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Abstract

In this paper a new approach is being introduced to study roughness through neu-
trosophic soft sets. This new model is called neutrosophic right neighborhood .The
concept of neutrosophic soft rough set approximations will be defined, properties of
suggested approximations are deduced and proved and then some of neutrosophic soft
rough set concepts will be defined along with several propositions and illustrative ex-
amples. Finally, we illustrate that classical rough sets model can be viewed as a special
case of the suggested model in this paper.
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1. Introduction

Set theory is a basic branch of a classical mathematics, which requires that all input
data must be precise. However, most real life problems in biology, engineering, eco-
nomics, environmental science, social science, medical science and many other fields,
involve imprecise data. In order to describe and extract the useful information hid-
den in uncertain data, scientists and engineers have become interested in modeling
vagueness. In recent years, many theories based on uncertainty have been proposed,
such as fuzzy set theory [1], intuitionistic fuzzy set theory [2], vague set theory [3]
and theory of interval mathematics [4].

Pawlak [5] initiated the concept of rough set theory as a new approach towards soft
computing finding a wide application. It manages the vagueness in data system and
has been successfully used to discover the hidden patterns in it, based on what is al-
ready known. In Pawlak’s work, any vague concept can be replaced by a pair of precise
sets called lower and upper approximations, based on an equivalence relation. But,
almost real life applications cannot be solved by using equivalence relations. Hence,
many generalized models of traditional one, have been proposed to solve this problem.
These models based on similarity relation [6], preference relation [7], tolerance relation
[8] , dominance relation [9], arbitrary binary relation [10,11], coverings[12,13], different
neighborhood operators [14,15], and using uncertain function [16]. There are many
research on new developments of rough set and its applications such as near approx-
imations in topological spaces [17], generalized near rough probability in topological
spaces [18], topological characterizations of covering for special covering- based upper

1

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



approximation operators [19], generalized fuzzy rough approximation operators de-
termined by fuzzy implicators [20], mathematical innovations of a modern topology in
medical events [21], on some topological properties of pessimistic multigranular rough
sets [22], on rough approximations of groups [23], rough approximation-based random
model for quarry location, stone materials transportation problem [24], neighborhood
rough sets based multi-label classification for automatic image annotation[25] and
rough sets determined by tolerances[26].

Soft set was initiated by Molodtsov [27], for dealing with uncertainties. The soft set
is a set associated with a set of parameters and has been applied in several direc-
tions. Maji et al. [28] discussed the application of soft set theory in a decision making
problem and extended classical soft sets to fuzzy soft sets [29]. Yang et al. [30] pro-
posed interval-valued fuzzy soft sets. Chen et al. [31] introduced a new definition
of soft set parametrization reduction. Recently, others have developed the classical
soft set theory and applied them for solving some real problems in many papers such
as temporal analysis of infectious diseases: influenza [32], soft sets and soft groups
[33], soft semi rings [34], soft decision making for patients suspected in influenza [35],
applications of soft sets in ideal theory of BCK/BCI-algebras [36].

Feng et al. [37] introduced the soft rough set model and proved its properties. Smaran-
dache [38] proposed the theory of neutrosophic set as a new mathematical tool for
handling problems involving imprecise data. Maji [39] introduced neutrosophic soft
set which can be viewed as a new path of thinking for engineers, mathematicians,
computer scientists and others. This thinking is further extended to the application
of neutrosophic set theory in decision making problems such as trapezoidal neutro-
sophic set and its application to multiple attribute decision-making [40], the gener-
alized hybrid weighted average operator based on interval neutrosophic hesitant set
and its application to multiple attribute decision making [41], and multiple attribute
decision making method based on single-valued neutrosophic normalized weighted
Bonferroni mean [42].

We will merge the concept of soft rough set and neutrosophic soft set as an attempt
to introduce the concept of neutrosophic soft rough set approximations. Properties of
suggested approximations are deduced and proved. Neutrosophic soft rough relations
will be defined, along with several propositions and illustrative examples.

2. Preliminaries

In this section we recall some definitions and properties regarding rough set, neutro-
sophic set, soft set and neutrosophic soft set theories required in this paper.

The main idea of rough set theory comes from Pawlak’s work [5]. In his work, any
vague concept is replaced by a pair of precise concepts called lower and upper ap-
proximations. Suppose we are given a set of objects U , called the universe and E is
an equivalence relation, representing our knowledge about the elements of U . The
space (U,E) is called Pawlak approximation space. To characterize any vague concept
X ⊆ U , with respect to E, we will need the basic concepts of rough set theory, the
following definitions and proposition are given as follows.

