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Abstract

In this research article, we present a novel frame work for handling bipolar neutrosophic information

by combining the theory of bipolar neutrosophic sets with graphs. We introduce some operations on

bipolar neutrosophic graphs. We describe the dominating and independent sets of bipolar neutrosophic

graphs. We discuss an outranking approach for risk analysis and construction of minimum number of

radio channels using bipolar neutrosophic sets and bipolar neutrosophic graphs.

Key-words: Applications of bipolar neutrosophic graphs, Union, Intersection, Join, Cartesian product,

Direct product, Strong product, Domination number, Independent number.

1 Introduction

A fuzzy set [29] is an important mathematical structure to represent a collection of objects whose boundary

is vague. Fuzzy models are becoming useful because of their aim in reducing the differences between the

traditional numerical models used in engineering and sciences and the symbolic models used in expert

systems.

In 1994, Zhang [31] introduced the notion of bipolar fuzzy sets and relations. Bipolar fuzzy sets are extension

of fuzzy sets whose membership degree ranges [−1, 1]. The membership degree (0, 1] indicates that the object

satisfies a certain property whereas the membership degree [−1, 0) indicates that the element satisfies the

implicit counter property. Positive information represent what is considered to be possible and negative

information represent what is granted to be impossible. Actually, a variety of decision making problems are

based on two-sided bipolar judgements on a positive side and a negative side. Nowadays bipolr fuzzy sets

are playing a substantial role in chemistry, economics, computer science, engineering, medicine and decision

making problems. Samarandache [22] introduced the idea of neutrosophic probability, sets and logic. Some

properties and applications of neutrosophic sets were further studied by Jaun-Jaun Peng et al. [19] in 2014.

The other terminologies and applications of neutrosophic sets can be seen in [23, 27, 28, 9, 8, 12, 24]. In a

1



neutrosophic set, the membership value is associated with truth, false and indeterminacy degrees but there

is no restriction on their sum. Deli et al. [11] extended the ideas of bipolar fuzzy sets and neutrosophic sets

to bipolar neutrosophic sets and studied its operations and applications in decision making problems.

Graph theory has numerous applications in science and engineering. However, in some cases, some aspects

of graph theoretic concepts may be uncertain. In such cases, it is important to deal with uncertainty using

the methods of fuzzy sets and logics. Based on Zadeh’s fuzzy relations [30] Kaufmann [13] defined a fuzzy

graph. The fuzzy relations between fuzzy sets were also considered by Rosenfeld [20] and he developed the

structure of fuzzy graphs, obtaining analogs of several graph theoretical concepts. Later on, Bhattacharya

[5] gave some remarks on fuzzy graphs, and some operations on fuzzy graphs were introduced by Mordeson

and Peng [17]. The complement of a fuzzy graph was defined by Mordeson [16]. Bhutani and Rosenfeld

introduced the concept of M -strong fuzzy graphs in [6] and studied some of their properties. The concept of

strong arcs in fuzzy graphs was discussed in [7]. The theory of fuzzy graphs has extended widely by many

researchers as it can be seen in [14, 15, 21]. The idea of domination was first arose in chessboard problem

in 1862. Somasundaram amd Somasundaram [25] introduced domination and independent domination in

fuzzy graphs. Nagoor Gani and Chandrasekaran [18] studied the notion of fuzzy domination and independent

domination using strong arcs. Akram [1, 2] introduced bipolar fuzzy graphs and discuss its various properties

which were further studied by Yang [26] in 2013. Akram et al. [3] studied regular bipolar fuzzy graphs. The

theory of bipolar fuzzy graphs is extended to m−polar fuzzy graphs by Chen et al. [10] in 2014.

In this article, we propose the idea of bipolar neutrosophic graphs. We discuss some fundamental operations

in bipolar neutrosphic graphs, regular and irregular bipolar neutrosophic graphs, domination number and

independent number. We calculate the domination and independent numbers of bipolar neutrosphic union,

intersection, join and products. At the end, some applications in bipolar neutrosphic graphs are given that

support the ideas discussed in this article.

2 Preliminaries

Let X be a non-empty set. Let X̃2 denotes the collection of all 2−elements subsets of X . A pair G∗ = (V,E),

where E ⊆ X̃2 is called a graph. The cardinality of any subset D ⊆ X is the number of vertices in D, it is

denoted by |D|.

Definition 2.1. [29, 30] A fuzzy subset ν on a non-empty set X is a mapping ν : X → [0, 1]. A fuzzy binary

relation on X is a fuzzy subset λ on X ×X . Fuzzy relation is a fuzzy binary relation given by the mapping

λ : X ×X → [0, 1].

Definition 2.2. [13] A fuzzy graph of a graph G∗ = (X,E) is a pair G = (µ, λ), where µ and λ are fuzzy

sets on X and X̃2 respectively, such that λ(xy) ≤ min{µ(x), µ(y)} for all xy ∈ E. Note that λ(xy) = 0 for

all x, y ∈ X̃2 − E.

Definition 2.3. [31] A bipolar fuzzy set on a non-empty setX is an object of the form C = {(x, µp(x), µn(x)) :

x ∈ X} where, µp : X → [0, 1] and µn : X → [−1, 0] are mappings.

The positive membership degree µp(x) denotes the truth or satisfaction degree of an element x to a certain

property corresponding to bipolar fuzzy set C and µn(x) represents the satisfaction degree of element x to

some counter property of bipolar fuzzy set C. If µn(x) 6= 0 and µp(x) = 0, it is the situation that x is not
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satisfying the property of C but satisfying the counter property to C. If µp(x) 6= 0 and µn(x) = 0, it is the

case when x has only positive satisfaction for C. It is possible for x to be such that µp(x) 6= 0 and µn(x) 6= 0

when x satisfies the property of C as well as its counter property in some part of X .

Definition 2.4. [1] Let X be a nonempty set. A mapping D = (µp, µn) : X ×X → [0, 1]× [−1, 0] is called

a bipolar fuzzy relation on X such that µp(xy) ∈ [0, 1] and µn(xy) ∈ [−1, 0], for x, y ∈ X .

Definition 2.5. [1] A bipolar fuzzy graph on a crisp graph G∗ = (X,E) is a pair G = (C,D) where

A = (µp
C , µ

n
C) is a bipolar fuzzy set on X and D = (µp

D, µn
D) is a bipolar fuzzy relation in E such that

µp
D(xy) ≤ µp

C(x) ∧ µp
C(y) and µn

D(xy) ≥ µn
C(x) ∨ µn

C(y) for all xy ∈ E.

Definition 2.6. [23] A neutrosophic set C on a non-empty set X is characterized by a truth membership

function tC : X → [0, 1], indeterminacy membership function IC : X → [0, 1] and a falsity membership

function fC : X → [0, 1]. There is no restriction on the sum of tC(x), IC(x) and fC(x) for all x ∈ X .

Definition 2.7. [11] A bipolar neutrosophic set on a empty set X is an object of the form

C = {(x, tpC(x), I
p
C (x), f

p
C(x), t

n
C(x), I

n
C(x), f

n
C(x)) : x ∈ X}

where, tpC , I
p
C , f

p
C : X → [0, 1] and tnC , I

n
C , f

n
C : X → [−1, 0]. The positive values tpC(x), I

p
C(x), f

p
C(x) de-

note respectively the truth, indeterminacy and false membership degrees of an element x ∈ X whereas

tnC(x), I
n
C(x), f

n
C(x) denote the implicit counter property of the truth, indeterminacy and false membership

degrees of the element x ∈ X corresponding to the bipolar neutrosophic set C.

3 Bipolar neutrosophic graphs

Definition 3.1. A bipolar neutrosophic relation on a non-empty set X is a bipolar neutrosophic subset of

X × X of the form D = {(xy, tpD(xy), IpD(xy), fp
D(xy), tnD(xy), InD(xy), fn

D(xy)) : xy ∈ E ⊆ X ×X} where,

tpD, IpD, fp
D, tnD, InD, fn

D are defined by the the mappings tpD, IpD, fp
D : X ×X → [0, 1] and tnD, InD, fn

D : X ×X →

[−1, 0].

Definition 3.2. A bipolar neutrosophic graph on a crisp graph G∗ = (X,E) is a pair G = (C,D), where C

is a bipolar neutrosophic set on X and D is a bipolar neutrosophic relation on X such that

tpD(xy) ≤ tpC(x) ∧ tpC(y), IpD(xy) ≤ IpC(x) ∨ IpC(y), fp
D(xy) ≤ fp

C(x) ∨ fp
C(y),

tnD(xy) ≥ tnC(x) ∨ tnC(y), InD(xy) ≥ InC(x) ∧ InC(y), fn
D(xy) ≥ tnC(x) ∧ tnC(y) for all xy ∈ E.

