Bipolar neutrosophic graphs with applications

Muhammad Akram ${ }^{1}$, Musavarah Sarwar ${ }^{1}$, Florentin Smarandache ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of the Punjab, New Campus, Lahore, Pakistan
${ }^{2}$ Math \& Science Department, University of New Mexico, Gallup, New Mexico, USA
m.akram@pucit.edu.pk, musavarah656@gmail.com, smarand@unm.edu

Abstract

In this research article, we present a novel frame work for handling bipolar neutrosophic information by combining the theory of bipolar neutrosophic sets with graphs. We introduce some operations on bipolar neutrosophic graphs. We describe the dominating and independent sets of bipolar neutrosophic graphs. We discuss an outranking approach for risk analysis and construction of minimum number of radio channels using bipolar neutrosophic sets and bipolar neutrosophic graphs.

Key-words: Applications of bipolar neutrosophic graphs, Union, Intersection, Join, Cartesian product, Direct product, Strong product, Domination number, Independent number.

1 Introduction

A fuzzy set [29] is an important mathematical structure to represent a collection of objects whose boundary is vague. Fuzzy models are becoming useful because of their aim in reducing the differences between the traditional numerical models used in engineering and sciences and the symbolic models used in expert systems.
In 1994, Zhang [31] introduced the notion of bipolar fuzzy sets and relations. Bipolar fuzzy sets are extension of fuzzy sets whose membership degree ranges $[-1,1]$. The membership degree $(0,1]$ indicates that the object satisfies a certain property whereas the membership degree $[-1,0)$ indicates that the element satisfies the implicit counter property. Positive information represent what is considered to be possible and negative information represent what is granted to be impossible. Actually, a variety of decision making problems are based on two-sided bipolar judgements on a positive side and a negative side. Nowadays bipolr fuzzy sets are playing a substantial role in chemistry, economics, computer science, engineering, medicine and decision making problems. Samarandache [22] introduced the idea of neutrosophic probability, sets and logic. Some properties and applications of neutrosophic sets were further studied by Jaun-Jaun Peng et al. [19] in 2014. The other terminologies and applications of neutrosophic sets can be seen in $[23,27,28,9,8,12,24]$. In a
neutrosophic set, the membership value is associated with truth, false and indeterminacy degrees but there is no restriction on their sum. Deli et al. [11] extended the ideas of bipolar fuzzy sets and neutrosophic sets to bipolar neutrosophic sets and studied its operations and applications in decision making problems.
Graph theory has numerous applications in science and engineering. However, in some cases, some aspects of graph theoretic concepts may be uncertain. In such cases, it is important to deal with uncertainty using the methods of fuzzy sets and logics. Based on Zadeh's fuzzy relations [30] Kaufmann [13] defined a fuzzy graph. The fuzzy relations between fuzzy sets were also considered by Rosenfeld [20] and he developed the structure of fuzzy graphs, obtaining analogs of several graph theoretical concepts. Later on, Bhattacharya [5] gave some remarks on fuzzy graphs, and some operations on fuzzy graphs were introduced by Mordeson and Peng [17]. The complement of a fuzzy graph was defined by Mordeson [16]. Bhutani and Rosenfeld introduced the concept of M-strong fuzzy graphs in [6] and studied some of their properties. The concept of strong arcs in fuzzy graphs was discussed in [7]. The theory of fuzzy graphs has extended widely by many researchers as it can be seen in $[14,15,21]$. The idea of domination was first arose in chessboard problem in 1862. Somasundaram amd Somasundaram [25] introduced domination and independent domination in fuzzy graphs. Nagoor Gani and Chandrasekaran [18] studied the notion of fuzzy domination and independent domination using strong arcs. Akram [1, 2] introduced bipolar fuzzy graphs and discuss its various properties which were further studied by Yang [26] in 2013. Akram et al. [3] studied regular bipolar fuzzy graphs. The theory of bipolar fuzzy graphs is extended to m-polar fuzzy graphs by Chen et al. [10] in 2014.
In this article, we propose the idea of bipolar neutrosophic graphs. We discuss some fundamental operations in bipolar neutrosphic graphs, regular and irregular bipolar neutrosophic graphs, domination number and independent number. We calculate the domination and independent numbers of bipolar neutrosphic union, intersection, join and products. At the end, some applications in bipolar neutrosphic graphs are given that support the ideas discussed in this article.

2 Preliminaries

Let X be a non-empty set. Let $\widetilde{X^{2}}$ denotes the collection of all 2-elements subsets of X. A pair $G^{*}=(V, E)$, where $E \subseteq \widetilde{X^{2}}$ is called a graph. The cardinality of any subset $D \subseteq X$ is the number of vertices in D, it is denoted by $|D|$.

Definition 2.1. [29, 30] A fuzzy subset ν on a non-empty set X is a mapping $\nu: X \rightarrow[0,1]$. A fuzzy binary relation on X is a fuzzy subset λ on $X \times X$. Fuzzy relation is a fuzzy binary relation given by the mapping $\lambda: X \times X \rightarrow[0,1]$.

Definition 2.2. [13] A fuzzy graph of a graph $G^{*}=(X, E)$ is a pair $G=(\mu, \lambda)$, where μ and λ are fuzzy sets on X and \widetilde{X}^{2} respectively, such that $\lambda(x y) \leq \min \{\mu(x), \mu(y)\}$ for all $x y \in E$. Note that $\lambda(x y)=0$ for all $x, y \in \widetilde{X}^{2}-E$.

Definition 2.3. [31] A bipolar fuzzy set on a non-empty set X is an object of the form $C=\left\{\left(x, \mu^{p}(x), \mu^{n}(x)\right)\right.$: $x \in X\}$ where, $\mu^{p}: X \rightarrow[0,1]$ and $\mu^{n}: X \rightarrow[-1,0]$ are mappings.
The positive membership degree $\mu^{p}(x)$ denotes the truth or satisfaction degree of an element x to a certain property corresponding to bipolar fuzzy set C and $\mu^{n}(x)$ represents the satisfaction degree of element x to some counter property of bipolar fuzzy set C. If $\mu^{n}(x) \neq 0$ and $\mu^{p}(x)=0$, it is the situation that x is not
satisfying the property of C but satisfying the counter property to C. If $\mu^{p}(x) \neq 0$ and $\mu^{n}(x)=0$, it is the case when x has only positive satisfaction for C. It is possible for x to be such that $\mu^{p}(x) \neq 0$ and $\mu^{n}(x) \neq 0$ when x satisfies the property of C as well as its counter property in some part of X.

Definition 2.4. [1] Let X be a nonempty set. A mapping $D=\left(\mu^{p}, \mu^{n}\right): X \times X \rightarrow[0,1] \times[-1,0]$ is called a bipolar fuzzy relation on X such that $\mu^{p}(x y) \in[0,1]$ and $\mu^{n}(x y) \in[-1,0]$, for $x, y \in X$.

Definition 2.5. [1] A bipolar fuzzy graph on a crisp graph $G^{*}=(X, E)$ is a pair $G=(C, D)$ where $A=\left(\mu_{C}^{p}, \mu_{C}^{n}\right)$ is a bipolar fuzzy set on X and $D=\left(\mu_{D}^{p}, \mu_{D}^{n}\right)$ is a bipolar fuzzy relation in E such that

$$
\mu_{D}^{p}(x y) \leq \mu_{C}^{p}(x) \wedge \mu_{C}^{p}(y) \text { and } \mu_{D}^{n}(x y) \geq \mu_{C}^{n}(x) \vee \mu_{C}^{n}(y) \text { for all } x y \in E .
$$

Definition 2.6. [23] A neutrosophic set C on a non-empty set X is characterized by a truth membership function $t_{C}: X \rightarrow[0,1]$, indeterminacy membership function $I_{C}: X \rightarrow[0,1]$ and a falsity membership function $f_{C}: X \rightarrow[0,1]$. There is no restriction on the sum of $t_{C}(x), I_{C}(x)$ and $f_{C}(x)$ for all $x \in X$.

Definition 2.7. [11] A bipolar neutrosophic set on a empty set X is an object of the form

$$
C=\left\{\left(x, t_{C}^{p}(x), I_{C}^{p}(x), f_{C}^{p}(x), t_{C}^{n}(x), I_{C}^{n}(x), f_{C}^{n}(x)\right): x \in X\right\}
$$

where, $t_{C}^{p}, I_{C}^{p}, f_{C}^{p}: X \rightarrow[0,1]$ and $t_{C}^{n}, I_{C}^{n}, f_{C}^{n}: X \rightarrow[-1,0]$. The positive values $t_{C}^{p}(x), I_{C}^{p}(x), f_{C}^{p}(x)$ denote respectively the truth, indeterminacy and false membership degrees of an element $x \in X$ whereas $t_{C}^{n}(x), I_{C}^{n}(x), f_{C}^{n}(x)$ denote the implicit counter property of the truth, indeterminacy and false membership degrees of the element $x \in X$ corresponding to the bipolar neutrosophic set C.

3 Bipolar neutrosophic graphs

Definition 3.1. A bipolar neutrosophic relation on a non-empty set X is a bipolar neutrosophic subset of $X \times X$ of the form $D=\left\{\left(x y, t_{D}^{p}(x y), I_{D}^{p}(x y), f_{D}^{p}(x y), t_{D}^{n}(x y), I_{D}^{n}(x y), f_{D}^{n}(x y)\right): x y \in E \subseteq X \times X\right\}$ where, $t_{D}^{p}, I_{D}^{p}, f_{D}^{p}, t_{D}^{n}, I_{D}^{n}, f_{D}^{n}$ are defined by the the mappings $t_{D}^{p}, I_{D}^{p}, f_{D}^{p}: X \times X \rightarrow[0,1]$ and $t_{D}^{n}, I_{D}^{n}, f_{D}^{n}: X \times X \rightarrow$ $[-1,0]$.

Definition 3.2. A bipolar neutrosophic graph on a crisp graph $G^{*}=(X, E)$ is a pair $G=(C, D)$, where C is a bipolar neutrosophic set on X and D is a bipolar neutrosophic relation on X such that

$$
\begin{array}{lll}
t_{D}^{p}(x y) \leq t_{C}^{p}(x) \wedge t_{C}^{p}(y), & I_{D}^{p}(x y) & \leq I_{C}^{p}(x) \vee I_{C}^{p}(y),
\end{array} \quad f_{D}^{p}(x y) \leq f_{C}^{p}(x) \vee f_{C}^{p}(y), ~=I_{C}^{n}(x) \wedge I_{C}^{n}(y), \quad f_{D}^{n}(x y) \geq t_{C}^{n}(x) \wedge t_{C}^{n}(y) \text { for all } x y \in E .
$$

Note that $D(x y)=(0,0,0,0,0,0)$ for all $x y \in X \times X \backslash E$.
Example 3.1. Consider a graph $G^{*}=(X, E)$ such that $X=\{x, y, z\}, E=\{x y, y z, z x\}$. Let C be a bipolar neutrosophic set on X given in Table. 1 and D be a bipolar neutrosophic relation of $E \subseteq X \times X$ given in Table.2. Routine calculations show that $G=(C, D)$ is a bipolar neutrosophic graph of $G^{*}=(X, E)$. The bipolar neutrosophic graph G is shown in Fig. 1.

