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ABSTRACT

Synthetic Aperture Radar (SAR) data enables direct observa-
tion of land surface at repetitive intervals and therefore allows
temporal detection and monitoring of land changes. How-
ever, the problem of radar automatic change detection is made
more dif cult, mainly with the presence of speckle noise.
This paper presents a new method for SAR image change de-
tection using the Dezert-Smarandache Theory (DSmT). First,
a Gamma distribution function is used to characterize glob-
ally the radar texture data and allows mass assignment throw
Kullback-Leibler distance. Then, local pixel measurements
are introduced to re ne the mass attribution and take into ac-
count the context information. Finally, DSmT is carried out
by comparing the modelling results between temporal images.
The originality of the proposed method is on the one hand,
the use of DSmT which achieve a plausible and paradoxi-
cal reasoning comparing to classical Dempster-Shafer Theory
(DST). On the other hand, the given approach characterizes
the radar texture data with a Gamma distribution which al-
lows a better representation of the speckle. The radar texture
is being usually modeled by a Gaussian model in previous
DST and DSmT fusion works.

Index Terms— SAR image change detection, Kullback-
Leibler distance, DST and DSmT fusion theories

1. INTRODUCTION

Change detection from images covering the same scene and
taken at different times is of widespread interest for a large
number of applications, especially in the remote sensing do-
main. SAR images are very useful tools to surface change
detection especially in regions where optical data are rarely
available. In many areas, more and more images are acquired
on repeated orbits thanks to the repetitivity of radar satellites
such as ERS 1, ERS 2 and Envisat. However, some dif culties
are associated with SAR images change analysis: the speckle
noise, which disturbs automatic change detection. Indeed, the
speckle imposing a granular texture to radar images makes
very dif cult the use of these images even with slightly differ-
ent acquisition angles. Nevertheless, despite the complexity
of data processing, SAR sensors have important properties at
an operational level, since they are able to acquire data in all
weather conditions.

Recent works have proven that the statistics of SAR im-
ages can be well modelled by the probability distribution fam-
ily known as Gamma distribution [1]. Other studies introduce
some signi cant statistical measures for the change detection
purpose [2]. In the same context, an interesting approach
using statistical change measures between two SAR images
have been introduced in [3]. The originality of this work is the
fusion of change signatures computed on two SAR images us-
ing Dezert-Smarandache theory. This paper extends this work
and proposes two main contributions. First, SAR texture is
modelled by a Gamma distribution instead of a Gaussian one.
Then, in addition to class distribution signatures we introduce
local change attributes taking into account the context infor-
mation.

The paper is organised as follows. Section 2 presents
some pre-processing tools applied in order to estimate Gamma
distribution parameters for each class of a temporal image.
Section 3 exposes global and local measures introduced to
characterize change signatures. In Section 4, a brief descrip-
tion of DST and DSmT is presented. The second part of
this section shows the mass belief assignment used to com-
pare two images for the change detection purpose. Section
5 presents experimental results obtained using two temporal
Envisat images. Conclusions are given in Section 6.

2. DISTRIBUTION PARAMETERS ESTIMATION

This section provides an investigation to ascertain the most
appropriate pre-processing tools which could be used for im-
age classi cation in order to estimate Gamma distribution pa-
rameters. The temporal radar images are rst ltered without
altering SAR texture features and then classi ed. For each
class of each image, the Gamma distribution parameters are
estimated. We can notice here that the ltering process which
is a delicate pre-processing step is used only for the classi -
cation purpose. Parameter estimation is applied on original
images.

2.1. Gamma Distribution

In the case of radar images, previous works showed that the
Gamma distribution is more accurate than the Gaussian dis-
tribution to model the real SAR intensity [4]. The Gamma
distribution PGamma is given by:
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PGamma(x; α; β) =
1

βαΓ(α)
xα−1e−x/β (1)

where α is the shape parameter and β is the scale parame-
ter and Γ(z) =

∫∞
0

e−ttz−1dt, z > 0 is the Gamma function.
Then, each class will be characterized by the two Gamma dis-
tribution parameters α and β.

2.2. Parameter estimation

2.2.1. Pre-processing

Speckle, a form of multiplicative, locally correlated noise,
plagues imaging applications. For images that contain
speckle, a goal of enhancement is to remove the speckle
without destroying important image features. The reducing
lters have originated mainly from the synthetic aperture

radar (SAR) community. The most widely cited and applied
lters in this category include the Lee, Frost, Kuan, and

Gamma MAP lters.
More recently, a new Partial Differential Equation (PDE)

approach to speckle removal was introduced and called
Speckle Reducing Anisotropic Diffusion (SRAD) [5]. The
PDE-based speckle removal approach allows the generation
of an image scale space (a set of ltered images that vary
from ne to coarse) without bias due to lter window size
and shape. SRAD not only preserves edges but also enhances
them by inhibiting diffusion across edges and allowing diffu-
sion on either side of the edge.

The aim of SRAD ltering is to ameliorate image classi -
cation results in order to perform a better Gamma distribution
parameters estimation. After SAR image ltering, a K-means
clustering technique is applied to classify the pixels into k
and k′ classes for both temporal images. The combination
between the SRAD lter and the K-means algorithm provides
a very suf cient classi cation.

