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A B ST R A C T
Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important 
role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new seg-
mentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of 
tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tu-
mor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The pro-
posed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating 
cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed 
method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for 
liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant ra-
diologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for 
liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and 
dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity 
coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmenta-
tion methods reported in the literature while representing an overlap error improvement of 6 % compared to one 
of the best performing automatic methods in the literature. The proposed framework was able to provide consist-
ently accurate results considering the number of tumors and the variations in tumor contrast enhancements and 
tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset. 

Keywords: image segmentation, random walker segmentation, CT imaging, liver tumor burden, fuzzy c-means, 
cuckoo search optimization 

I NT R ODUC T I ON 

In many liver related clinical applications 
such as computer aided surgery and treat-
ment planning, segmentation of liver and 
liver tumors is required. The need for a 
proper segmentation is further emphasized 
by the fact that liver cancer is amongst top 
cancers with the most fatalities (Grendell et 
al., 1996; Habib et al., 2003). Currently, con-
trast-enhanced computed tomography 

(CECT) is the most commonly used modali-
ty for liver imaging and monitoring (Hann et 
al., 2000). However, manual identification 
and segmentation of all the tumors inside the 
liver is a tedious task resulting in segmenta-
tion and measurement of a subset of tumors 
to determine their size and location. In order 
to standardize this procedure, the Response 
Evaluation Criteria in Solid Tumors (RE-
CIST) guideline has been proposed (Eisen-
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hauer et al., 2009). Based on the RECIST 
standard, only tumors where the largest axis 
is over 10 mm are considered for measure-
ment with a decrease of 30 % or more in the 
axis length considered as a partial response 
to the treatment and an increase of 20 % or 
more considered as a progressive tumor. The 
main problem with RECIST standard as 
mentioned by Moltz et al. (2009) and 
Bornemann et al. (2007) is the fact that a 
single measurement of a diameter cannot 
correspond to the size of a 3D object such as 
a tumor, as these tumors are mostly asym-
metrical in shape. In practice, a tumor size 
can be increased significantly if measured in 
3D but its largest axis may not show a signif-
icant change in size. Some livers can have 
more than five tumors inside while based on 
RECIST standard, only five tumors are 
measured as an overall indication of the liver 
condition. 

Unfortunately, due to the difficulties re-
lated to manual tumor segmentation and a 
compelling lack of publicly accessible da-
tasets. Liver tumor segmentation methods 
have received less attention from researchers 
while many accurate liver segmentation 
methods have been proposed by many re-
searchers (Heimann et al., 2009; Linguraru et 
al., 2009; Wang et al., 2015; Anter et al., 
2014; Mostafa et al., 2015; Shi et al., 2016; 
Xu et al., 2015). On the other hand, as man-
ual segmentation of tumors by a radiologist 
is tedious and time-consuming, many pub-
lished methods utilize datasets containing 
less than 20 segmented tumors. To increase 
interest in liver tumor segmentation, a chal-
lenge was presented by the Medical Image 
Computing and Computer Assisted Interven-
tion Society (MICCAI) to segment liver tu-
mors from clinical CT images. Liver Tumor 
Segmentation Challenge 2008 (LTSC ’08) 
was a competition aimed at the development 
of several liver tumor segmentation algo-
rithms. As a result of this competition, many 
automatic segmentation approaches were 
proposed, surpassing the accuracy of many 
semi-automatic methods published previous-
ly. However, the achieved accuracies can be 

considered lower than expected compared to 
the accuracy of liver segmentation methods 
(Heimann et al., 2009).  

As a result of the LTSC’08, five semi-
automatic, four automatic and one interactive 
segmentations were developed, as expected 
the interactive method based on a combina-
tion of graph-cuts and watershed algorithms 
proved to be the most accurate (Stawiaski et 
al., 2008). Automatic methods include ap-
proaches based on machine learning and 
classification of voxels by the way of cogni-
tion networks (Schmidt et al., 2008) and a 
method based on AdaBoost (Shimizu et al., 
2008). Semi-automatic methods included 
adaptive thresholding and morphological op-
erations (Moltz et al., 2008), propagational 
learning and voxel classification (Zhou et al., 
2008) and level-set segmentation (Smeets et 
al., 2008).  

Recent publications include interactive 
tumor segmentation based on intensity dis-
tribution combined with hidden Markov 
fields (Häme and Pollari, 2012), semi-
automatic tumor segmentation with support 
vector machines with affinity constraint 
propagation (Freiman et al., 2011) and ma-
chine learning algorithms (Xu and Suzuki, 
2011). Automatic segmentation includes a 
method utilizing region growing and water-
sheds (Anter et al., 2013) and a method 
based on free-form deformations (Huang et 
al., 2014a).  

