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Abstract— In this paper we present the N-norms/N-
conorms in neutrosophic logic and set as extensions of T-
norms/T-conorms in fuzzy logic and set. 
Then we show some applications of the neutrosophic logic 
to robotics. 

Keywords: N-norm, N-conorm, N-pseudonorm, N-
pseudoconorm, Neutrosophic set, Neutrosophic logic, Robotics 

I.  DEFINITION OF NEUTROSOPHIC SET 
  Let T, I, F be real standard or non-standard subsets of 
]-0, 1+[,  
with sup T = t_sup, inf T = t_inf,  
sup I  = i_sup, inf I  = i_inf,  
sup F = f_sup, inf F = f_inf,  
and n_sup = t_sup+i_sup+f_sup,    
n_inf  = t_inf+i_inf+f_inf. 
  Let U be a universe of discourse, and M a set included in 
U.  An element x from U is noted with respect to the set M 
as x(T, I, F) and belongs to M in the following way: it is t% 
true in the set, i% indeterminate (unknown if it is or not) in 
the set, and f% false, where t varies in T, i varies in I, f 
varies in F ([1], [3]).  
  Statically T, I, F are subsets, but dynamically T, I, F are 
functions/operators depending on many known or unknown 
parameters. 

II. DEFINITION OF NEUTROSOPHIC LOGIC

In a similar way we define the Neutrosophic Logic: 
A logic in which each proposition x is T% true, I% 
indeterminate, and F% false, and we write it x(T,I,F), where 
T, I, F are defined above. 

III. PARTIAL ORDER

We define a partial order relationship on the 
neutrosophic set/logic in the following way: 

x(T1, I1, F1) ≤ y(T2, I2, F2) iff (if and only if) 
T1 ≤ T2, I1 ≥ I2, F1 ≥ F2 for crisp components. 

 And, in general, for subunitary set components: 
x(T1, I1, F1) ≤ y(T2, I2, F2) iff  

  inf T1 ≤ inf T2, sup T1 ≤ sup T2, 
 inf I1 ≥ inf I2, sup I1 ≥ sup I2,  
 inf F1 ≥ inf F2, sup F1 ≥ sup F2. 

      If we have mixed - crisp and subunitary - components, 
or only crisp components, we can transform any crisp 
component, say “a” with a Î  [0,1] or a Î ]-0, 1+[, into a 
subunitary set [a, a]. So, the definitions for subunitary set 
components should work in any case. 

IV. N-NORM AND N-CONORM

As a generalization of T-norm and T-conorm from the 
Fuzzy Logic and Set, we now introduce the N-norms and 
N-conorms for the Neutrosophic Logic and Set. 

A. N-norm 
Nn: ( ]-0,1+[ × ]-0,1+[ × ]-0,1+[ )2 → ]-0,1+[ × ]-0,1+[ × ]-0,1+[ 
Nn (x(T1,I1,F1), y(T2,I2,F2)) = (NnT(x,y), NnI(x,y), NnF(x,y)), 
where NnT(.,.), NnI(.,.), NnF(.,.) are the truth/membership, 
indeterminacy, and respectively falsehood/nonmembership 
components. 

Nn have to satisfy, for any x, y, z in the neutrosophic 
logic/set M of the universe of discourse U, the following 
axioms: 
a) Boundary Conditions: Nn(x, 0) = 0, Nn(x, 1) = x.
b) Commutativity: Nn(x, y) = Nn(y, x).
c) Monotonicity: If x ≤ y, then Nn(x, z) ≤ Nn(y, z).
d) Associativity: Nn(Nn (x, y), z) = Nn(x, Nn(y, z)).

There are cases when not all these axioms are satisfied, for 
example the associativity when dealing with the 
neutrosophic normalization after each neutrosophic 
operation. But, since we work with approximations, we can 
call these N-pseudo-norms, which still give good results in 
practice. 

Nn represent the and operator in neutrosophic logic, and 
respectively the intersection operator in neutrosophic set 
theory. 