2.2.2. ML-estimation

After applying pre-processing steps in order to carry out an
appropriate classi cation image mask for both temporal im-
ages, we estimate statistical Gamma distribution parameters
for each class. Maximum likelihood estimators are used to
extract radar texture parameters.

3. CHANGE MEASURES

Most of the relevant change detection techniques are based on
the difference or ratio operators when using radar images. In
our case, we introduce two measures to characterize change
signatures. The rst one has a global behaviour since it oper-
ates on classes and the second one is calculated locally for a
pixel neighbourhood.

3.1. Gamma Kullback-Leiber distance

The change detection algorithm is based on the modi cation
of the statistics between the two acquisition dates of each

pixel. A pixel will be considered as having changed if its
statistical distribution changes from one image to the other.
In order to quantify this change, we need a measure which
maps the estimated statistical distributions for each pixel to a
scalar index of change.

In this work, we choose the Gamma Kullback-Leibler di-
vergence introduced in [6]. The proposed texture similarity
measure between two Gamma distributions of two image I1

and I2 can then be given by:

DKLGamma(I1, I2) = log Γ(α(I1)) + α(I1) log β(I1)

−α(I1)(Ψ(α(I2)) + log β(I2)) +
α(I2)β(I2)

β(I1)
. (2)

For simplicity, the distribution value Ik (i, j) for the pixel
(i, j) of the image Ik, k = 1, 2, is noted Ik in the above equa-
tion. The factors α(Ik) and β(Ik), are the shape and the scale
parameters associated with distribution Ik, k = 1, 2.

3.2. Local pixel measures

The contrast measure takes care of the pixel realizations from
a stochastic point of view. To highlight contrast information,
the conventional Pixel by Pixel Ratio Measure (PPRM) be-
tween two SAR images is exploited. This detector is well-
known and widely used in SAR imagery due to its ability to
greatly reduce the speckle in uence on the change map. The
PPRM of a pixel between two image I1 and I2 is computed
and normalized on a small window through a contrast mea-
sure r(i, j) de ned by:

r(i, j) = log(max(

∑

(k,l)∈v

I1(k, l)

∑

(k,l)∈v

I2(k, l)
,

∑

(k,l)∈v

I2(k, l)

∑

(k,l)∈v

I1(k, l)
)) (3)

where v is the pixel (i, j) neighborhood de ned by a given
window.

Moreover, we de ne a signi cance measure as a criteria
dedicated to reduce the ambiguity of the pixel behaviour. The
signi cance measure of a pixel (i, j) for images I1 and I2

may be de ned by:

s(i, j) =
∑

(k,l)∈v

I1(k, l) ∗
∑

(k,l)∈v

I2(k, l) (4)

We can notice that the contrast and the signi cance measures
are calculated for a pixel neighbourhood and not for a class
distribution. Besides, those measures characterize the evo-
lution of each pixel and are not necessary linked to ground
change but give potential candidates to ground evolution.
That is why those indicators are to be considered into an
evidential and paradoxical reasoning.
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4. THE DEZERT-SMARANDACHE THEORY

The Dezert-Smarandache Theory (DSmT) [7] is a general-
ization of the classical Dempster-Shafer Theory (DST) [8],
which allows formal combining of rational, uncertain and
paradoxical sources. The DSmT is able to solve complex fu-
sion problems where the DST usually fails, especially when
con icts between sources become large. In this section, we
will rst review the principle of the DST before discussing
the fundamental aspects of the DSmT.

4.1. Dempster-Shafer Theory principle

The DST makes inferences from incomplete and uncertain
knowledge by combining sources of con dence, even in
the process of partially contradictory sensors. In the DST,
there is a xed set of mutually exclusive and exhaustive
elements, called the frame of discernment, which is sym-
bolized by the set of N elements potentially overlapped
Θ = {θ1, θ2, ..., θN}. The frame of discernment Θ de nes
the propositions noted Ai for which the sources can provide
con dence. Information sources can distribute mass values
on subsets of the frame of discernment, Ai ∈ 2Θ. If an
information source can not distinguish between two proposi-
tions Ai and Aj , it assigns a mass value to the set including
both hypotheses (Ai ∪ Aj). The mass distribution for all
hypotheses has to ful ll the following conditions

i. 0 ≤ m(Ai) ≤ 1.

ii. m(∅) = 0.

iii.
∑

Ai∈2Θ m(Ai) = 1.

Mass distributions from d different sources are combinedwith
Dempster’s orthogonal rule.

m(A) = (1−K)−1
∑

A1∩...∩Ad=A

d∏

i=1

mi(Ai) (5)

where K =
∑

A1∩...∩Ad=∅
∏d

i=1 mi(Ai) is a normaliza-
tion factor measuring the con ict between the sources.
Two functions can be evaluated to characterize the uncer-
tainty about the hypotheses. The belief function Bel(A) =∑

Ai⊆A m(Ai) measures the minimum uncertainty about A,
whereas, the plausibility function Pl(A) =

∑
Ai∩A �=∅m(Ai)

re ects the maximum uncertainty value.

