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Due to the huge computation complexity of Dezert–Smarandache Theory (DSmT), its applications 
especially for multi-source (more than two sources) complex fusion problems have been limited. To 
get high similar approximate reasoning results with Proportional Conflict Redistribution 6 (PCR6) rule 
in DSmT framework (DSmT + PCR6) and remain less computation complexity, an Evidence Clustering 
DSmT approximate reasoning method for more than two sources is proposed. Firstly, the focal elements 
of multi evidences are clustered to two sets by their mass assignments respectively. Secondly, the convex 
approximate fusion results are obtained by the new DSmT approximate formula for more than two 
sources. Thirdly, the final approximate fusion results by the method in this paper are obtained by the 
normalization step. Analysis of computation complexity show that the method in this paper cost much 
less computation complexity than DSmT + PCR6. The simulation experiments show that the method in 
this paper can get very similar approximate fusion results and need much less computing time than 
DSmT + PCR6, especially, when the numbers of sources and focal elements are large, the superiorities of 
the method are remarkable.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid development of science and technology, sensor 
types become diverse. To solve the more and more complex prac-
tical problems, information fusion from different multi sources has 
been drawn great attention by scholars in recent years [1–12]. Due 
to the influence of noise, uncertain signal and information pro-
cessing has become an important research direction in the field 
of information fusion. Belief function theory (also called evidence 
theory) has played a key role in uncertain and even conflict in-
formation processing. As a traditional evidence theory, Dempster–
Shafer theory (DST) [13,14] is a general applied information fusion 
method. However, DSmT, jointly proposed by Dezert and Smaran-
dache [12], beyonds the exclusiveness limitation of DST and espe-
cially in highly conflict information cases, it can obtain more accu-
rate fusion results than DST. Recently, DSmT has many successful 
applications, such as, Map Reconstruction of Robot [15], Decision 
Making Support [16,17], Target Type Tracking [18], Image Process-
ing [19], Sonar Imagery [20], Data Classification [21–25], Clustering 
[26–28], and so on. Besides, neutrosopic theory [29–31] proposed 
by Smarandache is a novel effective uncertain information process-
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ing method. However, the main problem of DSmT is that when the 
number of sources and focal elements increases, the computation 
complexity of PCR5 or PCR6 in DSmT framework increases expo-
nentially [32].

There were some important methods for reducing the computa-
tion complexity of the combination algorithms in DSmT framework 
since this problem can be treated in different ways: 1) reducing 
the number of focal elements [33–36], 2) reducing the number 
of combined sources [37], 3) reducing both the number of focal 
elements and the number of combined sources [38]. Applied math-
ematics has drawn attention by many scholars [39,40]. Particularly, 
the very recent Evidence Clustering DSmT Approximate Reasoning 
Method based on Convex Function Analysis [11] proposed by Guo, 
He, et al can get very similar approximate fusion results with PCR5 
in DSmT framework and cost little computation complexity. Nev-
ertheless, the approximate method in [11] is only for two sources 
and it is not associative in the fusion of multiple (more than 2) 
sources of evidences.

For reducing the huge computation complexity of Dezert–
Smarandache Theory (DSmT) for multi-source (more than two 
sources) complex fusion problems and get more similar approx-
imate fusion results with PCR6 in DSmT framework (DSmT +
PCR6), a DSmT Approximate Reasoning Method for More than Two 
Sources is proposed in this paper. In Section 2, the basics knowl-
edge on DST, DSmT + PCR6 and evidential distance theory are in-
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troduced briefly. In Section 3, a new form of PCR6 formula is given 
and the mathematical analysis of the new form is conducted. Then 
a new DSmT approximate reasoning method for more than two 
sources is proposed. Finally, Analysis of computation complexity 
shows that the method in this paper costs much less computation 
complexity than DSmT + PCR6. In Section 4, the simulation exper-
iments show that the method in this paper can get very similar 
approximate fusion results and need much less computing time 
than DSmT + PCR6, especially, when the number of sources and 
focal elements is large, the superiorities of the method are remark-
able. In Section 5, the conclusions are given.

2. Basic knowledge

2.1. Dempster–Shafer theory (DST)

A discernment frame based on the Shafer’s model is defined as 
Θ = {θ1, θ2, · · · , θn} which contains n exclusive elements. The mass 
assignments of evidences defined over the power-set 2Θ is defined 
by

m(Xi) : 2Θ → [0,1], Xi ∈ 2Θ (1)

If m(Xi) > 0, Xi is called the focal element. mi denotes the mass 
assignments of the ith source of evidence. The Dempster’s combi-
nation rule is given by [13,14]

mDS(X) =
∑

Xi∩X j=X,i �= j m1(Xi) · m2(X j)

1 − K
, ∀X ⊆ Θ (2)

K =
∑

Xi ,X j⊆Θ,i �= j
Xi∩X j=∅

m1(Xi) · m2(X j) (3)

where K denotes the conflict beliefs of evidences. However, when 
the conflict beliefs of evidences are high, the fusion results of 
Dempster’s combination rule are usually very unreasonable. For 
this reason, many combination rules were developed, especially, 
Proportional Conflict Redistribution1–6 (PCR1–6) rules in DSmT 
framework have many advantages and successful applications [12].

2.2. Dezert–Smarandache theory (DSmT)

The discernment frame of DSmT based on the hyper-power set 
abandons the exclusiveness limitation of DST. The hyper-power 
set denoted by DΘ admits the intersection of the elements. For 
example, if there are two elements in discernment framework 
Θ = {θ1, θ2}, the hyper-power set is DΘ = {∅, θ1, θ2, θ1 ∪θ2, θ1 ∩θ2}. 
The mass assignments of evidences defined over the hyper-power 
set DΘ is defined by

m(Xi) : DΘ → [0,1], Xi ∈ DΘ (4)

The Proportional Conflict Redistribution (PCR) rules [41,42] are 
the combination rules in DSmT framework. PCR rules have PCR1-6 
rules and the difference of them is that the proportional redis-
tribution way of the conflict beliefs. PCR1–5 rules are applied 
for the combination of two sources and among these rules, PCR5 
is considered as the most precise mathematical method. PCR6 
rule is usually applied for more than two sources fusion prob-
lems.

PCR5 rule for 2 sources is introduced as follows [41,42]

m1⊕2(Xi) =
∑

Y ,Z∈GΘ and Y ,Z �=∅
Y ∩Z=Xi

m1(Y ) · m2(Z) (5)
mPCR5(Xi)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m1⊕2(Xi)

+∑ X j∈GΘ and i �= j
Xi∩X j=∅

[m1(Xi)
2·m2(X j)

m1(Xi)+m2(X j)
+ m2(Xi)

2·m1(X j)

m2(Xi)+m1(X j)
]

Xi ∈ GΘ and Xi �= ∅
0, Xi = ∅

(6)

where GΘ can been seen as the power set 2Θ , the hyper-power 
set DΘ and the super-power set SΘ , if discernment of the fusion 
problem satisfies the Shafer’s model, the hybrid DSm model, and 
the minimal refinement Θref of Θ respectively and where all de-
nominators are more than zero and the fraction is discarded when 
the denominator of it is zero [41,42].

This paper is mainly for more than two sources fusion. PCR6 
rule for more than 2 sources is introduced as follows

m1⊕2⊕···⊕s(X)

=
∑

Y1,Y2,··· ,Ys∈GΘ and Y1,Y2,··· ,Ys �=∅
Y1∩Y2∩···∩Ys=X

m1(Y1) × m2(Y2) × · · · × ms(Ys)

(7)

mConflictTransfer(X)

=
∑

Z1,Z2,··· ,Zs−1∈GΘ

Zi �=X,i∈{1,2,··· ,s−1}
(
⋂s−1

i=1 Zi )∩X=∅

s−1∑
k=1

∑
(i1,i2,··· ,is)∈P (1,2,··· ,s)

[
mi1 (X) + mi2 (X) + · · · + mik (X)

]

·
[

mi1 (X) × mi2 (X) × · · · × mik (X) × mik+1 (Z1) × · · · × mik+1 (Zs−k)

mi1 (X) + mi2 (X) + · · · + mik (X) + mik+1 (Z1) + · · · + mik+1 (Zs−k)

]

(8)

mPCR6(X) = m1⊕2⊕···⊕s(X) + mConflictTransfer(X),

X ∈ GΘ and X �= ∅ (9)

where GΘ denotes the general power set which can be seen as 
the same as 2Θ , DΘ or the super-power set SΘ in different cases; 
and P (1, 2, · · · , s) denotes the set of all permutations of the ele-
ments. Equation (7) denotes that the combination products of the 
intersections of the mass assignments. Equation (8) denotes that 
the proportional redistribution of the conflict beliefs of mass as-
signments.