Table 1	x	y	z
t_{C}^{p}	0.3	0.5	0.4
I_{C}^{p}	0.4	0.4	0.3
f_{C}^{p}	0.5	0.2	0.2
t_{C}^{n}	-0.6	-0.1	-0.5
I_{C}^{n}	-0.5	-0.8	-0.5
f_{C}^{n}	-0.2	-0.2	-0.5

Table 2	xy	yz	xz
t_{D}^{p}	0.3	0.3	0.3
I_{D}^{p}	0.4	0.4	0.4
f_{D}^{p}	0.5	0.2	0.5
t_{D}^{n}	-0.1	-0.1	-0.5
I_{D}^{n}	-0.8	-0.8	-0.5
f_{D}^{n}	-0.2	-0.5	-0.5

Figure 1: Bipolar neutrosophic graph G

Definition 3.3. The union of two bipolar neutrosophic graphs $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ is a pair $G_{1} \cup G_{2}=\left(C_{1} \cup C_{2}, D_{1} \cup D_{2}\right)$ where, $C_{1} \cup C_{2}$ is a bipolar neutrosophic set on $X_{1} \cup X_{2}$ and $D_{1} \cup D_{2}$ is a bipolar neutrosophic set on $E_{1} \cup E_{2}$ such that

$$
\begin{aligned}
& t_{C_{1} \cup C_{2}}^{p}(x)=\left\{\begin{array}{ll}
t_{C_{1}}^{p}(x), & x \in X_{1}, x \notin X_{2} \\
t_{C_{2}}^{p}(x), & x \notin X_{1}, x \in X_{2} \\
t_{C_{1}}^{p}(x) \vee t_{C_{2}}^{p}(y), & x \in X_{1} \cap X_{2}
\end{array} \quad I_{C_{1} \cup C_{2}}^{p}(x)= \begin{cases}I_{C_{1}}^{p}(x), & x \in X_{1}, x \notin X_{2} \\
I_{C_{2}}^{p}(x), & x \notin X_{1}, x \in X_{2} \\
I_{C_{1}}^{p}(x) \wedge I_{C_{2}}^{p}(y), & x \in X_{1} \cap X_{2}\end{cases} \right. \\
& f_{C_{1} \cup C_{2}}^{p}(x)=\left\{\begin{array}{ll}
f_{C_{1}}^{p}(x), & x \in X_{1}, x \notin X_{2} \\
f_{C_{2}}^{p}(x), & x \notin X_{1}, x \in X_{2} \\
f_{C_{1}}^{p}(x) \wedge f_{C_{2}}^{p}(y), & x \in X_{1} \cap X_{2}
\end{array} \quad t_{C_{1} \cup C_{2}}^{n}(x)= \begin{cases}t_{C_{1}}^{n}(x), & x \in X_{1}, x \notin X_{2} \\
t_{C_{2}}^{n}(x), & x \notin X_{1}, x \in X_{2} \\
t_{C_{1}}^{n}(x) \wedge t_{C_{2}}^{n}(y), & x \in X_{1} \cap X_{2}\end{cases} \right. \\
& I_{C_{1} \cup C_{2}}^{n}(x)=\left\{\begin{array}{ll}
I_{C_{1}}^{n}(x), & x \in X_{1}, x \notin X_{2} \\
I_{C_{2}}^{n}(x), & x \notin X_{1}, x \in X_{2} \\
I_{C_{1}}^{n}(x) \vee I_{C_{2}}^{n}(y), & x \in X_{1} \cap X_{2}
\end{array} \quad f_{C_{1} \cup C_{2}}^{n}(x)= \begin{cases}f_{C_{1}}^{n}(x), & x \in X_{1}, x \notin X_{2} \\
f_{C_{2}}^{n}(x), & x \notin X_{1}, x \in X_{2} \\
f_{C_{1}}^{n}(x) \vee f_{C_{2}}^{n}(y), & x \in X_{1} \cap X_{2}\end{cases} \right.
\end{aligned}
$$

and membership values of edges are

$$
\begin{aligned}
& t_{D_{1} \cup D_{2}}^{p}(x y)= \begin{cases}t_{D_{1}}^{p}(x y), & x y \in E_{1}, x y \notin E_{2} \\
t_{D_{2}}^{p}(x y), & x y \notin E_{1}, x y \in E_{2} \\
t_{D_{1}}^{p}(x y) \vee t_{D_{2}}^{p}(x y), & x y \in E_{1} \cap E_{2}\end{cases} \\
& I_{D_{1} \cup D_{2}}^{p}(x y)= \begin{cases}I_{D_{1}}^{p}(x y), & x y \in E_{1}, x y \notin E_{2} \\
I_{D_{2}}^{p}(x y), & x y \notin E_{1}, x y \in E_{2} \\
I_{D_{1}}^{p}(x y) \wedge I_{D_{2}}^{p}(x y), & x y \in E_{1} \cap E_{2}\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f_{D_{1} \cup D_{2}}^{p}(x y)= \begin{cases}f_{D_{1}}^{p}(x y), & x y \in E_{1}, x y \notin E_{2} \\
f_{D_{2}}^{p}(x y), & x y \notin E_{1}, x y \in E_{2} \\
f_{D_{1}}^{p}(x y) \wedge f_{D_{2}}^{p}(x y), & x y \in E_{1} \cap E_{2}\end{cases} \\
& t_{D_{1} \cup D_{2}}^{n}(x y)= \begin{cases}t_{D_{1}}^{n}(x y), & x y \in E_{1}, x y \notin E_{2} \\
t_{D_{2}}^{n}(x y), & x y \notin E_{1}, x y \in E_{2} \\
t_{D_{1}}^{n}(x y) \wedge t_{D_{2}}^{n}(x y), & x y \in E_{1} \cap E_{2}\end{cases} \\
& I_{D_{1} \cup D_{2}}^{n}(x y)= \begin{cases}I_{D_{1}}^{n}(x y), & x y \in E_{1}, x y \notin E_{2} \\
I_{D_{2}}^{n}(x y), & x y \notin E_{1}, x y \in E_{2} \\
I_{D_{1}}^{n}(x y) \vee I_{D_{2}}^{n}(x y), & x y \in E_{1} \cap E_{2}\end{cases} \\
& f_{D_{1} \cup D_{2}}^{n}(x y)= \begin{cases}f_{D_{1}}^{n}(x y), & x y \in E_{1}, x y \notin E_{2} \\
f_{D_{2}}^{n}(x y), & x y \notin E_{1}, x y \in E_{2} \\
f_{D_{1}}^{n}(x y) \vee f_{D_{2}}^{n}(x y), & x y \in E_{1} \cap E_{2}\end{cases} \\
& G_{1} \\
& x(0.5,0.2,0.3,-0.3,-0.2,-0.5) y(0.6,0.1,0.2,-0,2,-0.3,-0.5) \\
& G_{2} \\
& y\left(0.7,0.1,0.1, \frac{-0,2,-0.1,-0.7) w(0.5,0.2,0.0,-0,3,-0.2,-0.4)}{(0.5,0.2,0.1,-0,2,-0.2,-0.7)}\right. \\
& G_{1} \cup G_{2} \\
& x(0.5,0.2,0.3,-0.3,-0.2,-0.5) y(0.7,0.1,0.1,-0,2,-0.1,-0.5) w(0.5,0.2,0.0,-0,3,-0.2,-0.4)
\end{aligned}
$$

Figure 2: Union of two bipolar neutrosophic graphs
Example 3.2. The union of two bipolar neutrosophic graphs G_{1} and G_{2} is shown in Fig.2.
Proposition 3.1. Let G_{1} and G_{2} be any two bipolar neutrosophic graphs then $G_{1} \cup G_{2}$ is a bipolar neutrosophic graph.

Definition 3.4. The intersection of two bipolar neutrosophic graphs $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ is a pair $G_{1} \cap G_{2}=\left(C_{1} \cap C_{2}, D_{1} \cap D_{2}\right)$ where, $C_{1} \cap C_{2}$ is a bipolar neutrosophic set on $X_{1} \cap X_{2}$ and $D_{1} \cap D_{2}$ is a bipolar neutrosophic set on $E_{1} \cap E_{2}$. The membership degrees are defined as

$$
\begin{aligned}
& t_{C_{1} \cap C_{2}}^{p}(x)=t_{C_{1}}^{p}(x) \wedge t_{C_{2}}^{p}(y) \quad I_{C_{1} \cap C_{2}}^{p}(x) \quad=I_{C_{1}}^{p}(x) \vee I_{C_{2}}^{p}(y) \quad f_{C_{1} \cap C_{2}}^{p}(x)=f_{C_{1}}^{p}(x) \vee f_{C_{2}}^{p}(y) \\
& t_{C_{1} \cap C_{2}}^{n}(x)=t_{C_{1}}^{n}(x) \vee t_{C_{2}}^{n}(y) \quad I_{C_{1} \cap C_{2}}^{n}(x) \quad=I_{C_{1}}^{n}(x) \wedge I_{C_{2}}^{n}(y) \quad f_{C_{1} \cap C_{2}}^{n}(x)=f_{C_{1}}^{n}(x) \wedge f_{C_{2}}^{n}(y) \\
& \text { for all } \quad x \in X_{1} \cap X_{2} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& t_{D_{1} \cap D_{2}}^{p}(x y)=t_{D_{1}}^{p}(x y) \wedge t_{D_{2}}^{p}(x y) \quad I_{D_{1} \cap D_{2}}^{p}(x y)=I_{D_{1}}^{p}(x y) \vee I_{D_{2}}^{p}(x y) \quad f_{D_{1} \cap D_{2}}^{p}(x y)=f_{D_{1}}^{p}(x y) \vee f_{D_{2}}^{p}(x y) \\
& t_{D_{1} \cap D_{2}}^{n}(x y)=t_{D_{1}}^{n}(x y) \vee t_{D_{2}}^{n}(x y) \quad I_{D_{1} \cap D_{2}}^{n}(x y)=I_{D_{1}}^{n}(x y) \wedge I_{D_{2}}^{n}(x y) \quad f_{D_{1} \cap D_{2}}^{n}(x y)=f_{D_{1}}^{n}(x y) \wedge f_{D_{2}}^{n}(x y),
\end{aligned}
$$

for all $x y \in E_{1} \cap E_{2}$.

Example 3.3. The intersection of two bipolar neutrosophic graphs G_{1} and G_{2} shown in Fig. 2 is the vertex y with membership value $(0.6,0.1,0.2,-0.2,-0.3,-0.7)$.

Proposition 3.2. The intersection of any two bipolar neutrosophic graphs is also a bipolar netrosophic graph.

Definition 3.5. Let C_{1} and C_{2} be two bipolar neutrosophic subsets of the set of vertices X_{1} and X_{2} and D_{1}, D_{2} be the bipolar neutrosophic relations on X_{1} and X_{2}, respectively. The join of the bipolar neutrosophic graphs $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ is defined by the pair $G_{1}+G_{2}=\left(C_{1}+C_{2}, D_{1}+D_{2}\right)$ such that, $C_{1}+C_{2}=C_{1} \cup C_{2}$ for all $x \in X_{1} \cup X_{2}$ and

1. $D_{1}+D_{2}=D_{1} \cup D_{2}$ for all $x y \in E_{1} \cap E_{2}$,
2. Let E^{\prime} be the set of all edges joining the vertices of G_{1} and G_{2} then for all $x y \in E^{\prime}$, where $x \in X_{1}$ and $y \in X_{2}$,

$$
\begin{array}{lll}
t_{D_{1}+D_{2}}^{p}(x y)=t_{C_{1}}^{p}(x) \vee t_{C_{2}}^{p}(y), & I_{D_{1}+D_{2}}^{p}(x y)=I_{C_{1}}^{p}(x) \wedge I_{C_{2}}^{p}(y), & f_{D_{1}+D_{2}}^{p}(x y)=f_{C_{1}}^{p}(x) \wedge f_{C_{2}}^{p}(y) \\
t_{D_{1}+D_{2}}^{n}(x y)=t_{C_{1}}^{n}(x) \wedge t_{C_{2}}^{n}(y), & I_{D_{1}+D_{2}}^{n}(x y)=I_{C_{1}}^{n}(x) \vee I_{C_{2}}^{n}(y), & f_{D_{1}+D_{2}}^{n}(x y)=f_{C_{1}}^{n}(x) \vee f_{C_{2}}^{n}(y)
\end{array}
$$

Figure 3: Join of G_{1} and G_{2}.
Example 3.4. The join of two bipolar neutrosophic graphs G_{1} and G_{2} is shown in Fig.3.
Proposition 3.3. Let G_{1} and G_{2} be two bipolar neutrosophic graphs then $G_{1}+G_{2}$ is also a bipolar neutrosophic graph.