Note that D(xy) = (0, 0, 0, 0, 0, 0) for all xy ∈ X ×X \ E.

Example 3.1. Consider a graph G∗ = (X,E) such that X = {x, y, z}, E = {xy, yz, zx}. Let C be a bipolar

neutrosophic set on X given in Table.1 and D be a bipolar neutrosophic relation of E ⊆ X × X given in

Table.2. Routine calculations show that G = (C,D) is a bipolar neutrosophic graph of G∗ = (X,E). The

bipolar neutrosophic graph G is shown in Fig. 1.
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Table 1 x y z

tpC 0.3 0.5 0.4

IpC 0.4 0.4 0.3

fp
C 0.5 0.2 0.2

tnC -0.6 -0.1 -0.5

InC -0.5 -0.8 -0.5

fn
C -0.2 -0.2 -0.5

Table 2 xy yz xz

tpD 0.3 0.3 0.3

IpD 0.4 0.4 0.4

fp
D 0.5 0.2 0.5

tnD -0.1 -0.1 -0.5

InD -0.8 -0.8 -0.5

fn
D -0.2 -0.5 -0.5

x(0
.3,

0.4
, 0.

5,−
0.6

,−
0.5

,−
0.2

)

y(
0.
5,
0.
4,
0.
2,
−
0.
1,
−
0.
8,
−
0.
2)

z(0.4, 0.3, 0.2,−0.5,−0.5,−0.5)

b b

b

(0.3, 0.4, 0.5,−0.1,−0.8,−0.2)

(0
.3
, 0
.4
, 0
.2
,−
0.
1,
−
0.
8,
−
0.
5)

(0
.3
,0
.4
,0
.5
,−

0
.5
,−

0
.5
,−

0
.5
)

Figure 1: Bipolar neutrosophic graph G

Definition 3.3. The union of two bipolar neutrosophic graphs G1 = (C1, D1) and G2 = (C2, D2) is a pair

G1 ∪ G2 = (C1 ∪ C2, D1 ∪D2) where, C1 ∪ C2 is a bipolar neutrosophic set on X1 ∪ X2 and D1 ∪ D2 is a

bipolar neutrosophic set on E1 ∪ E2 such that

tpC1∪C2
(x) =





tpC1
(x), x ∈ X1, x /∈ X2

tpC2
(x), x /∈ X1, x ∈ X2

tpC1
(x) ∨ tpC2

(y), x ∈ X1 ∩X2

IpC1∪C2
(x) =





IpC1
(x), x ∈ X1, x /∈ X2

IpC2
(x), x /∈ X1, x ∈ X2

IpC1
(x) ∧ IpC2

(y), x ∈ X1 ∩X2

fp
C1∪C2

(x) =





fp
C1

(x), x ∈ X1, x /∈ X2

fp
C2

(x), x /∈ X1, x ∈ X2

fp
C1

(x) ∧ fp
C2

(y), x ∈ X1 ∩X2

tnC1∪C2
(x) =





tnC1
(x), x ∈ X1, x /∈ X2

tnC2
(x), x /∈ X1, x ∈ X2

tnC1
(x) ∧ tnC2

(y), x ∈ X1 ∩X2

InC1∪C2
(x) =





InC1
(x), x ∈ X1, x /∈ X2

InC2
(x), x /∈ X1, x ∈ X2

InC1
(x) ∨ InC2

(y), x ∈ X1 ∩X2

fn
C1∪C2

(x) =





fn
C1

(x), x ∈ X1, x /∈ X2

fn
C2

(x), x /∈ X1, x ∈ X2

fn
C1

(x) ∨ fn
C2

(y), x ∈ X1 ∩X2

and membership values of edges are

tpD1∪D2
(xy) =





tpD1
(xy), xy ∈ E1, xy /∈ E2

tpD2
(xy), xy /∈ E1, xy ∈ E2

tpD1
(xy) ∨ tpD2

(xy), xy ∈ E1 ∩ E2

IpD1∪D2
(xy) =





IpD1
(xy), xy ∈ E1, xy /∈ E2

IpD2
(xy), xy /∈ E1, xy ∈ E2

IpD1
(xy) ∧ IpD2

(xy), xy ∈ E1 ∩ E2
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fp
D1∪D2

(xy) =





fp
D1

(xy), xy ∈ E1, xy /∈ E2

fp
D2

(xy), xy /∈ E1, xy ∈ E2

fp
D1

(xy) ∧ fp
D2

(xy), xy ∈ E1 ∩ E2

tnD1∪D2
(xy) =





tnD1
(xy), xy ∈ E1, xy /∈ E2

tnD2
(xy), xy /∈ E1, xy ∈ E2

tnD1
(xy) ∧ tnD2

(xy), xy ∈ E1 ∩ E2

InD1∪D2
(xy) =





InD1
(xy), xy ∈ E1, xy /∈ E2

InD2
(xy), xy /∈ E1, xy ∈ E2

InD1
(xy) ∨ InD2

(xy), xy ∈ E1 ∩ E2

fn
D1∪D2

(xy) =





fn
D1

(xy), xy ∈ E1, xy /∈ E2

fn
D2

(xy), xy /∈ E1, xy ∈ E2

fn
D1

(xy) ∨ fn
D2

(xy), xy ∈ E1 ∩ E2

b b

b b

x(0.5, 0.2, 0.3,−0.3,−0.2,−0.5) y(0.6, 0.1, 0.2,−0, 2,−0.3,−0.5)

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.5)

y(0.7, 0.1, 0.1,−0, 2,−0.1,−0.7) w(0.5, 0.2, 0.0,−0, 3,−0.2,−0.4)

(0.5, 0.2, 0.1,−0, 2,−0.2,−0.7)

G1

G2

b bb
x(0.5, 0.2, 0.3,−0.3,−0.2,−0.5) w(0.5, 0.2, 0.0,−0, 3,−0.2,−0.4)

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.5) (0.5, 0.2, 0.1,−0, 2,−0.2,−0.7)

y(0.7, 0.1, 0.1,−0, 2,−0.1,−0.5)

G1 ∪G2

Figure 2: Union of two bipolar neutrosophic graphs

Example 3.2. The union of two bipolar neutrosophic graphs G1 and G2 is shown in Fig.2.

Proposition 3.1. Let G1 and G2 be any two bipolar neutrosophic graphs then G1 ∪G2 is a bipolar neutro-

sophic graph.

Definition 3.4. The intersection of two bipolar neutrosophic graphs G1 = (C1, D1) and G2 = (C2, D2) is a

pair G1 ∩G2 = (C1 ∩C2, D1 ∩D2) where, C1 ∩C2 is a bipolar neutrosophic set on X1 ∩X2 and D1 ∩D2 is

a bipolar neutrosophic set on E1 ∩E2. The membership degrees are defined as

tpC1∩C2
(x) = tpC1

(x) ∧ tpC2
(y) IpC1∩C2

(x) = IpC1
(x) ∨ IpC2

(y) fp
C1∩C2

(x) = fp
C1

(x) ∨ fp
C2

(y)

tnC1∩C2
(x) = tnC1

(x) ∨ tnC2
(y) InC1∩C2

(x) = InC1
(x) ∧ InC2

(y) fn
C1∩C2

(x) = fn
C1

(x) ∧ fn
C2

(y)

for all x ∈ X1 ∩X2.

tpD1∩D2
(xy) =tpD1

(xy) ∧ tpD2
(xy) IpD1∩D2

(xy) = IpD1
(xy) ∨ IpD2

(xy) fp
D1∩D2

(xy) =fp
D1

(xy) ∨ fp
D2

(xy)

tnD1∩D2
(xy) =tnD1

(xy) ∨ tnD2
(xy) InD1∩D2

(xy) = InD1
(xy) ∧ InD2

(xy) fn
D1∩D2

(xy) =fn
D1

(xy) ∧ fn
D2

(xy),

for all xy ∈ E1 ∩ E2.
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Example 3.3. The intersection of two bipolar neutrosophic graphs G1 and G2 shown in Fig.2 is the vertex

y with membership value (0.6, 0.1, 0.2,−0.2,−0.3,−0.7).

Proposition 3.2. The intersection of any two bipolar neutrosophic graphs is also a bipolar netrosophic

graph.