The LTSC ’08 included a CECT dataset 
containing 20 tumors in total, unfortunately 
due to lack of maintenance on the LTSC’08 
challenge website the dataset has become 
unavailable. As mentioned before, the lack 
of a common dataset resulted in publications 
on the subject being mostly from 2008 to 
2010 with some publications afterward while 
their overall accuracy can be considered 
lower than desired. Recently, two datasets - 
one containing 120 tumors (Ircad, 2016) and 
another one containing 10 tumors (Midas, 
2016) all with segmentations from expert ra-
diologists - has been made publicly accessi-
ble for researchers. Hopefully, availability of 
these new datasets will motivate more re-
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searchers to focus on developing liver tumor 
segmentation methods, increasing the treat-
ment prognosis of patients as accurate liver 
tumor and tumor burden estimation is an im-
portant part of liver treatment planning 
(Hopper et al., 2000). 

 
Medical value of tumor segmentation 

Percentage of tumor tissue present in the 
organ (in this case liver) called tumor burden 
is commonly utilized in both monitoring and 
assessment of pathological livers and can be 
used in the development of treatment strate-
gies (Jagannath et al., 1986). The tumor bur-
den is also important as it can be used as an 
accurate representation of the effectiveness 
of different treatment protocols, increasing 
the treatment effectiveness (Gobbi et al., 
2004).  

Tumor burden is also utilized for evalua-
tion of the effectiveness of cytotoxic anti-
cancer drugs by radiologists (Prasad et al., 
2002) and in surgical intervention planning 
such as liver resection (Hopper et al., 2000). 
As mentioned before, in clinical practice the 
tumor size is mostly calculated by measuring 
the maximum tumor axis in the transverse 
plane of CT image (Eisenhauer et al., 2009). 
Let us assume the shape of the tumor as 
spherical, an increase of 20 % in the diame-
ter will result in 72.8 % increase in volume 
while a decrease of 30 % in the tumor diame-
ter will lead to 65.7 % decrease in tumor 
volume. In reality majority of tumors are 
shaped irregularly and while their largest di-
ameter hardly changes, they can increase and 
decrease in size irregularly (Heckel et al., 
2014). As confirmed by various studies, it 
can be assumed that real 3D volume of a tu-
mor is far more accurate for treatment plan-
ning (Bauknecht et al., 2010; Bolte et al., 
2007; Bornemann et al., 2007; Fabel et al., 
2011; Heussel et al., 2007; Kuhnigk et al., 
2006; Puesken et al., 2010) but due to diffi-
culties associated with measuring it is not in-
cluded in RECIST guidelines used by many 
radiologists. Most treatment planning is still 
based on manual or interactive segmentation 
of tumors based on RECIST guidelines with 

considerable inter-observer variations be-
tween different radiologists. This is apparent 
from the MIDAS dataset where there is al-
most 10 % disagreement in tumor borders 
between five professional radiologists. 

Furthermore, a main constraint for the 
surgical resection planning is the lesion/liver 
ratio after surgical resection (Nordlinger et 
al., 1996). Segmentation of the liver and tu-
mors inside allow easier computation of this 
ratio, simplifying the planning for surgical 
resection. The identification of the regions to 
be removed becomes easier as tumors are 
well defined, the segmentation also provides 
a precise location of the tumors inside the 
anatomical segments of the liver simplifying 
the preoperational planning. In addition, liv-
er and tumor segmentation also offers sever-
al applications for treatment planning, such 
as Thermal Percutaneous Ablation (Rossi et 
al., 1996), Percutaneous Ethanol Injection 
(PEI) (Livraghi et al., 1995), Radiotherapy 
Surgical Resection (Albain et al., 2009) and 
Arterial Embolization (Yamada et al., 1983). 
Furthermore, in treatments such as Selective 
Internal Radiation Therapy (SIRT) (Al-
Nahhas et al., 2006), fractional dose calcula-
tion of the liver and tumors depend on the 
volume of the liver and tumors. Hence in or-
der to calculate the dose delivered to the tu-
mor, it is essential to segment the tumor 
from the background and calculate the vol-
ume of the tumor region. 