Definition 1. [5] An equivalence class of an element x ∈ U , determined by the
equivalence relation E is

[x]E = {x′ ∈ U : E(x) = E(x
′
)}.
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Definition 2. [5] Lower, upper and boundary approximations of a subset X ⊆ U are
defined as

E(X) = ∪{[x]E : [x]E ⊆ X},

E(X) = ∪{[x]E : [x]E ∩X 6= φ},

BNDE (X) = E(X)− E(X).

Definition 3. [5] LetA = (U,E) be an approximation space and let X ⊂ U .
By the accuracy of approximation of X in A we mean the number

αE (X) =
| E(X) |
| E(X) |

, E(X) 6= ∅.

Obviously, 0 ≤ αE (X) ≤ 1. If E(X) = E(X), then X is crisp (exact) set, with respect
to E, otherwise X is rough set.

Properties of Pawlak’s approximations are listed in the following proposition.

Proposition 1. [5] For every X,Y ⊂ U and every approximation space
A = (U,E) the following properties hold:

1. E(X) ⊆ X ⊆ E(X).

2. E(φ) = φ = E(φ) and E(U) = U = E(U).

3. E(X ∪ Y ) = E(X) ∪ E(Y ).

4. E(X ∩ Y ) = E(X) ∩ E(Y ).

5. X ⊆ Y , then E(X) ⊆ E(Y ) and E(X) ⊆ E(Y ).

6. E(X ∪ Y ) ⊇ E(X) ∪ E(Y ).

7. E(X ∩ Y ) ⊆ E(X) ∩ E(Y ).

8. E(X
c
) = [E(X)]

c
, where X

c
is the complement of X.

9. E(X
c
) = [E(X)]

c
.

10. E(E(X)) = E(E(X)) = E(X).

11. E(E(X)) = E(E(X)) = E(X).

Definition 4. [43] An information system is a quadruple IS = (U,A, V, f), where
U is a non-empty finite set of objects, A is a non-empty finite set of attributes,
V = ∪{Ve, e ∈ A}, Ve is the value set of attribute e, and f : U ×A→ V , is called an
information (knowledge) function.

Definition 5. [27] Let U be an initial universe set, E be a set of parameters, A ⊆ E
and let P (U) denotes the power set of U . Then, a pair S = (F,A) is called a soft set
over U , where F is a mapping given by F : A → P (U). In other words, a soft set
over U is a parameterized family of subsets of U . For e ∈ A, F (e) may be considered
as the set of e-approximate elements of S.

Smarandache defined the neutrosophic set as follows.
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Definition 6. [38] A neutrosophic set A on the universe of discourse U is defined as

A = {〈x, TA(x), IA(x), FA(x)〉 : x ∈ U},where

−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+,where

T, I, F : U −→]−0; 1+[.

Maji defined the neutrosophic soft set as follows.

Definition 7. [39] Let U be an initial universe set and E be a set of parameters.
Consider A ⊂ E, and let P (U) denotes the set of all neutrosophic sets of U . The
collection (F,A) is termed to be the neutrosophic soft set over U , where F is a
mapping given by

F : A −→ P (U).

3. Neutrosophic soft rough set approximations(NSR-set approximations).

In this section, NSR-lower and NSR-upper approximations are introduced and their
properties are deduced, proved and illustrated by several examples.

For illustration of the meaning of neutrosophic soft set, we consider the following
example.

Example 1. Let U be a set of cars under consideration and E is the set of param-
eters (or qualities). Each parameter is a generalized neutrosophic word or sentence
involving generalized neutrosophic words. Consider E = {beautiful, cheap, expensive,
wide, modern, in good repair, costly, comfortable}. In this case, to define a neutro-
sophic soft set means to point out beautiful cars, cheap cars and so on. Suppose that,
there are five cars in the universe U , given by, U = {h1 , h2 , h3 , h4 , h5} and the set
of parameters A = {e1 , e2 , e3 , e4}, where A ⊂ E, and each ei is a specific criterion
for cars: e1 stands for (beautiful), e2 stands for (cheap), e3 stands for (modern), e4
stands for (comfortable).

A neutrosophic soft set can be represented in the form of a table as shown in
Table 1. In this table, the entries are cij corresponding to the car hi and the param-
eter ej , where cij = (true membership value of hi , indeterminacy-membership value
of hi , falsity membership value of hi) in F (ej ). Table 1, represents the neutrosophic
soft set (F,A) as follows.

