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Abstract

The Dempster-Shafer (DS) theory of evidence has significant weaknesses when dealing with

conflicting information sources, as demonstrated by preeminent mathematicians. This problem may

invalidate its effectiveness when it is used to implement decision making tools that monitor a great

number of parameters and metrics. Indeed, in this case very different estimations are likely to

happen, and can produce unfair and biased results. In order to solve these flaws, a number of

amendments and extensions of the initial DS model have been proposed in literature. In this work we

present a fraud detection system that classifies transactions in a mobile money transfer infrastructure

by using the data fusion algorithms derived from these new models. We tested it in a simulated

environment that closely mimics a real mobile money transfer infrastructure and its actors. Results

show substantial improvements of the performance in terms of true positive and false positive rates

with respect to the classical DS theory.

Keywords: Fraud Detection, Mobile Money Transfer, Critical Infrastructure, Dempster-
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1 Introduction

Nowadays mobile communication networks represent a key enabling infrastructure for
financial service provision since they offer significant opportunities for increasing the efficiency
and pervasiveness of such services by expanding access and lowering transaction costs. Mobile
financial services are currently applied to several banking products, such as deposit and
transact products, over the counter bill payments, saving products, intra-country remittances,
and international remittances. In this paper we focus on Mobile Money Transfer (MMT)
services which allow to use virtual money in order to carry out payments, money transfers,
and transactions through mobile devices.
Such services are an increasingly important and common payment means in many markets
due to the pervasive use of mobile phones, the steady growth in remittances, and the need for
an electronic Person-to-Person payment that may be an alternative and reliable option to
paper-based mechanisms like cash and checks ([16]).
The growing coverage of cellular networks as well as the increasing availability of mobile
communication services are enabling the widespread adoption of mobile-based financial
services especially in developing countries, like Kenya, India, Uganda, and the Philippines,
thus creating the opportunity for a significant proliferation of mobile commerce services as
well as for an expanding financial inclusion. It is expected that in those countries most of
mobile financial transactions will concern MMT services in the near term since “unbanked”
people, i.e. people who do not have their own bank accounts, will be attracted by financial
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services allowing for performing payments and remittances by simply using a mobile phone.
The same phenomenon is being observed in developed countries where citizens are becoming
unbanked due to the widespread economic crisis, and financial service providers are beginning
to investigate the potential for adopting these newer payment systems that are emerging in
less developed countries in order to meet financial needs of customers.
However, as the mobile financial services market grows, the risks related to the use of mobile
phone-based payments increase, since MMT services become the target of more skilled and
motivated attackers, and the amazing volume of data impairs the ability of the control
mechanisms to timely spot frauds. In one case, a supplier of Mobile Money services lost $3.5
million due to a single type of fraud. Like any other money transfer service, an MMT service
is vulnerable to a number of misuses, including money laundering (i.e., disguising the proceeds
of crime and illegal activities and transforming them into ostensibly legitimate money or other
assets), fraudulent use of customer details, and money theft. More in general, MMT frauds
consist in intentional deception performed to gain financial profit.
In this paper, we focus on account takeover in MMT services. There are two main reasons
behind this choice. First, account takeover per se is possibly the most prominent fraud in
MMT services. Second, it is often the pre-condition for more sophisticated frauds. We
propose a Fraud Detection System (FDS) that uses some extensions of the Dempster-Shafer
(DS) theory to spot evidence of ongoing account takeover attacks against MMT systems. The
DS theory is a data fusion technique that allows to correlate evidence provided by multiple
information sources and to compute a belief value. Basically, correlation of attack symptoms
through the DS theory-based combination of multiple pieces of evidence significantly
outperforms other approaches that use a single source of evidence, thus enabling the proposed
FDS to achieve higher detection rates while experiencing a smaller number of false positives.
However, in certain cases the DS theory of evidence does not take into account conflicting
degree of belief, that means that the experience in conflict is completely discarded, thus
generating counterintuitive results. In order to solve this issue, a number of methods and
combination rules have been proposed. In this paper we tested and compared these extensions
of the DS theory by validating their application to fraud detection in MMT services. In our
previous research work [4] we applied the Dempster-Shafer model to MMT services. In that
paper we considered an off-line analysis based on the sole Dempster combination rule. In this
work we have taken into account other fusion models derived from the initial theoretical
framework. In particular the Dezert-Smarandache Theory represents a framework subsuming
the initial formulation of DS as a particular case. For what concerns the DS model, the two
works - this and [4] - show different performance because we performed an improved tuning in
the parameters used for detection. The most significant improvement is obtained with the
transaction delay monitor (see Section 3 for more details). In the experimental section we
provide a methodology (and a pseudo-code) to assess the performance of those models.
Finally, we provide an in-line version of the analyzer that can be used for stream-based
processing of events. Due to the lack of real and publicly available MMT service data, the
effectiveness of this FDS has been assessed by performing simulations, using synthetic data -
containing both legitimate and fraudulent transactions - generated by a simulator which
closely mimics the behaviour of a real system, from a major MMT service operator.
The paper is organized as follows. Section 2 provides an overview of the DS theory and
presents some extensions of this theory. Section 3 describes the Mobile Money Transfer case
study and the architecture of the Fraud Detection System based on the evidence theory. In
Section 4 experimental tests and results are presented. Section 5 presents related work on the
use of the DS theory and its extensions for fraud and intrusion detection. Finally, Section 6



concludes by remarking achieved results.

2 Extensions of the Demspter-Shafer theory

The main objective of this work is to investigate the performance of different algorithms
derived from the Dempster-Shafer’s theory of evidence and from subsequent extensions of the
initial model. This theory is widely used to perform data fusion, i.e. to obtain a reliable
estimation of metrics and parameters representative of the (unknown) state of a system.
Informally speaking, by reliable we mean very near to the real value. In our case we want to
evaluate its performance on a fraud detection system that uses ”features” to classify attacks
on transactions made through mobile devices. As we present in this work, the accuracy of a
fraud detection system can be significantly improved by considering multiple features, where
each of them can represent a different characteristic of the fraudster’s behavior. Also, we show
that the detection accuracy can be further increased by considering recent modifications to
the original mathematical model. These modifications have been elaborated in order to solve
problems emerged with the initial mathematical framework which suffered from
counterintuitive results under particular conditions. In order to present the advancements of
the Dempster-Shafer (DS) theory we recall the basic features of the initial model. The basic
principle of the theory of evidence is that it does not require an a priori distribution of the
states and knowledge on the system by observers. Indeed, the observer evolves and changes its
uncertainty as more observations are realized and more evidence is available. The
Dempster-Shafer’s Theory (DST) has been introduced in the 1960’s by Arthur Dempster ([8])
and then improved with the work of Glenn Shafer ([22]). The theory can be considered as a
framework, in that it provides both a theoretical foundation to reason about uncertainty and a
set of mathematical tools to work with it. In particular, propositions are subsets of a given set
of hypotheses. For example, in a fraud detection system the set of hypotheses is composed of
the categories of frauds or not frauds. The events are evaluated based on their propositional
set. The sets compose the frame of discernment Θ, and, as said, the propositions of interest
are in a one-to-one correspondence with the subsets of Θ. In the original DS model the sets of
possible states of the system θ1...θN ∈ Θ are mutually exclusive and exhaustive. The
exhaustivity property requires that the initial frame of discernment is closed with respect to
all the possible propositions, i.e. all the possible sets have been identified. Even if this closure
is not done, the model persists by introducing closing elements in the frame of discernment.
Another strong assumption of the model is that the sets are exclusive, i.e. their boundaries
are clear and not overlapped. This is a strong assumption that - as we will see - can be
violated in certain circumstances. In the DS model, Θ has 2Θ subsets. These are called the
power-set of Θ. The DS model allows to infer the true system state just considering the
observations E1 . . . EM of the system. Given the evidence Ej , we can assign a probability that
this supports a certain hypothesis Hj , i.e. we assign a measure of probability to an element of
the power-set. A basic probability assignment (bpa) or basic belief assignment (bba) is a mass
function m which assigns beliefs to a hypothesis or, in other words, the measure of belief that
is committed exactly to the hypothesis H. Formally a basic probability assignment is a
function m : 2θ → [0, 1] such that m (∅) = 0 and m (H) ≥ 0,∀H ⊆ Θ and