4.2. The Dezert-Smarandache Theory (DSmT)

While the DST considers Θ as a set of exclusive elements, the
DSmT relaxes this condition and allows for overlapping and
intersecting hypotheses. This allows for quantifying the con-
ict that might arise between the different sources throughout

the assignment of non-null con dence values to the intersec-
tion of distinct hypotheses.

4.2.1. De nition

Let Θ = {θ1, θ2, ..., θN} be a set of N elements which
can potentially overlap. We consider in our example Θ =
{θch, θno ch} involving only two elementary hypotheses
’change’and ’no change’. The hyper-power set DΘ is de-
ned as the set of all composite hypotheses obtained from Θ

with ∩ and ∪ operators such that:

i. ∅, θ1, θ2, ..., θN ∈ DΘ

ii. If A, B ∈ DΘ then (A∩B) ∈ DΘ and (A∪B) ∈ DΘ.

iii. No other elements belong to DΘ except those de ned in
i. and ii.

We de ne DΘ in our example by DΘ = {∅, θch, θno ch, θch∩
θno ch, θch ∪ θno ch}.
As in the DST, the DSmT de nes a map m(.) : DΘ → [0, 1].
This map de nes the con dence level that each sensor asso-
ciates with the element of DΘ. This map supports paradoxical
information and we have this condition:

∑

A∈DΘ

m(A) = 1. (6)

The belief and plausibility functions are de ned in the same
way as for the DST. The DSmT rule of combination of con-
icting and uncertain sources is given by the above equation:

m(A) =
∑

A1,A2,...,Ad∈DΘ

A1∩...∩Ad=A

d∏

i=1

mi(Ai). (7)

4.2.2. Mass belief assignment

Changes may be expected for a pixel (i, j) when the Gamma
Kullback-Leiber distance DKLGamma(I1, I2), the contrast
measure r(i, j) and the signi cance measure s(i, j) become
signi cant. Furthermore, the decision may be taken when
there is a contradiction between the three indicators. Then,
we propose in Table 1 the mass assignment which is done
by an appropriate combination of change signatures. The
decision is taken through the maximum of credibility with
Belief on change Bel(θch).

Hypothesis Mass belief assignment

∅ 0

θch r(i, j) ∗DKLGamma(I1, I2) ∗ s(i, j)

θno ch (1− r(i, j)) ∗ (1−DKLGamma(I1, I2)) ∗ (1 − s(i, j))

θch ∪ θno ch r(i, j) ∗ (1−DKLGamma(I1, I2)) ∗ s(i, j)

θch ∩ θno ch 1− (m (∅) + m (θch) + m (θno ch) + m (θch ∪ θno ch))

Table 1. Mass Belief Assignement for image fusion.
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Fig. 1. Original Envisat SAR images.

5. RESULTS

The proposed method has been applied on two temporal
Envisat SAR images covering the same region of Tunis City,
North Africa (see Fig. 1). The rst one is acquired in 2005
whereas the second one is acquired in 2007. A considerable
amount of urban changes occurred between these two dates.
These two images are already registered.

Fig. 2 shows a comparison between the change measures
results obtained respectively with the KL distance, the con-
trast and the signi cance measures. As we can see, some
change regions are highlighted by the three signatures. How-
ever, others are enhanced only by one or two measures which
underline the complementarities of these attributes.

Fig. 3 shows decision results obtained by maximizing
the belief change function exposed previously. Even if this
method takes a strong decision, it is possible to analyse the
belief response or the interval [credibility, plausibility] to in-
troduce a con dent interval into the decision. This decision is
made under DST and DSmT.

Changes detected by DSmT processing (see Fig. 3 (Mid-
dle) shows that this approach provides better performances
than the classical DST one (see Fig. 3 (Left)). Comparing
these results to original images presented in Fig. 1, we can
notice that the proposed method detects the most signi cant
changes with a very few false alarms. So, taking into account
con ict between the different sources enhances considerably
the change detection results. Fig. 3 (Right) gives a quanti-
tative evaluation (ROC plots) of the results using the ground
truth. It shows the performances of all used measures and
it con rms that DSmT (blue) is more accurate comparing to
DST (red) and all the other indicators.

6. CONCLUSION

Change detection in multi-temporal SAR images requires the
computation of speci c measures which have to be sensi-
tive to various kinds of changes and robust to speckle effects.
Those measures are combined and used by DSmT to take into
account con icts between sources which enhance change de-
tection results. The performance of the proposed technique
is very suffcient comparing to DST results and original im-
ages. In future works, we can take the bene t from the DSmT
hybrid model and introduce the multiscale information in the
proposed change detection approach. This will allow detec-
tion of changes with various sizes.
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Fig. 2. Change measures results given respectively (from left
to right) by Kullback-Leiber distance, contrast and signi -
cance measure.

Change detection by DST
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Fig. 3. Change detection results. (Left) DST Changes (Mid-
dle) DSmT Changes (Right) ROC plots comparison between
Contrast, signi ance, KLGamma, DST and DSmT change de-
tection measures.
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