Definition 3.5. Let C1 and C2 be two bipolar neutrosophic subsets of the set of vertices X1 and X2 and D1,

D2 be the bipolar neutrosophic relations on X1 and X2, respectively. The join of the bipolar neutrosophic

graphs G1 = (C1, D1) and G2 = (C2, D2) is defined by the pair G1 +G2 = (C1 + C2, D1 +D2) such that,

C1 + C2 = C1 ∪ C2 for all x ∈ X1 ∪X2 and

1. D1 +D2 = D1 ∪D2 for all xy ∈ E1 ∩E2,

2. Let E
′

be the set of all edges joining the vertices of G1 and G2 then for all xy ∈ E
′

, where x ∈ X1 and

y ∈ X2,

tpD1+D2
(xy) = tpC1

(x) ∨ tpC2
(y), IpD1+D2

(xy) = IpC1
(x) ∧ IpC2

(y), fp
D1+D2

(xy) = fp
C1

(x) ∧ fp
C2

(y),

tnD1+D2
(xy) = tnC1

(x) ∧ tnC2
(y), InD1+D2

(xy) = InC1
(x) ∨ InC2

(y), fn
D1+D2

(xy) = fn
C1

(x) ∨ fn
C2

(y).

b

b b
b

x
(0
.5
, 0
.2
, 0
.3
,
−
0
.3
,
−
0
.2
,
−
0
.5
)
y
(0
.6
, 0
.1
, 0
.2
,
−
0
, 2
,
−
0
.3
,
−
0
.5
)

(0
.5
, 0
.2
, 0
.3
,
−
0
.2
,
−
0
.3
,
−
0
.5
)

z
(0
.7
,0
.1
,0
.1
,
−
0
.2
,
−
0
.1
,
−
0
.7
)

w
(0
.5
, 0
.2
, 0
.0
,
−
0
.3
,
−
0
.2
,
−
0
.4
)

(0
.5
, 0
.2
, 0
.1
,
−
0
.2
,
−
0
.2
,
−
0
.7
)

G1 G2

b
b

x
(0
.5
, 0
.2
, 0
.3
,
−
0
.3
,
−
0
.2
,
−
0
.5
)
y
(0
.6
, 0
.1
, 0
.2
,
−
0
.2
,
−
0
.3
,
−
0
.5
)

(0
.5
, 0
.2
, 0
.3
,
−
0
, 2
,
−
0
.3
,
−
0
.5
)

z
(0
.7
,0
.1
,0
.1
,
−
0
.2
,
−
0
.1
,
−
0
.7
)
w
(0
.5
, 0
.2
, 0
.0
,
−
0
.3
,
−
0
.2
,
−
0
.4
)

(0
.5
, 0
.2
, 0
.1
,
−
0
, 2
,
−
0
.2
,
−
0
.7
)

b

b

xw(0.5, 0.2, 0.0,−0, 2,−0.2,−0.4)

yz(0.7, 0.1, 0.1,−0, 3,−0.1,−0.5)

(0.7, 0.1, 0.1,−0, 3,−0.1,−0.5)

(0.6, 0.1, 0.0,−0.3,−0.2,−0.4)

G1 +G2

Figure 3: Join of G1 and G2.

Example 3.4. The join of two bipolar neutrosophic graphs G1 and G2 is shown in Fig.3.

Proposition 3.3. Let G1 and G2 be two bipolar neutrosophic graphs then G1 +G2 is also a bipolar neutro-

sophic graph.

Definition 3.6. Let C1, C2, D1 and D2 be the bipolar neutrosophic subsets of X1, X2, E1 and E2,

respectively. We denote the cartesian product of G1 and G2 by the pair G12G2 = (C12C2, D12D2) and
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define as:

tpC12C2
(x) = tpC1

(x) ∧ tpD2
(x), IpC12C2

(x) = IpC1
(x) ∨ IpC2

(x), fp
C12C2

(x) = fp
C1

(x) ∨ fp
C2

(x),

tnC12D2
(x) = tnC1

(x) ∨ tnC2
(x), InC12C2

(x) = InC1
(x) ∧ InC2

(x), fn
C12C2

(x) = fn
C1

(x) ∧ fn
C2

(x).

for all x ∈ X1 ×X2.

1. tpD12D2
((x1, x2)(x1, y2)) = tpC1

(x1) ∧ tpD2
(x2y2), tnD12D2

((x1, x2)(x1, y2)) = tpC1
(x1) ∨ tpD2

(x2y2),

for all x1 ∈ X1, x2y2 ∈ E2,

2. tpD12D2
((x1, x2)(y1, x2)) = tpD1

(x1y1) ∧ tpC2
(x2), tnD12D2

((x1, x2)(y1, x2)) = tpD1
(x1y1) ∨ tpC2

(x2),

for all x1y1 ∈ E1, x2 ∈ X2,

3. IpD12D2
((x1, x2)(x1, y2)) = IpC1

(x1) ∨ IpD2
(x2y2), InD12D2

((x1, x2)(x1, y2)) = IpC1
(x1) ∧ IpD2

(x2y2),

for all x1 ∈ X1, x2y2 ∈ E2,

4. IpD12D2
((x1, x2)(y1, x2)) = IpD1

(x1y1) ∨ IpC2
(x2), InD12D2

((x1, x2)(y1, x2)) = IpD1
(x1y1) ∧ IpC2

(x2),

for all x1y1 ∈ E1, x2 ∈ X2,

5. fp
D12D2

((x1, x2)(x1, y2)) = fp
C1
(x1) ∨ fp

D2
(x2y2), fn

D12D2
((x1, x2)(x1, y2)) = fp

C1
(x1) ∧ fp

D2
(x2y2),

for all x1 ∈ X1, x2y2 ∈ E2,

6. fp
D12D2

((x1, x2)(y1, x2)) = fp
D1

(x1y1) ∨ fp
C2
(x2), fn

D12D2
((x1, x2)(y1, x2)) = fp

D1
(x1y1) ∧ fp

C2
(x2),

for all x1y1 ∈ E1, x2 ∈ X2.

b b

b b

b b

b

b

x1(0.5, 0.2, 0.3,−0.3,−0.2,−0.5) y1(0.6, 0.1, 0.2,−0, 2,−0.3,−0.5)

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.5)

x
2 (0

.7
,0
.1
,0
.1
,−

0
,2
,−

0
.1
,−

0
.7
)

y
2 (0

.5
, 0
.2
, 0
.0
,−

0
, 3
,−

0
.2
,−

0
.4)

(x1, x2)(0.5, 0.2, 0.3,−0, 2,−0.2,−0.7) (y1, x2)(0.6, 0.1, 0.2,−0, 2,−0.3,−0.7)

(x1, y2)(0.5, 0.2, 0.3,−0, 3,−0.2,−0.5) (y1, y2)(0.5, 0.2, 0.2,−0, 2,−0.3,−0.5)

(0
.5
, 0
.2
, 0
.1
,−

0
, 2
,−

0
.2
,−

0
.7)(0.5, 0.2, 0.3,−0, 2,−0.3,−0.5)

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.7)

(0
.5
,0
.2
,0
.2
,−

0
,2
,−

0
.3
,−

0
.7
)

(0
.5
,0
.2
,0
.3
,−

0
,2
,−

0
.2
,−

0
.7
)

G1

G2

G12G2

Figure 4: Cartesian product G12G2

Example 3.5. The Cartesian product of two bipolar neutrosophic graphs G1 and G2 is shown in Fig.4.

Proposition 3.4. Let G1 and G2 be two bipolar neutrosophic graphs then G12G2 is also a bipolar neutro-

sophic graph.
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Definition 3.7. Let C1, C2, D1 and D2 be the bipolar neutrosophic subsets of X1, X2, E1 and E2,

respectively. We denote the direct product of G1 = (C1, D1) and G2 = (C2, D2) by the pair G1 × G2 =

(C1 × C2, D1 ×D2) and define the membership degrees as

tpC1×C2
(x) = tpC1

(x) ∧ tpD2
(x), IpC1×C2

(x) = IpC1
(x) ∨ IpC2

(x), fp
C1×C2

(x) = fp
C1

(x) ∨ fp
C2

(x),

tnC1×C2
(x) = tnC1

(x) ∨ tnC2
(x), InC1×C2

(x) = InC1
(x) ∧ InC2

(x), fn
C1×C2

(x) = fn
C1

(x) ∧ fn
C2

(x),

for all x ∈ X1 ×X2.

