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Abstract 

With the increasing number of focal elements in frame of discernment, computational complexity of 

DSmT(Dezert-Smarandache Theory) increases exponentially, which blocks the wide application and development of 

DSmT. To solve this problem, a new evidence clustering DSmT approximate reasoning method is proposed in this 

paper based on convex functions analysis. The computational complexity of the method in this paper increases 

linearly instead of exponentially with the increasing number of focal elements in discernment framework. First, the 

method clusters the belief masses of focal elements in each evidence. Then, the first step results are obtained by the 

proposed DSmT approximate convex functions formula. Finally, the method gets the approximate fusion results by 

normalization method. The results of simulation show that the approximate fusion results of the method in this paper 

has higher Euclidean similarity with the exact fusion results of DSmT+PCR5, and need less computational 

complexity than the existing approximate methods. Especially, in the case of large data and complex fusion 

problems, the method in this paper can get highly accurate results and need low computation complexity.  
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1. Introduction
1
 

As a novel key technologe with vigorous development, information fusion can integrat multiple-source incomplete 

information and reduce uncertainty of information which always has the contradiction and redundancy. Information 

fusion can improve rapid correct decision capacity of intelligent systems and has been successfully used in the 

military and economy fields, thus great attention has been paid to its development and application by scholars in 

recent years
1-6

. As information evironment becomes more and more complex, greater demands for efficient fusion of 

highly conflict evidence are being placed on information fusion. DSmT is a new effective method for the fusion 

problem of uncertain, imprecise and highly conflict evidence, jointly proposed by French scientist Dr. Jean Dezert 

and American mathematician Florentin
6
. DSmT can be considered as an extension of the classical Dempster-Shafer. 
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DSmT is able to solve complex static or dynamic fusion problems beyond the limits of the DST framework, specially 

when conflicts between sources become large and when the refinement of the frame of the problem under 

consideration, denoted  , becomes inaccessible because of the vague, relative and imprecise nature of elements of 


6-8

. Recently, DSmT has been applied to many fields, such as, image processing, Robot’s Map Reconstruction, 

Target Type Tracking, Sonar imagery and Radar targets classification and so on
6,9-12

. The bottleneck problem to block 

the wide application and development of DSmT is that with the increment of focal element number in frame of 

discernment, computational complexity increases exponentially. 

In order to solve this problem, many scholars presents approximate reasoning method of evidence combination in  

D-S framework
13-15

. But these methods almost can not satisfy the small amount of computational complexity and less 

loss of information requirements at the same time. Dr. Li Xinde and other scholars proposed a fast approximate 

reasoning method in hierarchical DSmT
16-18

. However, when processing highly conflict evidence by the method, the 

belief assignments of correct main focal elements transfer to the other focal elements, which leads to low Euclidean 

similarity of the results in this case.  

Aiming at reducing the computational complexity of DSmT and obtaining accurate results in any case, a new 

evidence clustering DSmT approximate reasoning method is proposed in this paper. In section 2, information fusion 

method of DSmT+PCR5 is introduced briefly. In section 3, Mathematical analysis of DSmc+PCR5 formula is 

conducted, which discovers every conflict mass product satisfies the properties of convex function, obtains the 

approximate convex function formula of DSmT+PCR5 and analyses approximate convex function formula errors. 

Then a new approximate reasoning DSmT method is proposed by analysis of approximate convex function formula 

errors in section 4. In section 5, analysis of computation complexity of DSmT+PCR5 and the method in this paper is 

carried out. The results of simulation show that the results of the method proposed in this paper have higher 

Euclidean similarity with the exact fusion results of DSmT+PCR5, and lower computational complexity than 

existing DSmT approximate method
18

 in section 6. 

2. Information fusion method of DSmT+PCR5  

Instead of applying a direct transfer of partial conflicts onto partial uncertainties as with DSmH, the idea behind 

the Proportional Conflict Redistribution(PCR) rule
19

 is to transfer (total or partial) conflicting masses to non-empty 

sets involved in the conflicts proportionally with respect to the masses assigned to them by sources as follows
6
: 

1. calculation the conjunctive rule of the belief masses of sources; 

2. calculation the total or partial conflicting masses; 

3. redistribution of the (total or partial) conflicting masses to the non-empty sets involved in the conflicts 

proportionally with respect to their masses assigned by the sources. 

