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ABSTRACT  

Security is a key issue to both computer and computer 

networks. Intrusion detection System (IDS) is one of the major 

research problems in network security. IDSs are developed to 

detect both known and unknown attacks. There are many 

techniques used in IDS for protecting computers and networks 

from network based and host based attacks. Various Machine 

learning techniques are used in IDS. This study analyzes 

machine learning techniques in IDS. It also reviews many 

related studies done in the period from 2000 to 2012 and it 

focuses on machine learning techniques. Related studies 

include single, hybrid, ensemble classifiers, baseline and 

datasets used.  

Index Terms - Security, Intrusion detection, Machine 

learning techniques, Classification. 

1. INTRODUCTION 
Internet has become very popular. It is used almost everywhere 

including all types of business. Data and information are sent 

and received through internet. Therefore, information security 

needs to be safeguarded against any intrusion; detection of 

which has been one of the main problems in this field.  

Intrusion detection Systems (IDSs) is a software or device that 

helps to resist network attacks. The goal of IDS is to have 

defense wall which does not allow such types of attacks. It 

detects unauthorized activities of a computer system or a 

network, firstly introduced by Anderson in 1980 [1]. IDS is an 

active and secure technology which insures confidentiality, 

integrity, availability and doesn’t allow the intruders to bypass 

the security mechanisms of a network or host [2]. There are 

two categories of intrusion detection system (IDS) [3]: 

Anomaly and misuse detection. Anomaly tries normal usage as 

intrusion, where as misuse uses well-known attacks.  

All previous techniques of machine learning techniques for IDS 

from 2000 to 2012 are going to be explained and analyzed for 

conclusive results and future direction. This paper has been 

organized as follow. Section 2 has an overview of different 

machine learning techniques used in IDS. Section 3 analyses 

related work. Section 4 concludes for future direction. 

2. MACHINE LEARNING TECHNIQUES 
While analyzing the previous work done on Intrusion Detection 

System related to machine learning techniques, it comes to fore 

that there are three main classifiers; Single classifiers, Hybrid 

classifiers and ensemble classifiers.  

Type of classifiers such as single, hybrid and ensemble and 

their references of publications from 2000 to 2012, are depicted 

in table 1.  

Table 1: Articles  written for types of classifiers. 

Types of 

Classifier 

Articles Written 

Single The references of articles written for single 

classifiers are as follows. 

[15, 23, 26, 27,28, 29, 30, 31, 32, 33, 34, 35, 

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 

60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 

72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 

84, 85, 86, 87, 88, 89, 90, 91, 92] 

Hybrid The references of articles written for Hybrid 

classifiers are as follows. 

[8, 18, 30, 31, 93, 94, 95, 96, 97, 98, 99, 100, 

101, 102, 103, 104, 105, 106, 107, 108, 109, 

110, 111, 112, 113, 114, 115, 116, 117, 118, 

119, 120, 121, 122, 123, 124, 125, 126, 127, 

128, 129, 130, 131, 132, 133, 134, 135, 136, 

137, 138, 139, 140, 141, 142, 143, 144, 145, 

146, 147, 148, 149, 150] 

Ensembl

e 

The references of articles written for Ensemble 

classifiers are as follows. 

[18, 20, 92, 97, 151, 152, 153, 154, 155, 156, 

157, 158, 159, 160, 161] 

Year-wise work done for single, hybrid and ensemble 

classifiers from 2000 to 2012 is shown in figure 1.  

 
Fig. 1. Year-wise work done for types of classifier. 
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2.1. Single Classifiers: 
The single classifiers are given as under. 

 

2.1.1. Fuzzy Logic 
It is also known as fuzzy set theory, used for reasoning. Its 

value ranges from 0 to 1. e.g, raining is a natural event and it 

can be from slight to violent [4]. It is effective and very 

potential technique. It deals with human decision making and 

reasoning. It uses if then else rules. It is used in many 

engineering applications [5], but mainly in anomaly IDS. It is 

more effective in port scans and probes involving high resource 

consumption [6].  

