
Applying the PCR6 Rule of Combination in Real Time

Classification Systems

Krispijn A. Scholte1,2

k.a.scholte@forcevision.nl
Willem L. van Norden1,2

w.l.van.norden@forcevision.nl

1 Force Vision, Defence Material Organisation, P.O.Box 10.000, 1780 AC, Den Helder, The Netherlands
2 MMI Group, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands

Abstract – Modern navies face the introduction of
new ships with reduced and less trained manning and
new, more complex, sensor systems. These trends could
result in operator overload which might be solved by in-
troducing a higher level of automation. In case of classi-
fication, a sub process of picture compilation, the prob-
lem of conflicting sensor data can be solved by propor-
tional redistribution of conflict according to the pcr6
algorithm. This method is computationally demand-
ing to such an extend that the applicability is limited
in practice. The methodology in this paper adapts the
pcr6 algorithm by simplification of the solution space
of the algorithm by preprocessing the input data. Com-
parison tests show that this simplification reduces com-
puting time by at least a factor hundred while the ef-
fects on the output are limited. We conclude that by
applying preprocessing the pcr6 algorithm can be ap-
plied in real time classifications systems using common
computer hardware.

Keywords: Decision support, Dezert-Smarandache
theory, pcr6, voting, classification.

1 Introduction
Three factors are the primary drive behind the need
for automating Command and Control (C2) systems
in the military maritime environment. The first one
is the decreasing amount of training time for person-
nel due to budget cuts. This means the Royal Nether-
lands Navy (RNLN) is faced with a decreasing amount
of knowledge in the operators on board a ship. The
effects caused by this decreasing amount of knowledge
are amplified by the second factor: the increase in com-
plexity of the systems that operators need to use. The
third factor is the increasing complexity of the missions
undertaken by the RNLN. This is caused by the shift
from “blue-water” (deep water region) operations, to
“brown-water” (coastal region) operations. This results
in operations that are more diverse, e.g., embargo en-
forcement, counter drug operations and humanitarian

help. It also means that the identity of objects are less
clearly defined and missions are executed closer to land
which makes the sensor performance harder to predict
and interpret.

These developments have led to research in automa-
tion of C2 systems, such as [1] and [2]. However, most
of this work has been done on a conceptual level. In
order to build a system for use in an operational en-
vironment, e.g., in the combat management system
(CMS) on board navy ships, these concepts must be
translated into software that runs on currently avail-
able (computer)hardware. Operators and systems on
board military vessels sometimes only have minutes or
even seconds to classify and identify a fast incoming ob-
ject and decide what actions to take. These decisions
are influenced by the amount and the quality of infor-
mation they have at their disposal. It is therefore crit-
ical that a CMS functions near real time. As [3] points
out, these factors will inevitably lead to challenges in
practical implementation caused by limited computing
power.

The research presented here focuses on the computa-
tional complexity of the naval classification system from
[4]. The Proportional Conflict Redistribution (pcr6)
rule used by this system to combine information has
proven to be the computational bottleneck, effectively
preventing it from running (near) real time. In this
paper we present a solution where the combined infor-
mation is (about) the same as with the pcr6 algorithm,
but which is computationally less demanding.

Section 2 of this paper elaborates on the naval aspects
of the classification problem. In Section 3 the algo-
rithms as they are currently used are discussed. In sec-
tion 4 a method for input filtering is presented that re-
duces computational complexity while having minimal
impact on the combined classification solution. In Sec-
tion 5 this method is verified by applying it to a simu-
lated dataset with real-world characteristics. Thoughts
on future work are offered in Section 6. Finally, the
conclusions are presented in Section 7.

12th International Conference on Information Fusion
Seattle, WA, USA, July 6-9, 2009

978-0-9824438-0-4 ©2009 ISIF 1665

2 Classification
Following RNLN practice, we use the term classification
for the process that determines the type of a detected
object on various levels of specificity. This definition of
classification also comprises the last step of recognition
(determining the instance of a class), e.g., the object is
the HNLMS Tromp; one of the four Dutch Air Defence
and Command Frigates. We reserve the term identifi-
cation for the process that determines one of the stan-
dard identities of a detected object from stanag 1241
[5], e.g., Friendly, Neutral, or Hostile.