Definition 3.6. Let C_{1}, C_{2}, D_{1} and D_{2} be the bipolar neutrosophic subsets of X_{1}, X_{2}, E_{1} and E_{2}, respectively. We denote the cartesian product of G_{1} and G_{2} by the pair $G_{1} \square G_{2}=\left(C_{1} \square C_{2}, D_{1} \square D_{2}\right)$ and
define as:

$$
\begin{array}{lll}
t_{C_{1} \square C_{2}}^{p}(x)=t_{C_{1}}^{p}(x) \wedge t_{D_{2}}^{p}(x), & I_{C_{1} \square C_{2}}^{p}(x)=I_{C_{1}}^{p}(x) \vee I_{C_{2}}^{p}(x), & f_{C_{1} \square C_{2}}^{p}(x)=f_{C_{1}}^{p}(x) \vee f_{C_{2}}^{p}(x), \\
t_{C_{1} \square D_{2}}^{n}(x)=t_{C_{1}}^{n}(x) \vee t_{C_{2}}^{n}(x), & I_{C_{1} \square C_{2}}^{n}(x)=I_{C_{1}}^{n}(x) \wedge I_{C_{2}}^{n}(x), & f_{C_{1} \square C_{2}}^{n}(x)=f_{C_{1}}^{n}(x) \wedge f_{C_{2}}^{n}(x) .
\end{array}
$$

for all $x \in X_{1} \times X_{2}$.

1. $t_{D_{1} \square D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=t_{C_{1}}^{p}\left(x_{1}\right) \wedge t_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad t_{D_{1} \square D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=t_{C_{1}}^{p}\left(x_{1}\right) \vee t_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} \in X_{1}, x_{2} y_{2} \in E_{2}$,
2. $t_{D_{1} \square D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=t_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge t_{C_{2}}^{p}\left(x_{2}\right), \quad t_{D_{1} \square D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=t_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee t_{C_{2}}^{p}\left(x_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} \in X_{2}$,
3. $I_{D_{1} \square D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=I_{C_{1}}^{p}\left(x_{1}\right) \vee I_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad I_{D_{1} \square D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=I_{C_{1}}^{p}\left(x_{1}\right) \wedge I_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} \in X_{1}, x_{2} y_{2} \in E_{2}$,
4. $I_{D_{1} \square D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=I_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee I_{C_{2}}^{p}\left(x_{2}\right), \quad I_{D_{1} \square D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=I_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge I_{C_{2}}^{p}\left(x_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} \in X_{2}$,
5. $f_{D_{1} \square D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=f_{C_{1}}^{p}\left(x_{1}\right) \vee f_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad f_{D_{1} \square D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=f_{C_{1}}^{p}\left(x_{1}\right) \wedge f_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} \in X_{1}, x_{2} y_{2} \in E_{2}$,
6. $f_{D_{1} \square D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=f_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee f_{C_{2}}^{p}\left(x_{2}\right), \quad f_{D_{1} \square D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=f_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge f_{C_{2}}^{p}\left(x_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} \in X_{2}$.

Figure 4: Cartesian product $G_{1} \square G_{2}$
Example 3.5. The Cartesian product of two bipolar neutrosophic graphs G_{1} and G_{2} is shown in Fig.4.
Proposition 3.4. Let G_{1} and G_{2} be two bipolar neutrosophic graphs then $G_{1} \square G_{2}$ is also a bipolar neutrosophic graph.

Definition 3.7. Let C_{1}, C_{2}, D_{1} and D_{2} be the bipolar neutrosophic subsets of X_{1}, X_{2}, E_{1} and E_{2}, respectively. We denote the direct product of $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ by the pair $G_{1} \times G_{2}=$ $\left(C_{1} \times C_{2}, D_{1} \times D_{2}\right)$ and define the membership degrees as

$$
\begin{array}{lll}
t_{C_{1} \times C_{2}}^{p}(x)=t_{C_{1}}^{p}(x) \wedge t_{D_{2}}^{p}(x), & I_{C_{1} \times C_{2}}^{p}(x)=I_{C_{1}}^{p}(x) \vee I_{C_{2}}^{p}(x), & f_{C_{1} \times C_{2}}^{p}(x)=f_{C_{1}}^{p}(x) \vee f_{C_{2}}^{p}(x), \\
t_{C_{1} \times C_{2}}^{n}(x)=t_{C_{1}}^{n}(x) \vee t_{C_{2}}^{n}(x), & I_{C_{1} \times C_{2}}^{n}(x)=I_{C_{1}}^{n}(x) \wedge I_{C_{2}}^{n}(x), & f_{C_{1} \times C_{2}}^{n}(x)=f_{C_{1}}^{n}(x) \wedge f_{C_{2}}^{n}(x),
\end{array}
$$

for all $x \in X_{1} \times X_{2}$.

1. $t_{D_{1} \times D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=t_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge t_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad t_{D_{1} \times D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=t_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee t_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} y_{2} \in E_{2}$,
2. $I_{D_{1} \times D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=I_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee I_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad I_{D_{1} \times D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=I_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge I_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} y_{2} \in E_{2}$,
3. $f_{D_{1} \times D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=f_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee f_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad f_{D_{1} \times D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=f_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge f_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} y_{2} \in E_{2}$.

Figure 5: Direct product $G_{1} \times G_{2}$
Example 3.6. The direct product of two bipolar neutrosophic G_{1} and G_{2} graphs is shown in Figure. 5
Proposition 3.5. Let G_{1} and G_{2} be two bipolar neutrosophic graphs then $G_{1} \times G_{2}$ is also a bipolar neutrosophic graph.

Definition 3.8. Let C_{1}, C_{2}, D_{1} and D_{2} be the bipolar neutrosophic subsets of X_{1}, X_{2}, E_{1} and E_{2}, respectively. We denote the strong product of G_{1} and G_{2} by the pair $G_{1} \boxtimes G_{2}=\left(C_{1} \boxtimes C_{2}, D_{1} \boxtimes D_{2}\right)$ and define as:

$$
\begin{array}{lll}
t_{C_{1} \boxtimes C_{2}}^{p}(x)=t_{C_{1}}^{p}(x) \wedge t_{D_{2}}^{p}(x), & I_{C_{1} \boxtimes C_{2}}^{p}(x)=I_{C_{1}}^{p}(x) \vee I_{C_{2}}^{p}(x), & f_{C_{1} \boxtimes C_{2}}^{p}(x)=f_{C_{1}}^{p}(x) \vee f_{C_{2}}^{p}(x), \\
t_{C_{1} \boxtimes D_{2}}^{n}(x)=t_{C_{1}}^{n}(x) \vee t_{C_{2}}^{n}(x), & I_{C_{1} \boxtimes C_{2}}^{n}(x)=I_{C_{1}}^{n}(x) \wedge I_{C_{2}}^{n}(x), & f_{C_{1} \boxtimes C_{2}}^{n}(x)=f_{C_{1}}^{n}(x) \wedge f_{C_{2}}^{n}(x),
\end{array}
$$

for all $x \in X_{1} \times X_{2}$.

1. $t_{D_{1} \boxtimes D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=t_{C_{1}}^{p}\left(x_{1}\right) \wedge t_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad t_{D_{1} \boxtimes D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=t_{C_{1}}^{p}\left(x_{1}\right) \vee t_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} \in X_{1}, x_{2} y_{2} \in E_{2}$,
2. $t_{D_{1} \boxtimes D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=t_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge t_{C_{2}}^{p}\left(x_{2}\right), \quad t_{D_{1} \boxtimes D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=t_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee t_{C_{2}}^{p}\left(x_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} \in X_{2}$,
3. $t_{D_{1} \boxtimes D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=t_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge t_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad t_{D_{1} \boxtimes D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=t_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee t_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} y_{2} \in E_{2}$,
4. $I_{D_{1} \boxtimes D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=I_{C_{1}}^{p}\left(x_{1}\right) \vee I_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad I_{D_{1} \boxtimes D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=I_{C_{1}}^{p}\left(x_{1}\right) \wedge I_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} \in X_{1}, x_{2} y_{2} \in E_{2}$,
5. $I_{D_{1} \boxtimes D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=I_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee I_{C_{2}}^{p}\left(x_{2}\right), \quad I_{D_{1} \boxtimes D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=I_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge I_{C_{2}}^{p}\left(x_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} \in X_{2}$,
6. $I_{D_{1} \boxtimes D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=I_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee I_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad I_{D_{1} \boxtimes D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=I_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge I_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} y_{2} \in E_{2}$,
7. $f_{D_{1} \boxtimes D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=f_{C_{1}}^{p}\left(x_{1}\right) \vee f_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad f_{D_{1} \boxtimes D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=f_{C_{1}}^{p}\left(x_{1}\right) \wedge f_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} \in X_{1}, x_{2} y_{2} \in E_{2}$,
8. $f_{D_{1} \boxtimes D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=f_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee f_{C_{2}}^{p}\left(x_{2}\right), \quad f_{D_{1} \boxtimes D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\right)=f_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge f_{C_{2}}^{p}\left(x_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} \in X_{2}$,
9. $f_{D_{1} \boxtimes D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=f_{D_{1}}^{p}\left(x_{1} y_{1}\right) \vee f_{D_{2}}^{p}\left(x_{2} y_{2}\right), \quad f_{D_{1} \boxtimes D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right)=f_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge f_{D_{2}}^{p}\left(x_{2} y_{2}\right)$, for all $x_{1} y_{1} \in E_{1}, x_{2} y_{2} \in E_{2}$.

Figure 6: Strong product of G_{1} and G_{2}

Example 3.7. The strong product of two bipolar neutrosophic G_{1} and graphs G_{2} is shown in Fig. 6
Proposition 3.6. The strong product of any two bipolar neutrosophic graphs is a bipolar neutrosophic graph.
Definition 3.9. The complement of a bipolar neutrosophic graph $G=(C, D)$ is defined as a pair $G^{c}=$ $\left(C^{c}, D^{c}\right)$ such that, for all $x \in X$ and $x y \in E$,
$t_{C^{c}}^{p}(x)=t_{C}^{p}(x), \quad I_{C^{c}}^{p}(x)=I_{C}^{p}(x), \quad f_{C^{c}}^{p}(x)=f_{C}^{p}(x), \quad t_{C^{c}}^{n}(x)=t_{C}^{n}(x), \quad I_{C^{c}}^{n}(x)=I_{C}^{n}(x), \quad f_{C^{c}}^{p}(x)=f_{C}^{p}(x)$.
$t_{D^{c}}^{p}(x y)=t_{C}^{p}(x) \wedge t_{C}^{p}(y)-t_{D}^{p}(x y), \quad I_{D^{c}}^{p}(x y)=I_{C}^{p}(x) \vee I_{C}^{p}(y)-I_{D}^{p}(x y), \quad f_{D^{c}}^{p}(x y)=f_{C}^{p}(x) \vee f_{C}^{p}(y)-f_{D}^{p}(x y)$,
$t_{D^{c}}^{n}(x y)=t_{C}^{n}(x) \vee t_{C}^{n}(y)-t_{D}^{n}(x y), \quad I_{D^{c}}^{n}(x y)=I_{C}^{n}(x) \wedge I_{C}^{n}(y)-I_{D}^{n}(x y), \quad f_{D^{c}}^{n}(x y)=f_{C}^{n}(x) \wedge f_{C}^{n}(y)-f_{D}^{n}(x y)$.

