dempster’s rule and a rule
of each class cannot provide decision using the maximum of
one of the three criteria: credibility, plausibility, and pignistic
probability. The reason is that these criteria provide ambiguity
due to the fact that the same decision value is put on the two
UAVs: v1 and v2. However, using our rule, these criteria allow
to make decision which gives different values on all the focal
elements: v1 and v2.

Second, let us suppose that the first sensor of the previous
example has made an UAV’s observation with the following
bba’s: m1(v1) = 0.6, m1(v1 ∪ v2 ∪ v3) = 0.2, m1(v1 ∪ v2 ∪
v3 ∪ v4) = 0.2

Table III illustrates the decision making results for the
novel observation. As can be seen, the previous decision
ambiguity between the two UAVs is still present with a belief
on v1 equals to v2 one for all criteria. Note that the plausibility
in Murphy’s approach has been changed. Contrary, most of the
decision results based on the CREC rule are close to the truth
and they do not present ambiguity with the highest decision
value on v1 for all criteria. Moreover, the belief on the UAV v2
is higher than the one in the preceding case because the belief
of the focal set {v1 ∪ v2 ∪ v3} gives some additional supports
to {v2}. This is achieved by the effective conjunctive and the
conflict redistribution which is based on the cardinality of the
two focal sets m1(v1 ∪ v2 ∪ v3) and m1(v1 ∪ v2 ∪ v3 ∪ v4).

Finally, reconsider Θ = {v1, v2, v3, v4} provided in Exam-
ple 1 with the following bba’s:

m1(v1) = 0.5 m1(v2 ∪ v3 ∪ v4) = 0.5

m2(v2) = 0.5 m2(v1 ∪ v4) = 0.5

TABLE IV. COMPARISON OF THE COMBINED MASS RESULTS

Focal element

Rules v1 v2 v4

Dempster’s 0.333 0.333 0.333
Murphy’s 0.3 0.3 0.2
PCR6 0.375 0.375 0.25
CREC 0.324 0.259 0.152



TABLE V. ACTIVITY RECOGNITION ACCURACY USING DIFFERENT
COMBINATION RULES.

Combination rule Recognition rate

Murphy 0.6813
CREC 0.6541
PCR6 0.6534
Dempster-Shafer 0.5441

Table IV presents the combined bba’s results obtained by
Dempster’s rule and one of the preceding two classes. It can be
seen that Dempster’s rule still indicates that the UVA is likely
to be v1, v2 or v4. The results obtained by Murphy’s rule
are quite similar to those of PCR6 rule which produces equal
results for the focal elements v1 and v2. In fact, these results
are produced by proportionalisation of the beliefs allocated by
PCR6 rule to conflicts on these elements. However, in CREC
rule, the combined masses are completely different because the
mass of belief committed to each focal element is supported by
the belief on the focal elements having different cardinalities.

The proposed CREC rule is evaluated with the same
temporal extensions for activity recognition used in [9] in
the same conditions. Table V shows that the proposed rule
outperforms all other combination rules except Murphy’s rule.

VI. CONCLUSION

In this paper, we proposed a new way to combine be-
lief functions in evidential reasoning. The main idea of the
proposed combination rule is to separate the term of non-
normalized conjunctive rule in two terms with respect to the
cardinality of focal set elements. The first term corresponds
to the effective conjunctive operator of combination between
focal sets according to the split of the belief mass assigned to
the union of the singleton focal sets (the part in agreement).
The second term corresponds to the part of the belief mass
assigned to the rest of the union of the singleton focal sets (the
hidden conflict). With this idea, combining evidences becomes
possible even in the absence of conflicting beliefs, and this by
applying the proposed rule. As a result, it has been proven
that our rule does not provide counterintuitive results and it
can be considered as an interesting compromise between the
Dempster’s rule and the rules of the first class. In addition,
this work describes several examples and also presents some
comparisons with other combination rules published in litera-
ture in order to show the useful and the normal behavior of
our combination rule. We believe that the CREC rule behavior
is accordant with the objective of evidential reasoning over
evidences accumulation where the results reflect really the
difference between bodies of evidence.
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