∑
H⊆Θm (H) = 1.

In the DS theory we assign probabilities to elements of the power-set Θ, i.e. to sets. This
approach is very different from the the Bayesian one, where we assign probabilities only to
single events, i.e. outcomes of the experiments. Again, the bba contains an elementary
knowledge (via belief) about the propositions of the frame of discernment. The bba does not
provide directly knowledge of individual propositions. This individual knowledge is bounded



by the belief and the plausibility values. These can be calculated as follows:

• the Belief function Bel, describing the belief in a hypothesis H, as:
Bel (H) =

∑
B⊆H m(B). The belief corresponds to the lower bound on the probability or

rather measures the minimum uncertainty value about a proposition. Its properties are
Bel (∅) = 0 and Bel (Θ) = 1.

• the Plausibility function of H, Pl(H), which corresponds to the upper bound on the
probability and reflects the maximum uncertainty value about proposition H. The
plausibility of H is defined as: Pl (H) =

∑
B∩H 6=0m(B).

Therefore the true belief in the hypothesis H lies in the interval [Bel (H) , P l (H)], while the
degree of uncertainty is represented by the difference Pl (H)−Bel (H).

Finally, the DS theory provides a rule of combination that permits to combine two
independent pieces of evidence E1 and E2 into a single more informative hint:

mDS (H) =

∑
B∩C=H m1 (B)m2 (C)∑
B∩C 6=∅m1 (B)m2 (C)

(1)

This formula allows to combine our observations to infer the system state based on the
values of belief and plausibility functions. The numerator of this equation corresponds to the
conjunctive consensus - known also as rule of conjunctive combination or Transferable Belief
Model (TBM) - on the H set. The denominator of this rule is a normalization factor that takes
into account the mass of the agreement among the information sources. It is typically identified
as 1-K, where K is the degree of conflict among the sources, i.e.:

K =
∑

X1∩...∩Xn=∅

n∏
i=1

mi(Xi) (2)

0 ≤ K ≤ 1, where 0 means all sources are in full agreement and 1 means all sources are in
full disagreement.

Note that the combination rule allows to incorporate new evidence and update our beliefs
as new knowledge is acquired. Also, the model allows to combine incomplete, uncertain and
also partially contradictory information. The rule does not consider full contradictory sources,
because in that case the denominator is zero and no value is defined in the combination rule.

2.1 Counterintuitive results in the Dempster-Shafer model

The denominator in Dempster rule (1-K) normalizes each amount of mass. As a consequence
of this normalization, the new combined bba will not take into account the part of conflicting
mass, that in other words means that the experience or evaluation in conflict is completely
discarded. This produces counterintuitive results in certain cases. This problem was originally
pointed out in [26] with an example. Two physicians provide a diagnosis for some neurological
symptoms of a patient. The first doctor believes in meningitis with probability of 0.99 or brain
tumor with probability of 0.01. The second doctor believes in concussion with probability of
0.99 or a brain tumor with a probability of 0.01. Using the Dempster rule, we find that m(brain
tumor) = Bel (brain tumor) = 1. This rule produces a result that both physicians considered
to be very unlikely. The generalization of this example can be found in [19]. Another example
is provided in [23], where authors talk about dictatorial power in the Dempster model, i.e. the
model does not conceive the existence of strong sources (e.g. with very small uncertainty) but
with different believes.



2.2 Combination rules based on Dempster-Shafer model

In order to solve the problems pointed out in [26], a number of methods and combination
procedures have been investigated in literature, mostly addressing the treatment of conflicting
evidence and the definition of the frame of discernment. We will discuss some of these
alternatives. Some rules are derived from the DS model and some from the extended version
of the original theory. Important properties that differentiate the models below can be
expressed in the following points: combination results must be coherent for any number of
sources, any values of bpa and any types of frames; the rule of combination should preserve
the commutativity, i.e. the order the sources are combined should not affect the results; the
total ignorance should be neutral with respect to the combination rule, i.e. combining
information sources with a new full ignorant source should maintain the same belief; the
associativity of the operator. The Dempster rule of combination has all the properties above.
Here we recall the Dubois-Prade rule, which is a combination rule preserving associativity and
commutativity. Other DS-based rules not discussed here are the Yager’s rule, which assigns
the conflict to the ignorance, i.e. to the union of all exhaustive and exclusive elements in the
frame, and the Smet’s rule, which redistributes the conflict to the empty set (i.e. mS(∅) ≥ 0),
i.e. the empty set is reinterpreted as the set of all not considered hypotheses (not just the null
hypothesis). Other methods present in literature perform the averaging of the information
sources, where, for instance, each mass is multiplied by a different weight for different sources.
A discussion of combination rules based on the Dempster-Shafer model can be found in [20].