Assume that s = 2, PCR6 rule is given by

m1⊕2(X) =
∑

Y1,Y2∈GΘ and Y1,Y2 �=∅
Y1∩Y2=X

m1(Y1) × m2(Y2) (10)

mConflictTransfer(X) = mi1(X) ·
[

mi1(X) × mi2(Z2)

mi1(X) + mi2(Z2)

]

+ mi2(X) ·
[

mi2(X) × mi1(Z1)

mi2(X) + mi1(Z1)

]
(11)

mPCR6(X) =
∑

Y1,Y2∈GΘ and Y1,Y2 �=∅
Y1∩Y2=X

m1(Y1) × m2(Y2)

+ mi1(X) ·
[

mi1(X) × mi2(Z2)

mi1(X) + mi2(Z2)

]

+ mi2(X) ·
[

mi2(X) × mi1(Z1)

mi2(X) + mi1(Z1)

]
,

X ∈ GΘ and X �= ∅ (12)
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PCR has many advantages, such as it provides the appropriate re-
distribution of conflicting beliefs, and it can produce reasonable 
combination result even in high conflicting cases. Nevertheless, the 
main disadvantage of PCR6 is that its computation complexity is 
too large and this limits its widely practical application.

2.3. Evidential distance theory

Evidential distance theory is a good way to measure the dis-
similarity of multi evidences. Two well known dissimilarity mea-
sure functions based on evidential distance theory are introduced 
briefly; first is Jousselme dissimilarity measure function based 
on Jousselme’s distance which takes into account the cardinal-
ity of elements; second is Euclidean dissimilarity measure func-
tion which has little computation complexity and fast convergence 
speed.

1) Jousselme dissimilarity measure function Sim J (m1, m2) [37]
is defined based on the Jousselme’s evidential distance [43] as fol-
lows

Sim J (m1,m2) = 1 − 1√
2

√
(m1 − m2)T D(m1 − m2) (13)

where D = [Dij] is a |GΘ | × |GΘ | positively definite matrix, and 
Dij = |Xi ∩ X j|/|Xi ∪ X j | with Xi, X j ∈ GΘ .

The advantage of Jousselme dissimilarity is that it considers 
both the mass and the cardinality of bba’s. However, it makes no 
difference between the bba’s consisting of all single elements’ mass 
assignments and the bba’s consisting of non specific elements’ 
mass assignments [16].

2) Euclidean ESMS function SimE (m1, m2) [37] is defined based 
on the Euclidean evidential distance as follows

SimE(m1,m2) = 1 − 1√
2

√√√√√|GΘ |∑
i=1

[
m1(Xi) − m2(Xi)

]2
(14)

where |GΘ | is the cardinality of GΘ .
The difference of SimE(m1, m2) and Sim J (m1, m2) has been dis-

cussed in [37]. The detailed discussion is omitted in this paper. 
Please see [37] if necessary. It is proved in [37] that SimE (m1, m2)

has many properties, including fastest convergence speed. So it is 
adopted in this paper as the dissimilarity measure of the approxi-
mate method with DSmT + PCR6.

3. An evidence clustering DSmT approximate reasoning method 
for more than two sources

3.1. A new form of PCR6 formula for more than two sources

It can be drawn from Equation (5)–(7) that the fusion proce-
dures of the PCR6 rule have two main steps, first is the calculation 
of m1⊕2⊕···⊕s(X) and second is the calculation of mConflictTransfer(X). 
For reducing the computation complexity of our approximate rea-
soning method, a new form of the PCR6 formula for more than 
two sources is given as follows

1) The focal element of evidences from multi sources are de-
noted by

m1 : {X1
i1
}, X1

i1
∈ GΘ

m2 : {X2
i2
}, X2

i2
∈ GΘ

...

ms : {X s
i }, X s

i ∈ GΘ

(15)
s s
2) The first step fusion results of evidences are calculated by

m1
PCR-new(X)

= mi1

(
X1

i1

)

·
∑

X2
i2

,X3
i3

,··· ,Xs
is

∈GΘ

[mi1(X1
i1
) × mi2(X2

i2
) × · · · × mis (X s

is
)

mi1(X1
i1
) + mi2(X2

i2
) + · · · + mis (X s

is
)

]
,

if X1
i1

∩ X2
i2

∩ · · · ∩ X s
is

= ∅, X = X1
i1
,

else X = X1
i1

∩ X2
i2

∩ · · · ∩ X s
is

m2
PCR-new(X)

= mi2

(
X2

i2

)

·
∑

X1
i1

,X3
i3

,··· ,Xs
is

∈GΘ

[mi1(X1
i1
) × mi2(X2

i2
) × · · · × mis (X s

is
)

mi1(X1
i1
) + mi2(X2

i2
) + · · · + mis (X s

is
)

]
,

if X2
i2

∩ X1
i1

∩ · · · ∩ X s
is

= ∅, X = X2
i2
,

else X = X2
i2

∩ X1
i1

∩ · · · ∩ X s
is

...

ms
PCR-new(X)

= mis

(
X s

is

)

·
∑

X1
i1

,X2
i2

,··· ,Xs−1
is−1

,∈GΘ

[mi1(X1
i1
) × mi2(X2

i2
) × · · · × mis (X s

is
)

mi1(X1
i1
) + mi2(X2

i2
) + · · · + miS (X s

is
)

]
,

if X s
is

∩ X1
i1

∩ · · · ∩ X s−1
is−1

= ∅, X = X s
is
,

else X = X s
is

∩ X1
i1

∩ · · · ∩ X s−1
is−1

(16)

3) The final fusion results are calculated by

mPCR-new(X) = m1
PCR-new(X) + m2

PCR-new(X) + · · · + ms
PCR-new(X)

(17)

3.2. Mathematical analysis of new form of PCR6 formula

It can be drawn from Equation (16) that m1
PCR-new(X),

m2
PCR-new(X), · · · , ms

PCR-new(X) have the similar formula form. Due 
to the similar formula form, m1

PCR-new(X) is analyzed first.

m1
PCR-new(X)

= mi1

(
X1

i1

)

·
∑

X2
i2

,X3
i3

,··· ,Xs
is

∈GΘ

[mi1(X1
i1
) × mi2(X2

i2
) × · · · × mis (X s

is
)

mi1(X1
i1
) + mi2(X2

i2
) + · · · + mis (X s

is
)

]

= mi1

(
X1

i1

)2 ×
∑

X3
i3

,··· ,Xs
is

∈GΘ

{
mi3

(
X3

i3

)× · · · × mis

(
X s

is

)

×
∑

X2
i2

∈GΘ

[ mi2(X2
i2
)

mi1(X1
i1
) + mi2(X2

i2
) + · · · + mis (X s

is
)

]}
(18)

Let

mi1

(
X1

i1

)+ mi3

(
X3

i3

)+ · · · + miS

(
X s

is

)= a,

mi2

(
X2

i2

)= x1, x2, · · · , xn. (19)
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Then

∑
X2

i2
∈GΘ

[ mi2(X2
i2
)

mi1(X1
i1
) + mi2(X2

i2
) + · · · + mis (X s

is
)

]

= x1

a + x1
+ x2

a + x2
+ · · · + xn

a + xn

= n − a ×
(

1

a + x1
+ 1

a + x2
+ · · · + 1

a + xn

)
(20)

Let

f (xi) = 1

a + xi
, i = 1,2, · · · ,n, 0 ≤ xi ≤ 1. (21)

Because f (xi) is a convex function, the approximate convex func-
tion formula [44] of 

∑n
i=1 f (xi) is given by

n∑
i=1

f (xi) = 1

a + x1
+ 1

a + x2
+ · · · + 1

a + xn

= n

a + (x1 + x2 + · · · + xn)/n
+ � (22)

where � denotes the error of the approximate convex function 
formula, � ≥ 0, � = 0 iff x1 = x2 = · · · = xn . Let x0 = (x1 + x2 +
· · · + xn)/n, the convex function error analysis can be seen in [44]
and the convex error function formula is given by

� ≈
∑n

i=1(xi − x0)
2

2(a + x0)3
, xi < a + 2x0 (23)

From Equation (23), the convex function errors are related to ∑n
i=1(xi − x0)

2 and 1
2(a+x0)3 . If the average value x0 is large and 

x1, x2, · · · , xn are concentrated, the errors are much smaller.
Let n is the number of focal elements in the evidence, j is the 

source order number, j = 1, 2, · · · , s and {x j
i }, i = 1, 2, · · · , n are 

the bba’s of the jth source’s evidence.
The pseudo-code of Evidence Clustering method is given as Ta-

ble 1.