Many classification systems are based on a classifica-
tion tree. This tree is either constructed on the basis of
knowledge elicitation, [6, 7], or the structure is obtained
by machine learning, [8]. The downside of the tree ap-
proach is the chance of getting stuck in a high level node
while information might be available for lower nodes.
In [9], a different model is proposed using a set nota-
tion analogy for the classification solution space. This
approach enables us to have overlapping class labels
and dynamically reduce the possible classification so-
lutions. Furthermore, this set analogy allows the use
of Dezert-Smarandache Theory (DSmT), [10], to com-
bine conflicting, uncertain and imprecise classification
information.

Where classification trees are based on a certain hier-
archy in which one branches through the solution space,
the set analogy is based on different specificity levels.
In this work we use four specificity levels. On the first
level the different domains are modelled, i.e., Surface,
Air, and Subsurface.

Surface

Fighter

F-15 MiG-29
Typhoon

Air

Airliner

TBM

Helicopter

Land Sea

Hovercraft Frigate

ADCF F125SAM site

Submarine

Subsurface

Figure 1: Set notation of the classification solution
space

The second level gives a subdivision of the surface
domain into Land and Sea. At one specificity level
higher, the generic object types are represented such
as, Frigate and Helicopter. Finally, more specific object
types like Kilo-class submarine and Apache helicopter
are represented at the fourth specificity level. A more
generic description for models using the set analogy can
be found in [11].

An example of such a classification solution space
is given in Figure 1. This figure shows how different
elements at the different specificity levels are related
to one and another. Note that elements at the same
specificity level are mutually exclusive whereas elements
at different levels may not be.

3 Combining classifiers
Using different classifiers to assign belief on labels

in a common frame of discernment, where each la-
bel represents a classification from the solution space
mentioned above, requires a combination rule to find
a single classification solution. Here, we use Dezert-
Smarandache theory for the combination of classifier
belief as in [11, 12]. More specifically, we use the Pro-
portional Conflict Redistribution 6 rule (pcr6) for deal-
ing with conflicting evidence on contraints given the
fusion model that we use.

3.1 PCR6

For the combination of beliefs we start by assuming
a totally free fusion model. In this model, a belief mass
mi(Xi) is assigned by source Si to a class label Xi from
the hyper-power set based on the frame of discernment
Θ, Xi ∈ DΘ with i ∈ {1, 2, . . . , n}. The construction
of the hyper-power set is explained in detail in [10]. In
short it is the set generated from Θ and ∅ using the
∩ and ∪ operators. The combined belief mass under
the free model for class label Xi, denoted mf

c (Xi), is
determined by equation (1).

mf
c (Xi) =

∑
{X1,X2,...,Xn}∈DΘ

X1∩X2∩...∩Xn=Xi

n∏
`=1

m` (X`) (1)

In equation (1) we see that all intersections may be
assigned combined belief mass due to the free model
assumption. Some intersections however are impossible
given a real world fusion model like classification. The
set containing all these combinations is denoted ∅M.
The combined mass that is assigned to these elements
is proportionally redistributed to valid elements using
pcr6, which is given in equation (2) and explained in
detail in [13].

1666

mpcr6
c (Xi) = mf

c (Xi) +
n∑

`=1

(
m`(X`)2·

∑
⋃n−1

u=1 Xϕ`(u)∩Xi∈∅M
Xϕ`(1),...,Xϕ`(n−1)∈(DΘ)n−1

n−1∏
w=1

mϕ`(w)

(
Xϕ`(w)

)
m`(Xi) +

n−1∑
w=1

mϕ`(w)

(
Xϕ`(w)

)
)

(2)

3.2 Voting

Besides the computational complex pcr6 combina-
tion rule, we also look at a simple voting algorithm.
This method takes the mean value of belief that the
different sources assign to a label, as in equation (3).
The downside of this approach is that the knowledge
of the model is not used to combine evidence. Nor is
this knowledge used to assign belief at a more precise
class label. The obvious advantage of voting is that the
required computation time is less than that required by
pcr6.

mvot
c (Xi) =

1
n
·

n∑
`=1

m`(Xi) (3)

4 Applying PCR6 in real time
The computationally most demanding part of the pcr6
algorithm is calculating the intersecting belief assign-
ments of the different sources. Its complexity is in-
creases with the size of the hyper-power set and num-
ber of sources following Dedekind numbers [14], as was
noted in [10]. The number of classes used in an opera-
tional real time system can be quite large, e.g., the num-
ber of specific helicopter classes that is used in practice
is larger than the total of 32 classes used in this study,
making the use of pcr6 difficult.