2.2.1 Dubois-Prade model and rule

The disjunctive combination rule has been introduced by Dubois & Prade, and has been
initially defined on the power-set of the DS model. This rule has been conceived for the case
of sources that may be mistaken indifferently. It provides more knowledge when all the
sources are conflicting. For two sources it defines mDj(∅) = 0 and for any X 6= ∅ in 2Θ:

mDj(X) =
∑

X1∪X2=X

m1 (X)m2 (X) (3)

The rule of combination by Dubois & Prade [11] supposes that in case of conflicts one source
is right and one is wrong, while in case of agreement they are both reliable. Thus, in case of
agreement, the estimation of the mass is in the intersection of the sets (X1 ∩X2), whilst it is
in the union in case of conflict (X1 ∪X2). The rule is commutative but not associative. The
rule defines mDP (∅) = 0 and for two information sources and for any X 6= ∅ in 2Θ:

mDP (X) =
∑

X1∩X2=X
X1∩X2 6=∅

m1 (X)m2 (X) +
∑

X1∪X2=X
X1∩X2=∅

m1 (X)m2 (X) (4)

2.3 Dezert-Smarandache’s Theory of Plausibility

Dezert and Smarandache point out two main problems in the Dempster-Shafer theory: it is
implicitly defined on a finite set of exhaustive and exclusive elements (the power-set), i.e. it
is based on the third excluded principle; the limits of the Dempster’s rule of combination,
as explained above. As for the second problem, several fixing formulas have been proposed in
literature, each one with its pros and cons in terms of mathematical properties and applicability.
As for the first problem, the principle of the third excluded does not allow hypotheses that
can be only vague and imprecise, i.e. it does not take into account situations where precise



refinement is impossible to be obtained because exclusive elements cannot be properly identified
and precisely separated. But actually this is what happens for a wide class of fusion problems
(e.g., in natural language analysis for sets as tallness/smallness, pleasure/pain, cold/hot, Sorites
paradoxes, etc.). Many problems of this kind typically identify fuzzy sets. The real nature
of the hypothesis reflects on the type of frame of discernment used. In the DS theory the
frame is provided by the power-set. In order to address other cases two additional sets may
be considered: the hyper power-set and the super power-set. The power-set of Dempster-
Shafer is composed of the exhaustive elements θ and the elements given by their union, i.e.
2Θ = (Θ,∪). The hyper power-set (free Dedekind’s lattice) is the base of Dezert-Smarandache
theory and is built from union and intersection of hypothesis elements, i.e. DΘ = (Θ,∪,∩).
The super power-set is a power-set when the initial set has to be refined, and is indicated as
SΘ = (Θ,∪,∩, c(·)), where c(·) is the complementation. Supposing that the elements in the
frame have been refined, the hyper power-set is the most representative of fuzzy sets. Again,
note that having refined elements in the frame-set does not mean that the elements are sharply
separated, which indeed depends on the nature of the problem. In the Dezert-Smarandache
theory (DSmT) it is used to talk about the free DSm model. Finally, we report that this relation
holds: | 2Θ |= 2|Θ| ≤| DΘ |≤| SΘ |, i.e. for what concerns the DSmT the number of elements
to be considered is larger than for the DST.

2.3.1 PCR5, PCR5-approximate and PCR6

The Proportional Conflict Redistribution (PCR) [9] rule transfers conflicting masses to non-
empty sets involved in the conflicts proportionally to the masses assigned to them by sources.
The rule works in three steps: calculate the conjunctive rule of the belief masses (see the
beginning of this section); calculate the conflicting masses; redistribute the (total or partial)
conflicting masses to the non-empty sets involved in the conflicts proportionally with respect
to their masses assigned by the sources. The way the conflicting masses are redistributed
generated several versions of PCR rules [21]. The most sophisticated one is denoted as PCR5,
which is actually the most efficient as claimed by the authors. PCR5 rule is quasi-associative
and preserves the neutral impact of the vacuous belief assignment. The rule has been defined
for two information sources and states that mPCR5(∅) = 0 and for any X 6= ∅ in DΘ:

mPCR5(X) = m12(X) +
∑

Y 6=X∈DΘ

X∩Y=∅

[
m1 (X)

2
m2 (Y )

m1 (X) +m2 (Y )
+

m2 (X)m1 (Y )
2

m2 (X) +m1 (Y )

]
(5)

In the formula m12 is the consensus and the two terms are used to distribute the conflict mass
proportionally. Also, the terms in the internal sum must be discarded if their denominator is
zero. The formula can be generalized for more than 2 sources. In this case the PCR mechanism
requires the calculation of the whole consensus among the sources and the redistribution of
the non-zero conflicts among the sources. This procedure is a combinatory calculation with
complexity that grows as more sources are combined. In order to simplify the process, one can
reduce the complexity by combining (s-1)-th sources with the s-th source. This produces a
sub-optimal result because the calculation gives more relevance to the first sources taken into
account into the combination; thus the order in which sources are combined affects the result.
A more rigorous formulation of PCR5 that allows to extend the PCR rule to any number of
sources is the PCR6 proposed by Martin and Osswald [15]. This formula leads to a more
algorithmic procedure for its calculation. For s sources is mPCR6(∅) = 0 and for any X 6= ∅ in
DΘ:



mPCR6(X) = m1...s(X)+

s∑
i=1

mi(X)2
∑

s−1⋂
k=1

Yσi(k)∩X≡∅

(Yσi(1),...,Yσi(s−1))∈(DΘ)s−1


s−1∏
j=1

mσi(j)(Yσi(j))

mi(X) +
s−1∑
j=1

mσi(j)(Yσi(j))


(6)

like the PCR5, the rule holds if mi(X) +
s−1∑
j=1

mσi(j)(Yσi(j)) 6= 0. The function σi counts all the

elements from 1 to s without i, i.e. σi(j) = j for j < i and σi(j) = j + 1 for j ≥ i.

2.3.2 PCR#

In [7] Dambreville proposes a new approach to design the fusion rules based on the Referee
functions. For the sake of brevity we omit the formulas and the mathematical framework;
more details are available in [7] [5]. The Referee function is a function that discriminates the
characteristics of all the fusion rules, including those presented by other authors. Its core
element is the conditional arbitrament quantity used into the generic fusion rule. The rejection
rate generalizes the conflict mass. The general fusion rule proposed by Dambreville includes a
sampling method and a summarization method. The two processes reduce adaptively the set
of focal elements, i.e. the set of elements in the frame with non-zero mass. This eventually
avoids the combinatorics load by providing an approximation of the most significant bbas. In a
first stage, the sources provide the values of beliefs on a specific proposition through a sampling
process. Then, the referee function provides a result conditionally to the entries; the final output
might not be produced, based on the value of the initial beliefs. The principle is to limit the size
of the set of focal elements by reducing this size during the summarization process. According
to Dambreville, the PCR6 algorithm works just in case of full consensus or no-consensus, but
no intermediate cases are considered. The author proposes a new rule, named PCR#, which is
able to address the above mentioned case.