The way the conflicting mass is redistributed yields actually several versions of PCR rules. PCR5 is the most 

mathematically exact redistribution method of conflicting mass. This rule redistributes the partial conflicting mass to 

the elements involved in the partial conflict, considering the conjunctive normal form of the partial conflict. It does a 

better redistribution of the conflicting mass than Dempster’s rule since PCR5 goes backwards on the tracks of the 

conjunctive rule and redistributes the conflicting mass only to the sets involved in the conflict and proportionally to 

their masses put in the conflict.  

The PCR5 formula for the combination of two sources (s = 2) is given by
6
: 
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where all sets involved in formulas are in canonical form and where G corresponds to classical power set 2 if 

Shafer’s model is used, or to a constrained hyper-power set D if any other hybrid DSm model is used instead,or to 

the super-power set S if the minimal refinement ref  of   is used; 12 ( ) ( )m X m X  corresponds to the 

conjunctive consensus on X  between the 2S   sources and where all denominators are different from zero. If a 

denominator is zero, that fraction is discarded. 

3. Mathematical analysis of DSmc+PCR5 formula  

  As shown in formula (1), 
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due to ( )f x  is continuous function on [0,1], has second order derivatives on (0,1), and ''( ) 0f x   on (0,1), 
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Let 1 2 i nx x x x     , carry out analysis of convex function formula errors. 
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analysis of the i  item in equality(4). 
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By taylor expansion theorem, 
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Based on the above analysis, for reducing approximate errors and remaining lower computing complex, an 

evidence clustering method is proposed as follows: 

1) Force the mass assignments of focal elements in the evidece to two sets by the standard of 
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n
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Finally, analysis of relationship between the approximate computation item and its errors item.  
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After evidence clustering method , the influnce of numerator 1 2 nb b b    to the approximate computation 
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. By the properies of convex function, all the error 

items of focal elements <0. Based on the above analysis, normalization method of the first-step approximate 
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results is applied in this paper for errors redisturibution to get the final approximate results.  

4. An evidence clustering DSmT approximate reasoning method 

Based on the Mathematical analysis of DSmT+PCR5 formula in 3, An evidence clustering DSmT approximate 

reasoning method is proposed as follows: 
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3) Normalization method of the first-step approximate results is given by 
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5. Analysis of computation complexity 

If there are 2 evidence sources, assume that all singleton focal elements and multiple focal elements have mass 

assignments in hyper-power sets of 2 evidence, denoted by 

1 2{ , , , , , , },{ , , , , , } [1, , ]n i j k l g hG i f k l g h n           , n  denote the number of singleton 

focal elements,  c  denote the number of multiple focal elements. First, analyse the computation comlplexity of 

the processing procedure of 2 evidence sources fusion by DSmT+PCR5. Then, analyse the computation 

comlplexity of the same problem by the method in this paper. Computation comlplexity comparison of two 

methods can be obtained by the analysis.  

Assume that the computation comlplexity of one time multiplication is denoted by K , the computation 

comlplexity of one time addition is denoted by  , the computation comlplexity of one time division is denoted 

by   and the computation comlplexity of one time subtraction is denoted by B . The computation comlplexity 
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of the processing procedure of 2 evidence sources fusion by DSmT+PCR5 is denoted by 
DSmT[ ]o n . Then     

DSmT+PCR5[ ] [ (4 2 4 )( 1)]( ) (2 2 4 )

(4 4 3)( ) (2 2 2)( ) (4 4 4)( ) (2 2 4 )

o n c K K n c n c x K y

n c n c K n c n c n c n c x K y

 

 

              

                 
              (8) 

x  denote the number of multiple focal elements in the results,  y  denote the number of the same multiple 

focal elements generated in the procedure of  mass assignments combination product . The computation 

comlplexity of the same problem by the method in this paper is denoted by 
GH[ ]o n c . Then 

GH[ ] 2( ) ( ) 2( )[2(3 ) ] (2 2 4 )

2( ) 13( ) [4( ) 1] (5 4 ) (2 2 4 )

o n c n c B n c K n c K n x K y

n c B n c K n c n c x K y





               

              
            (9) 

Computation comlplexity comparison of two methods obtained from equality (8) and equality (9) shows that 

the computation comlplexity comparison of DSmT is almost propotion to 2( )n c  and the computation 

comlplexity comparison of the method in this paper is almost propotion to ( )n c . Conclusions are drawn that he 

computation comlplexity comparison of the method in this paper is much lower than DSmT with increasing 

number of focal element numbers in hyper-power space. 