1. tpD1×D2
((x1, x2)(y1, y2)) = tpD1

(x1y1) ∧ tpD2
(x2y2), tnD1×D2

((x1, x2)(y1, y2)) = tpD1
(x1y1) ∨ tpD2

(x2y2),

for all x1y1 ∈ E1, x2y2 ∈ E2,

2. IpD1×D2
((x1, x2)(y1, y2)) = IpD1

(x1y1) ∨ IpD2
(x2y2), InD1×D2

((x1, x2)(y1, y2)) = IpD1
(x1y1) ∧ IpD2

(x2y2),

for all x1y1 ∈ E1, x2y2 ∈ E2,

3. fp
D1×D2

((x1, x2)(y1, y2)) = fp
D1

(x1y1) ∨ fp
D2

(x2y2), fn
D1×D2

((x1, x2)(y1, y2)) = fp
D1

(x1y1) ∧ fp
D2

(x2y2),

for all x1y1 ∈ E1, x2y2 ∈ E2.

b b

b b

b b

b

b

x1(0.5, 0.2, 0.3,−0.3,−0.2,−0.5) y1(0.6, 0.1, 0.2,−0, 2,−0.3,−0.5)

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.5)

x
2 (0

.7
,0
.1
,0
.1
,−

0
,2
,−

0
.1
,−

0
.7
)

y
2 (0

.5
, 0
.2
, 0
.0
,−

0
, 3
,−

0
.2
,−

0
.4)

(x1, x2)(0.5, 0.2, 0.3,−0, 2,−0.2,−0.7) (y1, x2)(0.6, 0.1, 0.2,−0, 2,−0.3,−0.7)

(x1, y2)(0.5, 0.2, 0.3,−0, 3,−0.2,−0.5) (y1, y2)(0.5, 0.2, 0.2,−0, 2,−0.3,−0.5)

(0
.5
, 0
.2
, 0
.1
,−

0
, 2
,−

0
.2
,−

0
.7)(0.5, 0.2, 0.3,−0, 2,−0.3,−0.5)

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.7)

G1

G2

G12G2

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.7)

Figure 5: Direct product G1 ×G2

Example 3.6. The direct product of two bipolar neutrosophic G1 and G2 graphs is shown in Figure. 5

Proposition 3.5. Let G1 and G2 be two bipolar neutrosophic graphs then G1 ×G2 is also a bipolar neutro-

sophic graph.

Definition 3.8. Let C1, C2, D1 and D2 be the bipolar neutrosophic subsets of X1, X2, E1 and E2,

respectively. We denote the strong product of G1 and G2 by the pair G1 ⊠ G2 = (C1 ⊠ C2, D1 ⊠D2) and

define as:

tp
C1⊠C2

(x) = tpC1
(x) ∧ tpD2

(x), Ip
C1⊠C2

(x) = IpC1
(x) ∨ IpC2

(x), fp

C1⊠C2

(x) = fp
C1

(x) ∨ fp
C2

(x),

tnC1⊠D2
(x) = tnC1

(x) ∨ tnC2
(x), InC1⊠C2

(x) = InC1
(x) ∧ InC2

(x), fn
C1⊠C2

(x) = fn
C1

(x) ∧ fn
C2

(x),
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for all x ∈ X1 ×X2.

1. tp
D1⊠D2

((x1, x2)(x1, y2)) = tpC1
(x1) ∧ tpD2

(x2y2), tn
D1⊠D2

((x1, x2)(x1, y2)) = tpC1
(x1) ∨ tpD2

(x2y2),

for all x1 ∈ X1, x2y2 ∈ E2,

2. tp
D1⊠D2

((x1, x2)(y1, x2)) = tpD1
(x1y1) ∧ tpC2

(x2), tnD1⊠D2
((x1, x2)(y1, x2)) = tpD1

(x1y1) ∨ tpC2
(x2),

for all x1y1 ∈ E1, x2 ∈ X2,

3. tp
D1⊠D2

((x1, x2)(y1, y2)) = tpD1
(x1y1) ∧ tpD2

(x2y2), tn
D1⊠D2

((x1, x2)(y1, y2)) = tpD1
(x1y1) ∨ tpD2

(x2y2),

for all x1y1 ∈ E1, x2y2 ∈ E2,

4. Ip
D1⊠D2

((x1, x2)(x1, y2)) = IpC1
(x1) ∨ IpD2

(x2y2), InD1⊠D2
((x1, x2)(x1, y2)) = IpC1

(x1) ∧ IpD2
(x2y2),

for all x1 ∈ X1, x2y2 ∈ E2,

5. Ip
D1⊠D2

((x1, x2)(y1, x2)) = IpD1
(x1y1) ∨ IpC2

(x2), In
D1⊠D2

((x1, x2)(y1, x2)) = IpD1
(x1y1) ∧ IpC2

(x2),

for all x1y1 ∈ E1, x2 ∈ X2,

6. Ip
D1⊠D2

((x1, x2)(y1, y2)) = IpD1
(x1y1) ∨ IpD2

(x2y2), InD1⊠D2
((x1, x2)(y1, y2)) = IpD1

(x1y1) ∧ IpD2
(x2y2),

for all x1y1 ∈ E1, x2y2 ∈ E2,

7. fp

D1⊠D2

((x1, x2)(x1, y2)) = fp
C1

(x1) ∨ fp
D2

(x2y2), fn
D1⊠D2

((x1, x2)(x1, y2)) = fp
C1

(x1) ∧ fp
D2

(x2y2),

for all x1 ∈ X1, x2y2 ∈ E2,

8. fp

D1⊠D2

((x1, x2)(y1, x2)) = fp
D1

(x1y1) ∨ fp
C2

(x2), fn
D1⊠D2

((x1, x2)(y1, x2)) = fp
D1

(x1y1) ∧ fp
C2

(x2),

for all x1y1 ∈ E1, x2 ∈ X2,

9. fp

D1⊠D2

((x1, x2)(y1, y2)) = fp
D1

(x1y1) ∨ fp
D2

(x2y2), fn
D1⊠D2

((x1, x2)(y1, y2)) = fp
D1

(x1y1) ∧ fp
D2

(x2y2),

for all x1y1 ∈ E1, x2y2 ∈ E2.

b b

b b

b b

b

b

x1(0.5, 0.2, 0.3,−0.3,−0.2,−0.5) y1(0.6, 0.1, 0.2,−0, 2,−0.3,−0.5)

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.5)

x
2 (0

.7
,0
.1
,0
.1
,
−
0
,2
,
−
0
.1
,
−
0
.7
)

y
2 (0

.5
, 0
.2
, 0
.0
,
−
0
, 3
,
−
0
.2
,
−
0
.4
)

(x1, x2)(0.5, 0.2, 0.3,−0, 2,−0.2,−0.7) (y1, x2)(0.6, 0.1, 0.2,−0, 2,−0.3,−0.7)

(x1, y2)(0.5, 0.2, 0.3,−0, 3,−0.2,−0.5) (y1, y2)(0.5, 0.2, 0.2,−0, 2,−0.3,−0.5)

(0
.5
, 0
.2
, 0
.1
,
−
0
, 2
,
−
0
.2
,
−
0
.7
)

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.5)

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.7)

(0
.5
,
0
.2
,
0
.2
,
−
0
,
2
,
−
0
.3
,
−
0
.7
)

(0
.5
,
0
.2
,
0
.3
,
−
0
,
2
,
−
0
.2
,
−
0
.7
)

G1

G2

G1 ⊠G2

(x1, x2)(y1, y2)(0.5, 0.2, 0.3,−0.2,−0.3,−0.7)

(y1, x2)(x1, y2)(0.5, 0.2, 0.3,−0.2,−0.3,−0.7)

Figure 6: Strong product of G1 and G2
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Example 3.7. The strong product of two bipolar neutrosophic G1 and graphs G2 is shown in Fig.6

Proposition 3.6. The strong product of any two bipolar neutrosophic graphs is a bipolar neutrosophic graph.