Let J ∈{T, I, F} be a component. 
Most known N-norms, as in fuzzy logic and set the T-
norms, are: 
• The Algebraic Product N-norm: Nn−algebraicJ(x, y) = x · y
• The Bounded N-Norm: Nn−boundedJ(x, y) = max{0, x + y −
1} 
• The Default (min) N-norm: Nn−minJ(x, y) = min{x, y}.
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A general example of N-norm would be this. 
Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 
set/logic M.  Then: 

Nn(x, y) = (T1/\T2, I1\/I2, F1\/F2) 
where the “/\” operator, acting on two (standard or non-
standard) subunitary sets, is a N-norm (verifying the above 
N-norms axioms); while the “\/” operator, also acting on 
two (standard or non-standard) subunitary sets, is a N-
conorm (verifying the below N-conorms axioms). 
      For example, /\ can be the Algebraic Product T-norm/N-
norm, so T1/\T2 = T1·T2 (herein we have a product of two 
subunitary sets – using simplified notation); and \/ can be 
the Algebraic Product T-conorm/N-conorm, so T1\/T2 = 
T1+T2-T1·T2 (herein we have a sum, then a product, and 
afterwards a subtraction of two subunitary sets). 
      Or /\ can be any T-norm/N-norm, and \/ any T-
conorm/N-conorm from the above and below; for example 
the easiest way would be to consider the min for crisp 
components (or inf for subset components) and respectively 
max for crisp components (or sup for subset components). 
      If we have crisp numbers, we can at the end 
neutrosophically normalize. 

B. N-conorm 
Nc: ( ]-0,1+[ × ]-0,1+[ × ]-0,1+[ )2 → ]-0,1+[ × ]-0,1+[ × ]-0,1+[ 
 Nc (x(T1,I1,F1), y(T2,I2,F2)) = (NcT(x,y), NcI(x,y), NcF(x,y)), 
where NnT(.,.), NnI(.,.), NnF(.,.) are the truth/membership, 
indeterminacy, and respectively falsehood/nonmembership 
components. 

Nc have to satisfy, for any x, y, z in the neutrosophic 
logic/set M of universe of discourse U, the following 
axioms: 
a) Boundary Conditions: Nc(x, 1) = 1, Nc(x, 0) = x.
b) Commutativity: Nc (x, y) = Nc(y, x).
c) Monotonicity: if x ≤ y, then Nc(x, z) ≤ Nc(y, z).
d) Associativity: Nc (Nc(x, y), z) = Nc(x, Nc(y, z)).

There are cases when not all these axioms are satisfied, for 
example the associativity when dealing with the 
neutrosophic normalization after each neutrosophic 
operation. But, since we work with approximations, we can 
call these N-pseudo-conorms, which still give good results 
in practice. 

Nc represent the or operator in neutrosophic logic, and 
respectively the union operator in neutrosophic set theory. 

Let J ∈{T, I, F} be a component. 
Most known N-conorms, as in fuzzy logic and set the T-
conorms, are: 
• The Algebraic Product N-conorm: Nc−algebraicJ(x, y) = x + y
− x · y 
• The Bounded N-conorm: Nc−boundedJ(x, y) = min{1, x + y}
• The Default (max) N-conorm: Nc−maxJ(x, y) = max{x, y}.

A general example of N-conorm would be this. 
Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 
set/logic M.  Then: 

Nn(x, y) = (T1\/T2, I1/\I2, F1/\F2) 
Where – as above - the “/\” operator, acting on two 
(standard or non-standard) subunitary sets, is a N-norm 
(verifying the above N-norms axioms); while the “\/” 
operator, also acting on two (standard or non-standard) 
subunitary sets, is a N-conorm (verifying the above N-
conorms axioms). 
     For example, /\ can be the Algebraic Product T-norm/N-
norm, so T1/\T2 = T1·T2 (herein we have a product of two 
subunitary sets); and \/ can be the Algebraic Product T-
conorm/N-conorm, so T1\/T2 = T1+T2-T1·T2 (herein we have 
a sum, then a product, and afterwards a subtraction of two 
subunitary sets). 
     Or /\ can be any T-norm/N-norm, and \/ any T-
conorm/N-conorm from the above; for example the easiest 
way would be to consider the min for crisp components (or 
inf for subset components) and respectively max for crisp 
components (or sup for subset components). 
      If we have crisp numbers, we can at the end 
neutrosophically normalize. 

      Since the min/max (or inf/sup) operators work the best 
for subunitary set components, let’s present their definitions 
below. They are extensions from subunitary intervals 
{defined in [3]} to any subunitary sets. Analogously we can 
do for all neutrosophic operators defined in [3]. 
      Let x(T1, I1, F1) and y(T2, I2, F2) be in the neutrosophic 
set/logic M. 