 
Proposed method 

The main advantage of an automatic 
segmentation over other segmentation meth-
ods is the reproducibility as no human inter-
action is required and the segmentation can 
run in the background without the need for 
any interaction from the user. An accurate 
Computer-aided detection/diagnosis (CAD) 
system with accurate segmentation methods 
for liver and liver tumors can have a great 
impact in the overall treatment planning of 
the patient as precise tumor volume and lo-
cation estimation for all tumors inside the 
liver can result in the determination of the 
best course of treatment early on.  
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In this paper, an automatic liver tumor 
segmentation is proposed based on contrast-
enhanced computed tomography imaging. 
The proposed method based on a hybrid of 
fuzzy c-means algorithm with cuckoo opti-
mization (CS-FCM) and random walkers 
method (RW) with priors was shown to have 
promising performance. The proposed seg-
mentation is validated on publicly available 
clinical datasets with varying contrast and 
enhancements and further evaluated by a 
consultant radiologist to assess the clinical 
value of the proposed method. The perfor-
mance of the proposed method and the low 
error in tumor burden determination com-
pared to manual segmentation makes the 
proposed segmentation method a viable al-
ternative to other segmentation methods.  

 
M A T E R I A L S A ND M E T H ODS 

Dataset 
The proposed method is evaluated using 

3Dircadb dataset from Research Institute 
against Digestive Cancer (IRCAD) (Ircad, 
2016) and The MIDAS liver tumor dataset 
from National Library of Medicine’s Imag-
ing Methods Assessment and Reporting 
(IMAR) project (Midas, 2016). Figure 1 il-
lustrates a pathological liver from 3Dircadb 
dataset. All datasets used in tumor segmenta-
tion are acquired at different enhancement 
phases with various scanners. 

Expert radiologists have manually out-
lined liver tumor contours for all images on a 

slice-by-slice basis in order to determine the 
ground truth. The number of slices in each 
series, the slice thickness and the pixel spac-
ing varied from 64 to 502, 0.5 to 5.0 mm and 
0.54 to 0.87 mm respectively with the image 
resolution being 512 × 512 in all cases. The 
3Dircadb dataset is segmented by a single 
radiologist while the MIDAS dataset has the 
segmentation from five different radiolo-
gists; radiologist 1 was utilized as the ground 
truth in this study. However, 3 tumors from 
the 3Dircadb dataset are excluded from the 
segmentation as the tumor enhancement and 
contrast is not sufficient for automatic seg-
mentation. All internal structures of the liver 
such as vessels and tumors are included in 
the liver mask during manual segmentations 
as the tumor segmentation is done inside the 
liver mask. A vessel is considered as a part 
of the liver if it is completely surrounded by 
the liver tissue. If a vessel is partially en-
closed by the liver (often the case where 
large veins such as vena cava and portal vein 
enter or exit the liver), only the parts sur-
rounded by liver tissue are included in the 
manual segmentation 

It should be noted that the developed 
framework was run with Matlab 2013a on a 
personal computer with 8 GB of ram and an 
Intel i7 CPU. All the images utilized in this 
study are processed with window level rec-
ommendations for Abdominal CT imaging, 
as illustrated in Figure 2.  

 

 
Figure 1: Healthy (left) versus pathological liver (right) from IRCAD dataset (tumors represented in 
green) 
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Figure 2: CT image with window level and settings recommendations for Abdominal CT (a), CT image 
with dynamic window level and settings (b) 
 
 

 
Image preprocessing 

A 3×3 Median filter is utilized for 
smoothing the images as shown in Figure 3. 
The main reason of using the Median filter-
ing for the preprocessing step of this algo-
rithm is because Median filtering retains the 
edge information within the image where 
Mean filters and Gaussian filters tend to blur 
the edges in the image. This is because the 
Median filter does not create new unrealistic 

pixel values in the case of the filtering win-
dow laying over an edge.  

 
Fuzzy clustering 

Fuzzy set theorem, introduced by (Zadeh, 
1965) and its adaptation for image segmenta-
tion (Bezdek, 2013) is amongst the most used 
and researched image segmentation algo-
rithms. 

 

 
Figure 3: Results of median filtering, original CT image (a), filtered CT image (b), median filter (c) 
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In this paper, soft clustering (fuzzy c-
means) is used as each pixel can belong to 
many clusters based on a membership degree 
resulting in better performance in images 
with poor contrast, region overlapping and 
inhomogeneity of region contrasts such as 
CT images, compared to hard clustering 
where each pixel can only belong to a single 
cluster. As traditional fuzzy c-means (FCM) 
algorithm where clustering is only based on 
pixel intensities is very sensitive to noise, 
addition of spatial relations between pixels 
has been proposed by many researchers to 
improve the performance (Ahmed et al., 
2002; Chen and Zhang, 2004; Szilagyi et al., 
2003; Kang and Zhang, 2009; Cai et al., 
2007; Krinidis and Chatzis, 2010).  