Table 1
The pseudo-code of Evidence Clustering method.

Input:
The number of focal elements in the evidence: n
The source order number: j = 1, 2, · · · , s
The bba’s of the jth source’s evidence: {x j

i }, i = 1, 2, · · · , n
1) For j = 1, 2, · · · , s

{x j
i }, i = 1, 2, · · · , n are reordered to be {x j

i }, x j
1 ≥ x j

2 ≥ · · · ≥ x j
n in

descending order.
End

2) For i = 1, 2, · · · , n
Calculate the following function

f
(
x j

i

)= 1.5 · (1 −∑i
k=1 x j

k)

n − i
(24)

If x j
i ≥ f (x j

i ), x j
i is forced to the set x j

a .

Otherwise, x j
i and the following mass assignments are forced to the other

set x j
b .

End
3) For j = 1, 2, · · · , s

Calculate the sum and the number of x j
a .

The sum of x j
a is denoted by X j

a and the number of x j
a is denoted by k j

a .

Then the sum of x j
b is denoted by X j

b = 1 − X j
a , the number of x j

b is

denoted by k j
b = n − k j

a .
End
After the above Evidence Clustering method, the mass assign-
ments are clustered to two sets, denoted by x j

a and x j
b . Besides, the 

sum and the number of two sets is calculated.
Based on the Evidence Clustering method and the approximate 

convex function formula, Equation (16) can be transferred to

m1
PCR-new(X)

= mi1

(
X1

i1

)2 ∑
X3

i3
,··· ,Xs

is
∈GΘ

{
mi3

(
X3

i3

)× · · · × mis

(
X s

is

)

×
∑

X2
i2

∈GΘ

[ mi2(X2
i2
)

mi1(X1
i1
) + mi2(X2

i2
) + · · · + mis (X s

is
)

]}

≈ mi1

(
X1

i1

)2 ∑
X3

i3
,··· ,Xs

is
∈GΘ

{
mi3

(
X3

i3

)× · · · × mis

(
X s

is

)

×

⎡
⎢⎢⎢⎣

X2
a

mi1(X1
i1
) + mi3(X3

i3
) + · · · + mis (X s

is
) + X2

a /k2
a

+ X2
b

mi1(X1
i1
) + mi3(X3

i3
) + · · · + mis (X s

is
) + X2

b /k2
b

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= mi1

(
X1

i1

)2 ∑
X4

i4
,··· ,Xs

is
∈GΘ

{
mi4

(
X4

i4

)× · · · × mis

(
X s

is

)

×
∑

X3
i3

∈GΘ

mi3

(
X3

i3

)
⎡
⎢⎣

X2
a

mi1 (X1
i1

)+mi3 (X3
i3

)+···+mis (Xs
is

)+X2
a /k2

a

+ X2
b

mi1 (X1
i1

)+mi3 (X3
i3

)+···+mis (Xs
is

)+X2
b /k2

b

⎤
⎥⎦
⎫⎪⎬
⎪⎭

(25)

Let

mi1

(
X1

i1

)+ mi4

(
X4

i4

)+ · · · + miS

(
X s

is

)+ X2
a /k2

a = a,

mi3

(
X3

i3

)= x1, x2, · · · , xn. (26)

Then

∑
X3

i3
∈GΘ

mi3

(
X3

i3

) · X2
a

mi1(X1
i1
) + mi3(X3

i3
) + · · · + mis (X s

is
) + X2

a /k2
a

= X2
a ×

[
x1

a + x1
+ x2

a + x2
+ · · · + xn

a + xn

]
(27)

Based on the Evidence Clustering method and the approximate 
convex function formula, Equation (27) can be transferred to

∑
X3

i3
∈GΘ

mi3

(
X3

i3

) · X2
a

mi1(X1
i1
) + mi3(X3

i3
) + · · · + mis (X s

is
) + X2

a /k2
a

= X2
a × X3

a

mi1(X1
i1
) + X2

a /k2
a + X3

a /k3
a + mi4(X3) + · · · + mis (X s

k)

(28)

Then Equation (16) can be transferred to

m1
PCR-new(X)

= mi1

(
X1

i1

)2 ∑
X4

i ,··· ,Xs
i ∈GΘ

{
mi4

(
X4

i4

)× · · · × mis

(
X s

is

)

4 s
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×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X2
a × X3

a

mi1 (X1
i1
) + X3

a /k3
a + X2

a /k2
a + mi4 (X4

i4
) + · · · + mis (X s

is
)

+ X2
a × X3

b

mi1 (X1
i1

) + X3
b /k3

b + X2
a /k2

a + mi4 (X4
i4

) + · · · + mis (X s
is
)

+ X2
b × X3

a

mi1 (X1
i1

) + X3
a /k3

a + X2
b /k2

b + mi4 (X4
i4

) + · · · + mis (X s
is
)

+ X2
b × X3

b

mi1 (X1
i1

) + X3
b /k3

b + X2
b /k2

b + mi4 (X4
i4

) + · · · + mis (X s
is
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)

Equation (29) can be transformed to the products of the sum of 
convex functions. So the mass assignments of focal elements are 
clustered by Evidence Clustering method for reducing the approxi-
mate errors and the approximate formula of Equation (16) is given 
as follows

m1
PCR-new(X)

≈ m1
PCR-CONVEX(X)

= mi1

(
X1

i1

)2

×
∑

t2∈{X2
a ,X2

b },k2∈{k2
a ,k2

b }
t3∈{X3

a ,X3
b },k3∈{k3

a ,k3
b }

...
ts∈{Xs

a,Xs
b},ks∈{ks

a,ks
b}

t2 × t3 × · · · × ts

mi1(X1
i1
) + t2/k2 + t3/k3 + · · · ts/ks

(30)

where if t j = X j
a , k j = k j

a and if t j = X j
b , k j = k j

b .

Similarly, the approximate formulas of m j
PCR-new(X),

j = 1, 2, · · · , s in Equation (16) are given as follows

m j
PCR-CONVEX(X)

= mi j

(
X j

i j

)2

·
∑

l �= j,l∈[1,2,··· ,s]

[ ∏
l �= j,l∈[1,2,··· ,s] mil (Xl

il
)

mi j (X j
i j
) +∑l �= j,l∈[1,2,··· ,s] mil (Xl

il
)

]

= mi j

(
X j

i j

)2

×
∑

tl∈{Xl
a,Xl

b},kl∈{kl
a,kl

b}
kl=kl

a, if tl=Xl
a

kl=kl
b, if tl=Xl

b

∏
l �= j,l∈[1,2,··· ,s] tl

mi j (X j
i j
) +∑l �= j,l∈[1,2,··· ,s] tl/kl

(31)

The Approximate Reasoning method is given as Table 2.

3.3. Analysis of computation complexity

Assume that s denotes the number of multi sources, and s > 2; 
n denotes the number of singleton focal elements in each evi-
dence; there are only mass assignments of singleton focal ele-
ments in multi source evidences, denoted by m(θi) > 0|θi ∈ GΘ =
{θ1, θ2, · · · , θn}; M, A, and D denote the computation complexity of 
multiplication, addition, and division for one time, separately.

The computation complexity of PCR6 for more than two 
sources, denoted by oPCR6(n, s) is given by

oPCR6(n, s)

= n · (s − 1) · M + s · (ns − n
) · [s · M + (s − 1) · A + D

]+ n · A
Table 2
The pseudo-code of approximate reasoning method.

Input: The number of focal elements in the evidence: n
The source order number: j = 1, 2, · · · , s
The bba’s of the jth source’s evidence: {x j

i }, i = 1, 2, · · · , n
the sum and the number of the two clustering sets of {x j

i }: X j
a , k j

a and X j
b, k j

b

1) For j = 1, 2, · · · , s
Calculate the following function

m j
PCR-CONVEX(X) = mi j

(
X j

i j

)2

×
∑

tl∈{Xl
a,Xl

b},kl∈{kl
a,kl

b}
kl=kl

a, if tl=Xl
a

kl=kl
b , if tl=Xl

b

∏
l �= j,l∈[1,2,··· ,s] tl

mi j (X j
i j
) +∑l �= j,l∈[1,2,··· ,s] tl/kl

(32)

End
Calculate the convex approximate formula of Equation (17) as follows

mCONVEX(X) = m1
PCR-CONVEX(X) + m2

PCR-CONVEX(X) + · · · + ms
PCR-CONVEX(X) (33)

Calculate the final approximate results by the normalization step as follows

mGH(X) = mCONVEX(X)∑
X∈GΘ mCONVEX(X)

(34)

= [n · (s − 1) + s2 · n · (ns−1 − 1
)] · M

+ [s · (ns − n
) · (s − 1) + n

] · A + s · (ns − n
) · D (35)

Proof. Assume that the multisource evidences are shown as fol-
lows:

m1(θ1) m1(θ2) · · · m1(θn)

m2(θ1) m2(θ2) · · · m2(θn)
...

ms(θ1) ms(θ2) · · · ms(θn)

(36)

The original PCR6 method can be divided into two parts as 
Equation (5), Equation (6) and Equation (7).