Figure 7: Complement of G
Example 3.8. An example of complement of a bipolar neutrosophic G is shown in Fig. 7
Remark 3.1. A bipolar neutrosophic graph G is said to be self complementary if $G=G^{c}$.
Definition 3.10. A bipolar neutrosophic graph $G=(C, D)$ is known as strong bipolar neutrosophic graph if

$$
\begin{array}{lll}
t_{D^{c}}^{p}(x y)=t_{C}^{p}(x) \wedge t_{C}^{p}(y), & I_{D^{c}}^{p}(x y) & =I_{C}^{p}(x) \vee I_{C}^{p}(y), \quad f_{D^{c}}^{p}(x y)=f_{C}^{p}(x) \vee f_{C}^{p}(y), \\
t_{D^{c}}^{n}(x y)=t_{C}^{n}(x) \vee t_{C}^{n}(y), \quad I_{D^{c}}^{n}(x y)=I_{C}^{n}(x) \wedge I_{C}^{n}(y), \quad f_{D^{c}}^{n}(x y)=f_{C}^{n}(x) \wedge f_{C}^{n}(y), \quad \text { for all } \quad x y \in E .
\end{array}
$$

Theorem 3.1. Let G_{1} and G_{2} be strong bipolar neutrosophic graphs then $G_{1}+G_{2}, G_{1} \square G_{2}, G_{1} \times G_{2}$ and $G_{1} \boxtimes G_{2}$ are strong bipolar neutrosophic graphs.

Theorem 3.2. If $G_{1} \square G_{2}, G_{1} \times G_{2}$ and $G_{1} \boxtimes G_{2}$ are strong bipolar neutrosophic graphs then G_{1} and G_{2} are also strong.

Definition 3.11. A bipolar neutrosophic graph $G=(C, D)$ is known as complete bipolar neutrosophic graph if

$$
\begin{aligned}
& t_{D^{c}}^{p}(x y)=t_{C}^{p}(x) \wedge t_{C}^{p}(y), \quad I_{D^{c}}^{p}(x y)=I_{C}^{p}(x) \vee I_{C}^{p}(y), \quad f_{D^{c}}^{p}(x y)=f_{C}^{p}(x) \vee f_{C}^{p}(y), \\
& t_{D^{c}}^{n}(x y)=t_{C}^{n}(x) \vee t_{C}^{n}(y), \quad I_{D^{c}}^{n}(x y)=I_{C}^{n}(x) \wedge I_{C}^{n}(y), \quad f_{D^{c}}^{n}(x y)=f_{C}^{n}(x) \wedge f_{C}^{n}(y), \quad \text { for all } \quad x, y \in X
\end{aligned}
$$

Theorem 3.3. Let G be a self complementary bipolar neutrosophic graph then

$$
\begin{array}{ll}
\sum_{x \neq y} t_{D}^{p}(x y)=\frac{1}{2} \sum_{x \neq y} t_{C}^{p}(x) \wedge t_{C}^{p}(y), & \sum_{x \neq y} I_{D}^{p}(x y)=\frac{1}{2} \sum_{x \neq y} I_{C}^{p}(x) \vee I_{C}^{p}(y), \quad \sum_{x \neq y} f_{D}^{p}(x y)=\frac{1}{2} \sum_{x \neq y} f_{C}^{p}(x) \vee f_{C}^{p}(y) \\
\sum_{x \neq y} t_{D}^{n}(x y)=\frac{1}{2} \sum_{x \neq y} t_{C}^{n}(x) \wedge t_{C}^{n}(y), & \sum_{x \neq y} I_{D}^{n}(x y)=\frac{1}{2} \sum_{x \neq y} I_{C}^{n}(x) \vee I_{C}^{n}(y), \quad \sum_{x \neq y} f_{D}^{n}(x y)=\frac{1}{2} \sum_{x \neq y} f_{C}^{n}(x) \vee f_{C}^{n}(y)
\end{array}
$$

Theorem 3.4. Let $G=(C, D)$ be a bipolar neutrosophic graph such that for all $x, y \in X$,

$$
\begin{aligned}
t_{D^{c}}^{p}(x y) & =\frac{1}{2}\left(t_{C}^{p}(x) \wedge t_{C}^{p}(y)\right), & I_{D^{c}}^{p}(x y) & =\frac{1}{2}\left(I_{C}^{p}(x) \vee I_{C}^{p}(y)\right),
\end{aligned} \quad f_{D^{c}}^{p}(x y)=\frac{1}{2}\left(f_{C}^{p}(x) \vee f_{C}^{p}(y)\right),
$$

Then G is self complementary bipolar neutrosophic graph.

Proof. Let $G^{c}=\left(C^{c}, D^{c}\right)$ be the complement of bipolar neutrosophic graph $G=(C, D)$, then by definition. 3.9,

$$
\begin{aligned}
& t_{D^{c}}^{p}(x y)=t_{C}^{p}(x) \wedge t_{C}^{p}(y)-t_{D}^{p}(x y) \\
& t_{D^{c}}^{p}(x y)=t_{C}^{p}(x) \wedge t_{C}^{p}(y)-\frac{1}{2}\left(t_{C}^{p}(x) \wedge t_{C}^{p}(y)\right) \\
& t_{D^{c}}^{p}(x y)=\frac{1}{2}\left(t_{C}^{p}(x) \wedge t_{C}^{p}(y)\right) \\
& t_{D^{c}}^{p}(x y)=t_{D}^{p}(x y)
\end{aligned}
$$

$$
\begin{aligned}
& t_{D^{c}}^{n}(x y)=t_{C}^{n}(x) \vee t_{C}^{n}(y)-t_{D}^{n}(x y) \\
& t_{D^{c}}^{n}(x y)=t_{C}^{n}(x) \vee t_{C}^{n}(y)-\frac{1}{2}\left(t_{C}^{n}(x) \vee t_{C}^{n}(y)\right) \\
& t_{D^{c}}^{n}(x y)=\frac{1}{2}\left(t_{C}^{n}(x) \vee t_{C}^{n}(y)\right)
\end{aligned}
$$

$$
t_{D^{c}}^{p}(x y)=\frac{1}{2}\left(t_{C}^{p}(x) \wedge t_{C}^{p}(y)\right) \quad t_{D^{c}}^{n}(x y)=t_{D}^{n}(x y)
$$

Similarly, it can be proved that $I_{D^{c}}^{p}(x y)=I_{D}^{p}(x y), I_{D^{c}}^{n}(x y)=I_{D}^{n}(x y), f_{D^{c}}^{p}(x y)=f_{D}^{p}(x y)$ and $f_{D^{c}}^{n}(x y)=$ $f_{D}^{n}(x y)$. Hence, G is self complementary.

Definition 3.12. The degree of a vertex x in a bipolar neutrosophic graph is denoted by $\operatorname{deg}(x)$ and defined by the 6 -tuple as,

$$
\begin{aligned}
\operatorname{deg}(x) & =\left(d e g_{t}^{p}(x), \operatorname{de} g_{I}^{p}(x), d e g_{f}^{p}(x), d e g_{t}^{n}(x), d e g_{I}^{n}(x), d e g_{f}^{n}(x)\right), \\
& =\left(\sum_{x y \in E} t_{D}^{p}(x y), \sum_{x y \in E} I_{D}^{p}(x y), \sum_{x y \in E} f_{D}^{p}(x y), \sum_{x y \in E} t_{D}^{n}(x y), \sum_{x y \in E} I_{D}^{n}(x y), \sum_{x y \in E} f_{D}^{n}(x y)\right) .
\end{aligned}
$$

The term degree is also referred as neighborhood degree.
Definition 3.13. The closed neighborhood degree of a vertex x in a bipolar neutrosophic graph is denoted by $\operatorname{deg}[x]$ and defined as,

$$
\begin{aligned}
\operatorname{deg}[x] & =\left(d e g_{t}^{p}[x], \operatorname{deg}_{I}^{p}[x], \operatorname{deg} g_{f}^{p}[x], \operatorname{deg}_{t}^{n}[x], d e g_{I}^{n}[x], d e g_{f}^{n}[x],\right. \\
& =\left(\operatorname{deg} g_{t}^{p}(x)+t_{C}^{p}(x), \operatorname{deg} g_{I}^{p}(x)+I_{C}^{p}(x), d e g_{f}^{p}(x)+f_{C}^{p}(x), d e g_{t}^{n}(x)+t_{C}^{n}(x), d e g_{I}^{n}(x)+t_{C}^{n}(x),\right. \\
& \left.d e g_{f}^{n}(x)+f_{C}^{p}(x)\right)
\end{aligned}
$$

Definition 3.14. A bipolar neutrosophic graph G is known as a regular bipolar neutrosophic graph if all vertices of G have same degree.

Definition 3.15. A bipolar neutrosophic graph G is known as a totally regular bipolar neutrosophic graph if all vertices of G have same closed neighborhood degree.

Theorem 3.5. A complete bipolar neutrosophic graph is totally regular.
Theorem 3.6. Let $G=(C, D)$ be a bipolar neutrosohic graph then $C=\left(t^{p}, I^{p}, f^{p}, t^{n}, I^{n}, f^{n}\right)$ is a constant function if and only if the following statements are equivalent:
(1) G is a regular bipolar neutrosophic graph,
(2) G is totally regular bipolar neutrosophic graph.

Proof. Assume that C is a constant function and for all $x \in X$,

$$
t_{C}^{p}(x)=k_{t}, I_{C}^{p}(x)=k_{I}, f_{C}^{p}(x)=k_{f}, t_{C}^{n}(x)=k_{t}^{\prime}, I_{C}^{n}(x)=k_{I}^{\prime}, f_{C}^{n}(x)=k_{f}^{\prime}
$$