6. Simulation experiments 

For comparison of the approximate method proposed in this paper with the other methods, an Euclidean 

similarity function
20

 is introduced in this paper as follows: 

2

1 2 1 2

1

1
[ , ] 1 [ [ ] [ ]]

2

G

E i i

i

N m m m X m X





                          (10) 

6.1. Simple cases of cluster sets in each evidence 

Example 1. If there are 2 evidence sources, assume that only singleton focal elements have mass assignments in 

hyper-power sets, denoted by 1 2 7{ , , , } 1or 2kG k    ， . The mass assignments in each evidence are 

{0.1,0.1,0.05,0.3,0.2,0.2,0.05}, {0.2,0.05,0.05,0.2,0.15,0.3,0.05}a b  , the processing of the method is given 

as follows: 

1) Force mass assignments of focal elements in each evidence to two cluster sets, denoted by 

1 2 3 5 6 7 4 1 2 3 4 5 7 6{ , , , , , } { }, { , , , , , } { }a a a a a a a a b b b b b b b b  ; 

2) First-step approximate fusion results are calculated by formula(6)  
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
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b Mean a a a a a b a a Mean b

  
  

   
  
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2 2 2
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CONVEX5 5 5
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
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({ , , , , }) ({ , , , , })

({ , , , , }) ({
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a b a a Sum b b b b b a b

b Mean a a a a a b a a Mean b b b b b a b
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m a b

b Mean a a a a a b a

  
   

   
 
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
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Get CONVEX {0.1588,0.0558,0.0273,0.3108,0.1926,0.3108,0.0273}m  ; 

3) Get the final approximate results by normalization method of the first-step approximate results 

GH {0.1465,0.0515,0.0252,0.2869,0.1778,0.2869,0.0252}m  . 

4) The results of DSmc+PCR5 and the method
18

 are also calculated for the parison with the method in this 

paper. 

The results of DSmT+PCR5 

DSmT+PCR5 {0.1435,0.0488,0.0237,0.2922,0.1751,0.2929,0.0237}m   

The results of the method
18

 

XDL {0.1536,0.0605,0.0253,0.2980,0.1670,0.2738,0.0217}m  . 

Calculate the Euclidean similarity between results GHm  obtained by the method in this paper and the results 

DSmT+PCR5m  of DSmT+PCR5. The Euclidean similarity GH 0.9932E  . 

In the same way, the Euclidean similarity between the results XDLm  of the method
18

 and the results DSmT+PCR5m  

of DSmT+PCR5 is denoted by 
XDL 0.9812E  . 

From the above results of this example, the results obtained by the method proposed in this paper have higher 

Euclidean similarity with DSmT+PCR5 than the existing approximate DSmT method
18

. The Euclidean Similarity 

which remains over 99% shows that the method proposed in this paper has high accuracy and has practical 

meaning .  

Example 2. If there are the same 2 evidence sources in example 1, the hyper-power sets are denoted by 

1 2 7{ , , , } 1or 2kG k    ， . The mass assignments in each evidence are 

{0.1,0.1,0.05,0.3,0.2,0.2,0.05}, {0.2,0.05,0.05,0.2,0.15,0.3,0.05}a b  . The mass assignments in the second 

evidence source are unchanged, denoted by {0.2,0.05,0.05,0.2,0.15,0.3,0.05}b  , and the mass assignments in 

the first evidence change whose sequnce of the mass belief of each focal element moves one position backward at 

one time to procedure 6 new evidence, such as:  
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1 2 3

4 5 6

{0.1,0.1,0.05,0.3,0.2,0.2,0.05}, {0.05,0.1,0.1,0.05,0.3,0.2,0.2}, {0.2,0.05,0.1,0.1,0.05,0.3,0.2},

{0.2,0.2,0.05,0.1,0.1,0.05,0.3}, {0.3,0.2,0.2,0.05,0.1,0.1,0.05}, {0.05,0.3,0.2,0.2,0.05

a a a

a a a

  

   ,0.1,0.1}.
 