 

2.1.2. Genetic Algorithms  
It enables computer to have natural evolution and selection [7], 

and can work with huge population and can pick the superior 

items. Its choosing capability is based on some performance 

criteria [8].  

It is inspired biologically heuristic search. IDS collects 

information on traffic then applies the GA and obtains the 

information which is normal or attack [9].  

2.1.3. Self-Organizing Maps  
Self Organizing Maps (SOM) is unsupervised learning 

technique and a type of neural network. SOM algorithm can 

map a high dimension data in two dimension array. It is used 

for dimension reduction with one input layer and one 

Kohonen’s layer and it maps n-dimensions into two-

dimensions. It can self categorize all the inputs providing 

straight forward methods for data clustering [10].  

 

2.1.4. K-Nearest Neighbor  
K-nearest Neighbor (k-NN) is very old and simple method to 

classify samples [11][12]. The K is a very important parameter 

in creating a K-NN classifier. Changing k value gives different 

performances. K-NN calculates a rough distance between two 

different points, being different from inductive approach and it 

is instance base learning. It searches some input vectors and 

classifies new instance and by this way finds a k-nearest 

neighbor [13]. 

 

2.1.5. Support Vector Machine 
Support Vector Machine (SVM) is proposed in [14]. Through 

support Vector Machine, the efficiency of classification can be 

enhanced by constructing a hyper plan, the SVM classifies the 

data into different groups, divides data into two groups; 

supports vectors and quadratic programming problem [15].  

 

2.1.6. Artificial Neural Networks  
Artificial Neural Network (ANN) is an information processing 

unit. It mimics the neurons of a human brain [16]. Multilayer 

Perceptron is mostly used in neural network architecture. It is 

often used in pattern recognition problems. ANN is a 

classification technique. It is flexible and fast and can analyze 

the non linear data set with multi-variable [17]. 

 

2.1.7. Decision Trees 
Decision tree (DT) is a simple “if then else rules” but very 

powerful. It is an important classification algorithm. First we 

select the attributes and then it is capable of classifying the 

data. It classifies a sample going through a number of 

decisions. The first decision helps the second one and it 

becomes like a tree structure. The classification of sample starts 

with root node and ends with end node which is also called leaf 

node. Each end node (leaf node) represents a classification 

category [18].  

Articles written for types of single classifier with different 

categories and the references of publications from 2000 to 

2012, are shown in table 2. Year-wise work done from years 

2000 to 2012 for single classifier with different categories is 

shown in figure 2. 

Table 2: Articles written for types of Single Classifiers with 

different categories. 

Category Articles Written 

K-NN The references of articles written for K-NN 

are as follows. 

[31, 34, 35, 43, 45, 82, 162] 

DT The references of articles written for DT are 

as follows. 

[30, 32, 37, 76, 80, 162] 

GA The references of articles written for GA are 

as follows. 

[26, 36, 163, 164] 

Fuzzy 

Logic 

The references of articles written for Fuzzy 

logic are as follows. 

[29, 58] 

SVM The references of articles written for SVM 

are as follows. 

[15, 23, 28, 31, 33, 37, 42, 44, 47, 52, 54, 

55, 57, 59, 62, 65, 66, 67, 69, 72, 73, 77, 79, 

84, 85, 86, 89, 90, 91, 117, 158] 

Bayesian The references of articles written for 

Bayesian are as follows. 

[39, 40, 49, 61] 

 

 

Fig. 2. Year-wise work done for single classifiers 
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example, DT and GA or K-NN and SVM. This hybrid 

approach had two sides. The first one takes raw data and 

produces immediate results and the second one takes this 

immediate results and produce final results [19]. 

Hybrid architecture is designed and proved that it can improve the 

performance [20]. Hybrid approach can help both anomalies and 

misuse detection [20] to combine Host based Intrusion Detection 

System (HIDS) and Network Based Intrusion Detection System 

(NIDS). 

Articles written for types of hybrid classifier are shown in table 

3. While year-wise work done for hybrid classifier is shown in 

figure 1 from years 2000 to 2012 is shown in figure 3. 

 

Table 3: Articles written for types of hybrid Classifiers with 

different categories. 