3 Use of the Dempster-Shafer Theory and its extensions
for Fraud Detection: The Mobile Money Transfer Case
Study

3.1 MMTS infrastructure

A Mobile Money Transfer (MMT) service relies on the use of virtual money, called mMoney,
to perform various types of money transfers and transactions. For example, a customer can
use his/her mobile phone for purchasing goods, receiving his/her salary, paying bills, taking
loans, paying taxes or receiving social benefits. MMT services are becoming more and more
appealing, especially in developing countries, where banking infrastructures are not as
capillary as in developed ones, whereas the penetration of mobile phones is high (as compared
to bank accounts), and the regulatory environment is weak. In these countries, the number of
customers is increasing at a fast pace. According to the 2012 Global Mobile Money Adoption
Survey on the status of the mobile money industry ([18]), 150 live mobile money services for
unbanked people were active in 2012, 41 of which were launched in 2012. Almost 30 million



Figure 1: Architecture of a Mobile Money Transfer system.

active customers used mobile money services, who performed 224.2 million transactions
totaling $4.6 billion during the month of June 2012. M-Pesa, which was launched in 2007 in
Kenya, totaled in December 2011 about 19 million subscribers, i.e. 70% of all mobile
subscribers in Kenya ([2]).
Like any other money transfer service, an MMT service is vulnerable to a number of fraud
schemes. Fraud is commonly understood as dishonesty calculated for advantage, i.e. deception
deliberately practiced in order to secure unfair or unlawful gain. In the context of mobile
money fraud is the intentional and deliberate action undertaken by players in the mobile
financial services ecosystem aimed at deriving gain (in cash or e-money), and/or denying
other players revenue and/or damaging the reputation of the other stakeholders. Furthermore,
as telecommunication operators support the provision of financial services across shared
networks in cross-border jurisdictions, the large adoption of mobile payment services can
result in a growing risk of money laundering in mobile transfer services. Since the success of
any payment system is based on ubiquity, convenience, and trust, it is necessary to address
emerging security risks in order to safeguard public confidence in MMT services. Fraud
detection is particularly challenging in the MMT context due to the scarce willingness to
disclose security information by mobile service providers as well as due to the confidentiality
requirement that has to be met while dealing with user profiles and transaction data.

As depicted in Figure 1, a MMT infrastructure is normally composed of the following sub-
systems: the Front Office (FO) that authenticates the users - through the Operations Server -
and forwards requests for performing financial transactions to the Account Management System;
(AMS); the AMS that authorizes and processes the transactions; the Security Database that
contains the security information related to MMT service users (thresholds, blocked accounts,
activated/deactivated accounts, number of transactions within a certain time period); the Logs
Server that stores logs related to the operations performed by the MMT system; the Data
Warehouse that contains historical data about user’s activities and accounts. Both the FO and
the AMS query the Security Database to authenticate users and manage transactions.
In a MMT service scenario each user of the system has some virtual money that he/she can
use to perform various types of money transfers and transactions. Mobile money service users
comprise customers, retailers of mMoney, and merchants. These actors use their mobile phones
to communicate with the FO that provides the interface towards the Operations Server. Each



user is an mWallet holder. An mWallet is an account hosted in the system enabling the mWallet
holder to carry out various actions by using mMoney. In order to access the system MMT service
users are required to connect to the FO and authenticate to the Operations Server. This server
is in charge of authenticating users, executing simple account management operations (e.g. PIN
code update), and delivering notification messages. The Operations Server provides two main
functions: view through a User Interface, i.e. the Operations Server interacts with the users
to collect operation requests and send notifications; Processing of an operation request, i.e.
the Operations Server analyzes the request coming from the user and implements the actions
needed to fulfill that request. The server either performs the operation by itself (this is the
case when, for example, the requested action consists in modifying customer’s password for the
service or authenticating the user) or forwards the request to the Account Management System
(this happens when the operation concerns account management or credit/debit control). The
Account Management System is in charge of managing accounts. In particular it controls user’s
credit/debit before a financial transaction is authorized and performed. Furthermore it stores
information about users’ habits.
The Operations Server is also linked to the Logs Server that stores logs of any operation
carried out in the system. Logs contain records of users’ activities, such as requests for PIN
modification, failed authentication, transaction requests, notifications of successful transactions.
The input to the MMT system is an operation request received from mWallet holders, while
the output is the notification of success/failure of the required operation, that implies the
registration of operation information. Data that are of interest to fraud detection activities are
archived in the Logs Server and in the Data Warehouse. While the security-relevant information
that can be gathered by accessing the Logs Server and parsing the stored logs can be used to
detect simple fraud cases, historical data about accounts available in the Data Warehouse can
be exploited to draw customer behavior and support the detection of complex frauds.
The MMT misuse case addressed in the paper is called Account Takeover. That misuse case is
particularly challenging because the attacker uses stolen credentials to perform a violation, thus
making it difficult to detect the anomaly at infrastructural level, like, for instance, analyzing
network packets or the execution of suspicious applications. This misuse case relies on the
following scenario: a fraudster steals the mobile phone of a legitimate MMT service customer
and uses it to make illicit money transfers. It is very likely that the behavior of the fraudster
differs from that of the legitimate user. In order to detect such fraudulent behavior we exploit
data fusion techniques based on the theory of evidence. Specifically, we test several algorithms
- introduced in the previous section - to combine the metrics of attack and design a detector of
anomalous behavioral patterns. The detector compares the customer behavior with a normal
user’s profile.

3.2 A Fraud Detection System based on evidence theories

In this section we present a Fraud Detection System (FDS) based on the theories of evidence
and plausibility introduced in the previous section. Our objective is to evaluate the performance
of this detector by investigating how different algorithms behave under different assumptions by
an expert system. We assess the performance of different algorithms with different bbas. Also,
we investigate the performance as a function of several detection parameters, specifically the
thresholds to discriminate the belief of attacks. In this section we describe the general work flow
of the detector and provide details on the monitors of single features, i.e. how the bbas have been
assigned by the experts. The detector uses a number of rules that analyse the deviation of each
incoming transaction from the normal profile of the user. The rules assign beliefs to ”features”



Figure 2: Flow diagram of the proposed FDS.

of the transactions. The belief values are combined to obtain an overall belief by applying the
Dempster-Shafer model (DS), the Dubois&Prade models (DP), the Dezert-Smarandache model
with several versions of the PCR algorithms (PCR5a, PCR6, PCR#). The overall belief is then
compared with a ”detection” threshold in order to understand if the user’s behaviour has to
be considered fraudulent or genuine. The proposed FDS consists of the following three major
components: Rule Based Filter, Evidence Combiner, and Analyser. The flow of events in the
FDS has been depicted in the flow diagram in Figure 2. To evaluate the effectiveness of the
proposed FDS we generated - via accurate simulation of a real system - events representing an
account takeover misuse case, where a fraudster steals the mobile phone of a legitimate user and
uses it to make money transfers. Particularly the fraudster chooses a victim and approaches
his/her person. Once in touch with the victim, he/she steals the phone. Then he/she tries to
guess the PIN related to the mobile payment application. Usually the fraudster makes several
attempts to access the victim’s account. After breaking in the system, he/she typically starts
to purchase goods from various merchants.

3.2.1 Rule Based Filter (RBF)

The RBF is a rule-based module that classifies the transactions executed by the users and assigns
a certain rank of the fraud risk to them. The assigned value is a measure of the deviation of
the observed behavior from the normal behavior profile. The rules used in our study are:

• Rule R1, number of authentication attempts: we analyzed the number of authentication
attempts performed by the regular users of the system and by the fraudsters. The larger
the number of attempts, the higher is the probability that the transaction is fraudulent.