4.1 Input Simplification

The computational complexity of the algorithm could
be limited by reducing the number of intersections that
need to be calculated between the different sources. We
aim to achieve this by placing a filtering algorithm be-
tween the classifier output and the input of the fusion
algorithm. The resulting classification system, based
on the system proposed in [11], is given in Figure 2.

The filtering may be of any type of algorithm that
reduces the number of non-zero elements. In this
case a simple threshold filtering is used. The belief
mi(Xi) under a certain threshold λ (relative to the

Speed Altitude Size Domain

User
Constraints

DSmt - PCR6

Classi�er
Filter

Classi�ers

Solution Con�ict

Figure 2: Classification System

maximum value of the belief assignments of the source
Si and 0 < λ < 1) is assumed to have an insignificant
contribution to the output and is therefore discarded.
The total discarded mass is then proportionally redis-
tributed across the remaining beliefs. The pseudo code
of such a filter is given in algorithm 1.

Algorithm 1: Simple classifier filtering
Data : sources S : S[i], . . . , S[n]

threshold λ
Result : processed sources S : S[i], . . . , S[n]

foreach S[i] do
foreach θ in S[i] do

if θj < max(S[i])*λ then
θj ← 0

if sum(S[i]) 6= 0 then
S[i] ← S[i] ./ sum(S[i])

By assigning zero to labels deemed insignificant, the
number of intersections between the different sources
will be reduced, which will lead to the desired reduction
in computational complexity. To explore the implica-
tions of this concept we will first apply it to Zadeh’s
example. Secondly, we will experimentally verify the
concept by means of a simulation.

4.2 Effects on Zadeh’s example

It is expected that discarding believe assignments will
affect the solution of the pcr6 algorithm. To get some
insight into the impact of the filtering on the validity
of the solution beforehand, the effects of the filtering
applied to Zadeh’s example [15] are studied. Table 1
shows Zadeh’s example for n sources, with a frame of
discernment size of n+ 1.

The sources represented are by Si, the classes in the
frame of discernment denoted by θi and the value of the
belief masses are a function of the variable εi. Given

1667

Table 1: Zadeh’s example for n-sources

θ1 θ2 . . . θn θn+1

S1 1− ε 0 . . . 0 ε1

S2 0 1− ε . . . 0 ε2

...
...

...
. . .

...
...

Sn 0 0 . . . 1− ε εn

that all εi have equal values, equation (4) can be de-
duced for the amount of conflict (k). Conflict is an
indication of how much the sources are in agreement,
as explained in [10]. Here 0 ≤ k ≤ 1, where 0 means all
sources are in full agreement and 1 means all sources
are in full disagreement.

k =
n−1∑
i=0

(
n

i

)
· (1− ε)n−i · εi (4)

Because all mass in Zadeh’s example is either in full
conflict or full agreement, we can also write equa-
tion (4) as equation (5).

k = 1− εn (5)

The term εn represents the product of all beliefs as-
signed to θn+1. equation (5) can be generalised to
include different values for εi for each source, which
results in equation (6).

k = 1−
n∏

i=1

εi (6)

In Figure 3, conflicting mass k is plotted for differ-
ent values of ε and n in accordance to equation (5).
Assuming that all εi are equal, we denote εi as ε. The

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε →

k
→ n=2

n=15

Figure 3: Conflicting mass in Zadeh’s example for n ∈
{2, . . . , 15}

proposed filtering entails that if threshold λ is bigger
than the difference (in percent) between ε and 1 − ε,
the filtered sources have the same belief assignments as
would be the case if ε = 0. From the curves plotted
in Figure 3 can be seen that this will result in an in-
crease in k. This increase in conflicting mass follows
from equation (6) and is quantified in equation (7).

kadded =

n∏
i=1

εi

1−
n∏

i=1

εi

(7)

For example, when applying threshold λ ≥ 0.25 to
the sources and given that n = 4 and all εi = 0.4,
kadded becomes 2.63% of the original conflicting mass.