The main disadvantage of FCM algo-
rithm is its tendency to get trapped in local 
minima as it is very sensitive to initial solu-
tion (initial random cluster centers), me-
taheuristic approaches such as genetic algo-
rithms (GA), tabu search (TS), simulated an-
nealing (SA), ant colony based optimization 
(ACO) and their hybrids have been proposed 
by many researchers to overcome this limita-
tion (Maulik and Bandyopadhyay, 2000; Ng 
and Wong, 2002; Niknam and Amiri, 2010; 
Niknam et al., 2009; Das et al., 2009; Moh’d 
Alia et al., 2011; Al-Sultan and Fedjki, 1997; 
Benaichouche et al., 2013). Metaheuristic 
optimization methods can perform well on 
noisy images and the initial solutions from 
them are often very close to optimal cluster 
centers (Dréo et al., 2006). In this paper, a 
metaheuristic approach based on cuckoo 
search algorithm is proposed to increase the 
accuracy of liver tumor segmentation. 

 
Fuzzy c-means algorithm 

As a fuzzy clustering method, fuzzy c-
means algorithm is based on the 
representation of clusters by their respective 
centers. The data space X = {x1, x2, …, xN} 
can be clustered by minimizing the objective 
function  with respect to cluster centers and 
membership matrix  by: 

 
    (1) 

Based on following constraints: 
 

  (2) 
 

Where  represents the member-
ship function matrix, the distance between 

and cluster center  is represented by the 
matric , number of clusters is repre-
sented by C, the number of data points in 
search space is denoted as N and M repre-
sents fitness degree where . 

Equation (1) can be solved by converting 
to an unconstraint problem by Lagrange mul-
tiplier. Membership degree and cluster cen-
ters are calculated using an alternate calcula-
tion cycle as they cannot be calculated simul-
taneously. Convergence is achieved by alter-
natively fixing the classes and calculating the 
membership function, followed by calculat-
ing the cluster centers by fixing the member-
ship function. Algorithm 1 represents the 
pseudo code for FCM.  

 
Algorithm 1: the pseudo code for FCM 

i. Manually set the number of clusters 
C and fuzziness degree M and error ϵ  

ii. Cluster centers are initialized 
randomly 

iii. k = 1 
iv. While  

Using cluster center  calculate the 
membership matric U(k) by: 

 
Using membership matric U(k), cluster 
center is updated by 

 

k= k+1 
1) Return cluster centers ci and mem-

bership degrees uij 
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For image segmentation, the intensity 
value of the pixel I is represented by xi, total 
number of pixels is represented by N, the 
number of clusters (regions) is represented 
by C, distance between cluster center  and 
pixel  is denoted by  and the 
membership degree between pixel  and 
cluster is denoted by . 

 
Cuckoo search based optimization 

Inspired by reproduction strategies of 
cuckoo birds, cuckoo search optimization 
was proposed by (Yang and Deb, 2010). 
Cuckoo lays egg on other bird’s nest, based 
on this observation the following rules were 
proposed (Yang and Deb, 2010): 

1) Choosing a random nest, each bird 
lays one egg representing a set of so-
lutions for the optimized problem. 

2) With a fixed number of nests, there is 
a probability that the host might dis-
cover and discard the egg. 

3) The nests containing the best solu-
tions (egg) will be carried to the next 
iteration (new generation). 

Levy flight (modeled after bird flight) is 
used in generating new solutions in cuckoo 
search, given by: 
 

       (3) 
 

Where  represents the step size and is 
determined by the scale of the problem (in 
this study set as 1), the product  represents 
entry-wise multiplications. In an essence, 
random walkes are provided by Levy flights 
with their random steps calculated from a 
Levy distribution for large steps having infi-
nite mean and variance: 

 
       (4) 

 
Essentially, the consecutive jumps and 

steps of a cuckoo search form a random walk 
process that obeys a heavy tail probability 
distribution. Algorithm 2 represents the 

pseudo code for performing the Cuckoo 
search (CS). 

 
Algorithm 2: pseudo code for the CS 

1) A population of n hosts (nests) is 
initialized at random  

2) while the stopping criteria are not 
reached do 

 Obtain a cuckoo X at random using 
Levy flights 
Randomly select a nest   

if   then 
Replace J by the new solution 
end 

3) Discard a set fraction of the bad nests 
 and create new nests using Levy 

flights 
end 

 
Stopping criterion can be based on the 

following conditions: 
1) If after  iterations, no significant 

improvement is achieved on the objec-
tive function  

2) Number of the iterations reaching max-
imum  

Based on recommendation by (Yang and 
Deb, 2010)  is set as 0.25 in this study. 
Cuckoo search is used for calculation of op-
timum cluster centers by minimizing the 
FCM objective function. 