U e1 e2 e3 e4
h1 (0.6, 0.6, 0.2) (0.8, 0.4, 0.3) (0.7, 0.4, 0.3) (0.8, 0.6, 0.4)
h2 (0.4, 0.6, 0.6) (0.6, 0.2, 0.4) (0.6, 0.4, 0.3) (0.7, 0.6, 0.6)
h3 (0.6, 0.4, 0.2) (0.8, 0.1, 0.3) (0.7, 0.2, 0.5) (0.7, 0.6, 0.4)
h4 (0.6, 0.3, 0.3) (0.8, 0.2, 0.2) (0.5, 0.2, 0.6) (0.7, 0.5, 0.6)
h5 (0.8, 0.2, 0.3) (0.8, 0.3, 0.2) (0.7, 0.3, 0.4) (0.9, 0.5, 0.7)

Table 1. Tabular representation of neutrosophic soft set.

Definition 8. Let (G,A) be a neutrosophic soft set on a universe U . For any element
h ∈ U , a neutrosophic right neighborhood, with respect to e ∈ A is defined as follows

he = {hi ∈ U : Te(hi) ≥ Te(h) and Ie(hi) ≥ Ie(h) and Fe(hi) ≤ Fe(h)}.

4

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Definition 9. Let (G,A) be a neutrosophic soft set on a universe U . The family of
all neutrosophic right neighborhoods is defined as follows

ξ = {he : h ∈ U, e ∈ A}.

The following example illustrates the meaning of neutrosophic right neighborhoods.

Example 2. Based on the information in Example 1, we can deduce the following
statements.

h1e1
= h1e2

= h1e3
= h1e4

= {h1},

h2e1
= h2e3

= {h1 , h2}, h2e2
= {h1 , h2 , h4 , h5}, h2e4

= {h1 , h2 , h3},

h3e1
= h3e4

= {h1 , h3}, h3e2
= {h1 , h3 , h4 , h5}, h3e3

= {h1 , h3 , h5},

h4e1
= {h1 , h3 , h4}, h4e2

= {h4 , h5}, h4e3
= U , h4e4

= {h1 , h2 , h3 , h4},

h5e1
= h5e2

= h5e4
= {h5}, h5e3

= {h1 , h5}.

It follows that, ξ = { {h1}, {h5}, {h1 , h2}, {h1 , h3}, {h1 , h5}, {h4 , h5}, {h1 , h2 , h3},
{h1 , h3 , h4}, {h1 , h3 , h5}, {h1 , h2 , h3 , h4}, {h1 , h2 , h4 , h5}, {h1 , h3 , h4 , h5}, U }.

Proposition 2. Let (G,A) be a neutrosophic soft set on a universe U , ξ is the family
of all neutrosophic right neighborhoods on it, and let Re : U → ξ,Re(h) = he . Then,
the following statements are satisfied

1. Re is reflexive relation.

2. Re is transitive relation.

Proof.

Let 〈h1 , Te(h1), Ie(h1), Fe(h1)〉, 〈h2 , Te(h2), Ie(h2), Fe(h2)〉 and 〈h3 , Te(h3), Ie(h3),

Fe(h3)〉 ∈ (G,A). Then,

1. Obviously, for all i = 1, 2, 3, Te(hi) ≥ Te(hi), Ie(hi) ≥ Ie(hi), Fe(hi) ≤ Fe(hi)
Hence, for every e ∈ A, hi ∈ hie and hiRehi and thus Re is reflexive relation.

2. Let h1Reh2 and h2Reh3 . Then, h2 ∈ h1e and h3 ∈ h2e. Hence, Te(h2) ≥ Te(h1),
Ie(h2) ≥ Ie(h1), Fe(h2) ≤ Fe(h1), Te(h3) ≥ Te(h2), Ie(h3) ≥ Ie(h2) and Fe(h3)
≤ Fe(h2). Consequently, we have Te(h3) ≥ Te(h1), Ie(h3) ≥ Ie(h1) and Fe(h3)
≤ Fe(h1). It follows that, h3 ∈ h1e and h1Reh3 and thus Re is transitive relation.

Note that Re in Proposition 2 may not necessarily be symmetric relation,as illustrated
by the following example.

Example 3. From Example 2, we have, h1e1
= {h1} and h3e1

= {h1 , h3}. Hence,

(h3 , h1) ∈ Re1
but (h1 , h3) 6∈ Re1

. Thus, Re isn’t symmetric relation.