From equation (7) can be seen that the impact of
the input filtering decreases as n increases. The frame
of discernment of the test classification system has
32 classes (although not all mutually exclusive) and
though these equations only hold for Zadeh’s example,
it is nonetheless expected that the effects on test data
will be similar.

5 Test results
The method proposed in Section 4.1 is experimentaly
verified by applying it to a (pseudo random) dataset.
The solutions of the sources filtered with different
thresholds is compared to that of the unfiltered sources
(λ = 0) and the effects of applying the filtering are
evaluated using four criteria:

• confusion between class labels,

• distribution of this confusion,

• conflicting mass,

• and processing time.

These evaluation criteria will be explained in section
5.2.1 and further.

5.1 Dataset

The set of data used to verify the proposed filtering
concept comprises 1080 (pseudo randomly) generated
objects, 40 objects for each of the generic and specific
classes in the frame of discernment. These objects have
speed and altitude characteristics corresponding with
those of real world objects. These generated objects
were classified using the soft classifier output of:

• a 3-nearest neighbour classifier,

• a linear distance classifier,

• and a dissimilarity classifier.

1668

These classifiers are described in [16]. The frame of
discernment is composed of 32 classes that are not mu-
tually exclusive but comprise four specificity levels as
noted above in Section 2. Note that the dataset does
not represent an actual tactical situation, but rather a
set of objects that cover most of possible characteristics
that could occur in the real world.

5.2 Results and discussion

All simulations were executed in a Matlab 2008b envi-
ronment running on a Windows PC. All processing was
done on an dual-core processor (Intel t5550), capable
of 11.76 gflops1, with 2 Gb of ram. All tests were
performed without the use of parallel processing.

5.2.1 Confusion

In order to get an idea of how accurate the solution
is, the classifications from the solution are compared
to the labels used to generate the data set. This re-
sults in a confusion matrix. How the processing affects
the confusion is shown in Figure 4. A comparison of
the classification performance is given in Table 2. Each
value represents the mean value in the confusion ma-
trix; in other words: the percentage of objects that are
correctly classified for a certain level of specificity.

Table 2: Confusion
Method Exact Branch Domain Wrong

Voting 0.266 0.110 0.180 0.444
PCR6 (λ = 0) 0.429 0.150 0.158 0.263
PCR6 (λ = 0.1) 0.434 0.151 0.161 0.254

Figure 4 shows that for 0 < λ ≤ 0.25 the changes in
confusion are small: wrong classifications decrease by

1Giga FLoating point Operations Per Second, benchmarked
with SiSoft Sandra, see [17]

0 0.2 0.4 0.6 0.8 1
10

15

20

25

30

35

40

45

Threshold λ →

Co
nf

us
io

n
(%

)
→

Exact
Branch
Domain
Wrong

Figure 4: Confusion dependent on threshold λ

4% while correct exact, branch and domain classifica-
tions increase by 1%. This can also be seen in Table 2.
When the filtering is applied, the classification perfor-
mance is slightly improved. Also note that the voting
algorithm yields significantly worse results.

When 0.25 < λ ≤ 0.35, the classification performance
increases considerably (exact +5%, branch +2.5%, do-
main +1.5% and wrong -10%). For these values of λ,
the system has the highest number of correct exact clas-
sifications. For values of λ > 0.35, the amount of wrong
classifications is still reduced but at the cost of correct
exact classifications. When λ approaches 1, the amount
of wrong classifications increases, which is expected as
most of the beliefs are discarded.

This observation indicates that the filtering enhances
the classification performance of the system with these
classifiers which is caused by noise in the classifier out-
put. These are (small) beliefs assigned to almost all
classes by the classifiers. These beliefs lead to an in-
crease in conflicting mass or even wrong classifications.
The filtering reduces this noise though it should be
noted that higher values for λ have an effect on the
amount of correct exact classifications. This should be
taken into account when selecting a value for λ.