• Rule R2, delay of authentication attempts: we analyze the time interval between the
first and the last authentication attempt being failed. If this time interval exceeds a
given threshold (e.g. 15 seconds), then there is a high probability that the transaction is
fraudulent.

• Rule R3, outlier detection: users usually carry out similar types of transactions in terms
of amount. Supposing we build a cluster of regular transactions, fraudsters are likely
to perform transactions out of this cluster. This process is known as outlier detection.



An outlier detector must take into account the transaction amount, the date, and the
identification code of the customer. As we describe later, in the experimental trials every
user spends money following a Normal distribution N(µ, σ2) with mean µ and standard
deviation σ2. We can define an average distance of the transaction amount from the
average amount spent. To do so, we calculate the area under the Gaussian curve. This
value (which is actually a probability) is used to model the possibility that a transaction
is a fraud.

Normally an FDS is subjected to a large number of transactions, mostly genuine. The role of
the RBF is essential since it separates out most of the easily recognizable genuine transactions
from the rest.

3.2.2 Evidence Combiner (EC)

The EC combines the bbas resulting from the application of rules R1, R2, and R3 and computes
the overall belief of attack for each transaction. For the detection of frauds in the MMT system,
the DS, DP, PCRs allow to introduce alternative sets and a rule for computing the confidence
levels associated to them. In order to apply the rules of combination we need to define a frame
of discernment U which is a set of exhaustive possibilities. Note that we do not impose the
exclusivity in our model, i.e. we consider the general case that the possibilities compose a
power-set as used in the DST or a hyper power-set as used in the DSmT. The refined elements
in the frame are U = {fraud,¬fraud}. In the following F is fraud, N is not-fraud and S
is ignorance, i.e. F ∪ N . In our experimental campaign - presented in the next section - we
perform exhaustive research of the best bba combination. In particular we created several bbas
for each Rule detector and tested the performance of each algorithm by combining all of them.
In the end, our experiments lead to the best performance in terms of bbas and fusion algorithms.
In the following we reported the bbas we used for the three rules R1, R2, R3. The notation
mj(i)(N,F,S) indicates the i-th vector of masses for the rule j, and the three variables N, F, S
are the masses committed in that vector to Not Fraud, Fraud and Ignorance:

• mass probability m1. Let c denote the number of attempts made by a user to access the
system, we defined the vector of assignments m1(i)(N,F,S) for different values of c, and i
is an index in the vector of each bba:

bpa(m1) :



c=0 m1(0) = (0.1, 0.7, 0.2)

m1(1) = (0.15, 0.6, 0.25) m1(2) = (0.05, 0.65, 0.3)

c=1 m1(0) = (0.35, 0.45, 0.2)

m1(1) = (0.3, 0.45, 0.25) m1(2) = (0.15, 0.50, 0.35)

c=2 m1(0) = (0.55, 0.3, 0.15)

m1(1) = (0.6, 0.35, 0.05) m1(2) = (0.25, 0.35, 0.4)

c=3 m1(0) = (0.7, 0.1, 0.2)

m1(1) = (0.7, 0.15, 0.15) m1(2) = (0.4, 0.15, 0.45)

c>3 m1(0) = (0.85, 0.1, 0.05)

m1(1) = (0.85, 0.05, 0.1) m1(2) = (0.55, 0.05, 0.4)

• mass probability m2. Let t denote the time interval between the first and the last
authentication attempt, we adopted the following assignments, m2(j) for different values
of t. Also, we introduced a ∆ factor to scale the thresholds. Note that the 0 value of
delay is a starting condition for the Rule, since it represents the first



transaction/authentication attempt performed by the user; for this reason it is assigned a
neutral value with respect to the evidence theory, i.e. full ignorance (0,0,1):

bpa(m2) :



t>60·∆ m2(0) = (0.2, 0.6, 0.2) m2(1) = (0.1, 0.65, 0.35)

m2(2) = (0.1, 0.7, 0.2)

5·∆<t<60·∆ m2(0) = (0.5, 0.3, 0.2) m2(1) = (0.4, 0.4, 0.2)

m2(2) = (0.5, 0.2, 0.3)

t<5·∆ m2(0) = (0.75, 0.1, 0.15) m2(1) = (0.8, 0.1, 0.1)

m2(2) = (0.8, 0.1, 0.1)

t=0·∆ m2(0) = (0, 0, 1) m2(1) = (0, 0, 1)

m2(2) = (0, 0, 1)

• mass probability m3. This feature deals with the capability of the detector to
discriminate regular users from fraudsters through the transaction amounts. The
effectiveness of this feature is mostly due to the capability of modeling the spending
attitude of fraudsters and regular users correctly. As we will see in the experimental
section, MMT operators are usual to model regular users with a stable Gaussian
distribution, i.e. the parameters characterizing this distribution are stationary. On the
other hand, the fraudster characterization can take into account several distinct profiles.
In the case of a mean thief, it is very common that he/she performs small transactions in
a short time, as soon as he has stolen the victim’s mobile. For this reason we calculate
for any transaction the mass probability using the area under the Gaussian curve
associated with the expenses of the user. Let a denote the amount of the transaction, the
area has been calculated using the Cumulative Distribution Function of the Normal
distribution cdf(a) associated to a specific user. We use the amount ν = abs(1− 2cdf(a))
of a given Normal distribution to represent the distance of the amount from the average
value. Based on the specifics of the MMT operator, for values of probability lower than
2/3, the transaction amount provides uncertain evidence of fraud. More details on the
characterization of the users and fraudsters are available in the next section. For high
amounts, we give more evidence to the legitimacy of the transactions. Hence, we consider
the following assignments to m3(N,F,S):

bpa(m3) :

{
ν < 0.66 m3 = (0.6, 0.2, 0.2)

ν ≥ 0.66 m3 = (0.85, 0.05, 0.1)

As we can see, the values provided by the three features can produce high conflicts, which
are not easy to be solved with the classic DST model.

3.2.3 Analyser

In this module we perform the analysis of the fused bbas of the three features. The three
bbas are combined using the formulas in the previous section, and provide the value of Belief
(Bel) of Fraud (F) and Not Fraud (NF) for each authentication attempt as well as for each
transaction made by the users. Particularly, we consider Bel(F) as the minimum probability
that the event “Fraud” occurs. In order to classify the events, we define a ”detection” threshold
θ, where 0 ≤ θ ≤ 1. Single threshold based classification is commonly used in the DS theory.
Specifically, if Bel (F ) < θ the user behavior is considered genuine and the FDS does not



User type Actors PIN Time Amount
Regular User 200 N(0,0.35) N(15,10) N(50,30)
Fraudster 3 U(0,10) U(1,10) U(31,50)

Table 1: Simulation parameters. N and U are Normal and Uniform distribution respectively.

generate alarms. Conversely, if Bel (F ) ≥ θ the event is considered suspicious and the system
generates an alarm.