Definition 3.9. The complement of a bipolar neutrosophic graph G = (C,D) is defined as a pair Gc =

(Cc, Dc) such that, for all x ∈ X and xy ∈ E,

tpCc(x) = tpC(x), IpCc(x) = IpC(x), fp
Cc(x) = fp

C(x), tnCc(x) = tnC(x), InCc(x) = InC(x), fp
Cc(x) = fp

C(x).

tpDc(xy) = tpC(x) ∧ tpC(y)− tpD(xy), IpDc(xy) = IpC(x) ∨ IpC(y)− IpD(xy), fp
Dc(xy) = fp

C(x) ∨ fp
C(y)− fp

D(xy),

tnDc(xy) = tnC(x) ∨ tnC(y)− tnD(xy), InDc(xy) = InC(x) ∧ InC(y)− InD(xy), fn
Dc(xy) = fn

C(x) ∧ fn
C(y)− fn

D(xy).

b b

b b

x(0.5, 0.2, 0.3,−0, 2,−0.2,−0.7)y(0.6, 0.1, 0.2,−0, 2,−0.3,−0.7)

z(0.5, 0.2, 0.3,−0, 3,−0.2,−0.5)w(0.5, 0.2, 0.2,−0, 2,−0.3,−0.5)

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.5)

(0.5, 0.2, 0.3,−0, 2,−0.3,−0.7)

(0
.5
,
0
.2
,
0
.2
,
−
0
,
2
,
−
0
.3
,
−
0
.7
)

(0
.4
,
0
.1
,
0
.2
,
−
0
,
2
,
−
0
.2
,
−
0
.7
)

b b

b b

x(0.5, 0.2, 0.3,−0, 2,−0.2,−0.7)y(0.6, 0.1, 0.2,−0, 2,−0.3,−0.7)

z(0.5, 0.2, 0.3,−0, 3,−0.2,−0.5)w(0.5, 0.2, 0.2,−0, 2,−0.3,−0.5)

(0
.1
,
0
.1
,
0
.1
,
0
.0
,
0
.0
,
0
.0
)

(0.5, 0.2, 0.3,−0.2,−0.3,−0.7)

(0
.5,

0.2
, 0
.2,

−
0.2

,−
0.3

,−
0.7

)

Gc
G

Figure 7: Complement of G

Example 3.8. An example of complement of a bipolar neutrosophic G is shown in Fig.7

Remark 3.1. A bipolar neutrosophic graph G is said to be self complementary if G = Gc.

Definition 3.10. A bipolar neutrosophic graph G = (C,D) is known as strong bipolar neutrosophic graph

if

tpDc(xy) = tpC(x) ∧ tpC(y), IpDc(xy) = IpC(x) ∨ IpC(y), fp
Dc(xy) = fp

C(x) ∨ fp
C(y),

tnDc(xy) = tnC(x) ∨ tnC(y), InDc(xy) = InC(x) ∧ InC(y), fn
Dc(xy) = fn

C(x) ∧ fn
C(y), for all xy ∈ E.

Theorem 3.1. Let G1 and G2 be strong bipolar neutrosophic graphs then G1 +G2, G12G2, G1 × G2 and

G1 ⊠G2 are strong bipolar neutrosophic graphs.

Theorem 3.2. If G12G2, G1×G2 and G1⊠G2 are strong bipolar neutrosophic graphs then G1 and G2 are

also strong.

Definition 3.11. A bipolar neutrosophic graph G = (C,D) is known as complete bipolar neutrosophic

graph if

tpDc(xy) = tpC(x) ∧ tpC(y), IpDc(xy) = IpC(x) ∨ IpC(y), fp
Dc(xy) = fp

C(x) ∨ fp
C(y),

tnDc(xy) = tnC(x) ∨ tnC(y), InDc(xy) = InC(x) ∧ InC(y), fn
Dc(xy) = fn

C(x) ∧ fn
C(y), for all x, y ∈ X.
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Theorem 3.3. Let G be a self complementary bipolar neutrosophic graph then

∑

x 6=y

tpD(xy) =
1

2

∑

x 6=y

tpC(x) ∧ tpC(y),
∑

x 6=y

IpD(xy) =
1

2

∑

x 6=y

IpC(x) ∨ IpC(y),
∑

x 6=y

fp
D(xy) =

1

2

∑

x 6=y

fp
C(x) ∨ fp

C(y),

∑

x 6=y

tnD(xy) =
1

2

∑

x 6=y

tnC(x) ∧ tnC(y),
∑

x 6=y

InD(xy) =
1

2

∑

x 6=y

InC(x) ∨ InC(y),
∑

x 6=y

fn
D(xy) =

1

2

∑

x 6=y

fn
C(x) ∨ fn

C(y).

Theorem 3.4. Let G = (C,D) be a bipolar neutrosophic graph such that for all x, y ∈ X,

tpDc(xy) =
1

2
(tpC(x) ∧ tpC(y)), IpDc(xy) =

1

2
(IpC(x) ∨ IpC(y)), fp

Dc(xy) =
1

2
(fp

C(x) ∨ fp
C(y)),

tnDc(xy) =
1

2
(tnC(x) ∨ tnC(y)), InDc(xy) =

1

2
(InC(x) ∧ InC(y)), fn

Dc(xy) =
1

2
(fn

C(x) ∧ fn
C(y)).

Then G is self complementary bipolar neutrosophic graph.

Proof. Let Gc = (Cc, Dc) be the complement of bipolar neutrosophic graph G = (C,D), then by definition.

3.9,

tpDc(xy) = tpC(x) ∧ tpC(y)− tpD(xy)

tpDc(xy) = tpC(x) ∧ tpC(y)−
1

2
(tpC(x) ∧ tpC(y))

tpDc(xy) =
1

2
(tpC(x) ∧ tpC(y))

tpDc(xy) = tpD(xy)

tnDc(xy) = tnC(x) ∨ tnC(y)− tnD(xy)

tnDc(xy) = tnC(x) ∨ tnC(y)−
1

2
(tnC(x) ∨ tnC(y))

tnDc(xy) =
1

2
(tnC(x) ∨ tnC(y))

tnDc(xy) = tnD(xy)

Similarly, it can be proved that IpDc(xy) = IpD(xy), InDc(xy) = InD(xy), fp
Dc(xy) = fp

D(xy) and fn
Dc(xy) =

fn
D(xy). Hence, G is self complementary.

Definition 3.12. The degree of a vertex x in a bipolar neutrosophic graph is denoted by deg(x) and defined

by the 6−tuple as,

deg(x) = (degpt (x), deg
p
I (x), deg

p
f(x), deg

n
t (x), deg

n
I (x), deg

n
f (x)),

= (
∑

xy∈E

tpD(xy),
∑

xy∈E

IpD(xy),
∑

xy∈E

fp
D(xy),

∑

xy∈E

tnD(xy),
∑

xy∈E

InD(xy),
∑

xy∈E

fn
D(xy)).

The term degree is also referred as neighborhood degree.

Definition 3.13. The closed neighborhood degree of a vertex x in a bipolar neutrosophic graph is denoted

by deg[x] and defined as,

deg[x] = (degpt [x], deg
p
I [x], deg

p
f [x], deg

n
t [x], deg

n
I [x], deg

n
f [x],

= (degpt (x) + tpC(x), deg
p
I (x) + IpC(x), deg

p
f (x) + fp

C(x), deg
n
t (x) + tnC(x), deg

n
I (x) + tnC(x),

degnf (x) + fp
C(x)).
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Definition 3.14. A bipolar neutrosophic graph G is known as a regular bipolar neutrosophic graph if all

vertices of G have same degree.

Definition 3.15. A bipolar neutrosophic graph G is known as a totally regular bipolar neutrosophic graph

if all vertices of G have same closed neighborhood degree.

Theorem 3.5. A complete bipolar neutrosophic graph is totally regular.

Theorem 3.6. Let G = (C,D) be a bipolar neutrosohic graph then C = (tp, Ip, fp, tn, In, fn) is a constant

function if and only if the following statements are equivalent:

(1) G is a regular bipolar neutrosophic graph,

(2) G is totally regular bipolar neutrosophic graph.

Proof. Assume that C is a constant function and for all x ∈ X ,

tpC(x) = kt, I
p
C(x) = kI , f

p
C(x) = kf , t

n
C(x) = k

′

t, I
n
C(x) = k

′

I , f
n
C(x) = k

′

f

where, kt, kI , kf , k
′

t, k
′

I , k
′

f are constants.

(1) ⇒ (2) Suppose that G is a regular bipolar neutrosophic graph and deg(x) = (pt, pI , pf , nt, nI , nf ) for

all x ∈ X .

Now consider,

deg[x] = (degpt (x) + tpC(x), deg
p
I(x) + IpC(x), deg

p
f (x) + fp

C(x), deg
n
t (x) + tnC(x), deg

n
I (x) + tnC(x), deg

n
f (x) +

fp
C(x)) = (pt + kt, pI + kI , pf + kf , nt + k

′

t, nI + k
′

I , nf + k
′

f ) for all x ∈ X .