5.2.2 Confusion distribution

The quality of the solution is not only represented
by the amount of correct classification, as discussed in
5.2.1, but also in what way the belief assignments are
distributed among the labels on the specificity level of
the correct classification. In Figure 1 e.g., when an ob-
ject of true classification F-15 we determine how uni-
formly the belief is distributed among the labels MiG-
29 and Typhoon. This is expressed by the (rms) de-
viation of the classifications to the mean confusion at
that specificity level. A lower value is considered better,
as it represents a more uniform distribution of the be-
lief assignments. A comparison of the rms deviation in

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Threshold λ →

RM
S

de
vi

at
io

n
fr

om
 m

ea
n
→

Exact
Branch
Domain

Figure 5: RMS deviation dependent on threshold λ

1669

confusion is given in Table 3. Please note that Wrong
classifications are omitted from this table because we
are only interested in the quality of the correct classifi-
cation solutions.

Table 3: rms deviation in confusion
Method Exact Branch Domain

Voting 0.169 0.039 0.038
PCR6 (λ = 0) 0.278 0.074 0.038
PCR6 (λ = 0.1) 0.283 0.076 0.038

From Table 3 can be seen that the voting algorithm
yields the lowest deviation from its mean confusion. It
also shows that filtering the data increases the distance
marginally. This can also be seen in Figure 5 which
shows the deviation dependent on λ. For λ ≤ 0.25 the
effects on all degrees of specificity are small. At λ =
0.25 the largest change in rms deviation occurs (+10%
with the classes in the highest degree of specificity).
The classes with lower degrees of specificity change only
marginally or not at all as is the case with the classes
that are at Domain level.

5.2.3 Conflicting mass

In Figure 6 the impact of threshold-based filtering on
the average conflicting mass per object of the dataset
is displayed. For λ ≤ 0.25 the effects of the filtering
on the conflicting mass are minimal. After this thresh-
old value, the average conflicting mass is significantly
reduced.

This supports the notion that the majority of belief
assignments removed by the filter are classifier noise,
which is specific for this set of classifiers. For about a
third of the objects the conflicting mass does increase,
as was theorised in Section 4.2, but the total conflict-
ing mass added by these objects is small (1% of total
conflicting mass).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold λ →

A
ve

ra
ge

 c
on

�i
ct

in
g

m
as

s
pe

r o
bj

ec
t
→

Figure 6: Average conflicting mass k per object

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

10
4

Threshold λ →

Pr
oc

es
si

ng
 ti

m
e

(s
)
→

(a) Time required to combine the classifier information

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
x 10

4

Threshold λ →

N
um

be
r o

f n
on

−z
er

os

→

Combined
Classi�er 1
Classi�er 2
Classi�er 3

(b) Number of non-zeros

Figure 7: Processing time and number of non-zeros de-
pendent on threshold λ

5.2.4 Computing time

Lastly, the effect of input filtering on the required
processing time is studied. The processing time as a
function of λ is given in Figure 7(a) and a comparison
is given in Table 4.

Table 4: Processing times for the complete dataset

Method Processing time (s)

Voting 5.37 · 10−2

PCR6 (λ = 0) 4.90 · 103

PCR6 (λ = 0.1) 4.76 · 101

These measurements show that the filtering has the
intended effect of reducing the required processing time
by several orders of magnitude. The majority of this re-
duction takes place for low values of the filter threshold

1670

(0 < λ ≤ 0.1). As theorised in Section 4.1, this gain
in computing performance is caused by a reduction in
non-zero elements in the classifier space, which occurs
specifically in the data from classifier two and three.
This can be seen from Figure 7(b) where the number of
non-zero elements for each individual classifier is shown.
The number of non-zero elements in the data from clas-
sifier one is reduced only for higher values of the thresh-
old, e.g., λ = 0.25 or λ = 0.5. It is also at these values
that the only other significant gains in computing per-
formance occur. This corresponds with the notion that
the number of intersecting belief assignments to be cal-
culated is the cause for the computational complexity
in the pcr6 algorithm.