4 Experimental campaign

The objective of this experimental campaign is to evaluate the performance of our FDS with
different data fusion rules. Also, we perform the tuning of bpas in order to obtain the best
performance for each algorithm. Due to unavailability of real samples related to frauds, we
used a simulator that closely mimics the behavior of the real system to create data related to
several thousands of transactions of the mobile money transfer service (in the experiments we
focused on transactions executed in a delimited geographical area and in a relatively short time).
The simulator ([12]) reproduces the operations of the real system in great detail, including
virtual money exchange operations by m-vendors, log collection systems, authentication servers
and transaction authorization servers, and more. These entities generate a multitude of logs
that contain authentication records, money transfer logs, real to virtual currency conversion
operations, etc.. The simulator creates events related to legitimate users and to fraudsters. The
simulator can be configured in order to define the number of legitimate users, fraudsters, (virtual
money) merchants, m-vendors, and to generate random lists of customers’ preferred merchants.
System activities are driven by random processes. User behavior is given in Table 1. Regular
users and fraudsters enter the PIN in the system to perform transactions. Legitimate users
rarely make wrong authentication attempts: PIN error distribution is a Normal with 0 mean
and 0.35 standard deviation. Fraudsters are more prone to PIN errors that has been modeled
as Uniform distribution in the range 0-10. Legitimate users successfully entering the system
perform transactions following a N(50,30) distribution. Fraudsters perform transactions based
on Uniform distribution in the 31-50 range. These values are proved to be very closely to the
behavior of mean users and fraudsters. Finally, the time between two distinct authentication
attempts or between transaction executions is modeled as a N(15,10) distribution - where 15
is expressed in time units (e.g. seconds of simulation run) - for legitimate users. Fraudsters
attempt PINs and perform transactions with Uniform distribution between 1 and 10 time units.

Before analyzing the performance of the combination rules, we shortly describe the pseudo-
code of the detector and of the performance evaluator. The code is provided in the algorithms
shown in blocks 1 and 2. The core of the implementation is the application of the fusion rules
discussed in Section 2. We implemented the fusion rules by adapting the library described in
[6]. Also, the implementation of PCR5 and PCR5 approximated is new since it is not provided
in this template library. The implementations are in Java programming language. It is worth
noting that the current implementation of Dubois-Prade model in that library does not consider
intermediate cases. During the experiments the DP model exposed the worst performance, and
we think this is consequence of the current implementation in use.

In block 1 we provide the procedure used for the performance assessment. This code is
similar to that used in our previous work [4], except that there we considered only the DS
model for the fraud detection. Also we point out that performance in this work is better than



Algorithm 1 Fraud Detection System Performance Assessment Procedure

1: procedure Assess Detection(Event Set)
2: Algorithms[]={DS,DP,PCR5a,PCR6,PCR6#}
3: for ∆ = 0.0 to 2.0 step 0.2 do
4: for each bba array m1[] in m1[][] do
5: for each bba array m2[] in m2[][] do
6: for θ = 0 to 1 step 0.1 do
7: TP[], TN[], FP[], FN[] = 0
8:

9: for each New Event Log in Event Set do
10: tokens[] = extract tokens(New Event Log)
11: userID = get userID(tokens[])
12: features[] = extract features(tokens[])
13: transaction profile = get transaction profile(userID)
14: update users profile(userID, tokens[])
15: GroundTruth = get ground truth(tokens[])
16: m1 = get current m1(m1[], features[1])
17: m2 = get current m2(m2[], ∆, features[2])
18: m3 = get current m3( features[3], transaction profile )
19: for each Algorithm in Algorithms[] do
20: i=Algorithm
21: mfused[i] = combine(i, m1, m2, m3)
22: if mfused[i] < θ then
23: if GroundTruth==FRAUD then
24: FN[i]=FN[i]++
25: else
26: TN[i]=TN[i]++
27: end if
28: else
29: if GroundTruth==NOT FRAUD then
30: FP[i]=FP[i]++
31: else
32: TP[i]=TP[i]++
33: end if
34: end if
35: end for
36: end for
37:

38: TPR[i] = calculateTPR(FP[i],FN[i],TP[i],TN[i])
39: TNR[i] = calculateTNR(FP[i],FN[i],TP[i],TN[i])
40: FPR[i] = 1-TNR[i]
41: FNR[i] = 1-TPR[i]
42: StoreForROC(θ, ∆, i, TPR[i], FPR[i])
43:

44: end for
45: end for
46: end for
47: end for
48: end procedure



Algorithm 2 In-Line Fraud Detection Process

1: procedure Perform Detection(New Event Log)
2: Algorithms[]={DS,DP,PCR5a,PCR6,PCR6#}
3: tokens[] = extract tokens(New Event Log)
4: userID = get userID(tokens[])
5: features[] = extract features(tokens[])
6: transaction profile = get transaction profile(userID)
7: update users profile(userID, tokens[])
8:

9: m1[] = get counter profile(userID)
10: m2[] = get delay profile(userID)
11: ∆user = get delta profile(userID)
12: m1 = get current m1(m1[], features[1])
13: m2 = get current m2(m2[], ∆user, features[2])
14: m3 = get current m3( features[3], transaction profile )
15: for each Algorithm in Algorithms[] do
16: mfused[Algorithm] = combine(Algorithm, m1, m2, m3)
17: end for
18: for each mfused in mfused[] do
19: if mfused ≥ ∆user then
20: AlarmVector[Algorithm] = 1
21: else
22: AlarmVector[Algorithm] = 0
23: end if
24: end for
25: Push(AlarmVector[])
26: end procedure

in [4], because we performed more fine-grain tuning on the parameters used for the detectors.
The most significant improvement is obtained from the transaction delay monitor - the Rule 2 -
which now has been parametrized on a scale factor ∆. All the tests are performed by considering
the ground truth of the events, i.e. the events contain information about the actual malicious
state of the activity (Fraud or Not Fraud) performed by the regular user/fraudster. Ground
truth labeling can be easy done through a simulator, because for each activity we set the label
during the logging process based on the real identity of the actor. In both algorithms once a
log is entered, it is parsed and tokenized in order to extract the information about the event.
Specifically, we are interested in UserID, TransactionAmount, Timestamp. The retrieving
process is in lines 10-18 for block 1 and in lines 3-11 for block 2. Note that in block 1 line 15 is
used to obtain the ground truth, which is not present in the in-line process, where the ground
truth is the hidden state to be discovered. In both algorithms for each user we retrieve the
behavior profile related to the three features. This can be provided, for instance, by analytics
done on user habits. In the case of a simulated scenario, we suppose the user’s behavior is
known and is given by the stochastic distribution provided in Table 1. This approximation is
correct because we set up the scenario following those parameters.

For what concerns the in-line procedure in block 2, we consider the general case that the
threshold θ is different for each user. Again, in a simulated scenario with similar users, we can
consider the same θ for any actors. In lines 12-14 we apply the detection rules described in the



previous section. Given the specific bba for that user and the current value of the feature, we
obtain the mass of the attack state (m1,m2,m3) for the three features. Then we combine the
masses using different rules (line 15-17) and store the value in a vector of masses. In the final
loop we scan the masses to see if they exceed the alarm threshold θ. The final output of the
in-line detector 2 is a Vector of Alarm flags. Additional combinations might be performed on
this vector (e.g. majority voting), but are out of the scope of this paper.