where, $k_{t}, k_{I}, k_{f}, k_{t}^{\prime}, k_{I}^{\prime}, k_{f}^{\prime}$ are constants.
$(1) \Rightarrow(2)$ Suppose that G is a regular bipolar neutrosophic graph and $\operatorname{deg}(x)=\left(p_{t}, p_{I}, p_{f}, n_{t}, n_{I}, n_{f}\right)$ for all $x \in X$.
Now consider,
$\operatorname{deg}[x]=\left(\operatorname{deg}_{t}^{p}(x)+t_{C}^{p}(x), \operatorname{deg}_{I}^{p}(x)+I_{C}^{p}(x), \operatorname{deg}_{f}^{p}(x)+f_{C}^{p}(x), \operatorname{deg}_{t}^{n}(x)+t_{C}^{n}(x), \operatorname{deg}_{I}^{n}(x)+t_{C}^{n}(x), \operatorname{deg}_{f}^{n}(x)+\right.$ $\left.f_{C}^{p}(x)\right)=\left(p_{t}+k_{t}, p_{I}+k_{I}, p_{f}+k_{f}, n_{t}+k_{t}^{\prime}, n_{I}+k_{I}^{\prime}, n_{f}+k_{f}^{\prime}\right) \quad$ for all $x \in X$.
Hence G is totally regular bipolar neutrosophic graph.
$(2) \Rightarrow(1)$ Suppose that G is totally regular bipolar neutrosophic graph and for all $x \in X d e g[x]=$ $\left(p_{t}^{\prime}, p_{I}^{\prime}, p_{f}^{\prime}, n_{t}^{\prime}, n_{I}^{\prime}, n_{f}^{\prime}\right)$.
$\left(\operatorname{deg}_{t}^{p}(x)+k_{t}, \operatorname{deg}_{I}^{p}(x)+k_{I}, \operatorname{deg}_{f}^{p}(x)+k_{f}, \operatorname{deg}_{t}^{n}(x)+k_{t}^{\prime}, \operatorname{deg}_{I}^{n}(x)+k_{I}^{\prime}, \operatorname{deg}_{f}^{n}(x)+k_{f}^{\prime}\right)=\left(p_{t}^{\prime}, p_{I}^{\prime}, p_{f}^{\prime}, n_{t}^{\prime}, n_{I}^{\prime}, n_{f}^{\prime}\right)$, $\left.\operatorname{deg}_{t}^{p}(x), \operatorname{deg}_{I}^{p}(x), \operatorname{deg}_{f}^{p}(x), \operatorname{deg}_{t}^{n}(x), \operatorname{deg}_{I}^{n}(x), \operatorname{deg}_{f}^{n}(x)\right)+\left(k_{t}, k_{I}, k_{f}, k_{t}^{\prime}, k_{I}^{\prime}, k_{f}^{\prime}\right)=\left(p_{t}^{\prime}, p_{I}^{\prime}, p_{f}^{\prime}, n_{t}^{\prime}, n_{I}^{\prime}, n_{f}^{\prime}\right)$,
$\left(\operatorname{deg}_{t}^{p}(x), \operatorname{deg}_{I}^{p}(x), \operatorname{deg}_{f}^{p}(x), \operatorname{deg}_{t}^{n}(x), \operatorname{deg}_{I}^{n}(x), \operatorname{deg}_{f}^{n}(x)\right)=\left(p_{t}^{\prime}-k_{t}, p_{I}^{\prime}-k_{I}, p_{f}^{\prime}-k_{f}, n_{t}^{\prime}-k_{t}^{\prime}, n_{I}^{\prime}-k_{I}^{\prime}, n_{f}^{\prime}-k_{f}^{\prime}\right)$,
for all $x \in X$. Thus G is a regular bipolar neutrosophic graph.
Conversely, assume that the conditions are equivalent. Let $\operatorname{deg}(x)=\left(c_{t}, c_{I}, c_{f}, d_{t}, d_{I}, d_{f}\right)$ and $\operatorname{deg}[x]=$ $\left(c_{t}^{\prime}, c_{I}^{\prime}, c_{f}^{\prime}, d_{t}^{\prime}, d_{I}^{\prime}, d_{f}^{\prime}\right)$.
Since by definition of closed neighborhood degree for all $x \in X$,
$\operatorname{deg}[x]=\operatorname{deg}(x)+\left(t_{C}^{p}(x), I_{C}^{p}(x), f_{C}^{p}(x), t_{C}^{n}(x), I_{C}^{n}(x), f_{C}^{p}(x)\right)$,
$\Rightarrow\left(t_{C}^{p}(x), I_{C}^{p}(x), f_{C}^{p}(x), t_{C}^{n}(x), I_{C}^{n}(x), f_{C}^{p}(x)\right)=\operatorname{deg}[x]-\operatorname{deg}(x)$,
$\Rightarrow\left(t_{C}^{p}(x), I_{C}^{p}(x), f_{C}^{p}(x), t_{C}^{n}(x), I_{C}^{n}(x), f_{C}^{p}(x)\right)=\left(c_{t}^{\prime}-c_{t}, c_{I}^{\prime}-c_{I}, c_{f}^{\prime}-c_{f}, d_{t}^{\prime}-d_{t}, d_{I}^{\prime}-d_{I}, d_{f}^{\prime}-d_{f}\right)$,
for all $x \in X$. Hence $C=\left(c_{t}^{\prime}-c_{t}, c_{I}^{\prime}-c_{I}, c_{f}^{\prime}-c_{f}, d_{t}^{\prime}-d_{t}, d_{I}^{\prime}-d_{I}, d_{f}^{\prime}-d_{f}\right)$, a constant function which completes the proof.

Definition 3.16. A bipolar neutrosophic graph G is said to be irregular if at least two vertices have distinct degrees. If all vertices do not have same closed neighborhood degrees then G is known as totally irregular bipolar neutrosophic graph.

Theorem 3.7. Let $G=(C, D)$ be a bipolar neutrosophic graph and $C=\left(t_{C}^{p}, I_{C}^{p}, f_{C}^{p}, t_{C}^{n}, I_{C}^{n}, f_{C}^{n}\right)$ be a constant function then G is an irregular bipolar neutrophic graph if and only if G is a totally irregular bipolar neutrophic graph.

Proof. Assume that G is an irregular bipolar neutrosophic graph then at least two vertices of G have distinct degrees. Let x and y be two vertices such that $\operatorname{deg}(x)=\left(r_{1}, r_{2}, r_{3}, s_{1}, s_{2}, s_{3}\right)$ and $\operatorname{deg}(y)=\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, s_{1}^{\prime}, s_{2}^{\prime}, s_{3}^{\prime}\right)$ where, $r_{i} \neq r_{i}^{\prime}$, for some $i=1,2,3$.
Since, C is a constant function let $C=\left(k_{1}, k_{2}, k_{3}, l_{1}, l_{2}, l_{3}\right)$. Therefore,

$$
\begin{aligned}
\operatorname{deg}[x] & =\operatorname{deg}(x)+\left(k_{1}, k_{2}, k_{3}, l_{1}, l_{2}, l_{3}\right) \\
\operatorname{deg}[x] & =\left(r_{1}+k_{1}, r_{2}+k_{2}, r_{3}+k_{3}, s_{1}+l_{1}, s_{2}+l_{2}, s_{3}+l_{3}\right) \\
\text { and } \quad \operatorname{deg}[y] & =\left(r_{1}^{\prime}+k_{1}, r_{2}^{\prime}+k_{2}, r_{3}^{\prime}+k_{3}, s_{1}^{\prime}+l_{1}, s_{2}^{\prime}+l_{2}, s_{3}^{\prime}+l_{3}\right) .
\end{aligned}
$$

Clearly $r_{i}+k_{i} \neq r_{i}^{\prime}+k_{i}$, for some $i=1,2,3$ therefore x and y have distinct closed neighborhood degrees. Hence G is a totally irregular bipolar neutrosophic graph.
The converse part is similar.

4 Domination in bipolar neutrosophic graph

Definition 4.1. Let $G=(C, D)$ be a bipolar neutrosophic graph and x, y are two vertices in G then we say that x dominates y if

$$
\begin{array}{llll}
t_{D}^{p}(x y)=t_{C}^{p}(x) \wedge t_{C}^{p}(y), & I_{D}^{p}(x y) & =I_{C}^{p}(x) \vee I_{C}^{p}(y), & f_{D}^{p}(x y)=f_{C}^{p}(x) \vee f_{C}^{p}(y), \\
t_{D}^{n}(x y)=t_{C}^{n}(x) \vee t_{C}^{n}(y), & I_{D}^{n}(x y) & =I_{C}^{n}(x) \wedge I_{C}^{n}(y), & f_{D}^{n}(x y)=f_{C}^{n}(x) \wedge f_{C}^{n}(y)
\end{array}
$$

A subset $D^{\prime} \subseteq X$ is called a dominating set if for each $y \in X \backslash D^{\prime}$ there exists $x \in D^{\prime}$ such that x dominates y. A dominating set D^{\prime} is said to be minimal if for any $x \in D^{\prime}, D^{\prime} \backslash\{x\}$ is not a dominating set. The minimum cardinality among all minimal dominating sets is called a domination number of G, denoted by $\lambda(G)$.

Figure 8: Bipolar neutrosophic graph G.

Example 4.1. Consider a bipolar neutrosophic graph as shown in Fig.8. The set $\{x, w\}$ is a minimal dominating set and $\lambda(G)=2$

Theorem 4.1. Let G_{1} and G_{2} be two bipolar neutrosophic graphs with D_{1}^{\prime} and D_{2}^{\prime} as dominating sets then $\lambda\left(G_{1} \cup G_{2}\right)=\lambda\left(G_{1}\right)+\lambda\left(G_{2}\right)-\left|D_{1}^{\prime} \cap D_{2}^{\prime}\right|$.

Proof. Since D_{1}^{\prime} and D_{2}^{\prime} are dominating sets of G_{1} and $G_{2}, D_{1}^{\prime} \cup D_{2}^{\prime}$ is a dominating set of $G_{1} \cup G_{2}$. Therefore, $\lambda\left(G_{1} \cup G_{2}\right) \leq\left|D_{1}^{\prime} \cup D_{2}^{\prime}\right|$. It only remains to show that $D_{1}^{\prime} \cup D_{2}^{\prime}$ is the minimum dominating set. On contrary, assume that $D^{\prime}=D_{1}^{\prime} \cup D_{2}^{\prime} \backslash\{x\}$ is a minimum dominating set of $G_{1} \cup G_{2}$. There are two cases,
Case 1. If $x \in D_{1}^{\prime}$ and $x \notin D_{2}^{\prime}$, then $D_{1}^{\prime} \backslash\{x\}$ is not a dominating set of G_{1} which implies that $D_{1}^{\prime} \cup D_{2}^{\prime} \backslash\{x\}=$ D^{\prime} is not a dominating set of $G_{1} \cup G_{2}$. A contradiction, hence $D_{1}^{\prime} \cup D_{2}^{\prime}$ is a minimum dominating set and

$$
\begin{array}{ll}
& \lambda\left(G_{1} \cup G_{2}\right)=\left|D_{1}^{\prime} \cup D_{2}^{\prime}\right| \\
\Rightarrow \quad & \lambda\left(G_{1} \cup G_{2}\right)=\lambda\left(G_{1}\right)+\lambda\left(G_{2}\right)-\left|D_{1}^{\prime} \cap D_{2}^{\prime}\right| .
\end{array}
$$

Case 2. If $x \in D_{2}^{\prime}$ and $x \notin D_{1}^{\prime}$, same contradiction can be obtained.
Theorem 4.2. Let G_{1} and G_{2} be two bipolar neutrosophic graphs with $X_{1} \cap X_{2} \neq \emptyset$ then,

$$
\lambda\left(G_{1}+G_{2}\right)=\min \left\{\lambda\left(G_{1}\right), \lambda\left(G_{1}\right), 2\right\}
$$

Proof. Let $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$, sine of $G_{1}+G_{2}$ is a bipolar neutrosophic graph, we have

$$
\begin{array}{lll}
t_{D_{1}+D_{2}}^{p}\left(x_{1} x_{2}\right)=t_{C_{1}+C_{2}}^{p}\left(x_{1}\right) \wedge t_{C_{1}+C_{2}}^{p}\left(x_{2}\right), & t_{D_{1}+D_{2}}^{n}\left(x_{1} x_{2}\right) & =t_{C_{1}+C_{2}}^{n}\left(x_{1}\right) \vee t_{C_{1}+C_{2}}^{n}\left(x_{2}\right) \\
I_{D_{1}+D_{2}}^{p}\left(x_{1} x_{2}\right)=I_{C_{1}+C_{2}}^{p}\left(x_{1}\right) \vee I_{C_{1}+C_{2}}^{p}\left(x_{2}\right), & I_{D_{1}+D_{2}}^{n}\left(x_{1} x_{2}\right) & =I_{C_{1}+C_{2}}^{n}\left(x_{1}\right) \wedge I_{C_{1}+C_{2}}^{n}\left(x_{2}\right) \\
f_{D_{1}+D_{2}}^{p}\left(x_{1} x_{2}\right)=f_{C_{1}+C_{2}}^{p}\left(x_{1}\right) \vee f_{C_{1}+C_{2}}^{p}\left(x_{2}\right), & f_{D_{1}+D_{2}}^{n}\left(x_{1} x_{2}\right) & =f_{C_{1}+C_{2}}^{n}\left(x_{1}\right) \wedge f_{C_{1}+C_{2}}^{n}\left(x_{2}\right) .
\end{array}
$$

Hence any vertex of G_{1} dominates all vertices of G_{2} and similarly any vertex of G_{2} dominates all vertices of G_{1}. So, $\left\{x_{1}, x_{2}\right\}$ is a dominating set of $G_{1}+G_{2}$. Let D be a minimum dominating set of $G_{1}+G_{2}$, then D is one of the following forms:

1. $D=D_{1}$ where, $\lambda\left(G_{1}\right)=\left|D_{1}\right|$,
2. $D=D_{2}$ where, $\lambda\left(G_{2}\right)=\left|D_{2}\right|$,
3. $D=\left\{x_{1}, x_{2}\right\}$ where, $x_{1} \in V_{1}$ and $x_{2} \in V_{2} .\left\{x_{1}\right\}$ and $\left\{x_{2}\right\}$ are not dominating sets of G_{1} or G_{2}, respectively.