Hence G is totally regular bipolar neutrosophic graph.

(2) ⇒ (1) Suppose that G is totally regular bipolar neutrosophic graph and for all x ∈ X deg[x] =

(p
′

t, p
′

I , p
′

f , n
′

t, n
′

I , n
′

f ).

(degpt (x) + kt, deg
p
I(x) + kI , deg

p
f (x) + kf , deg

n
t (x) + k

′

t, deg
n
I (x) + k

′

I , deg
n
f (x) + k

′

f ) = (p
′

t, p
′

I , p
′

f , n
′

t, n
′

I , n
′

f ),

degpt (x), deg
p
I(x), deg

p
f (x), deg

n
t (x), deg

n
I (x), deg

n
f (x)) + (kt, kI , kf , k

′

t, k
′

I , k
′

f ) = (p
′

t, p
′

I , p
′

f , n
′

t, n
′

I , n
′

f ),

(degpt (x), deg
p
I(x), deg

p
f (x), deg

n
t (x), deg

n
I (x), deg

n
f (x)) = (p

′

t − kt, p
′

I − kI , p
′

f − kf , n
′

t − k
′

t, n
′

I − k
′

I , n
′

f − k
′

f ),

for all x ∈ X . Thus G is a regular bipolar neutrosophic graph.

Conversely, assume that the conditions are equivalent. Let deg(x) = (ct, cI , cf , dt, dI , df ) and deg[x] =

(c
′

t, c
′

I , c
′

f , d
′

t, d
′

I , d
′

f ).

Since by definition of closed neighborhood degree for all x ∈ X ,

deg[x] = deg(x) + (tpC(x), I
p
C(x), f

p
C(x), t

n
C(x), I

n
C (x), f

p
C(x)),

⇒ (tpC(x), I
p
C (x), f

p
C(x), t

n
C(x), I

n
C(x), f

p
C(x)) = deg[x]− deg(x),

⇒ (tpC(x), I
p
C (x), f

p
C(x), t

n
C(x), I

n
C(x), f

p
C(x)) = (c

′

t − ct, c
′

I − cI , c
′

f − cf , d
′

t − dt, d
′

I − dI , d
′

f − df ),

for all x ∈ X. Hence C = (c
′

t − ct, c
′

I − cI , c
′

f − cf , d
′

t − dt, d
′

I − dI , d
′

f − df ), a constant function which

completes the proof.

Definition 3.16. A bipolar neutrosophic graph G is said to be irregular if at least two vertices have distinct

degrees. If all vertices do not have same closed neighborhood degrees then G is known as totally irregular

bipolar neutrosophic graph.
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Theorem 3.7. Let G = (C,D) be a bipolar neutrosophic graph and C = (tpC , I
p
C , f

p
C , t

n
C , I

n
C , f

n
C) be a constant

function then G is an irregular bipolar neutrophic graph if and only if G is a totally irregular bipolar neutrophic

graph.

Proof. Assume that G is an irregular bipolar neutrosophic graph then at least two vertices of G have distinct

degrees. Let x and y be two vertices such that deg(x) = (r1, r2, r3, s1, s2, s3) and deg(y) = (r
′

1, r
′

2, r
′

3, s
′

1, s
′

2, s
′

3)

where, ri 6= r
′

i , for some i = 1, 2, 3.

Since, C is a constant function let C = (k1, k2, k3, l1, l2, l3). Therefore,

deg[x] = deg(x) + (k1, k2, k3, l1, l2, l3)

deg[x] = (r1 + k1, r2 + k2, r3 + k3, s1 + l1, s2 + l2, s3 + l3)

and deg[y] = (r
′

1 + k1, r
′

2 + k2, r
′

3 + k3, s
′

1 + l1, s
′

2 + l2, s
′

3 + l3).

Clearly ri + ki 6= r
′

i + ki , for some i = 1, 2, 3 therefore x and y have distinct closed neighborhood degrees.

Hence G is a totally irregular bipolar neutrosophic graph.

The converse part is similar.

4 Domination in bipolar neutrosophic graph

Definition 4.1. Let G = (C,D) be a bipolar neutrosophic graph and x, y are two vertices in G then we say

that x dominates y if

tpD(xy) = tpC(x) ∧ tpC(y), IpD(xy) = IpC(x) ∨ IpC(y), fp
D(xy) = fp

C(x) ∨ fp
C(y),

tnD(xy) = tnC(x) ∨ tnC(y), InD(xy) = InC(x) ∧ InC(y), fn
D(xy) = fn

C(x) ∧ fn
C(y).

A subset D
′

⊆ X is called a dominating set if for each y ∈ X \D
′

there exists x ∈ D
′

such that x dominates

y. A dominating set D
′

is said to be minimal if for any x ∈ D
′

, D
′

\ {x} is not a dominating set. The

minimum cardinality among all minimal dominating sets is called a domination number of G, denoted by

λ(G).

b b

b b

x(0.5, 0.2, 0.3,−0, 2,−0.2,−0.7) y(0.6, 0.1, 0.2,−0, 2,−0.3,−0.7)

z(0.5, 0.2, 0.3,−0, 3,−0.2,−0.5) w(0.5, 0.2, 0.2,−0, 2,−0.3,−0.5)

(0.4, 0.2, 0.2,−0, 2,−0.3,−0.4)

(0.5, 0.1, 0.3,−0, 2,−0.3,−0.7)

(0
.4
,
0
.2
,
0
.2
,
−
0
,
2
,
−
0
.3
,
−
0
.6
)

(0
.5
,
0
.2
,
0
.3
,
−
0
,
2
,
−
0
.2
,
−
0
.7
)

b

t(
0
.7
,
0
.3
,
0
.1
,
−
0
,
2
,
−
0
.3
,
−
0
.7
)

(0.4, 0.2, 0.1,−0, 2,−0.3,−0.7)

(0.
5, 0

.3,
0.2

,−
0, 2

,−
0.3

,−
0.7

)

Figure 8: Bipolar neutrosophic graph G.
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Example 4.1. Consider a bipolar neutrosophic graph as shown in Fig.8. The set {x,w} is a minimal

dominating set and λ(G) = 2

Theorem 4.1. Let G1 and G2 be two bipolar neutrosophic graphs with D
′

1 and D
′

2 as dominating sets then

λ(G1 ∪G2) = λ(G1) + λ(G2)− |D
′

1 ∩D
′

2|.

Proof. Since D
′

1 and D
′

2 are dominating sets of G1 and G2, D
′

1∪D
′

2 is a dominating set of G1∪G2. Therefore,

λ(G1∪G2) ≤ |D
′

1∪D
′

2|. It only remains to show that D
′

1∪D
′

2 is the minimum dominating set. On contrary,

assume that D
′

= D
′

1 ∪D
′

2 \ {x} is a minimum dominating set of G1 ∪G2. There are two cases,

Case 1. If x ∈ D
′

1 and x /∈ D
′

2, then D
′

1\{x} is not a dominating set of G1 which implies that D
′

1∪D
′

2\{x} =

D
′

is not a dominating set of G1 ∪G2. A contradiction, hence D
′

1 ∪D
′

2 is a minimum dominating set and

λ(G1 ∪G2) = |D
′

1 ∪D
′

2|,

⇒ λ(G1 ∪G2) = λ(G1) + λ(G2)− |D
′

1 ∩D
′

2|.

Case 2. If x ∈ D
′

2 and x /∈ D
′

1, same contradiction can be obtained.

Theorem 4.2. Let G1 and G2 be two bipolar neutrosophic graphs with X1 ∩X2 6= ∅ then,

λ(G1 +G2) = min{λ(G1), λ(G1), 2}.

Proof. Let x1 ∈ X1 and x2 ∈ X2, sine of G1 +G2 is a bipolar neutrosophic graph, we have

tpD1+D2
(x1x2) = tpC1+C2

(x1) ∧ tpC1+C2
(x2), tnD1+D2

(x1x2) = tnC1+C2
(x1) ∨ tnC1+C2

(x2)

IpD1+D2
(x1x2) = IpC1+C2

(x1) ∨ IpC1+C2
(x2), InD1+D2

(x1x2) = InC1+C2
(x1) ∧ InC1+C2

(x2)

fp
D1+D2

(x1x2) = fp
C1+C2

(x1) ∨ fp
C1+C2

(x2), fn
D1+D2

(x1x2) = fn
C1+C2

(x1) ∧ fn
C1+C2

(x2).