 
Random walkers method 

Graph-Cut (GC) based segmentation is 
an alternative to boundary based segmenta-
tion methods, being a semi-automatic seg-
mentation the user is required to provide the 
seeds representing the background and the 
object to be segmented, GC represents the 
image pixels as nodes on a graph with 
weighted edges representing the adjacency 
between the pixels. By finding the minimum 
cost function between all possible cuts of the 
graph, the GC segments the image into 
background and the object (Boykov et al., 
2001). The main disadvantage of regular GC 
segmentation is the bad handling of weak 
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edges and noisy images, to overcome this 
limitation many methods have been pro-
posed to enhance the basic GC algorithm. 
One of such methods receiving a wide inter-
est in medical imaging is the random walker 
algorithm (Andrews et al., 2010; Grady, 
2006; Cui et al., 2013; Grady and Sinop, 
2008). Random walkers segmentation was 
proposed by Grady (2006), it is a supervised 
segmentation method meaning that a set of 
labels must be defined for each object prior 
to segmentation, this can be done interactive-
ly by the operator or be assigned automati-
cally according to a predefined criterion. 
Random walker method segments the image 
by calculating the probability  that a ran-
dom walker starting at pixel ‘i’ first reaching 
a pixel labeled L.  

The principle of random walker segmen-
tation is the construction of an undirected 
graph G= (V, E) where the nodes  cor-
respond to image pixels and . 
Weight  is assigned to edge  connect-
ing nodes  and  based on the following 
equation:  
 

      (5) 
 

Where  is the intensity at pixel  and  is 
the intensity at pixel j.  is a scaling parame-
ter set according to image contrast and  is a 
regularization parameter that amounts to pe-
nalizing the gradient norm of  (  = 0 re-
sults in no regularization).  

Weight  can be described as the prob-
ability of the random walker crossing a par-
ticular edge, random walkers will cross edg-
es more easily in case of more homogeneous 
edges created by a lower edge weight and 
thus region labels are decided more by the 
pixel distance to seeds labeled L and less by 
image features. Greater values of edge 
weight create less homogeneous edges thus 
making it harder for random walkers to cross 
edges and the region labels are decided more 
by the locations of strong edges.  

With the help of the circuit theory, Grady 
(2006) showed that the connections between 

random walkers on a graph correspond to a 
combinatorial analog of the Dirichlet prob-
lem thus dramatically reducing calculation 
time by providing a convenient and simple 
method for the label probabilities computa-
tion.  

A Dirichlet problem can be defined as 
the problem of finding a harmonic function 
subject to certain boundary values. A Di-
richlet integral could be represented as: 

 
            (6) 

 
Where  represents a field and Ω represent 
the region (Grady, 2006). The harmonic 
function minimizing the Dirichlet integral 
and satisfying the boundary condition can be 
achieved by the following Laplace equation: 
 

                          (7) 
 

Let’s denote  as a set of seeded pixels 
and  the set of non-seeded pixels, such that 

 and . It was shown 
that all of the probabilities 

 that each node (pix-
el)  being assigned to label L can be 
obtained by minimization of: 

 
         (8) 

 
Where the probabilities of seeds  are as-
signed as:  
 

 (9) 
 

Where combinatorial Laplacian matrix of L 
is defined as: 
 

 

(10) 
 

Where  is the degree of the vertex of edge 
 (sum of weights of all the edges  con-

necting , for 2D images the vertices will 



EXCLI Journal 2016;15:406-423 – ISSN 1611-2156 
Received: May 20, 2016, accepted: June 22, 2016, published: June 27, 2016 

 

 

414 

have degree of 4 or 8 and for 3D images the 
vertices could have a degree from 6 up to 26. 
Eq. 6 can be rewritten as: 

 
(11) 

 
Where  is a diagonal matrix edge weights 
assigned to its diagonal and  is the inci-
dence matrix defined as: 
 

         (12) 

 
Eq. 11 can be decomposed as: 
 

 
(13) 

Where  represents the probabilities of 
seeded and  represents the probabilities of 
unseeded nods, critical points are determined 
by differentiating  with respect to  
as: 
 

         (14) 
 

Which represents a system of linear equa-
tions where  represents the unknowns. 
Using Eq. 9, the combinatorial Dirichlet so-
lution can be found by solving the following 
equation for all labels: 
 

          (15) 
 

Only L ˗ 1 systems must be solved as the 
sum of all probabilities at a node will be 
equal to zero: 