1) First, the computation of Equation (5) can be represented by

m1⊕2⊕···⊕s(θi) = m1(θi) × m2(θi) × · · · × ms(θi) (37)

The computation of Equation (37) consists of (s − 1) times of mul-
tiplication, denoted by (s − 1) · M.

Because i = 1, 2, · · · , n, the computation complexity of Equa-
tion (5) of PCR6 method can be drawn as follows

oPCR6-Equation (5)(n, s) = n · (s − 1) · M. (38)

2) Then the computation of Equation (6) can be represented by

mConflictTransfer(θi)

=
∑

Y1,Y2,··· ,Ys−1∈GΘ

(
⋂s−1

i=1 Yi)∩θi=∅

m1(θi)

× m1(θi) × m2(Y1) × · · · × ms(Ys−1)

m1(θi) + m2(Y1) + · · · + ms(Ys−1)

+
∑

Y1,Y2,··· ,Ys−1∈GΘ

(
⋂s−1

i=1 Yi)∩θi=∅

m2(θi)

× m2(θi) × m1(Y1) × · · · × ms(Ys−1)
m2(θi) + m1(Y1) + · · · + ms(Ys−1)
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+ · · · +
∑

Y1,Y2,··· ,Ys−1∈GΘ

(
⋂s−1

i=1 Yi)∩θi=∅

ms(θi)

× ms(θi) × m1(Y1) × · · · × ms−1(Ys−1)

ms(θi) + m1(Y1) + · · · + ms−1(Ys−1)

=
∑

Y1,Y2,··· ,Ys−1∈GΘ

m1(θi)

× m1(θi) × m2(Y1) × · · · × ms(Ys−1)

m1(θi) + m2(Y1) + · · · + ms(Ys−1)
− m1(θi)

× m1(θi) × m2(θi) × · · · × ms(θi)

m1(θi) + m2(θi) + · · · + ms(θi)

+
∑

Y1,Y2,··· ,Ys−1∈GΘ

m2(θi)

× m2(θi) × m1(Y1) × · · · × ms(Ys−1)

m2(θi) + m1(Y1) + · · · + ms(Ys−1)
− m2(θi))

× m2(θi) × m1(θi) × · · · × ms(θi)

m2(θi) + m1(θi) + · · · + ms(θi)

+
...

+
∑

Y1,Y2,··· ,Ys−1∈GΘ

ms(θi)

× ms(θi) × m1(Y1) × · · · × ms−1(Ys−1)

ms(θi) + m1(Y1) + · · · + ms−1(Ys−1)
− ms(θi))

× ms(θi) × m1(θi) × · · · × ms−1(θi)

ms(θi) + m1(θi) + · · · + ms−1(θi)
(39)

One part of the Equation (39) is analyzed as follows

∑
Y1,Y2,··· ,Ys−1∈GΘ

m1(θi) × m1(θi) × m2(Y1) × · · · × ms(Ys−1)

m1(θi) + m2(Y1) + · · · + ms(Ys−1)

− m1(θi) × m1(θi) × m2(θi) × · · · × ms(θi)

m1(θi) + m2(θi) + · · · + ms(θi)
(40)

The computation of Equation (40) consists of (ns−1 −1) · s times 
of multiplication, denoted by (ns−1 − 1) · s · M; (ns−1 − 1) · (s − 1)

times of addition, denoted by (ns−1 − 1) · (s − 1) · A; and (ns−1 − 1) 
times of division, denoted by (ns−1 − 1) · D.

So the computation complexity of Equation (39) can repre-
sented by s · (ns−1 − 1) · [s · M + (s − 1) · A + D].

Because i = 1, 2, · · · , n, the computation complexity of Equa-
tion (6) of PCR6 method can be drawn as follows

oPCR6-Equation (6)(n, s) = s · (ns − n
) · [s · M + (s − 1) · A + D

]
. (41)

3) Thirdly the computation of Equation (7) can be represented 
by

mPCR6(θi) = m1⊕2⊕···⊕s(θi) + mConflictTransfer(θi) (42)

Because i = 1, 2, · · · , n, the computation complexity of Equa-
tion (7) of PCR6 method can be drawn as follows

oPCR6-Equation (7)(n, s) = n · A (43)

Based on the above proof, the computation complexity of PCR6 
method can be drawn as follows

oPCR6(n, s)

= oPCR6-Equation (5)(n, s) + oPCR6-Equation (6)(n, s)

+ oPCR6-Equation (7)(n, s)
= n · (s − 1) · M + s · (ns − n
) · [s · M + (s − 1) · A + D

]+ n · A

= [n · (s − 1) + s2 · n · (ns−1 − 1
)] · M

+ [s · (ns − n
) · (s − 1) + n

] · A + s · (ns − n
) · D � (44)

The computation complexity of the method in this paper, de-
noted by oGH(n, s), is given as follows

oGH(n, s)

= s · n · 2s−1 · [s · M + (s − 1) · A + s · D
]

+ n · (s − 1) · A + (n − 1) · A + n · D

= s2 · n · 2s−1 · M + [s · n · 2s−1 · (s − 1) + s · n − 1
] · A

+ (s2 · n · 2s−1 + n
) · D (45)

Proof. Assume that the multisource evidences are shown as fol-
lows:

m1(θ1) m1(θ2) · · · m1(θn)

m2(θ1) m2(θ2) · · · m2(θn)
...

ms(θ1) ms(θ2) · · · ms(θn)

(46)

Each evidence is clustered by Evidence Clustering method and 
two sets of each evidence are generated. The sum and the number 
of two sets (sum, number) is obtained as follows

(X1
a ,k1

a) (X1
b ,k1

b)

(X2
a ,k2

a) (X2
b ,k2

b)
...

(X s
a,ks

a) (X s
b,ks

b)

(47)

The proposed method in this paper consists of Equation (32) to 
Equation (34).

1) The computation of Equation (32) when j = 1 can be repre-
sented by

m1
PCR-new(θi)

= m1(θi)
2

×
∑

t2∈{X2
a ,X2

b },k2∈{k2
a ,k2

b}
t3∈{X3

a ,X3
b },k3∈{k3

a ,k3
b}

...
ts∈{Xs

a,Xs
b},ks∈{ks

a,ks
b}

t2 × t3 × · · · × ts

m1(θi) + t2/k2 + t3/k3 + · · · ts/ks

(48)

where if t j = X j
a , k j = k j

a and if t j = X j
b , k j = k j

b .
Because each of t2, t3, · · · , ts has 2 possibilities,

∑
t2∈{X2

a ,X2
b },k2∈{k2

a ,k2
b }

t3∈{X3
a ,X3

b },k3∈{k3
a ,k3

b }
...

ts∈{Xs
a,Xs

b},ks∈{ks
a,ks

b}

t2 × t3 × · · · × ts

m1(θi) + t2/k2 + t3/k3 + · · · ts/ks

has 2s−1 items.
Because i = 1, 2, · · · , n, the computation complexity of Equa-

tion (32) when j = 1 can be drawn as follows

oGH-Equation (32− j = 1)(n, s) = n · 2s−1 · [s · M + (s − 1) · A + s · D
]

(49)
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Table 3
The numerical examples of computation complexity comparison.

The increment of 
numbers of sources

The method Numbers of division Numbers of addition Numbers of 
multiplications

10 PCR6 method 1 × 1011 9 × 1011 1 × 1012

The proposed method 10240 92250 102400

50 PCR6 method 5 × 1051 2.45 × 1053 2.5 × 1053

The proposed method 5.63 × 1016 2.76 × 1018 2.81 × 1018

100 PCR6 method 1 × 10102 9.9 × 10103 1 × 10104

The proposed method 1.27 × 1032 1.26 × 1034 1.27 × 1034

200 PCR6 method 2 × 10202 3.98 × 10204 4 × 10204

The proposed method 3.21 × 1062 6.40 × 1064 6.43 × 1064
2) Because Equation (32) when j = 1, 2, · · · , s has symmetry, 
the computation complexity of Equation (32) can be drawn as fol-
lows

oGH-Equation (32)(n, s) = s ·n · 2s−1 · [s · M + (s − 1) · A + s · D
]

(50)

3) The computation of Equation (33) can be represented by

oGH-Equation (33)(n, s) = n · (s − 1) · A (51)

4) The computation of Equation (34) can be represented by

oGH-Equation (34)(n, s) = (n − 1) · A + n · D (52)

Based on the above proof, the computation complexity of the 
proposed method can be drawn as follows

oGH(n, s)

= s · n · 2s−1 · [s · M + (s − 1) · A + s · D
]

+ n · (s − 1) · A + (n − 1) · A + n · D

= s2 · n · 2s−1 · M + [s · n · 2s−1 · (s − 1) + s · n − 1
] · A

+ (s2 · n · 2s−1 + n
) · D � (53)

It can be drawn from Equation (35) and Equation (45) that the 
computation complexity of PCR6 is almost proportion to s2 ·ns and 
the computation complexity of the method in this paper is almost 
proportion to s2 ·2s . Analysis of computation complexity show that 
the method in this paper cost much less computation complexity 
than DSmT + PCR6, especially when the number of sources and 
the focal elements is large.