Hence any vertex of G1 dominates all vertices of G2 and similarly any vertex of G2 dominates all vertices of

G1. So, {x1, x2} is a dominating set of G1 +G2. Let D be a minimum dominating set of G1 +G2, then D

is one of the following forms:

1. D = D1 where, λ(G1) = |D1|,

2. D = D2 where, λ(G2) = |D2|,

3. D = {x1, x2} where, x1 ∈ V1 and x2 ∈ V2. {x1} and {x2} are not dominating sets of G1 or G2,

respectively.

Hence,

λ(G1 +G2) = min{λ(G1), λ(G1), 2}.

Theorem 4.3. Let G1 = (C1, D1) and G2 = (C2, D2) be two bipolar neutrosophic graphs. If for x1 ∈ V1,

C1(x1) > 0 where, 0 = (0, 0, 0, 0, 0, 0), and x2 dominates y2 in G2 then (x1, y1) dominates (x1, y2) in G12G2.
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Proof. Since x2 dominates y2 therefore,

tpD2
(x2y2) = tpC2

(x2) ∧ tpC2
(y2), IpD2

(x2y2) = IpC2
(x2) ∨ IpC2

(y2), fp
D2

(x2y2) = fp
C2

(x2) ∨ fp
C2

(y2),

tnD2
(x2y2) = tnC2

(x2) ∨ tnC2
(y2), InD2

(x2y2) = InC2
(x2) ∧ InC2

(y2), fn
D2

(x2y2) = fn
C2

(x2) ∧ fn
C2

(y2).

For x1 ∈ X1, take (x1, y2) ∈ X1 ×X2. By definition 3.6,

tpD12D2
((x1, x2)(x1, y2)) = tpC1

(x1) ∧ tpD2
(x2y2),

= tpC1
(x1) ∧ {tpC2

(x2) ∧ tpC2
(y2)},

= {tpC1
(x1) ∧ tpC2

(x2)} ∧ {tpC1
(x1) ∧ tpC2

(y2)},

= tpC12C2
(x1, x2) ∧ tpC12C2

(x1, y2).

tnD12D2
((x1, x2)(x1, y2)) = tnC1

(x1) ∨ tnD2
(x2y2),

= tnC1
(x1) ∨ {tnC2

(x2) ∨ tnC2
(y2)},

= {tnC1
(x1) ∨ tnC2

(x2)} ∨ {tnC1
(x1) ∨ tnC2

(y2)},

= tnC12C2
(x1, x2) ∨ tnC12C2

(x1, y2).

Similarly, it can be proved that

IpD12D2
((x1, x2)(x1, y2)) = IpC12C2

(x1, x2) ∨ IpC12C2
(x1, y2),

InD12D2
((x1, x2)(x1, y2)) = InC12C2

(x1, x2) ∧ InC12C2
(x1, y2),

fp
D12D2

((x1, x2)(x1, y2)) = fp
C12C2

(x1, x2) ∨ fp
C12C2

(x1, y2),

fn
D12D2

((x1, x2)(x1, y2)) = fn
C12C2

(x1, x2) ∧ fn
C12C2

(x1, y2).

Hence (x1, x2) dominates (x1, y2) and the proof is complete.

Proposition 4.1. Let G1 and G2 be two bipolar neutrosophic graphs. If for y2 ∈ X2, C2(y2) > 0 where,

0 = (0, 0, 0, 0, 0, 0), and x1 dominates y1 in G1 then (x1, y2) dominates (y1, y2) in G12G2.

Theorem 4.4. Let D
′

1 and D
′

2 be the minimal dominating sets of G1 = (C1, D1) and G2 = (C2, D2),

respectively. Then D
′

1 ×X2 and X1 ×D
′

2 are dominating sets of G12G2 and

λ(G12G2) ≤ |D
′

1 ×X2| ∧ |X1 ×D
′

2|. (4.1)

Proof. To prove inequality 4.1, we need to show that D
′

1 ×X2 and X1 ×D
′

2 are dominating sets of G12G2.

Let (y1, y2) /∈ D
′

1×X2 then, y1 /∈ D
′

1. Since D
′

1 is a dominating set of G1, there exists x1 ∈ D
′

1 that dominates

y1. By theorem 4.1, (x1, y2) dominates (y1, y2) in G12G2. Since (y1, y2) was taken to be arbitrary therefore,

D
′

1 × X2 is a dominating set of G12G2. Similarly, X1 × D
′

2 is a dominating set if G12G2. Hence the

proof.

Theorem 4.5. Let D
′

1 and D
′

2 be the dominating sets of G1 = (C1, D1) and G2 = (C2, D2), respectively.

Then D
′

1 ×D
′

2 is a dominating set of the direct product G1 ×G2 and

λ(G1 ×G2) = |D
′

1 ×D
′

2|. (4.2)
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Proof. Let (y1, y2) ∈ X1 × X2 \ D
′

1 × D
′

2 then y1 ∈ X1 \ D
′

1 and y2 ∈ X2 \ D
′

2. Since, D
′

1 and D
′

2 are

dominating sets there exist x1 ∈ D
′

1 and x2 ∈ D
′

2 such that x1 dominates y1 and x2 dominates y2. Consider,

tpD1×D2
((x1, x2)(y1, y2)) = tpD1

(x1y1) ∧ tpD2
(x2y2),

= {tpC1
(x1) ∧ tpC1

(y1)} ∧ {tpC2
(x2) ∧ tpC2

(y2)},

= {tpC1
(x1) ∧ tpC2

(x2)} ∧ {tpC1
(y1) ∧ tpC2

(y2)},

= tpC1×C2
(x1, x2) ∧ tpC1×C2

(y1, y2).

It shows that (x1, x2) dominates (y1, y2). Since (x1, x2) was taken to be arbitrary therefore, every element

of X1 ×X2 \D
′

1 ×D
′

2 is dominated by some element of D
′

1 ×D
′

2. It only remains to show that D
′

1 ×D
′

2 is

a minimal dominating set. On contrary assume that |D
′

| = D
′

1 × D
′

2 \ {(z1, z2)} is a minimal dominating

set of G1 × G2 such that |D
′

| < |D
′

1 × D
′

2|. Let (z1, z2) ∈ D
′

1 × D
′

2 such that (z1, z2) /∈ D
′

i.e., z1 ∈ D
′

1

and z2 ∈ D
′

2 then there exist z
′

1 ∈ X1 \ D
′

1 and z
′

2 ∈ X2 \ D
′

2 which are only dominated by z1 and z2,

respectively. Hence no element other than (z1, z2) dominates (z
′

1, z
′

2) so (z1, z2) ∈ D
′

. A contradiction, thus

λ(G1 ×G2) = |D1 ×D2|.

Corollary 4.1. Let G1 and G2 be two bipolar neutrosophic graphs. If x1 dominates y1 in G1 and x2

dominates y2 in G2 then (x1, y1) dominates (x2, y2) in G1 ×G2.

Definition 4.2. Two vertices x and y in a bipolar neutrosophic graph are said to be independent if

tpD(xy) < tpC(x) ∧ tpC(y), IpD(xy) < IpC(x) ∨ IpC(y), fp
D(xy) < fp

C(x) ∨ fp
C(y),

tnD(xy) > tnC(x) ∨ tnC(y), InD(xy) > InC(x) ∧ InC(y), fn
D(xy) > fn

C(x) ∧ fn
C(y). (4.3)

A subset N of X is said to bipolar neutrosophic independent set if for all x, y ∈ N equations 4.3 are satisfied.

A bipolar neutrosophic independent set is said to be maximal if for every z ∈ X \N , N ∪{z} is not a bipolar

neutrosophic independent set. The maximal cardinality among all maximal independent sets is called bipolar

neutrosophic independent number. It is denoted by α(G).

Theorem 4.6. Let G1 and G2 be two bipolar neutrosophic graphs of the graphs G∗
1 = (X1, E1) and G∗

2 =

(X2, E2) such that X1 ∩X2 = ∅ then α(G1 ∪G2) = α(G1) + α(G2).

Proof. Let N1 and N2 be maximal bipolar neutrosophic independent sets of G1 and G2. Since N1 ∩N2 = ∅

therefore, N1 ∪N2 is a maximal independent set of G1 ∪G2. Hence α(G1 ∪G2) = α(G1) + α(G2).

Theorem 4.7. Let G1 and G2 be two bipolar neutrosophic graphs then α(G1 +G2) = α(G1) ∨ α(G2).