 
         (16) 

 
After minimizing for each label L, 

the segmented region is obtained by calculat-
ing maximum probability of the label by:  

 
Li = argmax  (17) 

 

The workflow of the random walker 
method for image I can be summarized as: 

1. Provide a set of marked pixels with L la-
bels corresponding to desired segmenta-
tion regions 

2. Map the image features such as intensi-
ties, texture information or other image 
features to edge weights and built the 
Laplacian matrix  

3. Perform the random walker and obtain 
segmentation label for each region. 
In some segmentation tasks, the number 

of objects and their density estimation might 
be known prior to segmentation or can be 
generated from training and pre-labeling. In 
this study we utilize random walkers method 
with integrated priors ( ) for enhancing 
the overall performance of regular random 
walkers method as discussed in (Grady and 
Sinop, 2008). 

The segmentation obtained by the CS-
FCM is used for labeling of the pixels for the 
random walker segmentation. Figure 4 
shows the segmentation of tumors with the 
corresponding probability , it should be 
noted that the values are pixel specific and 
are mapped to a gray scale and displayed for 
easy visualization and Figure 5 illustrates ef-
fects of varying . As segmentation of tu-
mors is done inside the liver envelope, RWP 
can be used to greatly enhance the segmenta-
tion results compared to regular RW algo-
rithm. Figure 5 illustrates a comparison be-
tween regular RW and RWP, as it can be 
seen, the use of RWP greatly increases the 
accuracy of the segmentation. As evident 
from cropped CT images of tumors shown in 
Figure 6, the liver image is quite noisy mak-
ing accurate segmentation a challenging task. 
The main advantage of RW algorithm is the 
noise tolerance, as evident by many medical 
imaging tasks where RW algorithm has been 
shown to provide the most accurate segmen-
tation (Bağci et al., 2011; Chen et al., 2011; 
Choubey and Agrawal, 2012). 
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Figure 4: Cropped tumor image (a,d), CS-FCM clustering (b,e), corresponding probability  (e,f) 
 

 
Figure 5: Effects of varying Wij on segmentation (red line) compared to radiologist segmentation 
(green line), β=100 (a), β=10 (b), β=1 (c), β=0.1 (d) 
 
 
Statistical performance measures 

Before any discussion on the results a 
brief introduction of statistical performance 
measures utilized are given below, these sta-
tistics are calculated based on guidelines and 
the evaluation software by Taha and 
Hanbury (2015).  

 
Volumetric overlap error  

Volumetric overlap error (VOE) repre-
sents the number of pixels in the intersection 
of segmented region (A) and the ground 
truth (B), divided by the number of pixels in 
the union of A and B. A value of 0 % repre-
sents perfect segmentation while any in-
crease in this value correlates to increased 
discrepancy between segmentation and 
ground truth. It can be calculated in percent 
from the following formula: 

VOE= 100(1 − (|A ∩ B|/|A ∪ B| ))      (18) 
 

Relative absolute volume difference 
Relative absolute volume difference 

(RVD) expressed in percent, whereby the to-
tal volume of the segmented region is divid-
ed by the total volume of ground truth. It can 
be calculated by the following formula: 

 
RVD = ((total volume of segmented region 
/ total volume of ground truth)  −1) ×100   

(19) 
 

This measure should not be utilized sole-
ly to assess the performance of any segmen-
tation method as a value of 0 (perfect seg-
mentation) can also be obtained from an in-
accurate segmentation, as long as the seg-
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Figure 6: Cropped CT image with 22 mm and 7 mm tumors (a) and 32 and 9 mm tumors (d), initial 
CS-FCM clustering (b,e), radiologist segmentation (green outline) vs RW (red outline) (β=30) and 
RWP (blue outline) (γ=0.003) (c,f) 

 
 

mented region volume is equal to the volume 
of the ground truth. Please note that negative 
values represent under segmentation while 
positive values point to over segmentation. 

 
Dice similarity coefficient 

Dice similarity coefficient (DSC) repre-
sents the overall performance of the image 
segmentation algorithm. It can be calculated 
by the following formula: 

 
DSC = 2|A∩B|

|A|+|B|
           (20) 

 
A value of 0 represents no overlap be-

tween the segmented region and ground truth 
while a value of 1 represents perfect segmen-
tation. 