C. More Neutrosophic Operators 
Neutrosophic Conjunction/Intersection: 

x/\y=(T/\,I/\,F/\), 
where inf T/\ = min{inf T1, inf T2} 

   sup T/\ = min{sup T1, sup T2} 
   inf I/\ = max{inf I1, inf I2} 
   sup I/\ = max{sup I1, sup I2} 
   inf F/\ = max{inf F1, inf F2} 
   sup F/\ = max{sup F1, sup F2} 

Neutrosophic Disjunction/Union: 
x\/y=(T\/,I\/,F\/), 
where inf T\/ = max{inf T1, inf T2} 

   sup T\/ = max{sup T1, sup T2} 
   inf I\/ = min{inf I1, inf I2} 
   sup I\/ = min{sup I1, sup I2} 
   inf F\/ = min{inf F1, inf F2} 
   sup F\/ = min{sup F1, sup F2} 

Neutrosophic Negation/Complement: 
C(x) = (TC,IC,FC),  
where TC = F1 

 inf IC = 1-sup I1 
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   sup IC = 1-inf I1 
 FC = T1 

Upon the above Neutrosophic 
Conjunction/Intersection, we can define the 

Neutrosophic Containment: 
We say that the neutrosophic set A is included in the 
neutrosophic set B of the universe of discourse U, 
 iff for any x(TA, IA, FA) Î A with x(TB, IB, FB) Î B we 
have: 
inf TA ≤ inf TB ; sup TA ≤ sup TB;  
inf IA ≥ inf IB ; sup IA ≥  sup IB;  
inf FA ≥  inf FB ; sup FA ≥  sup FB. 

D. Remarks 
a) The non-standard unit interval ]-0, 1+[ is merely

used for philosophical applications, especially
when we want to make a distinction between
relative truth (truth in at least one world) and
absolute truth (truth in all possible worlds), and
similarly for distinction between relative or
absolute falsehood, and between relative or
absolute indeterminacy.

But, for technical applications of neutrosophic logic and set, 
the domain of definition and range of the N-norm and N-
conorm can be restrained to the normal standard real unit 
interval [0, 1], which is easier to use, therefore: 

Nn: ( [0,1] × [0,1] × [0,1] )2 → [0,1] × [0,1] × [0,1] 
and 

  Nc: ( [0,1] × [0,1] × [0,1] )2 → [0,1] × [0,1] × [0,1]. 

b) Since in NL and NS the sum of the components (in
the case when T, I, F are crisp numbers, not sets) is
not necessary equal to 1 (so the normalization is
not required), we can keep the final result un-
normalized.
But, if the normalization is needed for special
applications, we can normalize at the end by
dividing each component by the sum all
components.
If we work with intuitionistic logic/set (when the
information is incomplete, i.e. the sum of the crisp
components is less than 1, i.e. sub-normalized), or
with paraconsistent logic/set (when the information
overlaps and it is contradictory, i.e. the sum of
crisp components is greater than 1, i.e. over-
normalized), we need to define the neutrosophic
measure of a proposition/set.
If x(T,I,F) is a NL/NS, and T,I,F are crisp numbers
in [0,1], then the neutrosophic vector norm of
variable/set x is the sum of its components:

   Nvector-norm(x) = T+I+F. 

Now, if we apply the Nn and Nc to two 
propositions/sets which maybe intuitionistic or 
paraconsistent or normalized (i.e. the sum of 
components less than 1, bigger than 1, or equal to 
1), x and y, what should be the neutrosophic 
measure of the results Nn(x,y) and Nc(x,y) ? 
Herein again we have more possibilities: 
- either the product of neutrosophic measures of 

x and y: 
Nvector-norm(Nn(x,y)) = Nvector-norm(x)·Nvector-

norm(y),  
- or their average: 

 Nvector-norm(Nn(x,y)) = (Nvector-norm(x) + Nvector-

norm(y))/2, 
- or other function of the initial neutrosophic 

measures: 

Nvector-norm(Nn(x,y)) = f(Nvector-norm(x), Nvector-

norm(y)), where f(.,.) is a function to be determined 
according to each application. 