Each new evidence and the evidence b  are calculated to obtain the fusion results by DSmT+PCR5 and the 

approximate fusion results by the method in this paper and the method
18

. Then Euclidean similarity of the 

approximate results of different methods with the results of DSmT+PCR5 is obtained by formula(10) and the average 

computing time of each method is also taken record as tabel 1. (In this paper, all the simulation experiments are 

implemented by Matlab simulation in the hardware condition of Pentimu(R) Dual-Core CPU E5300 2.6GHz 

2.59GHz, memory 1.99GB.) 

Table 1  Euclidean similarity and average computing time coparison of the methods 

 

Euclidean similarity with results of DSmT+PCR5 

 
average 

computing 

time 1 2 3 4 5 6 

The method in 

this paper 
0.9939 0.9911 0.9955 0.9938 0.9965 0.9960 0.0028s 

The method
18

 0.9583 0.9791 0.9588 0.9530 0.9443 0.9347 0.0105s 

As shown in table 1, under simple cases of cluster sets in each evidence, the accuracy of the method in this 

paper all remains over 99% and much higher than the method
18

. Average computing time of the method in this 

paper is also lower than the existing approximate method
18

. At the same time, the accuracy of the method in this 

paper in different evidence cases changes little, which proves that the method has higher performance stability. 

6.2. Complex cases of cluster sets in each evidence 

Example 3. If there are 2 evidence sources, assume that only singleton focal elements have mass assignments in 

hyper-power sets, denoted by 1 2 12{ , , , } 1or 2kG k    ， . The mass assignments in each evidence are 

{0.3,0.35,0.05,0.05,0.04,0.06,0.02,0.01,0.02,0.01,0.04,0.05}

{0.2,0.05,0.04,0.21,0.15,0.25,0.05,0.01,0.01,0.01,0.01,0.01}

a

b




, the method processing is given as follows: 

1) Force mass assignments of focal elements in each evidence to two cluster sets, denoted by 

3 4 5 6 7 8 9 10 11 12 1 2 2 3 7 8 9 10 11 12 1 4 5 6{ , , , , , , , , , } { , }, { , , , , , , , ,} { , , , }a a a a a a a a a a a a a b b b b b b b b b b b b b  ; 

2) First-step approximate fusion results are calculated by formula(6) 

CONVEX {0.3069,0.2559,0.0247,0.1309,0.0834,0.1662,0.0177,0.0019,0.0041,0.0019,0.0110,0.0153}m  ; 

3) Get the final approximate results by normalization method of the first-step approximate results 

GH {0.3009,0.2509,0.0242,0.1283,0.0818,0.1630,0.0174,0.0019,0.0041,0.0019,0.0108,0.0150}m  . 

4) The results of DSmc+PCR5 and the method
18

 are also calculated for the parison with the method in this 

paper. 

The results of DSmT+PCR5 

DSmT+PCR5 {0.3019,0.2524,0.0235,0.1282,0.0811,0.1635,0.0169,0.0018,0.0039,0.0018,0.0104,0.0146}m  . 

The results of the method
18

 

XDL {0.3710,0.1834,0.0276,0.1269,0.0828,0.1651,0.0003,0.0000,0.0001,0.0001,0.0002,0.0002}m  . 

Calculate the Euclidean similarity between the results GHm  and DSmT+PCR5m . The Euclidean Similarity 

GH 0.9984E   and computing time is 0.0035s. 

In the same way, the Euclidean similarity between the results XDLm  and DSmT+PCR5m  is denoted by 
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XDL 0.9287E   and computing time is 0.0185s. 