Although the above theoretical analysis shows that the pro-
posed method has higher computational efficiency than the origi-
nal PCR6 method, the numerical examples are also given to verify 
this conclusion. Assume that there are only 10 singleton focal ele-
ments which have mass assignments in hyper-power sets, denoted 
by GΘ = {θ1, θ2, · · · , θ10}. The numbers of division, numbers of ad-
dition and numbers of multiplications based on PCR6 method and 
the proposed method with the increment of numbers of sources 
are shown as Table 3. It can be drawn that the proposed method 
has more higher computational efficiency than the original PCR6 
method especially when the number of sources is large.

4. Simulation experiments

4.1. Simple cases of only singleton focal elements

Example 1. If there are 3 evidence sources, assume that only 
singleton focal elements have mass assignments in hyper-power 
sets, denoted by GΘ

k = {θ1, θ2, · · · , θ5}, k = 1, 2, 3. The mass as-
signments in each evidence are m1 = {0.1, 0.1, 0.3, 0.3, 0.2}, m2 =
{0.2, 0.3, 0.05, 0.3, 0.15}, m3 = {0.1, 0.05, 0.4, 0.35, 0.1}.
1) The mass assignments of focal elements in each evidence are 
clustered to two sets by the Evidence Clustering method, denoted 
by x1

a = {θ3, θ4, θ5}, x1
b = {θ1, θ2}; x2

a = {θ1, θ2, θ4, θ5}, x2
b = {θ3}; 

x3
a = {θ4, θ5}, x3

b = {θ1, θ2, θ3}.
Then

X1
a = m1

3(θ3) + m1
4(θ4) + m1

5(θ5) = 0.8

X1
b = m1

1(θ1) + m1
2(θ2) = 0.2

X2
a = m2

1(θ1) + m2
2(θ2) + m2

4(θ4) + m2
5(θ5) = 0.95

X2
b = m2

3(θ3) = 0.05

X3
a = m3

4(θ4) + m3
5(θ5) = 0.75

X3
b = m3

1(θ1) + m3
2(θ2) + m3

3(θ3) = 0.25 (54)

2) The convex function approximate fusion results are calcu-
lated by Equation (32)

m1
PCR-CONVEX(θ1)

= m1
1(θ1)

2 · X2
a · X3

a

m1
1(θ1) + X2

a /3 + X3
a /2

+ m1
1(θ1)

2 · X2
a · X3

b

m1
1(θ1) + X2

a /3 + X3
b /3

+ m1
1(θ1)

2 · X2
b · X3

b

m1
1(θ1) + X2

b /2 + X3
b /3

+ m1
1(θ1)

2 · X2
b · X3

a

m1
1(θ1) + X2

b /2 + X3
a /2

= 0.0169

m1
PCR-CONVEX(θ2)

= m1
2(θ2)

2 · X2
a · X3

a

m1
2(θ2) + X2

a /3 + X3
a /2

+ m1
2(θ2)

2 · X2
a · X3

b

m1
2(θ2) + X2

a /3 + X3
b /3

+ m1
2(θ2)

2 · X2
b · X3

b

m1
2(θ2) + X2

b /2 + X3
b /3

+ m1
2(θ2)

2 · X2
b · X3

a

m1
2(θ2) + X2

b /2 + X3
a /2

= 0.0169

m1
PCR-CONVEX(θ3)

= m1
3(θ3)

2 · X2
a · X3

a

m1
3(θ3) + X2

a /3 + X3
a /2

+ m1
3(θ3)

2 · X2
a · X3

b

m1
3(θ3) + X2

a /3 + X3
b /3

+ m1
3(θ3)

2 · X2
b · X3

b

m1
3(θ3) + X2

b /2 + X3
b /3

+ m1
3(θ3)

2 · X2
b · X3

a

m1
3(θ3) + X2

b /2 + X3
a /2

= 0.1120

m1
PCR-CONVEX(θ4)

= m1
4(θ4)

2 · X2
a · X3

a

m1
4(θ4) + X2

a /3 + X3
a /2

+ m1
4(θ4)

2 · X2
a · X3

b

m1
4(θ4) + X2

a /3 + X3
b /3

+ m1
4(θ4)

2 · X2
b · X3

b

m1
4(θ4) + X2

b /2 + X3
b /3

+ m1
4(θ4)

2 · X2
b · X3

a

m1
4(θ4) + X2

b /2 + X3
a /2

= 0.1120
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Table 4
The fusion results and Euclidean similarities of the methods.

1 2 3 4

The fusion results by 
our method

0.0908, 0.1445, 0.1197, 0.4044, 0.2406 0.2229, 0.1445, 0.1327, 0.2250, 0.2749 0.2573, 0.2766, 0.1327, 0.2380, 0.0955 0.0778, 0.3109, 0.2648, 0.2380, 0.1085

The fusion results by 
PCR6 method

0.0909, 0.1451, 0.1194, 0.4045, 0.2401 0.2227, 0.1451, 0.1323, 0.2255, 0.2744 0.2570, 0.2768, 0.1323, 0.2384, 0.0954 0.0780, 0.3111, 0.2640, 0.2384, 0.1083

Euclidean similarities 99.94% 99.92% 99.95% 99.93%
m1
PCR-CONVEX(θ5)

= m1
5(θ5)

2 · X2
a · X3

a

m1
5(θ5) + X2

a /3 + X3
a /2

+ m1
5(θ5)

2 · X2
a · X3

b

m1
5(θ5) + X2

a /3 + X3
b /3

+ m1
5(θ5)

2 · X2
b · X3

b

m1
5(θ5) + X2

b /2 + X3
b /3

+ m1
5(θ5)

2 · X2
b · X3

a

m1
5(θ5) + X2

b /2 + X3
a /2

= 0.0572 (55)

Similarly,

m2
PCR-CONVEX = [0.0572 0.1118 0.0047 0.1118 0.0348]

m3
PCR-CONVEX = [0.0183 0.0051 0.1875 0.1526 0.0183] (56)

Then the convex approximate result is obtained as follows

mCONVEX = {0.0923,0.1337,0.3042,0.3764,0.1103} (57)

3) The final approximate results are obtained by Equation (34)

mGH = {0.0908,0.1315,0.2991,0.3701,0.1085} (58)

4) The fusion results of DSmT + PCR6 are obtained as follows

mDSmT+PCR6 = {0.0909,0.1322,0.2984,0.3702,0.1083} (59)

The Euclidean similarity between mGH and mPCR6 is obtained by 
Equation (14)

EGH = 99.93% (60)

From the above results of this example, the Euclidean similarity 
of the method in this paper can remain over 99.9% with DSmT +
PCR6. It shows that the accuracy of the method in this paper is 
very high.

Example 2. Assume that there are the same 3 evidence sources 
as Example 1. GΘ

k = {θ1, θ2, · · · , θ5}, k = 1, 2, 3 denotes the hyper-
power sets of the 3 evidence sources. The mass assignments 
in 3 evidences are m1 = {0.1, 0.1, 0.3, 0.3, 0.2}, m2 = {0.2, 0.3,

0.05, 0.3, 0.15}, m3 = {0.1, 0.05, 0.4, 0.35, 0.1}. Move the mass as-
signments of each focal element of m3 one position backward at 
one time and 4 new evidences are obtained by

m3 = {0.1,0.1,0.05,0.4,0.35},
m3 = {0.35,0.1,0.1,0.05,0.4}
m3 = {0.4,0.35,0.1,0.1,0.05},
m3 = {0.05,0.4,0.35,0.1,0.1}

(61)

Each new evidence m3 and the original evidence m1 and m2

are combined to obtain the fusion results by DSmT + PCR6 and 
the method in this paper. Then Euclidean similarities of two fu-
sion results are obtained by Equation (14). The fusion results and 
Euclidean similarities of two methods are shown as Table 4.