Neutrosophic soft lower and upper approximations are defined as follows.

Definition 10. Let (G,A) be a neutrosophic soft set on a universe U , and let ξ be
the family of all neutrosophic right neighborhoods. The neutrosophic soft lower and
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neutrosophic soft upper approximations of any subset X based on ξ, respectively, are

NR∗X = ∪{Y ∈ ξ : Y ⊆ X},

NR
∗
X = ∪{Y ∈ ξ : Y ∩X 6= ∅}.

We refer to NR∗X and NR
∗
X as neutrosophic soft rough approximations of X (NSR-

set approximations) with respect to A.

Remark 1. For any considered set X in a neutrosophic soft set (G,A), the sets

PosNRX = NR∗X, NegNRX = [NR
∗
X]

c
, bNRX = NR

∗
X −NR∗X, are called the

NSR-positive, NSR-negative and NSR-boundary regions of a considered set X, respec-
tively. The meaning of PosNRX is the set of all elements, which are surely belonging
to X, NegNRX is the set of all elements, which are surely not belonging to X and
bNRX is the elements of X, which are not determined by (G,A). Consequently, NSR-
boundary region of any considered set is the initial problem of any real life application.

Properties of neutrosophic soft rough approximations are concluded in the following
proposition.

Proposition 3. Let (G,A) be a neutrosophic soft set on a unverse U , and let
X,Z ⊆ U . Then the following properties hold.

1. NR∗X ⊆ X ⊆ NR
∗
X.

2. NR∗∅ = NR
∗∅ = ∅.

3. NR∗U = NR
∗
U = U .

4. X ⊆ Z ⇒ NR∗X ⊆ NR∗Z.

5. X ⊆ Z ⇒ NR
∗
X ⊆ NR∗Z.

6. NR∗(X ∩ Z) ⊆ NR∗X ∩ NR∗Z.

7. NR∗(X ∪ Z) ⊇ NR∗X ∪ NR∗Z.

8. NR
∗
(X ∩ Z) ⊆ NR

∗
X ∩ NR∗Z.

9. NR
∗
(X ∪ Z) = NR

∗
X ∪ NR∗Z.

Proof.

1. From Definition 10, we can deduce that, NR∗X ⊆ X. Also, let h ∈ X, but Re ,
defined in Proposition 2, is reflexive relation. For all e ∈ A, there exists he such
that, h ∈ he , and there exists Y ∈ ξ such that, Y ∩X 6= ∅. Hence, h ∈ NR∗X.
Thus, NR∗X ⊆ X ⊆ NR

∗
X.

2. Proof of 2, follows directly, from Definition 10.

3. From property 1, we have U ⊆ NR
∗
U . Since U is the universe set, NR

∗
U =

U . From Definition 10, we have NR∗U = ∪{Y ∈ ξ : Y ⊆ U}, but for all h ∈ U ,
there exists he ∈ ξ such that, h ∈ he ⊆ U . Hence, NR∗U = U . Thus, NR∗U =
NR

∗
U = U .

4. Let X ⊆ Z and h ∈ NR∗X.There exists Y ∈ ξ such that, h ∈ Y ⊆ X. But
X ⊆ Z, thus h ∈ Y ⊆ Z. Hence, h ∈ NR∗Z. Consequently, NR∗X ⊆ NR∗Z.
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5. Let X ⊆ Z and h ∈ NR∗X. There exists Y ∈ ξ such that, h ∈ Y , Y ∩X 6= ∅.
But X ⊆ Z, thus Y ∩ Z 6= ∅. Hence, h ∈ NR∗Z. Thus, NR

∗
X ⊆ NR

∗
Z.

6. Let h ∈ NR∗(X ∩ Z) = ∪{Y ∈ ξ : Y ⊆ (X ∩ Z)}. There exists Y ∈ ξ such
that, h ∈ Y ⊆ (X ∩ Z), h ∈ Y ⊆ X and h ∈ Y ⊆ Z. Consequently, h ∈ NR∗X
and h ∈ NR∗Z, implying h ∈ NR∗X ∩ NR∗Z. Thus, NR∗(X ∩Z) ⊆ NR∗X ∩
NR∗Z.

7. Let h 6∈ NR∗(X ∪Z) = ∪{Y ∈ ξ : Y ⊆ X ∪Z}. For all e ∈ X, h ∈ Y , we have Y
6⊆ X ∪ Z, thus for all e ∈ A, h ∈ Y , we have Y 6⊆ X and Y 6⊆ Z. Consequently,
h 6∈ NR∗X and h 6∈ NR∗Z, implying h 6∈ NR∗X ∪ NR∗Z. Thus, NR∗(X ∪ Z)
⊇ NR∗X ∪ NR∗Z.