As shown in the above experiment results in this example, the results obtained by the method proposed in this 

paper have higher Euclidean Similarity and lower computation complexity than the existing DSmT approximate 

method
18

. The Euclidean Similarity which remains over 99% shows that the method proposed in this paper has 

higher accuracy and has practical meaning .  

Example 4. If there are the same 2 evidence sources in example 3 , the hyper-power sets are denoted by 

1 2 12{ , , , } 1or 2kG k    ， . The mass assignments in the second evidence source are unchanged, denoted 

by {0.2,0.05,0.04,0.21,0.15,0.25,0.05,0.01,0.01,0.01,0.01,0.01}b  , and the mass assignments in the first source 

change whose sequnce of the mass belief of each focal element moves one position backward at one time to 

procedure 11 new evidence.  

Each new evidence and the second evidence b  are calculated to get the fusion results of DSmT+PCR5 and the 

approximate results by the method in this paper and the method
18

. Then Euclidean similarity of the approximate 

results of different methods with the results of DSmT+PCR5 and the average computing time of each method are 

taken record as tabel 2. 

Table 2  Euclidean similarity and average computing time coparison of the methods 

As shown in table 2, under complex cases of cluster sets in each evidence, the accuracy of the method in this 

paper also remains over 99% and much higher than the method
18

. Average computing time of the method in this 

paper is lower than the method
18

. At the same time, the accuracy of the method in this paper in different evidence 

cases changes little, which proves that the method has higher performance stability.  

6.3. cases of highly conflict evidence sources 

Example 5. In order to verify information fusion of highly conflict evidence sources can be effective solved by the 

method in this paper. Assume there are two highly conflict evidence sources with the hyper-power set denoted by 

{ , , , }D a b c d  . The mass assignements of two evidenece sources are shown in tabel 3. 

Table 3  The mass assignements of highly conflict evidenece sources 

Conflict evidenece sources  a  b  c  d  

1S  x     1 x      

2S    y     1 y    

Let 0.01, , [0.02,0.98]x y   . The fusion results are obtained by different methods when ,x y  is increasing 

from 0.02 to 0.98 by 0.01 step at the same time. Euclidean similarity of the method
18

 with DSmT+PCR5 is shown 

in figure1. Euclidean similarity of the method in this paper with DSmT+PCR5 is shown in figure2.   

 
Euclidean similarity with results of DSmT+PCR5 

Average 

computing 

time 1 2 3 4 5 6 7 8 9 10 11 

The 
method in 

this paper 

0.9987 0.9983 0.9982 0.9979 0.9981 0.9985 0.9985 0.9983 0.9984 0.9983 0.9983 0.0038 

The 

method
18

 
0.8795 0.9330 0.9514 0.9484 0.8112 0.8636 0.8253 0.8342 0.8331 0.8189 0.8483 0.0186 



 · 

 

 

Fig. 1.  Euclidean similarity of the method
18

 with DSmT+PCR5       Fig. 2.  Euclidean similarity of the method in this paper with DSmT+PCR5    

The average Euclidean Similarity of the method in this paper is 0.9873 and the average Euclidean Similarity of 

the method
18 

is 0.8513. It’s shown that the method in this paper can effiectively solve information fusion problem 

of highly conflict evidence sources. 

6.4. convergence analysis 

Example 6. If there are 2 evidence sources, assume that only singleton focal elements have mass assignments in 

hyper-power sets, denoted by 1 2 12{ , , , } 1or 2kG k    ， . The mass assignments in each evidence are 

{0.1,0.01,0.02,0.25,0.15,0.05,0.1,0.1,0.1,0.05,0.05,0.02}

{0.5,0.35,0.02,0.02,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.04}

a

b




. First, fusion results of two evidence a  and b  

are obtained by different fusion methods. Then, fuse the prior fusion results with b  repeatedly. Through the 

experiment results each time, analyze different method’s convergence.  

   Table 3  The mass assignements of highly conflict evidenece sources 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in tabel 3, the convergence of three methods is similar. The results of each method can converge to the 

main focal elements afer 3 times of evidence fusion. However, the results of the method in this paper have higher 

Euclidean similarity with DSmT+PCR5, and lose less information than the method
18

 each time.  