Hence,

$$
\lambda\left(G_{1}+G_{2}\right)=\min \left\{\lambda\left(G_{1}\right), \lambda\left(G_{1}\right), 2\right\}
$$

Theorem 4.3. Let $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ be two bipolar neutrosophic graphs. If for $x_{1} \in V_{1}$, $C_{1}\left(x_{1}\right)>\boldsymbol{O}$ where, $\boldsymbol{O}=(0,0,0,0,0,0)$, and x_{2} dominates y_{2} in G_{2} then $\left(x_{1}, y_{1}\right)$ dominates $\left(x_{1}, y_{2}\right)$ in $G_{1} \square G_{2}$.

Proof. Since x_{2} dominates y_{2} therefore,

$$
\begin{array}{lll}
t_{D_{2}}^{p}\left(x_{2} y_{2}\right)=t_{C_{2}}^{p}\left(x_{2}\right) \wedge t_{C_{2}}^{p}\left(y_{2}\right), & I_{D_{2}}^{p}\left(x_{2} y_{2}\right)=I_{C_{2}}^{p}\left(x_{2}\right) \vee I_{C_{2}}^{p}\left(y_{2}\right), & f_{D_{2}}^{p}\left(x_{2} y_{2}\right)=f_{C_{2}}^{p}\left(x_{2}\right) \vee f_{C_{2}}^{p}\left(y_{2}\right), \\
t_{D_{2}}^{n}\left(x_{2} y_{2}\right)=t_{C_{2}}^{n}\left(x_{2}\right) \vee t_{C_{2}}^{n}\left(y_{2}\right), & I_{D_{2}}^{n}\left(x_{2} y_{2}\right)=I_{C_{2}}^{n}\left(x_{2}\right) \wedge I_{C_{2}}^{n}\left(y_{2}\right), & f_{D_{2}}^{n}\left(x_{2} y_{2}\right)=f_{C_{2}}^{n}\left(x_{2}\right) \wedge f_{C_{2}}^{n}\left(y_{2}\right)
\end{array}
$$

For $x_{1} \in X_{1}$, take $\left(x_{1}, y_{2}\right) \in X_{1} \times X_{2}$. By definition 3.6,

$$
\begin{aligned}
t_{D_{1} \square D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right) & =t_{C_{1}}^{p}\left(x_{1}\right) \wedge t_{D_{2}}^{p}\left(x_{2} y_{2}\right), \\
& =t_{C_{1}}^{p}\left(x_{1}\right) \wedge\left\{t_{C_{2}}^{p}\left(x_{2}\right) \wedge t_{C_{2}}^{p}\left(y_{2}\right)\right\}, \\
& =\left\{t_{C_{1}}^{p}\left(x_{1}\right) \wedge t_{C_{2}}^{p}\left(x_{2}\right)\right\} \wedge\left\{t_{C_{1}}^{p}\left(x_{1}\right) \wedge t_{C_{2}}^{p}\left(y_{2}\right)\right\}, \\
& =t_{C_{1} \square C_{2}}^{p}\left(x_{1}, x_{2}\right) \wedge t_{C_{1} \square C_{2}}^{p}\left(x_{1}, y_{2}\right) . \\
t_{D_{1} \square D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right) & =t_{C_{1}}^{n}\left(x_{1}\right) \vee t_{D_{2}}^{n}\left(x_{2} y_{2}\right), \\
& =t_{C_{1}}^{n}\left(x_{1}\right) \vee\left\{t_{C_{2}}^{n}\left(x_{2}\right) \vee t_{C_{2}}^{n}\left(y_{2}\right)\right\}, \\
& =\left\{t_{C_{1}}^{n}\left(x_{1}\right) \vee t_{C_{2}}^{n}\left(x_{2}\right)\right\} \vee\left\{t_{C_{1}}^{n}\left(x_{1}\right) \vee t_{C_{2}}^{n}\left(y_{2}\right)\right\}, \\
& =t_{C_{1} \square C_{2}}^{n}\left(x_{1}, x_{2}\right) \vee t_{C_{1} \square C_{2}}^{n}\left(x_{1}, y_{2}\right) .
\end{aligned}
$$

Similarly, it can be proved that

$$
\begin{aligned}
& I_{D_{1} \square D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=I_{C_{1} \square C_{2}}^{p}\left(x_{1}, x_{2}\right) \vee I_{C_{1} \square C_{2}}^{p}\left(x_{1}, y_{2}\right), \\
& I_{D_{1} \square D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=I_{C_{1} \square C_{2}}^{n}\left(x_{1}, x_{2}\right) \wedge I_{C_{1} \square C_{2}}^{n}\left(x_{1}, y_{2}\right), \\
& f_{D_{1} \square D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=f_{C_{1} \square C_{2}}^{p}\left(x_{1}, x_{2}\right) \vee f_{C_{1} \square C_{2}}^{p}\left(x_{1}, y_{2}\right), \\
& f_{D_{1} \square D_{2}}^{n}\left(\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\right)=f_{C_{1} \square C_{2}}^{n}\left(x_{1}, x_{2}\right) \wedge f_{C_{1} \square C_{2}}^{n}\left(x_{1}, y_{2}\right) .
\end{aligned}
$$

Hence $\left(x_{1}, x_{2}\right)$ dominates $\left(x_{1}, y_{2}\right)$ and the proof is complete.
Proposition 4.1. Let G_{1} and G_{2} be two bipolar neutrosophic graphs. If for $y_{2} \in X_{2}, C_{2}\left(y_{2}\right)>\boldsymbol{O}$ where, $\boldsymbol{O}=(0,0,0,0,0,0)$, and x_{1} dominates y_{1} in G_{1} then $\left(x_{1}, y_{2}\right)$ dominates $\left(y_{1}, y_{2}\right)$ in $G_{1} \square G_{2}$.

Theorem 4.4. Let D_{1}^{\prime} and D_{2}^{\prime} be the minimal dominating sets of $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$, respectively. Then $D_{1}^{\prime} \times X_{2}$ and $X_{1} \times D_{2}^{\prime}$ are dominating sets of $G_{1} \square G_{2}$ and

$$
\begin{equation*}
\lambda\left(G_{1} \square G_{2}\right) \leq\left|D_{1}^{\prime} \times X_{2}\right| \wedge\left|X_{1} \times D_{2}^{\prime}\right| \tag{4.1}
\end{equation*}
$$

Proof. To prove inequality 4.1, we need to show that $D_{1}^{\prime} \times X_{2}$ and $X_{1} \times D_{2}^{\prime}$ are dominating sets of $G_{1} \square G_{2}$. Let $\left(y_{1}, y_{2}\right) \notin D_{1}^{\prime} \times X_{2}$ then, $y_{1} \notin D_{1}^{\prime}$. Since D_{1}^{\prime} is a dominating set of G_{1}, there exists $x_{1} \in D_{1}^{\prime}$ that dominates y_{1}. By theorem 4.1, $\left(x_{1}, y_{2}\right)$ dominates $\left(y_{1}, y_{2}\right)$ in $G_{1} \square G_{2}$. Since $\left(y_{1}, y_{2}\right)$ was taken to be arbitrary therefore, $D_{1}^{\prime} \times X_{2}$ is a dominating set of $G_{1} \square G_{2}$. Similarly, $X_{1} \times D_{2}^{\prime}$ is a dominating set if $G_{1} \square G_{2}$. Hence the proof.

Theorem 4.5. Let D_{1}^{\prime} and D_{2}^{\prime} be the dominating sets of $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$, respectively. Then $D_{1}^{\prime} \times D_{2}^{\prime}$ is a dominating set of the direct product $G_{1} \times G_{2}$ and

$$
\begin{equation*}
\lambda\left(G_{1} \times G_{2}\right)=\left|D_{1}^{\prime} \times D_{2}^{\prime}\right| \tag{4.2}
\end{equation*}
$$

Proof. Let $\left(y_{1}, y_{2}\right) \in X_{1} \times X_{2} \backslash D_{1}^{\prime} \times D_{2}^{\prime}$ then $y_{1} \in X_{1} \backslash D_{1}^{\prime}$ and $y_{2} \in X_{2} \backslash D_{2}^{\prime}$. Since, D_{1}^{\prime} and D_{2}^{\prime} are dominating sets there exist $x_{1} \in D_{1}^{\prime}$ and $x_{2} \in D_{2}^{\prime}$ such that x_{1} dominates y_{1} and x_{2} dominates y_{2}. Consider,

$$
\begin{aligned}
t_{D_{1} \times D_{2}}^{p}\left(\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right) & =t_{D_{1}}^{p}\left(x_{1} y_{1}\right) \wedge t_{D_{2}}^{p}\left(x_{2} y_{2}\right), \\
& =\left\{t_{C_{1}}^{p}\left(x_{1}\right) \wedge t_{C_{1}}^{p}\left(y_{1}\right)\right\} \wedge\left\{t_{C_{2}}^{p}\left(x_{2}\right) \wedge t_{C_{2}}^{p}\left(y_{2}\right)\right\}, \\
& =\left\{t_{C_{1}}^{p}\left(x_{1}\right) \wedge t_{C_{2}}^{p}\left(x_{2}\right)\right\} \wedge\left\{t_{C_{1}}^{p}\left(y_{1}\right) \wedge t_{C_{2}}^{p}\left(y_{2}\right)\right\}, \\
& =t_{C_{1} \times C_{2}}^{p}\left(x_{1}, x_{2}\right) \wedge t_{C_{1} \times C_{2}}^{p}\left(y_{1}, y_{2}\right) .
\end{aligned}
$$

It shows that $\left(x_{1}, x_{2}\right)$ dominates $\left(y_{1}, y_{2}\right)$. Since $\left(x_{1}, x_{2}\right)$ was taken to be arbitrary therefore, every element of $X_{1} \times X_{2} \backslash D_{1}^{\prime} \times D_{2}^{\prime}$ is dominated by some element of $D_{1}^{\prime} \times D_{2}^{\prime}$. It only remains to show that $D_{1}^{\prime} \times D_{2}^{\prime}$ is a minimal dominating set. On contrary assume that $\left|D^{\prime}\right|=D_{1}^{\prime} \times D_{2}^{\prime} \backslash\left\{\left(z_{1}, z_{2}\right)\right\}$ is a minimal dominating set of $G_{1} \times G_{2}$ such that $\left|D^{\prime}\right|<\left|D_{1}^{\prime} \times D_{2}^{\prime}\right|$. Let $\left(z_{1}, z_{2}\right) \in D_{1}^{\prime} \times D_{2}^{\prime}$ such that $\left(z_{1}, z_{2}\right) \notin D^{\prime}$ i.e., $z_{1} \in D_{1}^{\prime}$ and $z_{2} \in D_{2}^{\prime}$ then there exist $z_{1}^{\prime} \in X_{1} \backslash D_{1}^{\prime}$ and $z_{2}^{\prime} \in X_{2} \backslash D_{2}^{\prime}$ which are only dominated by z_{1} and z_{2}, respectively. Hence no element other than $\left(z_{1}, z_{2}\right)$ dominates $\left(z_{1}^{\prime}, z_{2}^{\prime}\right)$ so $\left(z_{1}, z_{2}\right) \in D^{\prime}$. A contradiction, thus $\lambda\left(G_{1} \times G_{2}\right)=\left|D_{1} \times D_{2}\right|$.

Corollary 4.1. Let G_{1} and G_{2} be two bipolar neutrosophic graphs. If x_{1} dominates y_{1} in G_{1} and x_{2} dominates y_{2} in G_{2} then $\left(x_{1}, y_{1}\right)$ dominates $\left(x_{2}, y_{2}\right)$ in $G_{1} \times G_{2}$.