 
R E SUL T S A ND DI SC USSI ON 

It should be noted that while all tumor 
sizes over 5 mm were included in 3Dircadb 
dataset segmentation, RECIST standard was 
the basis for the expert segmentation in 
MIDAS dataset. Tumors under 5 mm are not 

included in the segmentation as they are vis-
ible in only one or two slices in a CT series 
acquired with 2-3 mm slice thickness and 
usually offer no notable value for analysis. 
Apart from 3Dircadb dataset, almost all oth-
er publications are based on datasets with 
segmentation based on the RECIST standard. 
Figure 7 illustrates a comparison of the radi-
ologist segmentation and the segmentation 
from proposed method. The statistical per-
formance of the proposed method compared 
to other methods from the literature is pre-
sented in Table 1. Unfortunately, although 
some researchers have utilized the 3Dircadb 
dataset in their liver segmentation methods, 
it seems that the 3Dircadb dataset has not 
been utilized for the development of tumor 
segmentation methods. 

Based on the statistical performance, it 
can be assumed that the proposed method is 
amongst the most accurate segmentation 
methods proposed and tested for liver tumor 
segmentation from CTCE images, achieving 
a comparable or higher accuracy compared 
to other methods. In the case of 10 tumors
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Figure 7: Examples of segmented liver tumors with the proposed framework, with green line repre-
senting ground truth and red representing the proposed segmentation 

 

 
from the MIDAS dataset, the proposed seg-
mentation method was able to achieve an av-
erage DSC of 0.81 while the VOE was at 
15.61 % and RVD was 4.02 %. Average 
DSC of 0.75, VOE of 22.78 % and RVD of 
8.59 % was the performance of the proposed 
method on the 3Dircadb dataset containing 
117 tumors, considering that the 3Dircadb 
dataset included many small tumors repre-
senting considerable difficulties in automatic 
segmentation, these results are promising. 
While preparing the LTSC ‘08 segmentation 
challenge (Deng and Du, 2008), the organiz-
ers observed that VOE of 12.94 % and RVD 
of 9.64 % was the average performance of 
manual tumor segmentation by a human op-
erator (with medical training) compared to 
ground truth segmentation by an expert radi-
ologist. Although the relative volume differ-
ence (RVD) calculation and determining the 
liver tumor volume is of grave importance as 
discussed earlier, segmentation algorithms 
still can achieve a high score in this area 

while being quite inaccurate as the algorithm 
can still give accurate volume calculations 
while the segmented region is widely inaccu-
rate compared to the ground truth. This can 
be also observed from the overlap error of 
different segmentation methods, as a method 
with high overlap error can have a low rela-
tive volume difference error. 

The proposed segmentation method is 
comparable to other approaches developed 
with a runtime of around 30 seconds per 
slice, of which nearly 5 seconds were taken 
by random walker and the rest were used by 
CS-FCM for initial clustering. The proposed 
method is also viable as an alternative ap-
proach to manual segmentation by radiolo-
gists while being faster than manual segmen-
tation for a CT volume containing many tu-
mors with average manual segmentation 
time of 4.2 minutes per tumor (Häme and 
Pollari, 2012). As discussed earlier, segmen-
tation of liver tumors is a challenging task 
for automatic segmentation methods, based 
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on these results it can be assumed that the 
proposed method is comparable to semi/in-
teractive segmentation performance.  

Lower than expected performance of the 
segmentation methods for liver tumors can 
be associated with the vague boundaries of 
tumors making an accurate segmentation a 
challenging task. On the other hand, the 
small size of tumors results in increased sta-
tistical errors as a discrepancy of a dozen 
pixels can lead to a considerably increased 

error. Furthermore, from the dataset it is evi-
dent that many radiologists tend to over 
segment the tumor boundary and some even 
consider close tumors as a single tumor. 
However, there is no gold standard as the 
segmentation purely subjective and depend-
ent on the radiologist, evident from MIDAS 
dataset where there is a disagreement of 
9.8 % on the boundaries of ten tumors be-
tween five professional radiologists. 

 
 

Table 1: Statistical performance of the proposed method compared to some other proposed methods 

Method 
Number 

of  
tumors 

Mean VOE 
in  % 

Mean RVD 
in  % Mean DSC 

Mean 
Runtime 
(minutes) 

(Linguraru et al., 2012),  
auto 79 No info 12.4 ± 12 0.74± 0.16 Couple of 

minutes 

(Vorontsov et al., 2014),  
semi 27 No info No info 0.81 ± 0.06 No info 

(Masuda et al., 2011),  
auto 15 37.165 30.65 No info No info 

(Shimizu et al., 2008)  
auto 10 28.98 18.29 No info No info 

(Huang et al., 2013),  
auto 20 32.85 21.97 No info No info 

(Stawiaski et al., 2008),  
interactive 10 29.49 23.87 No info 8 

(Cheng and Zhang, 2011),  
semi 10 26.31 ± 5.79 -10.64 ± 7.55 No info 0.5 min 

(Häme and Pollari, 2012),  
semi 20 30.35 ± 11.03 2.43 ± 1.41 No info 15 

(Zhou et al., 2010),  
semi 37 25.7 ± 17.14 17.93 ± 27.78 No info Couple of 

minutes 

(Huang et al., 2014b),  
semi 20 25.25 ± 26.96 11.89 ± 17.41 No info No info 

Proposed Method on 
MIDAS  dataset, auto 10 15.61  ± 5.32 4.02  ± 11.10 0.81± 0.06 16 