Category Articles 

Written 

DT, SVM [18, 133, 143] 

SOM, DT [30] 

Neural network Model (NNM), 

Asymmetric Cost 

[92] 

Fussy logic (FL), traditional rule based 

expert system (TRBES) 

[93] 

 

SVM, linear genetic programmed 

(LGP), Bees Algorithm (BA)  

[94] 

 

Evolutionary Algorithm (EA), Swarm 

Optimizing Algorithm (SOA)  

[95] 

 

Five different fusion rules  [97] 

NNM, SOM [99] 

SVM, Clustering Method, Ant Colony 

Algorithm 

[100] 

SOM, Principle Component Analysis 

(PCA) 

[103] 

GA, Clustering [104] 

PCA, NN [105] 

Mining Fuzzy Association Rules, Fuzzy 

Frequency Episodes 

[106] 

Three layer NN & offline analysis [107] 

Classification, Association  [108] 

FL, Artificial Intelligent (AI) [109] 

GA, DT [111] 

GA, FL [112, 150] 

Three Classifier, Clustering Algorithm [114] 

Two Hierarchical  Based Framework, 

Radial Basis Function (RBF) 

[115] 

UCSM [8] 

Genetic Fuzzy Systems (GFSs), 

Pittsburg Approach 

[48] 

Bayesian Network, HMM [118] 

PLS, CVM [119] 

Immune Genetic Algorithm (IGA) [120] 

Noise Reduced Payload Based Fuzzy 

Support Vector, FSVM 

[121] 

FL, HMM  [122] 

SVM, Fuzzy Algorithm (FA) [123] 

SVM, GA [124] 

SOM, K-Means [125] 

FSVM, RS [126] 

Fuzzy Support Vector Machine [127] 

SA, SVM, DT [128] 

SVM, RS [129] 

SVM, RBFNN [130] 

SVM, HM, TSM [131] 

KNN, NB [132] 

PCA, DT [134] 

TASVM [135] 

SOM, Artificial Immune System (AIS) [136] 

SVM, MLP [137] 

GA, NN [138] 

GA, KNN [139] 

SOM, NN, K-Means [140] 

RBF, Elman Neural Network [141] 

K-NN, TAAN [142] 

ANN, FC [144] 

SVM, DT, Kernel Fisher discriminant 

Analysis (KFDA)   

[145] 

SVM, FL [146] 

DT, Bayesian Clustering [147] 

SVM, FCM, PSO [148] 

SVM, Artificial Immunization 

Algorithm 

[149] 

 

2.3. Ensemble Classifiers 
It is used to improve the performance of single classification 

[21]. Ensemble classifiers combine weak single classifiers and 

collectively produce a better result [22]. It provides a new and 

accepted solution for many applications. Table 3 and figure 1 

show year-wise work done on Ensemble classification of IDS. 

Articles written for types of Ensemble classifier are shown in 

table 4, while year-wise work done for Ensemble classifier is 

shown in figure 1 from years 2000 to 2012 is shown in figure 1. 

 

Table 4: Articles written for types of Ensemble Classifiers 

with different categories. 

Category Articles 

Written 

SVM, DT [18, 158] 

MLP, RBF [20] 

Multiple Classifier System (MCS) [97, 161] 

GA, FL [150] 

HMM, Statistical Rule Based Method 

(SRBM) 

[151] 

 

Standard Machine Learning, Clustering 

Technique 

[152] 

 

SVM, MARs, ANN [153] 

DT [154] 

SVC, K-means, Density Estimation [155] 

SVM, MK [156] 

Improvised GA, Neutrosophic Logic 

Classifier 

[103] 

Neurotree [160] 

 

2.3.1. Baselines 
There are different baselines used for validation and are good 

for evaluation of performance. It also shows how much the 

capacity of machine is to identify attacks and how many 

incorrect classifications can occur [23]. Figure 3 shows year-

wise work done on baselines for IDS from years 2000 to 2012. 
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Fig. 3. Year-wise work done for Baseline classifiers 
 

2.3.2. Data sets 
DARPA1998, DARPA1999 and KDD99 are the data sets, used 

for classification tasks. KDD99 is the mostly used data set. 