Definition 4.2. Two vertices x and y in a bipolar neutrosophic graph are said to be independent if

$$
\begin{array}{llll}
t_{D}^{p}(x y)<t_{C}^{p}(x) \wedge t_{C}^{p}(y), & I_{D}^{p}(x y) & <I_{C}^{p}(x) \vee I_{C}^{p}(y), & f_{D}^{p}(x y)<f_{C}^{p}(x) \vee f_{C}^{p}(y) \\
t_{D}^{n}(x y)>t_{C}^{n}(x) \vee t_{C}^{n}(y), & I_{D}^{n}(x y) & >I_{C}^{n}(x) \wedge I_{C}^{n}(y), & f_{D}^{n}(x y)>f_{C}^{n}(x) \wedge f_{C}^{n}(y) \tag{4.3}
\end{array}
$$

A subset N of X is said to bipolar neutrosophic independent set if for all $x, y \in N$ equations 4.3 are satisfied. A bipolar neutrosophic independent set is said to be maximal if for every $z \in X \backslash N, N \cup\{z\}$ is not a bipolar neutrosophic independent set. The maximal cardinality among all maximal independent sets is called bipolar neutrosophic independent number. It is denoted by $\alpha(G)$.

Theorem 4.6. Let G_{1} and G_{2} be two bipolar neutrosophic graphs of the graphs $G_{1}^{*}=\left(X_{1}, E_{1}\right)$ and $G_{2}^{*}=$ $\left(X_{2}, E_{2}\right)$ such that $X_{1} \cap X_{2}=\emptyset$ then $\alpha\left(G_{1} \cup G_{2}\right)=\alpha\left(G_{1}\right)+\alpha\left(G_{2}\right)$.

Proof. Let N_{1} and N_{2} be maximal bipolar neutrosophic independent sets of G_{1} and G_{2}. Since $N_{1} \cap N_{2}=\emptyset$ therefore, $N_{1} \cup N_{2}$ is a maximal independent set of $G_{1} \cup G_{2}$. Hence $\alpha\left(G_{1} \cup G_{2}\right)=\alpha\left(G_{1}\right)+\alpha\left(G_{2}\right)$.

Theorem 4.7. Let G_{1} and G_{2} be two bipolar neutrosophic graphs then $\alpha\left(G_{1}+G_{2}\right)=\alpha\left(G_{1}\right) \vee \alpha\left(G_{2}\right)$.

Proof. Let N_{1} and N_{2} be maximal bipolar neutrosophic independent sets. Since every vertex of G_{1} dominates every vertex of G_{2} in $G_{1}+G_{1}$ Hence, maximal bipolar neutrosophic independent set of $G_{1}+G_{2}$ is either N_{1} or N_{2}. Thus, $\alpha\left(G_{1}+G_{2}\right)=\alpha\left(G_{1}\right) \vee \alpha\left(G_{2}\right)$.

Theorem 4.8. Let N_{1} and N_{2} be the maximal bipolar neutrosophic independent sets of G_{1} and G_{2}, respectively and $X_{1} \cap X_{2}=\emptyset$. Then $\alpha\left(G_{1} \square G_{2}\right)=\left|N_{1} \times N_{2}\right|+|N|$ where, $N=\left\{\left(x_{i}, y_{i}\right): x_{i} \in X_{1} \backslash N_{1}, y_{i} \in\right.$ $\left.X_{2} \backslash N_{2}, x_{i} x_{i+1} \in E_{1}, y_{i} y_{i+1} \in E_{2}, \quad i=1,2,3, \cdots\right\}$.

Proof. N_{1} and N_{2} are maximal independent sets of G_{1} and G_{2}, respectively. Clearly, $N_{1} \times N_{2}$ is an independent set of $G_{1} \square G_{2}$ since no vertex of $N_{1} \times N_{2}$ dominates any other vertex of $N_{1} \times N_{2}$.
Consider the set of vertices $N=\left\{\left(x_{i}, y_{i}\right): x_{i} \in X_{1} \backslash N_{1}, y_{i} \in X_{2} \backslash N_{2}, x_{i} x_{i+1} \in E_{1}, y_{i} y_{i+1} \in E_{2}\right\}$. It can be seen that no vertex $\left(x_{i}, y_{i}\right) \in N$ for each $i=1,2,3, \cdots$ dominates $\left(x_{i+1}, y_{i+1}\right) \in N$ for each $i=1,2,3, \cdots$. Hence $N^{\prime}=\left(N_{1} \times N_{2}\right) \cup N$ is an independent set of $G_{1} \square G_{2}$.
Assume that $S=N^{\prime} \cup\left\{\left(x_{i}, y_{j}\right)\right\}$, for some $i \neq j, x_{i} \in X_{1} \backslash N_{1}$ and $y_{j} \in X_{2} \backslash N_{2}$, is a maximal independent set. Without loss of generality, assume that $\mathrm{j}=\mathrm{i}+1$ then $\left(x_{i}, y_{j}\right)$ is dominated by $\left(x_{i}, y_{i}\right)$. A contradiction, hence N^{\prime} is a maximal independent set and $\alpha\left(G_{1} \square G_{2}\right)=\left|N^{\prime}\right|=\left|N_{1} \times N_{2}\right|+|N|$

Theorem 4.9. Let D_{1} and D_{2} be two minimal dominating sets of G_{1} and G_{2}, respectively. Then $X_{1} \times$ $X_{2} \backslash D_{1} \times D_{2}$ is a maximal independent set of $G_{1} \times G_{2}$ and $\alpha\left(G_{1} \times G_{2}\right)=n_{1} n_{2}-\lambda\left(G_{1} \times G_{2}\right)$ where, n_{1} and n_{2} are the number of vertices in G_{1} and G_{2}.

The proof is obvious.
Theorem 4.10. A bipolar neutrosophic independent set of a bipolar neutrosophic graph $G=(C, D)$ is maximal if and only if it is independent and dominating.

Proof. Let N be a maximal independent set of G, then for every $x \in X \backslash N, N \cup\{x\}$ is not an independent set. For every vertex $x \in X \backslash N$, there exists some $y \in N$ such that

$$
\begin{array}{llll}
t_{D}^{p}(x y)=t_{C}^{p}(x) \wedge t_{C}^{p}(y), & I_{D}^{p}(x y) & =I_{C}^{p}(x) \vee I_{C}^{p}(y), & f_{D}^{p}(x y)=f_{C}^{p}(x) \vee f_{C}^{p}(y) \\
t_{D}^{n}(x y)=t_{C}^{n}(x) \vee t_{C}^{n}(y), & I_{D}^{n}(x y) & =I_{C}^{n}(x) \wedge I_{C}^{n}(y), & f_{D}^{n}(x y)=f_{C}^{n}(x) \wedge f_{C}^{n}(y)
\end{array}
$$

Thus y dominates x and hence N is both independent and dominating set.
Conversely, assume that D is both independent and dominating set but not maximal independent set, so there exists a vertex $x \in X \backslash N$ such that $N \cup\{x\}$ is an independent set i.e., no vertex in N dominates x, a contradiction to the fact that N is a dominating set. Hence N is maximal.

Theorem 4.11. Every maximal independent set in a bipolar neutrosophic set is a minimal dominating set.

Proof. Let N be a maximal independent set in a bipolar neutrosophic graph then by theorem $4.10, N$ is a dominating set. Suppose N is not a minimal dominating set, there exists at least one $y \in N$ for which $N \backslash\{y\}$ is a dominating set. But if $N \backslash\{y\}$ dominates $X \backslash\{N \backslash\{y\}\}$, then at least one vertex in $N \backslash\{y\}$ dominates y. A contradiction to the fact that N is a bipolar neutrosophic independent set of G. Hence N is a minimal dominating set.

5 Applications

In this section, we present a method for the identification of risk in decision support systems. The method is explained by an example for prevention of accidental hazards in chemical industry. The application of domination in bipolar neutrosophic graphs is given for the construction of transmission stations.

(1) An outranking approach for safety analysis using bipolar neutrosophic sets

The proposed methodology can be implemented in various fields in different ways e.g., multi-criteria decision making problems with bipolar neutrosophic information. However, our main focus is the identification of risk assessments in industry which is described in the following steps.
The bipolar neutrosophic information consists of a group of risks \backslash alternatives $R=\left\{r_{1}, r_{2}, \cdots, r_{n}\right\}$ evaluated on the basis of criteria $C=\left\{c_{1}, c_{2}, \cdots, c_{m}\right\}$. Here $r_{i}, i=1,2, \cdots, n$ is the possibility for the criteria $c_{k}, k=1,2, \cdots, m$ and $r_{i k}$ are in the form of bipolar neutrosophic values. This method is suitable if we have a small set of data and experts are able to evaluate the data in the form of bipolar neutrosophic information. Take the values of $r_{i k}$ as $r_{i k}=\left(t_{i k}^{p}, I_{i k}^{p}, f_{i k}^{p}, t_{i k}^{n}, I_{i k}^{n}, f_{i k}^{n}\right)$.
Step 1. Construct the table of the given data.
Step 2. Determine the average values using the following bipolar neutrosophic average operator,

$$
\begin{equation*}
A_{i}=\frac{1}{n}\left(\sum_{j=1}^{m} t_{i j}^{p}-\prod_{j=1}^{m} t_{i j}^{p}, \prod_{j=1}^{m} I_{i j}^{p}, \prod_{j=1}^{m} f_{i j}^{p}, \prod_{j=1}^{m} t_{i j}^{n}, \sum_{j=1}^{m} I_{i j}^{n}-\prod_{j=1}^{m} I_{i j}^{n}, \sum_{j=1}^{m} f_{i j}^{n}-\prod_{j=1}^{m} f_{i j}^{n}\right) \tag{5.1}
\end{equation*}
$$

for each $i=1,2, \cdots, n$.
Step 3. Construct the weighted average matrix.
Choose the weight vector $\mathbf{w}=\left(w_{1}, w_{2}, \cdots, w_{n}\right)$. According to the weights for each alternative, the weighted average table can be calculated by multiplying each average value with the corresponding weight as:

$$
\beta_{i}=A_{i} w_{i}, \quad i=1,2, \cdots, n
$$

Step 4. Calculate the normalized value for each alternative \backslash risk β_{i} using the formula,

$$
\begin{equation*}
\alpha_{i}=\sqrt{\left(t_{i}^{p}\right)^{2}+\left(I_{i}^{p}\right)^{2}+\left(f_{i}^{p}\right)^{2}+\left(1-t_{i}^{n}\right)^{2}+\left(-1+I_{i}^{n}\right)^{2}+\left(-1+f_{i}^{n}\right)^{2}} \tag{5.2}
\end{equation*}
$$

for each $i=1,2, \cdots, n$. The resulting table indicate the preference ordering of the alternatives \backslash risks. The alternative \backslash risk with maximum α_{i} value is most dangerous or more preferable.