5.3 Selecting a fusion method

Taking the four evaluation criteria into account, the
preferred method for combining the information from
the classifiers is pcr6. Voting, though fast, yields poor
classification performance compared to pcr6. This be-
comes apparent from Table 2. Using voting, 44% of the
objects were incorrectly classified in the solution. Using
pcr6 gave better results: the solution is wrong for 26%
of the objects. The drawback of pcr6 is its computa-
tional complexity, but as shown in Section 5.2.4, filter-
ing the classifier output reduces this while changes in
confusion, confusion distribution, and conflicting mass
are insignificant when the data is filtered with a low
threshold (0 < λ ≤ 0.1).

Therefore it is important to select a proper value for
threshold λ. This selection depends on:

• desired reduction in processing time,

• classifier characteristics, and

• acceptable impact on the quality of the classifica-
tion solution.

Choosing a low threshold reduces the processing time
considerably while its effects on the output are insignifi-
cant. In most cases this would be a safe choice. In some
cases it beneficial to select a higher threshold because
classification performance increases due to the filtering.
Figure 4 illustrates this: for 0.25 ≤ λ ≤ 0.35 the num-
ber of wrong classifications is decreased by 10% and the
number of exact classifications is increased by 5%. Be-
cause a higher threshold can potentially have a negative
effect on the classification performance of the system,
such a choice should always be made after analysing the
output of the classifiers used.

6 Future work
This research has focused on a single domain: the

classification of objects in a military maritime domain.
However, the classifiers used to classify the objects are
of a common type, as described [16], and are found in

other domains as well. It is therefore expected that
the solution proposed in this paper will also work in
other domains with a large frame of discernment and
overlapping classes (towards a free fusion model) where
DSmT might be applied, e.g., financial market analysis,
crisis response, and medical sciences. This should be
experimentally verified.

Another expected benefit of classifier noise suppres-
sion is a temporal more stable combined classification
solution. Future work should prove this hypothesis.

Choosing one threshold to apply to the data of all
classifiers does not appear to be an optimal solution.
Figure 7(b) shows how the number of non-zero elements
in the data from a classifier is reduced. The non-zero el-
ements in the data from classifiers two and three are re-
duced by the filter in the same manner. The data from
classifier one, however, reacts differently to filtering. It
is therefore expected that better classification perfor-
mance can be attained by filtering the data from each
classifier with a threshold appropriate for that classifier.

The expected size of the frame of discernment in an
operational system will be much larger than the one
used in this paper. Furthermore, it is expected that for
the military maritime classification domain the number
of objects will increase too. This means that although
a substantial reduction in processing time is already
achieved, more performance oriented work on this sub-
ject has to be done. This paper does not take parallel
processing into account. As our processing measure-
ments comprise the whole dataset and no dependencies
between objects processed exist, it is expected that the
computing performance for the entire dataset scales lin-
ear with the number of cpu cores available.

When parallel processing of the dataset is not
enough, the pcr6 algorithm could be applied iteratively
to each of the objects. Each iteration, the frame of dis-
cernment is expanded to a deeper level of specificity,
e.g., in this case first determining an objects domain,
then generic class and finally specific class. This would
add an anytime feature to the system as the classifi-
cation at some specificity level of any object will be
known and the classification solution becomes more ex-
act in time.

7 Conclusions
Using pcr6 for information fusion on currently avail-

able hardware makes the real time application difficult
due to the computational complexity of the algorithm.
Instead a voting algorithm could be used to combine
the information. This method is very fast but it yields
a considerably less accurate solution: it is desirable to
use pcr6.

Despite the computational complexity of the algo-
rithm, we have shown that it is possible to use pcr6
in a real time environment. The proposed input fil-
ter substantially reduces the required computing time

1671

while the quality of the solution does not suffer or is
even improved in some cases. How the filtering is ap-
plied is very much dependent on the characteristics of
the classifiers used, which should always be analysed
when building this kind of system.