8. Let h ∈ NR∗(X ∩ Z) = ∪{Y ∈ ξ : Y ∩ (X ∩ Z) 6= ∅}. There exists Y ∈ ξ such
that, h ∈ Y , Y ∩ (X ∩ Z) 6= ∅, Y ∩X 6= ∅ and Y ∩ Z 6= ∅. Consequently, h ∈
NR

∗
X and h ∈ NR∗Z, implying h ∈ NR∗X ∩ NR∗Z. Thus, NR

∗
(X ∩ Z) ⊆

NR
∗
X ∩ NR∗Z.

9. Let h 6∈ NR
∗
(X ∪ Z) = ∪{Y ∈ ξ : Y ∩ (X ∪ Z) 6= ∅}. For all e ∈ A, h ∈

Y , we have Y ∩ (X ∪ Z) = ∅. For all e ∈ A, h ∈ Y , we have Y ∩ X = ∅ and
Y ∩ Z = ∅. Consequently, h 6∈ NR∗X and h 6∈ NR∗Z, implying h 6∈ NR∗X ∪
NR

∗
Z. Therefore, NR

∗
(X ∪Z) ⊇ NR

∗
X ∪ NR∗Z. Also, let h ∈ NR∗(X ∪Z)

= ∪{Y ∈ ξ : Y ∩ (X ∪ Z) 6= ∅}, and thus, there exists Y ∈ ξ such that, h ∈ Y ,
Y ∩ (X ∪ Z) 6= ∅. It follows that, Y ∩X 6= ∅ or Y ∩ Z 6= ∅. Consequently, h ∈
NR

∗
X or h ∈ NR

∗
Z. Hence, h ∈ NR

∗
X ∪ NR

∗
Z, and NR

∗
X ∪ NR

∗
Z ⊇

NR
∗
(X ∪ Z). Thus, NR

∗
X ∪ NR∗Z = NR

∗
(X ∪ Z).

The following example illustrates that the converse of property 1 in Proposition 3
doesn’t hold.

Example 4. From Example 1, if X = {h1 , h4}, then NR∗X = {h1} and NR
∗
X =

U . Hence, NR∗X 6= X and X 6= NR
∗
X.

The following example illustrates that the converse of property 4 in Proposition 3.2
doesn’t hold.

Example 5. From Example 1, if X = {h2} and Z = {h1 , h2}, then NR∗X = ∅,
NR∗Z = {h1 , h2}. Thus, NR∗X 6= NR∗Z.

The following example illustrates that the converse of property 5 in Proposition 3
doesn’t hold.

Example 6. According to Example 1. Let A = {e1}, then, ξ = {{h1}, {h5}, {h1 , h2},
{h1 , h3}, {h1 , h3 , h4}}. If X = {h2} and Z = {h1 , h2}, then, NR

∗
X = {h1 , h2} and

NR
∗
Z = {h1 , h2 , h3 , h4}. Hence, NR

∗
X 6= NR

∗
Z.

The following example illustrates that the converse of property 6 in Proposition 3
doesn’t hold.

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Example 7. From Example 1, if X = {h1 , h3 , h4} and Z = {h1 , h4 , h5}, then NR∗X
= {h1 , h3 , h4}, NR∗Z = {h1 , h4 , h5} and NR∗(X ∩ Z) = {h1}. Hence, NR∗(X ∩ Z)
6= NR∗X ∩ NR∗Z.

The following example illustrates that the converse of property 7 in Proposition 3
doesn’t hold.

Example 8. From Example 1, if X = {h1} and Z = {h2}, then NR∗X = {h1},
NR∗Z = ∅ and NR∗(X ∪ Z) = {h1 , h2}. Hence, NR∗(X ∪ Z) 6= NR∗X ∪ NR∗Z.

The following example illustrates that the converse of property 8 in Proposition 3
doesn’t hold.

Example 9. From Example 6, if X = {h2 , h5} and Z = {h1 , h3 , h5}, then NR
∗
X =

{h1 , h2 , h5}, NR
∗
Z = U and NR

∗
(X ∩ Z) = {h5}. Hence, NR

∗
(X ∩ Z) 6= NR

∗
X ∩

NR
∗
Z.

Proposition 4. Let (G,A) be a neutrosophic soft set on a unverse U , and let
X,Z ⊆ U . Then the following properties hold.