The approach to performance assessment in block 1 is similar, but the analysis has to be
done on the whole set of events. In block 1 the performance is calculated by scanning linearly
all the detection parameters indicated in the previous sections (lines 3-6), namely: 1) the ∆ of
the delay feature detector; 2) the two bpa vectors - counter and delay - to be combined with
the fusion algorithms; 3) the θ threshold. Also, for each combination of parameters, data fusion
rules are applied to produce a vector of masses (mfused[]) in line 21. Lines 22-34 perform the
comparison between the triggered alarm and the ground truth. Finally, rates are calculated in
38-42 and stored in conjunction with the specific parameters that lead to those values.
As shown in the algorithm in block 1, in order to evaluate the FDS, we tested the performance
of the classifier with different values of the θ threshold. θ ranges between 0 and 1 and is used
to decide whether a given transaction/authentication attempt is to be considered dangerous or
not, based on the Bel value of the event. Bel is calculated by combining the bpa of the three
features. If the authentication fails, we consider only the Bel calculated starting from Rule
R1 and Rule R2, i.e. the amounts have not been considered. Also, for each θ, we calculated
four typical classification metrics: True Positives (TP), True Negatives (TN), False Positives
(FP), False Negatives (FN). From these metrics, two indexes have been calculated, namely
the True Positive Rate (TPR), i.e. TP/(TP+FN), and the False Positive Rate (FPR), i.e.
FP/(FP+TN). Both have been plotted on ROC curves. The ROC curves have been plotted
for all the combination rules in Figures 3-11. The curves are related to the ∆ factor equal
to 0.200, which is the one that provided the best values for the detectors. The ROC curves
show that the DS combination rule changes smoothly with respect to the others when FPR has
lower values. Instead, the best values are reached by other combination rules. In particular,
the curves are obtained considering all the combinations of bpas for Rule 1 and Rule 2, namely
changing in turns m1() and m2() vectors. The ROCs show that m2(2) significantly contributes
to improve the performance of the whole detector for any combination with m1(), and this
effect is particularly evident in the DP case. A possible explanation for this result is that m2(2)
reflects less ignorance and more confidence in detecting fraudsters with respect to PIN counter
and transaction amount detectors. In short, given our model of fraudster, the transaction delay
is the more significative parameter to detect fraudsters. In Table 2 we have reported the three
highest values of TPR and FPR reached by each combination rule. In particular, we have
given priority to cases where TPR > 99% and FPR < 10%. Also in the second column we have
indicated how many times those specific values are reached in the performance dataset provided
by the algorithm 1. Note that there are 99 assessments performed per algorithm (for each ∆).
As indicated in Table 2, the best TPR/FPR ratio is given by the PCR5 approximated version,
while the best top three measurements are provided by the PCR#. The DS is probably the most
stable with respect to the θ since it shows small variations on the TPR/FPR ratio for several
values. Also note the sharp variation of the DP algorithm, which suddenly falls in performance.
This means that if we do not properly choose the bpas for DP, we can have a dramatic loss
of performance. Instead, the DP combination gives the highest TPR, which is 99.88 %. We
observe from the ROCs that the DP algorithm shows the worst performance for m2(0). We
guess that this happens when the two bpas for Rule 1 and Rule 2 are too much similar, and this
is not a good choice for the DP algorithm; indeed, this model has been conceived for diverging
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Figure 3: ROC curves for bpas m1(0) and m2(0) and m3. ∆ scale factor is 0.200

Algorithm N. of times (on 99) TPR % FPR % Tot.
DS 2, 1, 10 99.28, 99.28, 98.93 6.28, 6.53, 5.53 20
DP 2, 1, 5 99.88, 99.88, 92.49 7.09, 7.09, 7.09 3
PCR5a 7, 2, 3 97.38, 97.38, 89.99 0.52, 0.77, 0.52 12
PCR6 3, 1, 2 98.93, 97.38, 97.38 5.53, 0.52, 0.77 6
PCR6# 3, 8, 3 99.28, 99.28, 98.93 6.28, 6.53, 5.53 21

Table 2: Best Performance per algorithm. Criteria: TPR > 99%, FPR < 10%.
If no TPR > 99% exists, the highest TPRs have been selected.

The last column is the total times TPRs exceed 99%.

bpas. As said, the m2(2) produces the best ROCs; this means that the bpa of the delay feature
is approximating the maximum (in terms of TPR and FPR) on the m2(2) value. In Table 3 we
have reported the five best TPR and FPR couples and the corresponding indexes for m1 and
m2 that resulted in those values. We note that this is true in terms of global behavior of the
detector. Instead, the maximum value for the combination rules does not happen necessarily
on the m2(2) case. As for m1 we observe that the best ROC curve is for DS when we consider
m1(0) - and m2(2). Instead, the other curves (m1(1), m1(2)) lower the performance of DS.
The most interesting aspect here is that the other combination rules stay more or less on the
same values as we change m1. This can be seen like a sort of robustness of the other rules
with respect to the DS combination rule, as we change the bpas. In the last column of Table
3 we have indicated how many times all the best values are reached by the algorithms. The
algorithm with the most frequent high performance is the PCR# followed by DS. Finally, we
want to point out the reason why DS rule is still good in most of the cases. The reason is that
our detectors generate conflicting masses, but the occurrence of conflict is a rare event in our
current dataset. This means that on average the DS is able to generate good decisions, but for
particular and rare cases, it is not the best detector. Instead, the PCR is able to preserve the
DS performance and even to improve such performance in those rare situations.
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Figure 4: ROC curves for bpas m1(0) and m2(1) and m3. ∆ scale factor is 0.200
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Figure 5: ROC curves for bpas m1(0) and m2(2) and m3. ∆ scale factor is 0.200

Algorithm MapID ∆ θ threshold TPR % FPR %
DP (0,1) 0.200 0.2 99.88 7.09
DP (0,1) 0.200 0.4 99.28 6.28
DS (0,0)(0,1) 0.200 0.5-0.4-0.4 99.28 6.28
PCR6# (0,0)(0,2) 0.200 0.5-0.4 99.28 6.53
DS (0,2) 0.200 0.4 99.28 6.53

Table 3: Best Performance with TPR > 99% and FPR < 10%.
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Figure 6: ROC curves for bpas m1(1) and m2(0) and m3. ∆ scale factor is 0.200
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Figure 7: ROC curves for bpas m1(1) and m2(1) and m3. ∆ scale factor is 0.200