Our method is suited for domains with a large frame
of discernment containing overlapping classes. It would
also allow domains that have a time-critical aspect,
which currently restricts the use of pcr6 or DSmT in
general, to use pcr6 for information fusion.

References
[1] Fok Bolderheij. Mission Driven Sensor Manage-

ment: Analysis, design, implementation and simu-
lation. PhD thesis, Delft University of Technology,
November 2007.

[2] P.R. Smart, A. Russell, N.R. Shadbolt, M.C.
Schraefel, and L.A. Carr. Aktivesa: A techni-
cal demonstrator system for enhanced situation
awareness. The Computer Journal, 50(6):703–716,
2007.

[3] Eric J. Horvits. Reasoning about beliefs and ac-
tions under computational resource constraints. In
Proceedings of the Third Workshop on Uncertainty
in Artificial Intelligence, pages 429–444. AAAI and
Association for Uncertainty in Artificial Intelli-
gence, Mountain View, CA., July 1987.

[4] Wilbert L. van Norden and Catholijn Jonker. Ad-
vances and Applications of DSmT for Information
Fusion, Collected Works, volume 3, chapter Utiliz-
ing classifier conflict for sensor management and
user interaction. American Research Press, Re-
hoboth (MA), to appear 2009.

[5] NATO. Nato standard identity description struc-
ture for tactical use (maritime), October 16 1996
(promulgation).

[6] Bionda Mertens. Reasoning with uncertainty in
the situational awareness of air targets. Master’s
thesis, Delft University of Technology, Delft, 2004.

[7] Krispijn A. Scholte. Dynamic bayesian networks
for reasoning about noisy target data. Mas-
ter’s thesis, Royal Netherlands Naval College, Den
Helder, 2005.

[8] J. Ross Quinlan. C4.5: Programs for machine
learning. Morgan Kaufmann Publishers Inc., San
Francisco (CA) USA, 1993.

[9] Willem L. van Norden, Fok Bolderheij, and
Catholijn M. Jonker. Classification support using
confidence intervals. In Proc. of the 11th Inter-
national Conference on Information Fusion, pages
295–301, June 30 – July 3 2008.

[10] Florentin Smarandache and Jean Dezert. An in-
troduction to the DSm theory for the combination
of paradoxical, uncertain and imprecise sources of
information. In Proceedings of the 13th Interna-
tional Congress of Cybernetics and Systems, July
6–10 2005.

[11] Willem L. van Norden, Fok Bolderheij, and
Catholijn M. Jonker. Combining system and user
belief on classification using the DSmT. In Proc. of
the 11th International Conference on Information
Fusion, pages 768–775, June 30 – July 3 2008.

[12] Arnaud Martin and Christophe Oswald. Advances
and Applications of DSmT for Information Fusion
(collected works), volume 2, chapter 11. General-
ized proportional conflict redistribution rule ap-
plied to Somar imagery and Radar target classifi-
cation. American Research Press, Rehoboth, USA,
2006. ISBN 1-59973-000-6.

[13] Arnaud Martin and Christophe Oswald. Advances
and Applications of DSmT for Information Fusion
(collected works), volume 2, chapter 2. A new gen-
eralization of the proportional conflict redistribu-
tion rule stable in terms of decision, pages 69–88.
American Research Press, Rehoboth (MA), 2006.

[14] M. Tombak, A. Isotamm, and T. Tamme. On log-
ical method for counting dedekind numbers. Lec-
ture notes on Computer Science, 2138:424–427,
2001.

[15] L.A. Zadeh. On the validity of Dempster’s rule of
combination of evidence. Memo M, 79:24, 1979.

[16] F. van der Heijden, R.P.W. Duin, D. de Ridder,
and D.M.J. Tax. Classification, parameter esti-
mation and state estimation - an engineering ap-
proach using Matlab. John Wiley & Sons, Chich-
ester, England, 2004. ISBN 0-47009-013-8.

[17] Tom’s Hardware Guide Desktop CPU Chart Q1
’09 SiSoftware Sandra XI Arithmetic MFLOPS.
http://www.tomshardware.com/charts/cpu-
charts-2008-q1-2008/sisoftware-sandra-
xi,392.html. Internet, 20th Feb 2009.

1672