Similarly for Nvector-norm(Nc(x,y)). 
Depending on the adopted neutrosophic vector 
norm, after applying each neutrosophic operator 
the result is neutrosophically normalized. We’d 
like to mention that “neutrosophically 
normalizing” doesn’t mean that the sum of the 
resulting crisp components should be 1 as in fuzzy 
logic/set or intuitionistic fuzzy logic/set, but the 
sum of the components should be as above: either 
equal to the product of neutrosophic vector norms 
of the initial propositions/sets, or equal to the 
neutrosophic average of the initial propositions/sets 
vector norms, etc. 
In conclusion, we neutrosophically normalize the 
resulting crisp components T`,I`,F` by multiplying 
each neutrosophic component T`,I`,F` with S/( 
T`+I`+F`), where  
S= Nvector-norm(Nn(x,y)) for a N-norm or S= Nvector-

norm(Nc(x,y)) for a N-conorm - as defined above. 

c) If T, I, F are subsets of [0, 1] the problem of
neutrosophic normalization is more difficult.
i) If sup(T)+sup(I)+sup(F) < 1, we have an

intuitionistic proposition/set.
ii) If inf(T)+inf(I)+inf(F) > 1, we have a

paraconsistent proposition/set.
iii) If there exist the crisp numbers t ∈T, i ∈ I,

and f ∈F such that t+i+f =1, then we can say
that we have a plausible normalized
proposition/set.
But in many such cases, besides the
normalized particular case showed herein, we
also have crisp numbers, say t1 ∈T, i1 ∈ I, and
f1 ∈ F such that t1+i1+f1 < 1 (incomplete
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information) and t2 ∈T, i2 ∈I, and f2∈F such 
that t2+i2+f2 > 1 (paraconsistent information). 

E. Examples of Neutrosophic Operators which are N-
norms or N-pseudonorms or, respectively N-conorms 
or N-pseudoconorms 

We define a binary neutrosophic conjunction 
(intersection) operator, which is a particular case of a N-
norm (neutrosophic norm, a generalization of the fuzzy T-
norm): 

[ ] [ ] [ ]( ) [ ] [ ] [ ]2
: 0,1 0,1 0,1 0,1 0,1 0,1

N

TIFc × × → × ×

( )1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1( , ) , ,
N

TIFc x y TT I I IT TI FF FI FT FT FI= + + + + + +
. 
The neutrosophic conjunction (intersection) operator 

Nx y∧  component truth, indeterminacy, and falsehood 
values result from the multiplication 

( ) ( )1 1 1 2 2 2T I F T I F+ + ⋅ + +
since we consider in a prudent way T I Fp p , where 
“p ” is a neutrosophic relationship and means “weaker”, 
i.e. the products i jT I  will go to I , i jT F  will go to F , and 

i jI F  will go to F for all i, j ∈{1,2}, i ≠ j, while of course
the product T1T2 will go to T,  I1I2 will go to I, and F1F2 will 
go to F (or reciprocally we can say that F  prevails in front
of I  which prevails in front of T , and this neutrosophic 
relationship is transitive): 

(T1        

 (T2       I2     F2) 

So, the truth value is 1 2TT , the indeterminacy value is 

1 2 1 2 1 2I I I T T I+ +  and the false value is 

1 2 1 2 1 2 2 1 2 1F F F I FT F T F I+ + + + . The norm of Nx yÙ
is ( ) ( )1 1 1 2 2 2T I F T I F+ + × + + . Thus, if x  and y  are

normalized, then Nx yÙ  is also normalized. Of course, the 

reader can redefine the neutrosophic conjunction operator, 
depending on application, in a different way, for example in 
a more optimistic way, i.e. I T Fp p  or T  prevails with 
respect to I , then we get: 

( )1 2 1 2 2 1 1 2 1 2 1 2 1 2 2 1 2 1( , ) , ,
N

ITFc x y TT TI TI I I FF FI FT FT FI= + + + + + +
Or, the reader can consider the order T F Ip p , etc. 

V. ROBOT POSITION CONTROL BASED ON 
KINEMATICS EQUATIONS 

A robot can be considered as a mathematical relation 
of actuated joints which ensures coordinate transformation 
from one axis to the other connected as a serial link 
manipulator where the links sequence exists. Considering 
the case of revolute-geometry robot all joints are rotational 
around the freedom ax [4, 5]. In general having a six 
degrees of freedom the manipulator mathematical analysis 
becomes very complicated. There are two dominant 
coordinate systems: Cartesian coordinates and joints 
coordinates. Joint coordinates represent angles between 
links and link extensions. They form the coordinates where 
the robot links are moving with direct control by the 
actuators.  

Fig.1. The robot control  through DH transformation. 