Proposed Method on  
3Dircadb dataset, auto 117 22.78 ± 12.15 8.59 ± 18.78 0.75 ± 0.15 16 

Average manual 5 radiolo-
gist segmentation on MIDAS 10 9.80 ± 8.02 -2.54 ± 0.46 0.83 ± 0.03 No info 

Average manual human  
segmentation, LTSC’08 10 12.94 9.64 No info No info 
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Due to the availability of a dataset 
(3Dircadb) containing radiologist segmenta-
tion of both liver and liver tumors, the tumor 
burden error (TBE) calculation (the differ-
ence between automatically and manually 
measured tumor burdens) of the proposed 
method has also been done. As discussed 
earlier, one of the most important variables 
for treatment monitoring and liver surgical 
planning is the tumor burden. Unfortunately, 
probably due to a lack of appropriate da-
tasets, aside from (Linguraru et al., 2012) no 
other researcher has reported the TBE for 
their method. The proposed method was able 
to achieve an average TBE of 0.84 % com-
pared to TBE of 0.90 % reported by 
(Linguraru et al., 2012), clearly collaborating 
with the results of the performance metrics 
in Table 1. 

After the extraction of liver and liver tu-
mors from the CT series, 3D virtualization 
can be utilized to help the physician in better 
visualizing the liver and possible tumors in-
side the liver. This is done as going through 
a CT series on a slice by slice basis can be 
both tedious and time-consuming. Figure 8 
represents the 3D reconstruction of segment-
ed tumors inside liver by the proposed meth-
od. As manual segmentations by radiologists 
tend to be subjective and to better evaluate 
the clinical value of the proposed segmenta-

tion, we utilized the expertise of a consultant 
radiologist with over 30 years teaching and 
research experience in medical imaging. In a 
blind evaluation and on a slice by slice basis, 
our expert compared the segmentation pro-
vided by the radiologist (considered as 
ground truth) in the dataset and the segmen-
tation from the proposed method for tumors 
where the tumor size was more than 5 mm. 
Interestingly, our expert preferred the seg-
mentation by the proposed method in 71.3 % 
of the tumor slices over the provided radiol-
ogist segmentation in the dataset, citing good 
tumor boundary tracking, speed and ease of 
utilizing the proposed method, further high-
lighting the need for an accurate and fast au-
tomatic tumor segmentation method for clin-
ical applications.  

 
C ONC L USI ONS  

Proper segmentation of liver and liver 
tumors is a prerequisite for any accurate 
CAD system utilized in liver cancer treat-
ment planning and monitoring as accurate 
volume calculation and location estimation is 
the key in accurate prognosis. The proposed 
segmentation method was shown to provide 
accurate segmentation. One of the largest 
liver tumor datasets in the literature with 
varying contrast and enhancements were util-

 
Figure 8: 3D Reconstruction of a liver with segmented tumors by the proposed method with patholo-
gies represented in white 
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ized for validating the results of the proposed 
method, the proposed method achieved ex-
cellent results in all instances with the aver-
age overlap error for tumor segmentation 
improved by almost 6 % compared to some 
of the best automatic methods in the litera-
ture. With a total runtime of about 16 
minutes per patient, the proposed method is 
fast enough to be considered as a viable 
segmentation method for liver tumors. The 
proposed method was also able to achieve a 
tumor burden error of 0.84 %, well under the 
10 % error threshold for clinical applica-
tions. The accuracy of the proposed method 
was further verified by a consultant radiolo-
gist for ensuring clinical applicability of the 
proposed method. 

The proposed method is based on well-
documented algorithms, making the imple-
mentation relatively easy for inclusion in any 
CAD system and can be easily expanded to 
other tumors and segmentation challenges 
from a medical perspective. Further devel-
opment of the proposed framework can be 
automatic analysis and classification of the 
segmented tumors for an integrated liver 
CAD system for use in liver treatment plan-
ning as tumor grading is another important 
part of liver diagnosis and graphic pro-
cessing unit based acceleration for decreased 
processing time. 
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