There are many draw backs of DARPA [24] such as normal 

attack is not realistic, false alarm behavior cannot be validated. 

KDD99 dataset is inherited from DARPA and has got the same 

limitations. These are also validated again [25]. Many people 

have worked on different datasets used for classifiers. Figure 4 

show year-wise work done on datasets from 2000 to 2012. 

These datasets are publically used and recognized as a standard 

datasets for IDS. Year-wise work done dataset used from years 

2000 to 2012 is shown in figure 4. 

 

 

Fig. 4. Year-wise work done for Datasets used 

3. ANALYSIS AND COMPARISON 
The analysis of different articles written on Machine Learning 

Techniques for IDS with respect to time is discussed as under. 

 

 

3.1.Types of Classifiers 
Three types of classifiers are discussed such as single, hybrid 

and ensemble. Articles written on these types of classifiers are 

shown in table 1. Year-wise distribution of these articles is 

depicted in figure 1. 70, 62 and 15 articles are written on 

single, Hybrid and Ensemble classifier respectively. Single 

classifier got much focus in 2004, 2011 and 2012. The numbers 

of articles written are 8, 11 and 18 respectively. Many articles 

are written on single classifier from 2000 to 2012. The average 

value of hybrid classifier is 3 but in 2007 it gains much focus 

and 10 articles were written which was maximum value in that 

year. Ensemble classifier starts from 2003 and 2 articles were 

written for the first time. Ensemble classifier got much focus 

from 2009 to 2012.   

 

 

Fig. 5. Year-wise work done for types of Classifiers 
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3.2. Single Classifiers 
There are many single classifiers but we have selected seven of 

them. SVM is the most popular single classifier. No of articles 

written on SVM are 31. It is the maximum number of articles 

written as compared to other types of articles. Highest numbers 

of articles are written on SVM in 2009, 20011 and 2012 which 

is 5, 6 and 7 respectively. Fuzzy logic has a very low focus. 

Average numbers of articles written for single classifiers are 9. 
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Table 6: Articles written for types Classifiers. 
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Fig. 6. Year-wise work done for types of Classifiers. 
 

3.3. Hybrid Classifiers 
Important machine learning techniques used in hybrid 

classification from year 2000 to 2012 are evaluated here. SVM, 

GA and DT for hybrid classification are used in 17, 8 and 7 

articles respectively. These are also very popular techniques for 

hybrid classification. Other techniques are normally used.  

 

Fig. 7. Important techniques used in Hybrid Classification. 

 

3.4.Ensemble classifiers 
SVM is also a popular technique for ensemble classifier. It is 

mostly used. SVM is used in 4 articles while DT and GA are 

used in 2 and 2 articles respectively. RBF, FL, HMM, K-

means, ANN and SVC are used just once. 

 

 
 

Fig. 8. Important techniques used in Ensemble 

Classification 
 

There are many machine learning techniques used in single, 

hybrid and ensemble classifiers. SVM is mostly used technique 

in single, hybrid and ensemble classifiers. After SVM the most 

popular techniques are GA and DT. SVM is used in 31 articles 

in single classifier, in 17 articles in hybrid classifiers and in 4 

articles in ensemble classifiers. SVM is also combined with 

other techniques in hybrid and ensemble classifications.  

 

4. CONCLUSION AND FUTURE 

DIRECTION 
A lot of work has been done to detect and prevent the 

Intrusions. There are many machine learning techniques used 

in Intrusion Detection System and they comprised single, 

hybrid and ensemble classifiers. Many resources have been 

used on various machine learning techniques. These techniques 

work very well for IDS but it is known that there is not even a 

single technique that can identify all types of attacks. Therefore 

it still needs more efforts to improve the performance of 

machine learning techniques to identify all types of attacks and 

false alarms should be reduced.  

There are many classifications but none of them is complete. 

Hybrid classification is closer one. If we take two or three best 

single classifiers and improve them a little more and combine 

them and used it as a single hybrid classifier. False alarm alerts 

must be reduced and feature selection algorithm should also be 

improved. 
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