As shown in Table 1, the Euclidean similarities of the method in 
this paper with DSmT + PCR6 all remain over 99.9% and change 
little. It shows that the method in this paper has not only very 
high accuracy, but also high performance stability.
4.2. Complex cases of both singleton focal elements and multiple focal 
elements in evidences

Example 3. Assume that there are 3 evidence sources and the 
hyper-power sets are denoted by GΘ

k = {θ1 ∪ θ2, θ1, θ2, θ3, θ4, θ5,

θ6, θ7}, k = 1, 2, 3. The mass assignments of evidences are denoted 
by m1 = {0.2, 0.1, 0.1, 0.1, 0.3, 0.1, 0.05, 0.05}, m2 = {0.05, 0.2,

0.3, 0.05, 0.25, 0.01, 0.1, 0.04}, m3 = {0.1, 0.1, 0.04, 0.4, 0.15, 0.1,

0.1, 0.01}, the method process in this paper is given as follows
1) The mass assignments of focal elements in each evidence is 

clustered to two sets by the Evidence Clustering method as fol-
lows

x1
a = {θ1 ∪ θ2, θ4}, x1

b = {θ1, θ2, θ3, θ5, θ6, θ7}
x2

a = {θ1 ∪ θ2, θ1, θ2, θ3, θ4, θ6, θ7}, x2
b = {θ5}

x3
a = {θ3, θ4}, x3

b = {θ1 ∪ θ2, θ1, θ2, θ5, θ6, θ7}
(62)

Then

X1
a = 0.5, X1

b = 0.5; X2
a = 0.99; X2

b = 0.01;
X3

a = 0.55; X3
b = 0.45

(63)

2) The convex function approximate fusion results are calcu-
lated by Equation (32)

m1
PCR-CONVEX = {0.0792,0.0250,0.0250,0.0250,0.1479,

0.0250,0.0072,0.0072}
m2

PCR-CONVEX = {0.0071,0.0771,0.1442,0.0071,0.1093,

0.0003,0.0244,0.0047}
m3

PCR-CONVEX = {0.0257,0.0257,0.0049,0.2297,0.0510,

0.0257,0.0257,0.0003}

(64)

3) Then the normalized approximate convex results are ob-
tained as follows

mCONVEX = {0.1014,0.1157,0.1576,0.2370,0.2791,

0.0462,0.0519,0.0111} (65)

4) For the singleton focal elements θ3, θ4, θ5, θ6, θ7 which are 
not involved in the multiple focal elements, the approximate con-
vex results of these focal elements are unchanged. For the multiple 
focal element θ1 ∪ θ2 and the singleton focal elements θ1 and θ2, 
the convex approximate fusion results should be changed as fol-
lows

m1
PCR-CONVEX(θ1 ∪ θ2) has the wrong proportional mass assign-

ments from the following items

m1(θ1 ∪ θ2) ⊗ m2(θ1) ⊗ m3(θ1),m1(θ1 ∪ θ2) ⊗ m2(θ2) ⊗ m3(θ2),

m1(θ1 ∪ θ2) ⊗ m2(θ1 ∪ θ2) ⊗ m3(θ1),m1(θ1 ∪ θ2) ⊗ m2(θ1)

⊗ m3(θ1 ∪ θ2),

m1(θ1 ∪ θ2) ⊗ m2(θ1 ∪ θ2) ⊗ m3(θ2),m1(θ1 ∪ θ2) ⊗ m2(θ2)

⊗ m3(θ1 ∪ θ2)

which should be the mass assignments of m1
PCR-CONVEX(θ1) and 

m1
PCR-CONVEX(θ2). Similarly, m2

PCR-CONVEX(θ1 ∪ θ2), m3
PCR-CONVEX(θ1 ∪

θ2) also have the wrong proportional mass assignment. So, the 
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Table 5
Euclidean similarities of the results of the method in this paper with DSmT + PCR6.

Experiment times 1 2 3 4 5 6 7

Euclidean similarities 99.49% 99.46% 99.42% 99.41% 99.38% 99.46% 99.29%
proportional mass assignments of θ1 or θ2 generated by θ1 ∪ θ2
are calculated as follows

m-multiple1(θ1, θ2) = {0.0038,0.0032}
m-multiple2(θ1, θ2) = {0.0003,0.0003}
m-multiple3(θ1, θ2) = {0.0015,0.0018}

(66)

Then

mGH(θ1 ∪ θ2) = mCONVEX(θ1 ∪ θ2) −
∑

j=1,2,3

m-multiple j(θ1)

−
∑

j=1,2,3

m-multiple j(θ2) (67)

mGH(θ1) = mCONVEX(θ1) +
∑

j=1,2,3

m-multiple j(θ1) (68)

mGH(θ2) = mCONVEX(θ2) +
∑

j=1,2,3

m-multiple j(θ2) (69)

The final approximate results are obtained as follows

mGH = {0.0906,0.1214,0.1628,0.2370,0.2791,

0.0462,0.0519,0.0111} (70)

4) The fusion results of DSmT + PCR6 are obtained as follows

mDSmT+PCR6 = {0.0858,0.1232,0.1678,0.2380,0.2789,

0.0441,0.0515,0.0107} (71)

The Euclidean similarity between mGH and mPCR6 is obtained by 
Equation (14)

EGH = 99.46% (72)

It can be drawn in the above experiment results that in the 
complex cases of both singleton focal elements and multiple focal 
elements in evidences, the Euclidean similarities of the method in 
this paper with DSmT + PCR6 also remain over 99%. It shows that 
the method in this paper is also fit for the complex cases.

Example 4. Assume that there are the same evidence sources as 
Example 3 and GΘ

k = {θ1 ∪θ2, θ1, θ2, θ3, θ4, θ5, θ6, θ7}, k = 1, 2, 3 de-
notes the hyper-power sets. Move the mass assignments of m3 one 
position backward at one time to procedure 7 new evidences.

The new 3 evidences are combined by DSmT + PCR6 and the 
method in this paper. Then Euclidean similarities of two fusion re-
sults are obtained by Equation (9). Euclidean similarities of two 
methods are shown as Table 5.

As shown in Table 2, in the complex cases of both singleton fo-
cal elements and multiple focal elements in evidences, the method 
in this paper has not only very high accuracy which remains the 
Euclidean similarities with DSmT + PCR6 over 99%, but also very 
high performance stability.

4.3. Associative analysis

Example 5. Assume that there are 3 evidence sources and the 
hyper-power sets are denoted by GΘ

k = {θ1, θ2, · · · , θ5}, k = 1, 2, 3. 
The mass assignments in each evidence are the same as Example 1
which are m1 = {0.1, 0.1, 0.3, 0.3, 0.2}, m2 = {0.2, 0.3, 0.05, 0.3,

0.15}, m3 = {0.1, 0.05, 0.4, 0.35, 0.1}.
1) The fusion sequence m1 → m2 → m3 is applied. The fusion 
results are from Example 1 as follows

mGH = {0.0908,0.1315,0.2991,0.3701,0.1085}
2) The fusion sequence m1 → m3 → m2 is applied. The fusion 

process is given by
(1) The mass assignments of focal elements in each evidence 

are clustered to two sets by the Evidence Clustering method, de-
noted by

x1
a = {θ3, θ4, θ5}, x1

b = {θ1, θ2};
x3

a = {θ4, θ5}, x3
b = {θ1, θ2, θ3};

x2
a = {θ1, θ2, θ4, θ5}, x2

b = {θ3}
(73)

Then

X1
a = 0.8, X1

b = 0.2; X3
a = 0.75, X3

b = 0.25;
X2

a = 0.95, X2
b = 0.05

(74)

(2) The convex function approximate fusion results are calcu-
lated by Equation (32)

m-convex1
1(θ1)

= m1
1(θ1)

2 · X3
a · X2

a

m1
1(θ1) + X3

a /2 + X2
a /3

+ m1
1(θ1)

2 · X3
b · X2

a

m1
1(θ1) + X3

b /3 + X2
a /3

+ m1
1(θ1)

2 · X3
b · X2

b

m1
1(θ1) + X3

b /3 + X2
b /2

+ m1
1(θ1)

2 · X3
a · X2

b

m1
1(θ1) + X3

a /2 + X2
b /2

= 0.0169

m-convex1
2(θ2)

= m1
2(θ2)

2 · X3
a · X2

a

m1
2(θ2) + X3

a /2 + X2
a /3

+ m1
2(θ2)

2 · X3
b · X2

a

m1
2(θ2) + X3

b /3 + X2
a /3

+ m1
2(θ2)