5 Related Work

Several research papers exist in literature that demonstrate the effectiveness of the
Dempster-Shafer theory to combine multiple pieces of evidence and get an accurate picture of
the context to be monitored and analyzed. In this section we selected the most relevant
papers showing how the Dempster-Shafer theory can help in network security to spot
intrusions or to detect frauds.
In ([17]) the authors present an approach for credit card fraud detection that combines
different types of evidence by using the DS theory. In the proposed FDS a number of rules,
like average daily / monthly spending of a customer, shipping address being different from
billing address, etc., are used to analyze the deviation of each incoming transaction from the
normal profile of the cardholder by assigning initial beliefs to it. The initial belief values are
combined in order to obtain an overall belief by applying the DS theory. The overall belief is
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Figure 8: ROC curves for bpas m1(1) and m2(2) and m3. ∆ scale factor is 0.200
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Figure 9: ROC curves for bpas m1(2) and m2(0) and m3. ∆ scale factor is 0.200

further strengthened or weakened according to its similarity with fraudulent or genuine
transaction history using Bayesian learning. The authors demonstrate the effectiveness of the
proposed FDS by testing it with large scale data. Due to unavailability of real life credit card
data or benchmark data set for testing, they developed a simulator to generate synthetic
transactions that represent the behavior of genuine cardholders as well as that of fraudsters.
In ([24]) authors propose the use of DS model to perform intrusion detection on the DARPA
dataset of network related attacks. The work points out the limits of DS model in case of
conflicting information sources and proposes to use a context-dependent operator. That
operator changes the combination rule (conjuntive, disjuntive or avarage) based on the degree
of conflict among the sources.
In ([3]), the authors investigate the use of Dempster-Shafer evidence theory for intrusion
detection in ad-hoc networks. A common problem in distributed intrusion detection is how to
combine observational data from multiple nodes that can vary in their reliability or
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Figure 10: ROC curves for bpas m1(2) and m2(1) and m3. ∆ scale factor is 0.200
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Figure 11: ROC curves for bpas m1(2) and m2(2) and m3. ∆ scale factor is 0.200

trustworthiness. Other approaches have used simplistic combination techniques such as
averaging or majority voting. In this study the authors demonstrate that the DS theory is
well suited to this type of problem. First, it reflects uncertainty or a lack of complete
information, and second, Dempster rule for combination gives a convenient numerical
procedure for fusing together multiple pieces of data.
In ([10]) a two-step approach is proposed to accurately detect shilling behavior for online
auction systems. In the first step, the authors adopt a model checking method to detect
suspicious shilling behaviors in real-time. To verify the detection results from the first step
and to reduce the number of possible false positives, in the second step, knowledge obtained in
the first step is combined and the combination is carried out using the Dempster-Shafer
theory. This two-step process for shill inference produces a shilling score that can assist an
auction house with trust judgment for each shill suspect. To demonstrate the feasibility of the
proposed approach, the authors provide a case study using real eBay auction data. The



results show that using the DS theory to combine multiple sources of evidence of shilling
behaviour the approach can reduce the number of false positives that would be generated
from a single source of evidence.
In ([1]) the authors used the DS theory to develop an algorithm for protecting Wireless Sensor
Networks (WSNs) from internal attacks. In the reference scenario a number of sensors in the
WSN are nodes, for which the observations are assumed independent of each other. The
Dempster-Shafer evidence combination rule provides a means to combine these observations.
The study conducted by the authors assumes that the neighbor nodes with one hop will
observe the data of the suspected internal attacker. In these observations, without loss of
generality, the physical parameter (temperature) and transmission behavior (packet dropping
rate) for each sensor are considered as independent events. The proposed algorithm observes
neighbor nodes in the WSN and uses the two parameters to make judgments for the behavior
based on the DS theory. The DS theory considers the observed data as a hypothesis. If there
is uncertainty about which hypothesis the data fits best, the DS theory makes it possible to
model several single pieces of evidence within the relations of multiple hypotheses. Using this
method the system does not need any a prior knowledge of the pre-classified training data of
the nodes in a WSN.
In ([27]) a DS theory-based approach is proposed to handle the uncertainty due to the large
rate of false positives in the sensors used by Intrusion Detection Systems. This approach relies
on an algorithm that performs DS belief computation on an IDS alert correlation graph, thus
allowing to determine a belief score for a given hypothesis, e.g. a specific machine is
compromised. The belief strength can be used to sort incident-related hypotheses and
prioritize further analysis of the hypotheses and the associated evidence by a human analyst.
The authors have implemented the proposed approach for the open-source IDS Snort and
evaluated its effectiveness on a number of data sets as well on a production network.
In ([13]) two network probes collecting traffic data are used as sensors that feed an Intrusion
Detection System based on the Dempster-Shafer theory. This IDS uses the combination rule
to correlate the collected data in order to detect DDoS attacks.
In ([25]) the authors propose an algorithm based on the exponentially weighted
Dempster-Shafer Theory of Evidence to improve and assess alert accuracy. In order to test
the proposed approach off-line experiments have been performed by using two DARPA 2000
DDoS evaluation data sets. The experimental results demonstrated that the proposed alert
fusion algorithm based on an extended version of the Dempster-Shafer theory provides better
performance than an alert correlation engine relying on Hidden Colored Petri-Net (HCPN).
In ([14]) the Theory of Evidence by Dezert and Smarandache (DSmT) is used in the threat
assessment domain. DSmT distinguishes two operations: combination and conditioning for
fusion of uncertain information and integration of uncertain pieces of information with
confirmed i.e. certain evidence respectively. However, each of these operations has its
drawbacks and, therefore, another type of fusion rules, called relative conditioning, has been
proposed. In this kind of rules the predominance of the condition over the uncertain evidence
is stated explicitly, while the trust in the conditioning hypothesis is not absolute by definition.
In this paper two of these rules are presented as possible solution of the multi-level
conditioning in threat assessment problem.

6 Conclusions

The Mobile Money Transfer industry is rapidly expanding around the world and this growth
is particularly fast in less developed countries, where people see the MMT service as a valid



and appealing alternative to the traditional and poorly disseminated banking agencies.
Unfortunately, as the number of people using this service grows, the MMT infrastructure is
exposed to increasingly sophisticated frauds. This paper addressed a challenging security
misuse case concerning MMT services. This misuse case is called Account Takeover and it
takes place when a fraudster performs money transfers by using the mobile phone stolen to a
legitimate service customer. The choice of that misuse case does not represent a limitation for
our fraud detection approach. Different misuse cases would require other detectors or event
probes in addition or in place to those used in this work. In order to spot these illicit financial
transactions the fraud detection system is required to collect, process, and correlate a massive
amount of data regarding the operations performed by the service customers. Data fusion
techniques can definitively help improve the performance and effectiveness of the correlation
process supporting the detection task. In this paper we presented a component-based Fraud
Detection System that implements data fusion algorithms deriving from the Dempster-Shafer
theory of evidence. These algorithms use combination rules and procedures facing the
problem of conflicting degree of belief affecting the DS theory. An extensive experimental
campaign has been conducted in order to test and validate these data fusion algorithms in the
MMT account takeover detection scenario.
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