The position and orientation of each segment of the 
linkage structure can be described using Denavit-Hartenberg 
[DH] transformation [6]. To determine the D-H 
transformation matrix (Fig. 1) it is assumed that the Z-axis 
(which is the system’s axis in relation to the motion surface) 
is the axis of rotation in each frame, with the following 
notations: θj  - joint angled is the joint angle positive in the 
right hand sense  about jZ ; aj - link length is the length of 
the common normal, positive in the direction of (j+1)X  ; αj - 
twist angled is the angle between jZ  and  (j+1)Z, positive in 
the right hand sense about the common normal ;  dj   - offset 
distance is the value of  jZ  at which the common normal 
intersects jZ ; as well  if  jX  and (j+1)X are parallel and in the 

  (T1    I1  F1) 

(T2   I2  F2) 

(T1    I1      F1) 

(T2    I2      F2) 

(T1    I1           F1) 
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same direction, then  θj = 0 ; (j+1)X - is chosen to be 
collinear with the common normal between jZ  and  (j+1)Z 
[7, 8] . Figure 1 illustrates a robot position control based on 
the Denavit-Hartenberg transformation. The robot joint 
angles, θc, are transformed in Xc - Cartesian coordinates 
with D-H transformation. Considering that a point in j, 
respectively j+1 is given by: 

P
Z
Y
X

j

j

=

1

 and 1

11

j

j

X
Y

P
Z

+

+

=
' 

 (1) 

 

then jP can be determined in relation to j+1P through the 
equation :  

jP = jAj+1 ⋅   j+1P, (2) 

where the transformation matrix jAj+1  is: 
cos sin cos sin sin cos
sin cos cos cos sin sin    +1 0 sin cos
0 0 0 1

j j j j j j j

j j j j j j j

j j j

a

ajA j d

θ θ α θ α α
θ θ α θ α α

θ θ

− ⋅ + ⋅ ⋅⎡ ⎤
⎢ ⎥− ⋅ − ⋅ ⋅⎢ ⎥=⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  . 

Control through forward kinematics consists of the 
transformation of robot coordinates at any given moment, 
resulting directly from the measurement transducers of each 
axis, to Cartesian coordinates and comparing to the desired 
target’s Cartesian coordinates (reference point). The 
resulting error is the difference of position, represented in 
Cartesian coordinates, which requires changing. Using the 
inverted Jacobean matrix ensures the transformation into 
robot coordinates of the position error from Cartesian 
coordinates, which allows the generating of angle errors for 
the direct control of the actuator on each axis.  

The control using forward kinematics consists of 
transforming the actual joint coordinates, resulting from 
transducers, to Cartesian coordinates and comparing them 
with the desired Cartesian coordinates. The resulted error is 
a required position change, which must be obtained on 
every axis. Using the Jacobean matrix inverting it will 
manage to transform the change in joint coordinates that 
will generate angle errors for the motor axis control.  

Figure 2 illustrates a robot position control system 
based on the Denavit-Hartenberg transformation. The robot 
joint angles, θc, are transformed in  Xc - Cartesian 
coordinates with   D-H transformation, where a matrix 
results from (1) and (2) with θj -joint angle, dj -offset 
distance, a j - link length, αj  - twist.  

Position and orientation of the end effector with 
respect to the base coordinate frame is given by  XC  :  

XC = A1 · A2 · A3 · .........  · A6  (3) 

 Position error ΔX is obtained as a difference between 
desired and current position. There is difficulty in 
controlling robot trajectory, if the desired conditions are 

specified using position difference ΔX  with continuously 
measurement of current position θ1,2,.....6. 

X =A* ...A*
(4*4)

C 1 6

Desired 
XD (6*1)

Processing
Jacobian

Triangulate
Jacobian

ROBOT
SYSTEM

Back-
Substitution

Actual Position   i

  I (6*1)

X Actuators
Control

Sensor
Signals

J-1(θ) · δ 6X6J ( θ ) · δ θ1,2,.....6

XC = A1 ·A2 ... ·A6

Fig. 2. Robot position control system based on the Denavit-
Hartenberg transformation 