2 · X3
b · X2

b

m1
2(θ2) + X3

b /3 + X2
b /2

+ m1
2(θ2)

2 · X3
a · X2

b

m1
2(θ2) + X3

a /2 + X2
b /2

= 0.0169

m-convex1
3(θ3)

= m1
3(θ3)

2 · X3
a · X2

a

m1
3(θ3) + X3

a /2 + X2
a /3

+ m1
3(θ3)

2 · X3
b · X2

a

m1
3(θ3) + X3

b /3 + X2
a /3

+ m1
3(θ3)

2 · X3
b · X2

b

m1
3(θ3) + X3

b /3 + X2
b /2

+ m1
3(θ3)

2 · X3
a · X2

b

m1
3(θ3) + X3

a /2 + X2
b /2

= 0.1120

m-convex1
4(θ4)

= m1
4(θ4)

2 · X3
a · X2

a

m1
4(θ4) + X3

a /2 + X2
a /3

+ m1
4(θ4)

2 · X3
b · X2

a

m1
4(θ4) + X3

b /3 + X2
a /3

+ m1
4(θ4)

2 · X3
b · X2

b

m1
4(θ4) + X3

b /3 + X2
b /2

+ m1
4(θ4)

2 · X3
a · X2

b

m1
4(θ4) + X3

a /2 + X2
b /2

= 0.1120

m-convex1
5(θ5)

= m1
5(θ5)

2 · X3
a · X2

a

m1(θ ) + X3/2 + X2/3
+ m1

5(θ5)
2 · X3

b · X2
a

m1(θ ) + X3/3 + X2/3
5 5 a a 5 5 b a
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Table 6
The mass assignments of the focal elements of four evidence sources.

Highly conflict 
sources

θ1 θ2 θ3 θ4

S1 x − 0.01 0.01 1 − x − 0.01 0.01
S2 0.01 y − 0.01 0.01 1 − y − 0.01
S3 0.01 x − 0.01 1 − x − 0.01 0.01
S4 y − 0.01 1 − y − 0.01 0.01 0.01

Fig. 1. Euclidean similarities of the method in this paper with DSmT + PCR6.

+ m1
5(θ5)

2 · X3
b · X2

b

m1
5(θ5) + X3

b /3 + X2
b /2

+ m1
5(θ5)

2 · X3
a · X2

b

m1
5(θ5) + X3

a /2 + X2
b /2

= 0.0572 (75)

Similarly,

m-convex2 = [0.0572 0.1118 0.0047 0.1118 0.0348]
m-convex3 = [0.0183 0.0051 0.1875 0.1526 0.0183] (76)

Then the convex approximate result is obtained as follows

mCONVEX = {0.0923,0.1337,0.3042,0.3764,0.1103} (77)

3) The final approximate results are obtained by Equation (34)

mGH = {0.0908,0.1315,0.2991,0.3701,0.1085} (78)

By comparing the fusion process with Example 1, it can be 
drawn that the method in this paper has the associative property 
as the convex function approximate results of Equation (32) are 
unchanged with different fusion sequences.

4.4. Cases of highly conflict evidence sources

Example 6. Assume that there are four highly conflict evidence 
sources, and the hyper-power set of the four evidence sources are 
denoted by DΘ = {θ1, θ2, θ3, θ4}. The mass assignments of the focal 
elements of four evidence sources are shown as Table 6.

Let x, y ∈ [0.02, 0.98] and x, y increases from 0.02 to 0.98 by 
0.01 step. With the different values of x, y, Euclidean similarities of 
the method in this paper with DSmT + PCR6 are shown as Fig. 1. 
The average Euclidean similarity is also calculated as 99.17%.

From Fig. 1 and the average Euclidean similarity, it can be 
drawn that under Cases of highly conflict evidence sources, the 
method in this paper can also get very high similar fusion results 
with DSmT + PCR6 which remains Euclidean similarities over 99% 
in the experiments and solve the highly conflict evidences fusion 
problems effectively.
4.5. Convergence analysis

Example 7. Assume that there are 4 evidence sources and the 
hyper-power sets of the evidence sources are denoted by GΘ

k =
{θ1, θ2, · · · , θ6}, k = 1, 2, 3, 4. The mass assignments in evidences 
are m1 = {0.01, 0.11, 0.35, 0.23, 0.15, 0.15}, m2 = {0.01, 0.11, 0.23,

0.35, 0.15, 0.15}, m3 = {0.5, 0.3, 0.05, 0.05, 0.05, 0.05}, m4 = {0.4,

0.2, 0.1, 0.1, 0.1, 0.1}. Three methods are applied in this experi-
ment to compare the convergence speeds. The methods are DSmT 
+ PCR6, the method in this paper and the DST combination 
method.

First, fusion results of four evidences are obtained by differ-
ent fusion methods. Then, the prior fusion results of the last time 
are fused with m3, m4 repeatedly. The fusion results by different 
methods for convergence analysis are calculated as Table 7.

It can be drawn from Table 7 that
1) The convergence speed of the method in this paper is faster 

than DSmT + PCR6 which converge to {0.7617, 0.1749, 0.0158,

0.0158, 0.0158, 0.0158} in the 14th experiment and DSmT + PCR6 
converge to {0.7749, 0.1650, 0.0150, 0.0150, 0.0150, 0.0150} in the 
18th experiment.

2) The convergence speed of the DST combination method 
is the fastest one among the three methods which converge to 
{1.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000} in the 12th exper-
iment, but this fusion result is strong converge to θ1 and it is 
unchanged and wrong even if the following evidences focus on the 
other elements. Besides, the first two experiments’ results of DST 
are not reasonable for the high conflict evidences in these experi-
ments.

From the above convergence analysis, it shows that the method 
in this paper has good convergence speed and the convergence re-
sults are also reasonable and effective.

4.6. Monte Carlo simulation experiments in the case of random mass 
assignments in evidences

Example 8. Assume that there are three evidence sources. The 
hyper-power sets of the sources are denoted by PΘ = {θ1, θ2, · · · ,

θ20} and only singleton focal elements have mass assignments. 
Monte Carlo simulation experiments are carried out 1000 times. 
The mass assignments of 20 focal elements in evidences are as-
signed randomly each time. The fusion results of three random 
evidences are obtained by DSmT + PCR6 and the method in this 
paper. Then the Euclidean similarities of the method in this pa-
per with DSmT + PCR6 are calculated and the computing time of 
methods are recorded as shown in Fig. 2, Fig. 3 and Table 8. (In this 
paper, all the simulation experiments are implemented by Matlab 
simulation in the hardware condition of Pentimu(R) Dual-Core CPU 
E5300 2.6 GHz 2.59 GHz, memory 1.99 GB.)

It can be drawn from Fig. 3, Fig. 4 and Table 8 that, in the 
case of random mass assignments in evidences, the method in this 
paper remains high Euclidean similarity and the average Euclidean 
similarity can reach 99.81%. Moreover, Euclidean similarity changes 
very little when the evidences are changed. Computing time of the 
method in this paper is much smaller than DSmT + PCR6. The 
simulation experiments results show that the method in this paper 
has strong practical meaning.

4.7. Monte Carlo simulations in the case of increasing focal elements 
number and sources number

Example 9. In this section, Monte Carlo simulation experiments in 
the case of increasing focal elements number and sources num-
ber are performed. Assume that only singleton focal elements have 
mass assignments in hyper-power sets and the mass assignments 
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Table 7
Fusion results by different methods for convergence analysis.