1. NR∗ NR∗X = NR∗X.

2. NR
∗
NR

∗
X ⊇ NR

∗
X.

3. NR∗ NR
∗
X = NR

∗
X.

4. NR
∗
NR∗X ⊇ NR∗X.

5. NR∗X
c ⊇ [NR

∗
X]

c
.

6. NR
∗
X

c ⊇ [NR∗X]
c
.

Proof.

1. Let W = NR∗X and h ∈ W = ∪{Y ∈ ξ : Y ⊆ X}. Then, for some e ∈ A,
h ∈ Y ⊆ W . So, h ∈ NR∗W . Hence, W ⊆ NR∗W . Thus, NR∗X ⊆ NR∗
NR∗X. Also, from property 1 of Proposition 3, we have NR∗X ⊆ X and by
using property 4 of Proposition 3, we get NR∗ NR∗X ⊆ NR∗X. Consequently,
NR∗ NR∗X = NR∗X.

2. Let W = NR
∗
X. By using property 1 of Proposition 3, we have W ⊆ NR

∗
W .

Thus, NR
∗
NR

∗
X ⊇ NR

∗
X.

3. Let W = NR
∗
X. By using property 1 of Proposition 3, we have NR∗W ⊆ W .

Also, let h ∈ W = ∪{Y ∈ ξ : Y ∩X 6= ∅}, hence there exists Y ∈ ξ such that,
h ∈ Y ⊆ W . It follows that, h ∈ NR∗W . Consequently, W ⊆ NR∗W , then W
= NR∗W , but W = NR

∗
X. Thus, NR∗NR

∗
X = NR

∗
X.

4. Let W = NR∗X. By using property 1 of Proposition 3, we have W ⊆ NR
∗
W .

Thus, NR
∗
NR∗X ⊇ NR∗X.

5. Let h 6∈ NR∗X
c
. Then, for all Y ∈ ξ such that h ∈ Y , we have Y 6⊂ X

c

and Y ∩ Xc
= ∅. It follows that Y ∩ X 6= ∅, hence h ∈ NR∗X and h 6∈ [NR

∗
X]

c
.

Thus, NR∗X
c ⊇ [NR

∗
X]

c
.
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6. From property 5 of Proposition 4, we have NR∗X
c ⊇ [NR

∗
X]

c
.

Thus, NR∗X ⊇ [NR
∗
X

c
]
c

implying NR
∗
X

c ⊇ [NR∗X]
c
.

The following example illustrates that the converse of property 2 in Proposition 4
doesn’t hold.

Example 10. From Example 6, if X = {h2}, then NR
∗
X = {h1 , h2} and NR

∗

NR
∗
X = {h1 , h2 , h3 , h4}. Hence NR

∗
NR

∗
X 6= NR

∗
X.

The following example illustrates that the converse of property 4 in Proposition 4
doesn’t hold.

Example 11. From Example 6, if X = {h1 , h4}, then NR∗X = {h1} and NR
∗

NR∗X = {h1 , h2 , h3 , h4}. Hence, NR
∗
NR∗X 6= NR∗X.

The following example illustrates that the converse of property 5 in Proposition 4
doesn’t hold.

Example 12. From Example 6, if X = {h3}, then NR∗X
c

= {h1 , h2 , h5} and
[NR

∗
X]

c
= {h2 , h5}. Hence, NR∗X

c 6= [NR
∗
X]

c
.

The following example illustrates that the converse of property 6 in Proposition 4
doesn’t hold.

Example 13. From Example 6, if X = {h1 , h2 , h4 , h5}, then [NR∗X]
c

= {h3 , h4}
and NR

∗
X

c
= {h1 , h3 , h4}. Hence, [NR∗X]

c 6= NR
∗
X

c
.

Proposition 5. Let (G,A) be a neutrosophic soft set on a unverse U , and let
X,Z ⊆ U . Then,

NR∗(X − Z) ⊆ NR∗X −NR∗Z.

Proof.

Let u ∈ NR∗(X−Z) = ∪{Y ∈ ξ : Y ⊆ (X−Z)}. There exists Y ∈ ξ such that, u ∈
Y ⊆ (X − Z), u ∈ Y ⊆ X and u ∈ Y 6⊆ Z. Consequently, u ∈ NR∗X and u 6∈
NR∗Z, thus u ∈ NR∗X − NR∗Z. Therefore, NR∗(X −Z) ⊆ NR∗X − NR∗Z.