Example 5.1. Chemical industry is a very important part of human society. These industries contain large amount of organic and inorganic chemicals and materials. Many chemical products have a high risk of fire due to flammable materials, large explosions and oxygen deficiency etc. These accidents can cause the death of employs, damages to building, destruction of machines and transports, economical losses etc. Therefore, it is very important to prevent these accidental losses by identifying the major risks of fire, explosions and oxygen deficiency.
A manager of a chemical industry Y wants to prevent such types of accidents that caused the major loss to company in the past. He collected data from witness reports, investigation teams and near by chemical industries and found that the major causes could be the chemical reactions, oxidizing materials, formation of toxic substances, electric hazards, oil spill, hydrocarbon gas leakage and energy systems. The witness reports, investigation teams and industries have different opinions. There is a bipolarity in people's thinking and judgement. The data can be considered as bipolar neutrosophic information. The bipolar neutrosophic information about company Y old accidents is given in Table 1:

Table 1: Bipolar neutrosophic Data

	Fire	Oxygen Deficiency	Large Explosion
Chemical Exposures	$(0.5,0.7,0.2,-0.6,-0.3,-0.7)$	$(0.1,0.5,0.7,-0.5,-0.2,-0.8)$	$(0.6,0.2,0.3,-0.4,0.0,-0.1)$
Oxidizing materials	$(0.9,0.7,0.2,-0.8,-0.6,-0.1)$	$(0.3,0.5,0.2,-0.5,-0.5,-0.2)$	$(0.9,0.5,0.5,-0.6,-0.5,-0.2)$
Toxic vapour cloud	$(0.7,0.3,0.1,-0.4,-0.1,-0.3)$	$(0.6,0.3,0.2,-0.5,-0.3,-0.3)$	$(0.5,0.1,0.2,-0.6,-0.2,-0.2)$
Electric Hazard	$(0.3,0.4,0.2,-0.6,-0.3,-0.7)$	$(0.9,0.4,0.6,-0.1,-0.7,-0.5)$	$(0.7,0.6,0.8,-0.7,-0.5,-0.1)$
Oil Spill	$(0.7,0.5,0.3,-0.4,-0.2,-0.2)$	$(0.2,0.2,0.2,-0.7,-0.4,-0.4)$	$(0.9,0.2,0.7,-0.1,-0.6,-0.8)$
Hydrocarbon gas leak-	$(0.5,0.3,0.2,-0.5,-0.2,-0.2)$	$(0.3,0.2,0.3,-0.7,-0.4,-0.3)$	$(0.8,0.2,0.1,-0.1,-0.9,-0.2)$
age			
Ammonium Nitrate	$(0.3,0.2,0.3,-0.5,-0.6,-0.5)$	$(0.9,0.2,0.1,0.0,-0.6,-0.5)$	$(0.6,0.2,0.1,-0.2,-0.3,-0.5)$

By applying the bipolar neutrosophic average operator 5.1 on Table 1, the average values are given in Table.2.

Table 2: Bipolar neutrosophic average normalized table

	Average Value
Chemical Exposures	$(0.39,0.023,0.014,-0.04,-0.167,-0.515)$
Oxidizing materials	$(0.619,0.032,0.001,-0.08,-0.483,-0.165)$
Toxic vapour cloud	$(0.53,0.003,0.001,-0.04,-0.198,-0.261)$
Electric Hazard	$(0.570,0.032,0.032,-0.014,-0.465,-0.422)$
Oil Spill	$(0.558,0.007,0.014,-0.009,-0.384,-0.445)$
Hydrocarbon gas leakage	$(0.493,0.004,0.002,-0.011,-0.543,-0.229)$
Ammonium Nitrate	$(0.546,0.003,0.001,0.0,-0.464,-0.417)$

With regard to the weight vector $(0.35,0.80,0.30,0.275,0.65,0.75,0.50)$ associated to each cause of accident, the weighted average values are obtained by multiplying each average value with corresponding weight and are given in Table 3.

Table 3: Bipolar neutrosophic weighted average table

	Average Value
Chemical Exposures	$(0.1365,0.0081,0.0049,-0.0140,-0.0585,-0.1803)$
Oxidizing materials	$(0.4952,0.0256,0.0008,-0.0640,-0.3864,-0.1320)$
Toxic vapour cloud	$(0.1590,0.0009,0.0003,-0.012,-0.0594,-0.0783)$
Electric Hazard	$(0.2850,0.0160,0.0160,-0.0070,-0.2325,-0.2110)$
Oil Spill	$(0.1535,0.0019,0.0039,-0.0025,-0.1056,-0.1224)$
Hydrocarbon gas leakage	$(0.3205,0.0026,0.0013,-0.0072,-0.3530,-0.1489)$
Ammonium Nitrate	$(0.4095,0.0023,0.0008,0.0,-0.3480,-0.2110)$

Using formula 5.2, the resulting normalized values are shown in Table 4.

Table 4: Normalized values

	Normalized value
Chemical Exposures	1.5966
Oxidizing materials	1.5006
Toxic vapour cloud	1.6540
Electric Hazard	1.6090
Oil Spill	1.4938
Hydrocarbon gas leakage	1.6036
Ammonium Nitrate	1.5089

The accident possibilities can be placed in the following order: Toxic vapour cloud \succ Electric Hazard \succ Hydrocarbon gas leakage \succ Chemical Exposures \succ Ammonium Nitrate \succ Oxidizing materials \succ Oil Spill where, the symbol \succ represents partial ordering of objects. It can be easily seen that the formation of toxic vapour clouds, electrical and energy systems and hydrocarbon gas leakage are the major dangers to the chemical industry. There is a very little danger due to oil spill. Chemical Exposures, oxidizing materials and ammonium nitrate has an average accidental danger. Therefore, industry needs special precautions to prevent the major hazards that could happen due the formation of toxic vapour clouds.

(2) Domination in bipolar neutrosophic graphs

Domination has a wide variety of applications in communication networks, coding theory, fixing surveillance cameras, detecting biological proteins and social networks etc. Consider the example of a TV channel that wants to set up transmission stations in a number of cities such that every city in the country get access to the channel signals from at least one of the stations. To reduce the cost for building large stations it is required to set up minimum number of stations. This problem can be represented by a neutrosophic graph in which vertices represent the cities and there is an edge between two cities if they can communicate directly with each other. Consider the network of ten cities $\left\{C_{1}, C_{2}, \cdots, C_{10}\right\}$. In the bipolar neutrosophic graph, the degree of each vertex represents the level of signals it can transmit to other cities and the bipolar neutrosophic value of each edge represents the degree of communication between the cities. The graph is shown in Figure.9. $D=\left\{C_{8}, C_{10}\right\}$ is the minimum dominating set. It is concluded that building only two large transmitting stations in C_{8} and C_{10}, a high economical benefit can be achieved.

Figure 9: Domination in bipolar neutrosophic graph

6 Conclusion

Bipolar fuzzy graph theory has many applications in science and technology, especially in the fields of neural networks, operations research, artificial intelligence and decision making. A bipolar neutrosophic graph is a generalization of the notion bipolar fuzzy graph. We have introduced the idea of bipolar neutrosophic graph and operations on bipolar neutrosophic graphs. Some properties of regular, totally regular, irregular and totally irregular bipolar neutrosophic graphs are discussed in detail. We have investigated the dominating and independent sets of certain graph products. Two applications of bipolar neutrosophic sets and bipolar neutrosophic graphs are studied in chemical industry and construction of radio channels. We are planing to extend our research work to (1) m-polar fuzzy neutrosophic graphs, (2) Roughness in neutrosophic graphs, (3) m-polar fuzzy soft neutrosophic graphs.

Acknowledgement: Our Research Project was Supported by University of the Punjab, Lahore-Pakistan.

References

[1] M. Akram, "Bipolar fuzzy graphs", Information Sciences, vol. 181, no. 24, pp. 5548-5564, 2011.
[2] M. Akram, Bipolar fuzzy graphs with applications, Knowledge Based Systems., vol. 39, pp. 18, 2013.
[3] M. Akram and W. A. Dudek, "Regular bipolar fuzzy graphs", Neural Computing and Applications, vol. 21, no. 1, pp. 197205, 2012.
[4] M. Akram, S. -G. Li, and K.P. Shum, " Antipodal bipolar fuzzy graphs", Italian Journal of Pure and Applied Mathematics, vol. 31, pp.425438, 2013.
[5] P. Bhattacharya, "Some remarks on fuzzy graphs", Pattern Recognition Letters, vol. 6, no. 5, pp. 297302, 1987.
[6] K. R. Bhutani and A. Battou "On M-strong fuzzy graphs", Information Sciences, vol. 155, no. 1, pp. 103109, 2003.
[7] K. R. Bhutani and A. Rosenfeld, "Strong arcs in fuzzy graphs", Information Sciences, vol. 152, pp. 319322, 2003.
[8] S. Broumi, I. Deli and F. Smarandache,(2014) "Interval valued neutrosophic parameterized soft set theory and its decision making", Journal of New Results in Science, no. 7, pp. 5871, 2014.
[9] N. Çağman and I. Deli, "Similarity measures of intuitionistic fuzzy soft sets and their decision making", arXiv preprint arXiv:1301.0456, 2013.
[10] J. Chen, S. Li, S. Ma, and X. Wang, "m-Polar Fuzzy Sets: An Extension of Bipolar Fuzzy Sets." The Scientific World Journal, 2014.
[11] I. Deli, M. Ali and F. Smarandache, "Bipolar neutrosophic sets and their application based on multicriteria decision making problems", arXiv preprint arXiv:1504.02773, 2015.
[12] I. Deli and N. Çağman, "Intuitionistic fuzzy parameterized soft set theory and its decision making", Applied Soft Computing, vol. 28, pp. 109113, 2015.
[13] A. Kaufmann, "Introduction à la théorie des sous-ensembles flous à lusage des ingénieurs (fuzzy sets theory)", Masson, Paris, 1975.
[14] S. Mathew and M. Sunitha,(2009)"Types of arcs in a fuzzy graph", Information Sciences, vol. 179, no. 11, pp. 1760 1768, 2009.
[15] S. Mathew and M. Sunitha, "Strongest strong cycles and theta fuzzy graphs", IEEE Transactions on Fuzzy Systems, vol. 21, no. 6, pp. 10961104, 2013.
[16] J. N. Mordeson and P. Nair, "Fuzzy Graphs and Fuzzy Hypergraphs", Studies in Fuzziness and Soft Computing, Physica-Verlag HD, 2000.
[17] J. N. Mordeson and P. Chang-Shyh, "Operations on fuzzy graphs", Information Sciences, vol. 79, no. 3, pp. 159170, 1994.
[18] A. Nagoorgani and V. T. Chandrasekaran. "Domination in fuzzy graph", Advances in fuzzy sets and system, $I(1)(2006): 17-26$.
[19] J. J. Peng, J. Q. Wang, H. Y. Zhang and X. H. Chen, "An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets", Applied Soft Computing, vol. 25, pp. 336346, 2014.
[20] A. Rosenfeld, "Fuzzy graphs", in: L.A. Zadeh, K.S. Fu, M. Shimura (Eds.), Fuzzy Sets and their Applications, Academic Press, New York, pp. 7795, 1975.
[21] S. Samanta and M. Pal, "Fuzzy planar graphs", IEEE Transactions on Fuzzy Systems, vol. 23, no. 6, pp. 1936-1942, 2015.
[22] F. Smarandache, "A unifying field in logics: Neutrosophic logic", Philosophy, pp. 1141, 1999.
[23] F. Smarandache, "A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability: Neutrsophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability", Infinite Study, 2005.
[24] F. Smarandache, "Neutrosophic seta generalization of the intuitionistic fuzzy set", Journal of Defense Resources Management (JoDRM), no. 01, pp. 107116, 2010.
[25] A. Somasundaram and S. Somasundaram, "Domination in fuzzy graphsI", Pattern Recognition Letters, vol. 19, no. 9, pp. 787791, 1998.
[26] H.-L. Yang, S.-G. Li, W.-H. Yang, and Y. Lu, "Notes on bipolar fuzzy graphs", Information Sciences, vol. 242, pp. 113121, 2013.
[27] J. Ye, "Trapezoidal neutrosophic set and its application to multiple attribute decision-making", Neural Computing and Applications, pp. 110, 2014a.
[28] J. Ye, "Vector similarity measures of simplified neutrosophic sets and their application in multicriteria decision making", International Journal of Fuzzy Systems, vol. 16, no. 2, pp. 204215, 2014b.
[29] L. A. Zadeh, "Fuzzy sets", Information and control, vol. 8, no. 3, pp. 338353, 1965.
[30] L. A. Zadeh, "Similarity relations and fuzzy orderings", Information sciences, vol. 3, no. 2, pp. 177200, 1971.
[31] W.-R. Zhang, "Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis", In Fuzzy Information Processing Society Biannual Conference, 1994. Industrial Fuzzy Control and Intelligent Systems Conference, and the NASA Joint Technology Workshop on Neural Networks and Fuzzy Logic, pp. 305309, IEEE 1994.