Experiment 
times

DSmT + PCR6 The method in this paper Fusion results DST

1 0.5811,0.2209,0.0688,0.0688,0.0302,0.0302 0.5796,0.2218,0.0681,0.0681,0.0312,0.0312 0.0759,0.8264,0.0382,0.0382,0.0170,0.0170
2 0.6845,0.2200.0.0272,0.0272,0.0205,0.0205 0.6824,0.2217,0.0272,0.0272,0.0208,0.0208 0.2326,0.7599,0.0029,0.0029,0.0008,0.0008
3 0.7284,0.2022,0.0177,0.0177,0.0171,0.0171 0.7245,0.2049,0.0179,0.0179,0.0174,0.0174 0.5048,0.4948,0.0002,0.0002,0.0000,0.0000
4 0.7494,0.1870,0.0159,0.0159,0.0159,0.0159 0.7433,0.1913,0.0164,0.0164,0.0163,0.0163 0.7728,0.2272,0.0000,0.0000,0.0000,0.0000
5 0.7607,0.1775,0.0154,0.0154,0.0154,0.0154 0.7525,0.1834,0.0160,0.0160,0.0160,0.0160 0.9189,0.0811,0.0000,0.0000,0.0000,0.0000
6 0.7670,0.1719,0.0153,0.0153,0.0153,0.0153 0.7571,0.1792,0.0159,0.0159,0.0159,0.0159 0.9742,0.0258,0.0000,0.0000,0.0000,0.0000
7 0.7705,0.1688,0.0152,0.0152,0.0152,0.0152 0.7594,0.1770,0.0159,0.0159,0.0159,0.0159 0.9921,0.0079,0.0000,0.0000,0.0000,0.0000
8 0.7725,0.1671,0.0151,0.0151,0.0151,0.0151 0.7605,0.1760,0.0159,0.0159,0.0159,0.0159 0.9976,0.0024,0.0000,0.0000,0.0000,0.0000
9 0.7735,0.1662,0.0151,0.0151,0.0151,0.0151 0.7611,0.1755,0.0159,0.0159,0.0159,0.0159 0.9993,0.0007,0.0000,0.0000,0.0000,0.0000

10 0.7741,0.1656,0.0151,0.0151,0.0151,0.0151 0.7614,0.1752,0.0159,0.0159,0.0159,0.0159 0.9998,0.0002,0.0000,0.0000,0.0000,0.0000
11 0.7745,0.1653,0.0151,0.0151,0.0151,0.0151 0.7615,0.1751,0.0159,0.0159,0.0159,0.0159 0.9999,0.0001,0.0000,0.0000,0.0000,0.0000
12 0.7746,0.1652,0.0150,0.0150,0.0150,0.0150 0.7616,0.1750,0.0158,0.0158,0.0158,0.0158 1.0000,0.0000,0.0000,0.0000,0.0000,0.0000
13 0.7747,0.1651,0.0150,0.0150,0.0150,0.0150 0.7616,0.1750,0.0158,0.0158,0.0158,0.0158 1.0000,0.0000,0.0000,0.0000,0.0000,0.0000
14 0.7748,0.1650,0.0150,0.0150,0.0150,0.0150 0.7617,0.1750,0.0158,0.0158,0.0158,0.0158 1.0000,0.0000,0.0000,0.0000,0.0000,0.0000
15 0.7748,0.1650,0.0150,0.0150,0.0150,0.0150 0.7617,0.1749,0.0158,0.0158,0.0158,0.0158 1.0000,0.0000,0.0000,0.0000,0.0000,0.0000
16 0.7748,0.1650,0.0150,0.0150,0.0150,0.0150 0.7617,0.1749,0.0158,0.0158,0.0158,0.0158 1.0000,0.0000,0.0000,0.0000,0.0000,0.0000
17 0.7748,0.1650,0.0150,0.0150,0.0150,0.0150 0.7617,0.1749,0.0158,0.0158,0.0158,0.0158 1.0000,0.0000,0.0000,0.0000,0.0000,0.0000
18 0.7749,0.1650,0.0150,0.0150,0.0150,0.0150 0.7617,0.1749,0.0158,0.0158,0.0158,0.0158 1.0000,0.0000,0.0000,0.0000,0.0000,0.0000
19 0.7749,0.1650,0.0150,0.0150,0.0150,0.0150 0.7617,0.1749,0.0158,0.0158,0.0158,0.0158 1.0000,0.0000,0.0000,0.0000,0.0000,0.0000
20 0.7749,0.1650,0.0150,0.0150,0.0150,0.0150 0.7617,0.1749,0.0158,0.0158,0.0158,0.0158 1.0000,0.0000,0.0000,0.0000,0.0000,0.0000
Fig. 2. Computing time of the method in this paper and DSmT + PCR6.

Fig. 3. Euclidean similarity of the method in this paper with DSmT + PCR6.

of the focal elements are assigned randomly each time. The exper-
iments consist of four cases. In the cases 1–3, the number of focal 
elements increases with the constant number of evidence sources. 
It can be drawn from the Table 3 that the computation complexity 
of PCR6 method is too large to make simulations when the num-
ber of sources is big. So the maximum number of evidence sources 
in cases 1–3 is set to be 5 and the number of focal elements is no 
more than 20 in the third case. In the fourth case, the number of 
evidence sources increases with the constant number of focal el-
ements. Also for the large computation complexity of PCR6, the 
maximum number of sources is considered as 10, and each evi-
dence is composed of 5 focal elements.

The simulation experiments are given as follows
1) Assume that there are 3 evidence sources, and the focal ele-

ments of the hyper-power sets increase one focal element from 10 
to 100. The Euclidean similarities and computing time with the in-
crement of the number of focal elements is recorded as shown in 
Figs. 4–5.

2) Assume that there are 4 evidence sources, and the focal ele-
ments of the hyper-power sets increase one focal element from 10 
to 50. The Euclidean similarities and computing time with the in-
crement of the number of focal elements is recorded as shown in 
Figs. 6–7.

3) Assume that there are 5 evidence sources, and the focal ele-
ments of the hyper-power sets increase one focal element from 10 
to 20. For The Euclidean similarities and computing time with the 
increment of the number of focal elements is recorded as shown 
in Figs. 8–9.

4) Assume that there are 5 focal elements, and the number of 
evidence sources increases one by one from 3 to 10. The Euclidean 
similarities and computing time with the increment of the number 
of sources is shown in Figs. 10–11. Especially, in order to explicitly 
present the increment of computing time, the ordinate scale is log 
instead of linear in Fig. 11.

As shown in Figs. 4–11,
1) The computing time of DSmT + PCR6 increases exponen-

tially with the linear increment of the number of the focal ele-
ments. However, the computing time of the method in this pa-
per increases almost linearly with the linear increment of the 
Table 8
Fusion results comparison in the case of random mass assignments.

Average Euclidean 
similarity

Max Euclidean 
similarity

Min Euclidean 
similarity

Average computing 
time (s)

Max computing 
time (s)

Min computing 
time (s)

DSmT + PCR5 0.1008 0.1153 0.1000
The method in this paper 99.81% 99.98% 97.92% 0.0021 0.0306 0.0019
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Fig. 4. Euclidean similarity of the method in this paper with DSmT + PCR6.

Fig. 5. Computing time of the method in this paper and DSmT + PCR6.

Fig. 6. Euclidean similarity of the method in this paper with DSmT + PCR6.

number of the focal elements and remains very low computation 
time.

2) The computing time of DSmT + PCR6 increases huge rapidly 
when the sources number increases. When there are 5 sources 
and 20 focal elements, the computing time of DSmT + PCR6 is 
123.2790 seconds. Whereas, in the case of 10 sources and 5 fo-
cal elements, its computing time reaches 1213.9 seconds. It shows 
that when the number of evidence sources is large, DSmT + PCR6 
takes too big computation burden, and it is hard to satisfy the 
real-time requirement of intelligent systems. However, the com-
puting time of the method in this paper increases little with the 
increment of evidence sources and it remains very little comput-
ing time which can satisfy the real-time requirements of intelligent 
systems.
Fig. 7. Computing time of the method in this paper and DSmT + PCR6.

Fig. 8. Euclidean similarity of the method in this paper with DSmT + PCR6.

Fig. 9. Computing time of the method in this paper and DSmT + PCR6.

3) In different conditions, the Euclidean similarities of the 
method in this paper with DSmT + PCR6 all remain over 99% 
and converge to very high value with the increment of the num-
ber of the focal elements. It shows that the method in this 
paper can obtain very similar approximate fusion results with 
DSmT + PCR6, especially when the number of focal elements is 
large.

5. Conclusions

To get high similar approximate reasoning results with DSmT +
PCR6 and remain less computation complexity, an Evidence Clus-
tering DSmT approximate reasoning method for more than two 
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Fig. 10. Euclidean similarity of the method in this paper with DSmT + PCR6.

Fig. 11. Computing time of the method in this paper and DSmT + PCR6.

sources is proposed in this paper. Firstly, the focal elements of 
multi evidences are clustered to two sets by their mass assign-
ments respectively. Secondly, the convex approximate fusion re-
sults are obtained by the new DSmT approximate formula for more 
than two sources. Thirdly, the final approximate fusion results by 
the method in this paper are obtained by the normalization step. 
Analysis of computation complexity show that the method in this 
paper cost much less computation complexity than DSmT + PCR6. 
The simulation experiments show that the method in this paper 
can get very similar approximate fusion results and need much less 
computing time than DSmT + PCR6, especially, when the numbers 
of sources and focal elements are large, the superiorities of the 
method are remarkable.

However, the mathematical analysis of convergence of the pro-
posed method and the other evidence reasoning methods are still 
important tasks in our future research plans. We will also apply 
this new method in some real practical areas like radar signal com-
binations in our future work.
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