The following example illustrates that the converse of proposition 5 doesn’t hold.

Example 14. From Example 1, if X = {h1 , h3 , h5} and Z = {h1 , h5}, then NR∗X
= {h1 , h3 , h5}, NR∗Z = {h1 , p5}, NR∗(X − Z) = ∅ and NR∗X − NR∗Z = {h3}.
Hence, NR∗X − NR∗Z 6= NR∗(X − Z).

Proposition 6. Let (G,A) be a neutrosophic soft set on a universe U , and let
X,Z ⊆ U . Then, the following property holds.

NR
∗
(X − Z) 6= NR

∗
X −NR∗Z.

The following example illustrates Proposition 6.
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Example 15. From Example 6, if X = {h1 , h3 , h5} and Z = {h1 , h5}, then NR
∗
X

= U , NR
∗
Z = U , NR

∗
(X − Z) = {h1 , h3 , h4} and NR

∗
X − NR

∗
Z = ∅. Hence,

NR
∗
X − NR

∗
Z 6= NR

∗
(X − Z).

Remark 2. A comparison between traditional rough and neutrosophic soft rough
approaches, by using their properties, is concluded in Table 2, as follows.

Traditional rough properties Neutrosophic soft rough properties

E(X ∩ Z) = E(X) ∩ E(Z) NR∗(X ∩ Z) ⊆ NR∗X ∩NR∗Z
E(E(X)) = E(X) NR

∗
NR

∗
X ⊇ NR∗X

E(E(X)) = E(X) NR
∗
NR∗X ⊇ NR∗X

E(X
c
) = [E(X)]

c
NR∗X

c ⊇ [NR
∗
X]

c

E(X
c
) = [E(X)]

c
NR

∗
X

c ⊇ [NR∗X]
c

Table 2. Comparison between traditional rough and neutrosophic soft rough properties.

4. Neutrosophic soft rough set concepts (NSR-set concepts).

In this section, some of neutrosophic soft rough concepts are defined as a generaliza-
tion of rough concepts.

Neutrosophic soft rough (NSR) definability of any subset X ⊆ U , is defined as follows

Definition 11. Let (G,A) be a neutrosophic soft set on a unverse U , and let X ⊆ U .
A subset X ⊆ U , is called

1. NSR-definable (NSR-exact) set, if NR∗X = NR
∗
X = X.

2. Internally NSR-definable set, if NR∗X = X and NR
∗
X 6= X.

3. Externally NSR-definable set, if NR∗X 6= X and NR
∗
X = X.

4. NSR-rough set, if NR∗X 6= X and NR
∗
X 6= X.

The following example illustrates Definition 11.

Example 16. From Example 6, we can deduce that, {h1 , h2 , h3 , h4} is NSR-definable
set, whereas {h1}, {h5}, {h1 , h2}, {h1 , h3}, {h1 , h5}, {h1 , h3 , h4}, {h1 , h3 , h5}, {h1 , h2 ,
h3 , h5}, {h1 , h3 , h4 , h5} are internally NSR-definable sets, while the rest of the sub-
sets of U are NSR-rough sets.

We can determine the degree of NSR-crispness (exactness) of any subset X ⊆ U, by
using NSRP -accuracy measure denoted by CNSRX, which is defined as follows.

Definition 12. Let (G,A) be a neutrosophic soft set on a unverse U and let X ⊆ U .
Then,

CNSRX =
NR∗X

NR∗X
, X 6= φ.

Remark 3. Let (G,A) be a neutrosophic soft set on a unverse U . A subset X ⊆ U
is NSR-definable, if and only if, CNSRX = 1.

Neutrosophic soft rough (NSR)-membership relations are defined as follows.
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Definition 13. Let (G,A) be a neutrosophic soft set on a unverse U , and let x ∈ U ,
X ⊆ U . NSR-membership relations, denoted by ∈

NSR
and ∈

NSR
, are defined as

follows.
x∈

NSR
X, if x ∈ NR∗X,

x∈
NSR

X, if x ∈ NR∗X.

Proposition 7. Let (G,A) be a neutrosophic soft set on a unverse U , and let x ∈ U ,
X ⊆ U . Then,

1. x ∈
NSR

X −→ x ∈ X.

2. x 6∈
NSR

X −→ x 6∈ X.

Proof. Proof of 1 and 2 follows directly from Definition 13.

The following example illustrates that the converse of Proposition 7 doesn’t hold.

Example 17. In Example 1, if X = {h2 , h5}, then NR∗X = {h5} and NR
∗
X = U .