6.5. monte carlo simulations in the case of non-empty multiple focal elements 

If there are 2 evidence sources, assume that singleton focal elements and multiple focal elements have mass 

  Fusion results 

1 DSmT+PCR5  0.4287,0.2600,0.0058,0.1163,0.0539,0.0109,0.0297,0.0297,0.0297,0.0109,0.0109,0.0136 

The  method
18

 0.4067,0.0994,0.0212,0.1888,0.0798,0.0385,0.0027,0.0027,0.0027,0.0010,0.0010,0.0019 

The method in this paper 0.4285,0.2610,0.0060,0.1151,0.0535,0.0110,0.0296,0.0296,0.0296,0.0110,0.0110,0.0141 

2 DSmT+PCR5 0.5829,0.3324,0.0031,0.0388,0.0120,0.0017,0.0053,0.0053,0.0053,0.0017,0.0017,0.0099 

The  method
18

 0.5687,0.1686,0.0036,0.0642,0.0202,0.0127,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000 

The method in this paper 0.5705,0.3459,0.0031,0.0371,0.0116,0.0018,0.0052,0.0052,0.0052,0.0018,0.0018,0.0109 

3 DSmT+PCR5 0.6439,0.3342,0.0018,0.0084,0.0016,0.0006,0.0008,0.0008,0.0008,0.0006,0.0006,0.0060 

The  method
18

 0.6171,0.1968,0.0009,0.0109,0.0027,0.0021,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000 

The method in this paper 0.6118,0.3655,0.0021,0.0078,0.0015,0.0006,0.0008,0.0008,0.0008,0.0006,0.0006,0.0069 

4 DSmT+PCR5 0.6726,0.3181,0.0012,0.0017,0.0004,0.0004,0.0004,0.0004,0.0004,0.0004,0.0004,0.0040 

The  method
18

 0.6152,0.2047,0.0008,0.0018,0.0004,0.0003,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000 

The method in this paper 0.6264,0.3626,0.0015,0.0017,0.0004,0.0004,0.0004,0.0004,0.0004,0.0004,0.0004,0.0048 



 · 

 

assignments in hyper-power sets, denoted by 
1 2 20 1 5 10 20{ , , , , }P         . Carry out 1000 times monte 

carlo simulation experiments. First, assign random mass value to every focal elements of hyper-power sets in each 

evidence each time. Then, the fusion results of 2 evidence are obtained by DSmT+PCR5 and the method in this 

paper seperately. Thirdly, calculate the Euclidean similarity of the method in this paper with DSmT+PCR5 and 

computing time in each monte carlo experiment. The monto carlo simulation results are shown in figure 3, figure 4 

and table 4.  

 
Fig. 3.  Computing time comparison of the method in this paper with DSmT+PCR5 Fig. 4.  Euclidean similarity of the method in this paper with 

DSmT+PCR5   

 

Table 4  fusion results comparison in the case of increasing focal elements number 

 
Average Euclidean 

Similarity 

Max Euclidean 

Similarity 

Min Euclidean 

Similarity 

Average computing 

time(ms) 

Max computing 

time(ms) 

Min computing 

time(ms) 

DSmT+PCR5    1.9 3.1 1.9 

The method in 

this paper  
0.9849 0.9956 0.9693 0.84911 1.4 0.83593 

 

As shown in figure3, figure4 and tabel 4, in the case of non-empty multiple focal elements, the average Euclidean 

similarity of the method in this paper can reach 98.49% and Euclidean similarity changes little with different 

evidence. Computing time of the method in this paper almost reduce halfly than DSmT+PCR5.   