The relation, between given by end-effector's position and 
orientation considered in Cartesian coordinates and the 
robot joint angles θ1,2,.....6, it is : 

xi = f i (θ)   (4) 

where  θ  is vector representing the degrees of freedom of 
robot. By differentiating we will have: δ 6X6 =  J ( θ ) ·
δ θ1,2,.....6 , where δ 6X6 represents differential linear and
angular changes in the end effector at the currently values of 
X6  and δ θ1,2,.....6 represents the differential change of the set 
of joint angles.  J (θ) is the Jacobean matrix in which the 
elements aij  satisfy the relation: aij  =  δ   f i-1 /  δ  θ  j-1 , 
(x.6)  where  i, j are corresponding to the dimensions of  x 
respectively θ. The inverse Jacobian transforms the 
Cartesian position δ6X6 respectively ΔX  in joint angle error
(Δθ):  δ θ 1,2,...6  =  J-1(θ)  ·  δ  6X6 .

VI. HYBRID POSITION AND FORCE CONTROL OF
ROBOTS 

Hybrid position and force control of industrial robots 
equipped with compliant joints must take into consideration 
the passive compliance of the system. The generalized area 
where a robot works can be defined in a constraint space 
with six degrees of freedom (DOF), with position constrains 
along the normal force of this area and force constrains along 
the tangents. On the basis of these two constrains there is 
described the general scheme of hybrid position and force 
control in figure 3. Variables XC and FC represent the 
Cartesian position and the Cartesian force exerted onto the 
environment. Considering XC and FC expressed in specific 
frame of coordinates, its can be determinate selection 
matrices Sx and Sf, which are diagonal matrices with 0 and 1 
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diagonal elements, and which satisfy relation: Sx  +  Sf  = Id , 
where Sx and Sf are methodically deduced from kinematics 
constrains imposed by the working environment [9, 10].  

S X POSITION CONTROL

N
EU

TR
O

SO
PH

IC
ER

R
O

R
C

O
N

TR
O

LΔθP Δθ
ROBOT

S F FORCE CONTROL
ΔθFXDF

f

x

XC

XF

Force
Transducers

Position
Transducers

Force
Close Look

Position
Close Look

XDP

i

Fig. 3. General structure of hybrid control. 

Mathematical equations for the hybrid position-force 
control. A system of hybrid position–force control normally 
achieves the simultaneous position–force control. In order to 
determine the control relations in this situation, ΔXP – the 
measured deviation of Cartesian coordinate command 
system is split in two sets: ΔXF corresponds to force 
controlled component and ΔXP corresponds to position 
control with axis actuating in accordance with the selected 
matrixes Sf and Sx. If there is considered only positional 
control on the directions established by the selection matrix 
Sx there can be determined the desired end - effector 
differential motions that correspond to position control in the 
relation: ΔXP  = KP ΔXP , where KP is the gain matrix, 
respectively desired motion joint on position controlled axis: 
Δθ P  =  J-1(θ)  ·  ΔXP [11, 12]. 

Now taking into consideration the force control on the 
other directions left, the relation between the desired joint 
motion of end-effector and the force error ΔXF is given by 
the relation:  Δθ F  =  J-1(θ)  ·  ΔXF , where the position 
error due to force ΔXF  is the motion difference between 
ΔXF– current position deviation measured by the control 
system that generates position deviation for force controlled 
axis and ΔXD – position deviation because of desired 
residual force. Noting the given desired residual force as FD 
and the physical rigidity KW there is obtained the relation: 
ΔXD = KW

-1 · FD .   
Thus, ΔXF can be calculated from the relation: ΔXF  = 

KF (ΔXF – ΔXD), where KF is the dimensionless ratio of the 
stiffness matrix. Finally, the motion variation on the robot 
axis matched to the motion variation of the end-effectors is 
obtained through the relation: Δθ =  J-1(θ) ΔXF  +  J-1(θ) 
ΔXP. Starting from this representation the architecture of the 
hybrid position – force control system was developed with 
the corresponding coordinate transformations applicable to 
systems with open architecture and a distributed and 
decentralized structure.   

For the fusion of information received from various 
sensors, information that can be conflicting in a certain 
degree, the robot uses the fuzzy and neutrosophic logic or set 
[3]. In a real time it is used a neutrosophic dynamic fusion, 
so an autonomous robot can take a decision at any moment. 

CONCLUSION

In this paper we have provided in the first part an 
introduction to the neutrosophic logic and set operators and 
in the second part a short description of mathematical 
dynamics of a robot and then a way of applying 
neutrosophic science to robotics. Further study would be 
done in this direction in order to develop a robot 
neutrosophic control. 
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