Hence h2 6∈
NSR

X, although h2 ∈ X, and h3 6∈ X, although h3 ∈NSR
X.

Neutrosophic soft rough (NSR)-inclusion relations are defined as follows.

Definition 14. Let (G,A) be a neutrosophic soft set on a unverse U , and let X,Z ⊆
U . NSR-inclusion relations, denoted by

⇁
⊂

NSR
and

⇀⊂
NSR

, are defined as follows

X
⇁
⊂

NSR
Z, if NR∗X ⊆ NR∗Z,

X
⇀⊂

NSR
Z, if NR

∗
X ⊆ NR∗Z.

Proposition 8. Let (G,A) be a neutrosophic soft set on a unverse U and let X,Z ⊆
U . Then,

X ⊆ Z −→ X
⇁
⊂

NSR
Z ∧X ⇀⊂

NSR
Z.

Proof. From Proposition 3, we get the proof directly.

The following example illustrates that the inverse of Proposition 8 doesn’t hold.

Example 18. In Example 6, if X = {h1 , h4} and Z = {h1 , h5}, then NR∗X = {h1},
NR∗Z = {h1 , h5}, NR

∗
X = {h1 , h2 , h3 , h4} and NR

∗
Z = U . Hence, X

⇁
⊂

NSR
Z and

X
⇀⊂

NSR
Z, although X 6⊆ Z.

Neutrosophic soft rough (NSR)-equality relations are defined as follows.

Definition 15. Let (G,A) be a neutrosophic soft set on a unverse U , and let X,Z ⊆
U . NSR-equality relations are defined as follows

X ∼NSRZ, if NR∗X = NR∗Z,

X ∼
NSR

Z, if NR
∗
X = NR

∗
Z,
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X ≈NSR Z, if X ∼NSRZ and X ∼
NSR

Z.

The following example illustrates Definition 15.

Example 19. In Example 6, suppose X1 = {h2}, X2 = {h3}, X3 = {h1 , h2}, X4 =
{h1 , h4}, X5 = {h3 , h5} and X6 = {h4 , h5}. Then, NR∗X1 = NR∗X2 = ∅, NR∗X3

= NR
∗
X4 = {h1 , h2 , h3 , h4}, NR∗X5 = NR∗X6 = {h5} and NR

∗
X5 = NR

∗
X6 =

{h1 , h3 , h4 , h5}. Consequently, X1∼NSRX2 , X3∼NSR
X4 and X5 ≈NSR X6 .

Proposition 9. Let (G,A) be a neutrosophic soft set on a unverse U , and let
X,Z ⊆ U . Then,

1. X ∼NSRNR∗X.

2. X = Y −→ X ≈NSR Z.

3. X ⊆ Z, Z ∼NSR∅ −→ X ∼NSR∅.
4. X ⊆ Z, X ∼NSRU −→ Z ∼NSRU .

5. X ⊆ Z, Z ∼
NSR
∅ −→ X ∼

NSR
∅.

6. X ⊆ Z, X ∼
NSR

U −→ Z ∼
NSR

U .

Proof. The proof can be obtained directly from Propositions 3 and 4.

Remark 4. Let (G,A) be a neutrosophic soft set on a unverse U , and let h ∈ U ,
X ⊆ U . If we consider the case where Te(hi) > 0.5, then e(h) = 1, otherwise e(h) = 0,
and the neutrosophic right neighborhood of an element h is replaced by the following
equivalence class [h] = {hi ∈ U : e(hi) = e(h), e ∈ A}. It follows that the neutro-
sophic soft rough set approximations will become Pawlak’s rough set approximations
(proposed lower and upper approximations will be NR∗X = {h ∈ U : [h] ⊆ X}
and NR

∗
X = {h ∈ U : [h] ∩ X 6= ∅}). Thus all properties of traditional rough set

approximations will be satisfied, hence Pawlak’s approach to rough sets is a special
case of the proposed approach in this paper.

5. Conclusion

We have defined the notion of neutrosophic soft rough set approximations by using a
new neighborhood named neutrosophic right neighborhood. Several properties of neu-
trosophic soft rough sets have been defined and propositions and illustrative examples
have been presented. Finally, it has been shown that the proposal model is a gener-
alization of Pawlak’s model whereby Pawlak’s approach to rough sets can be viewed
as a special case of neutrosophic soft approach to rough sets. Our future work is to
extend this model by using topological and bitopological structures so as to be able
to apply it to many practical problems in economics, engineering, and medical science.
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