6.6. monte carlo simulations in the case of increasing focal elements number 

Example 7. If there are 2 evidence sources, assume that only singleton focal elements have mass assignments in 

hyper-power sets, denoted by 1 2 10{ , , , } 1or 2kG k    ， . Increase 10 focal elements each time until 500 to 

the hyper-power sets and assign random mass value to every focal elements of hyper-power sets in each evidence 

each time. Carry out 1000 times monto carlo simulation in each hyper-power set, calculate the average Euclidean 

similarity of the method in this paper with DSmT+PCR5 as shown in figure 5. Compare the average computing 

time of the method in this paper with DSmT+PCR5 in each hyper-power sets is shown in figure 6. 
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Fig. 5. Euclidean similarity of the method in this paper with DSmT+PCR5 Fig. 6. computing time comparison of the method in this paper with 

DSmT+PCR5   
 The fusion results comparison in the case of increasing focal elements number is shown in table 4. (As the 

increasing number of focal elements, the mass assignment of average cluster center is decreasing sharply. For 

reducing computation complexity, neglect the influnce of the different classification of clusters and apply the 

standard of 
2

n
 as one step cluster method, n  denote the focal elements number of hyper-power sets.) 

Table 5  Fusion results comparison in the case of increasing focal elements number 

 The focal elements number of hyper-power sets is increasing from 10 to 510 

Average computing 

time of DSmT+PCR5 

(s) 

0.0008    0.0032    0.0073    0.0132    0.0208    0.0297    0.0406    0.0530    0.0670    0.0829    0.1017    0.1219    

0.1405    0.1636    0.1867    0.2133    0.2431    0.2685    0.3009    0.3319    0.3698    0.4013    0.4427    0.4816    

0.5212    0.5588    0.6011    0.6462    0.6959    0.7413    0.7909    0.8425    0.8962    0.9505    1.0082    1.0659    

1.1263    1.1882    1.2516    1.3166    1.3828    1.4509    1.5225    1.5926    1.6660    1.7409    1.8174    1.8946    

1.9765    2.0574    2.1397 

Average computing 
time of the method in 

this paper (s) 

0.0003    0.0006    0.0010    0.0013    0.0017    0.0020    0.0024    0.0028    0.0032    0.0036    0.0040    0.0044    

0.0048    0.0053    0.0057    0.0062    0.0067    0.0071    0.0076    0.0081    0.0087    0.0092    0.0098    0.0103    
0.0108    0.0114    0.0118    0.0124    0.0130    0.0136    0.0142    0.0148    0.0154    0.0160    0.0167    0.0173    

0.0180    0.0186    0.0193    0.0200    0.0207    0.0214    0.0222    0.0229    0.0236    0.0244    0.0251    0.0259    

0.0265    0.0275    0.0282 

Average Euclidean 

similarity with results 

of DSmT+PCR5 

0.9774    0.9826    0.9871    0.9881    0.9895    0.9907    0.9917    0.9922    0.9922    0.9927    0.9931    0.9933    

0.9939    0.9940    0.9938    0.9945    0.9945    0.9946    0.9947    0.9947    0.9950    0.9953    0.9949    0.9954    

0.9955    0.9955    0.9955    0.9956    0.9959    0.9958    0.9961    0.9959    0.9961    0.9960    0.9959    0.9961    

0.9962    0.9964    0.9961    0.9964    0.9964    0.9964    0.9964    0.9965    0.9966    0.9966    0.9966    0.9968    

0.9966    0.9968    0.9967 

As shown in figure 5, figure 6 and table 5: 

1) In the case of increasing focal elements number, computing time of the method in this paper decreases 

significantly, and the computation complexity of the method almost appears linear growth instead of exponential 

growth, which proves that the method in this paper has a high application in the case of complex fusion problems; 

2) The accuracy of the method in this paper is increasing with the growth of focal elements number of 

hyper-power sets as the errors item becomes much smaller. The minimum average Euclidean Similarity is 0.9974 in 

the case of the minimum number of hyper-power sets. When number of hyper-power sets increases over 50, the 

average Euclidean similarity exeeds 99%, which proves that the method in this paper can effectively support correct 

and quick decision in the case of large data. 

4. Conclusions 

A new evidence clustering DSmT approximate reasoning method is proposed by analysis of convex function errors 

in this paper. The method reduces computation complexity of DSmT+PCR5 signanificantly which blocks the wide 

application and development of DSmT and remains high accuracy. Simulation results show that in different cases the 

method in this paper can process evidence fusion problems effectively and efficiently, especially, in the case of large 

data and complex fusion problems, the method can get highly accurate results and need low computation complexity.  
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