Proof. LetN1 andN2 be maximal bipolar neutrosophic independent sets. Since every vertex of G1 dominates

every vertex of G2 in G1 +G1 Hence, maximal bipolar neutrosophic independent set of G1 +G2 is either N1

or N2. Thus, α(G1 +G2) = α(G1) ∨ α(G2).

Theorem 4.8. Let N1 and N2 be the maximal bipolar neutrosophic independent sets of G1 and G2, respec-

tively and X1 ∩ X2 = ∅. Then α(G12G2) = |N1 × N2| + |N | where, N = {(xi, yi) : xi ∈ X1 \ N1, yi ∈

X2 \N2, xixi+1 ∈ E1, yiyi+1 ∈ E2, i = 1, 2, 3, · · · }.
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Proof. N1 and N2 are maximal independent sets of G1 and G2, respectively. Clearly, N1 × N2 is an inde-

pendent set of G12G2 since no vertex of N1 ×N2 dominates any other vertex of N1 ×N2.

Consider the set of vertices N = {(xi, yi) : xi ∈ X1 \N1, yi ∈ X2 \N2, xixi+1 ∈ E1, yiyi+1 ∈ E2}. It can be

seen that no vertex (xi, yi) ∈ N for each i = 1, 2, 3, · · · dominates (xi+1, yi+1) ∈ N for each i = 1, 2, 3, · · · .

Hence N
′

= (N1 ×N2) ∪N is an independent set of G12G2.

Assume that S = N
′

∪ {(xi, yj)}, for some i 6= j, xi ∈ X1 \N1 and yj ∈ X2 \N2, is a maximal independent

set. Without loss of generality, assume that j=i+1 then (xi, yj) is dominated by (xi, yi). A contradiction,

hence N
′

is a maximal independent set and α(G12G2) = |N
′

| = |N1 ×N2|+ |N |

Theorem 4.9. Let D1 and D2 be two minimal dominating sets of G1 and G2 , respectively. Then X1 ×

X2 \D1 ×D2 is a maximal independent set of G1 ×G2 and α(G1 ×G2) = n1n2 −λ(G1 ×G2) where, n1 and

n2 are the number of vertices in G1 and G2.

The proof is obvious.

Theorem 4.10. A bipolar neutrosophic independent set of a bipolar neutrosophic graph G = (C,D) is

maximal if and only if it is independent and dominating.

Proof. Let N be a maximal independent set of G, then for every x ∈ X \N , N ∪ {x} is not an independent

set. For every vertex x ∈ X \N , there exists some y ∈ N such that

tpD(xy) = tpC(x) ∧ tpC(y), IpD(xy) = IpC(x) ∨ IpC(y), fp
D(xy) = fp

C(x) ∨ fp
C(y),

tnD(xy) = tnC(x) ∨ tnC(y), InD(xy) = InC(x) ∧ InC(y), fn
D(xy) = fn

C(x) ∧ fn
C(y).

Thus y dominates x and hence N is both independent and dominating set.

Conversely, assume that D is both independent and dominating set but not maximal independent set, so

there exists a vertex x ∈ X \N such that N ∪ {x} is an independent set i.e., no vertex in N dominates x, a

contradiction to the fact that N is a dominating set. Hence N is maximal.

Theorem 4.11. Every maximal independent set in a bipolar neutrosophic set is a minimal dominating set.

Proof. Let N be a maximal independent set in a bipolar neutrosophic graph then by theorem 4.10, N is

a dominating set. Suppose N is not a minimal dominating set, there exists at least one y ∈ N for which

N \ {y} is a dominating set. But if N \ {y} dominates X \ {N \ {y}}, then at least one vertex in N \ {y}

dominates y. A contradiction to the fact that N is a bipolar neutrosophic independent set of G. Hence N

is a minimal dominating set.

5 Applications

In this section, we present a method for the identification of risk in decision support systems. The method

is explained by an example for prevention of accidental hazards in chemical industry. The application of

domination in bipolar neutrosophic graphs is given for the construction of transmission stations.
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(1) An outranking approach for safety analysis using bipolar neutrosophic sets

The proposed methodology can be implemented in various fields in different ways e.g., multi-criteria de-

cision making problems with bipolar neutrosophic information. However, our main focus is the identification

of risk assessments in industry which is described in the following steps.

The bipolar neutrosophic information consists of a group of risks\alternatives R = {r1, r2, · · · , rn} evalu-

ated on the basis of criteria C = {c1, c2, · · · , cm}. Here ri, i = 1, 2, · · · , n is the possibility for the criteria

ck, k = 1, 2, · · · ,m and rik are in the form of bipolar neutrosophic values. This method is suitable if we have

a small set of data and experts are able to evaluate the data in the form of bipolar neutrosophic information.

Take the values of rik as rik = (tpik, I
p
ik, f

p
ik, t

n
ik, I

n
ik, f

n
ik).

Step 1. Construct the table of the given data.

Step 2. Determine the average values using the following bipolar neutrosophic average operator,

Ai =
1

n
(

m∑

j=1

tpij −
m∏

j=1

tpij ,
m∏

j=1

Ipij ,
m∏

j=1

fp
ij ,

m∏

j=1

tnij ,
m∑

j=1

Inij −
m∏

j=1

Inij ,
m∑

j=1

fn
ij −

m∏

j=1

fn
ij), (5.1)

for each i = 1, 2, · · · , n.

Step 3. Construct the weighted average matrix.

Choose the weight vector w = (w1, w2, · · · , wn) . According to the weights for each alternative, the weighted

average table can be calculated by multiplying each average value with the corresponding weight as:

βi = Aiwi, i = 1, 2, · · · , n.

Step 4. Calculate the normalized value for each alternative\risk βi using the formula,

αi =
√
(tpi )

2 + (Ipi )
2 + (fp

i )
2 + (1− tni )

2 + (−1 + Ini )
2 + (−1 + fn

i )
2, (5.2)

for each i = 1, 2, · · · , n. The resulting table indicate the preference ordering of the alternatives\risks. The

alternative\risk with maximum αi value is most dangerous or more preferable.

Example 5.1. Chemical industry is a very important part of human society. These industries contain large

amount of organic and inorganic chemicals and materials. Many chemical products have a high risk of fire

due to flammable materials, large explosions and oxygen deficiency etc. These accidents can cause the death

of employs, damages to building, destruction of machines and transports, economical losses etc. Therefore,

it is very important to prevent these accidental losses by identifying the major risks of fire, explosions and

oxygen deficiency.

A manager of a chemical industry Y wants to prevent such types of accidents that caused the major loss

to company in the past. He collected data from witness reports, investigation teams and near by chemical

industries and found that the major causes could be the chemical reactions, oxidizing materials, formation

of toxic substances, electric hazards, oil spill, hydrocarbon gas leakage and energy systems. The witness

reports, investigation teams and industries have different opinions. There is a bipolarity in people’s thinking

and judgement. The data can be considered as bipolar neutrosophic information. The bipolar neutrosophic

information about company Y old accidents is given in Table 1:
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Table 1: Bipolar neutrosophic Data

Fire Oxygen Deficiency Large Explosion

Chemical Exposures (0.5,0.7,0.2,-0.6,-0.3,-0.7) (0.1,0.5,0.7,-0.5,-0.2,-0.8) (0.6,0.2,0.3,-0.4,0.0,-0.1)

Oxidizing materials (0.9,0.7,0.2,-0.8,-0.6,-0.1) (0.3,0.5,0.2,-0.5,-0.5,-0.2) (0.9,0.5,0.5,-0.6,-0.5,-0.2)

Toxic vapour cloud (0.7,0.3,0.1,-0.4,-0.1,-0.3) (0.6,0.3,0.2,-0.5,-0.3,-0.3) (0.5,0.1,0.2,-0.6,-0.2,-0.2)

Electric Hazard (0.3,0.4,0.2,-0.6,-0.3,-0.7) (0.9,0.4,0.6,-0.1,-0.7,-0.5) (0.7,0.6,0.8,-0.7,-0.5,-0.1)

Oil Spill (0.7,0.5,0.3,-0.4,-0.2,-0.2) (0.2,0.2,0.2,-0.7,-0.4,-0.4) (0.9,0.2,0.7,-0.1,-0.6,-0.8)

Hydrocarbon gas leak-

age

(0.5,0.3,0.2,-0.5,-0.2,-0.2) (0.3,0.2,0.3,-0.7,-0.4,-0.3) (0.8,0.2,0.1,-0.1,-0.9,-0.2)

Ammonium Nitrate (0.3,0.2,0.3,-0.5,-0.6,-0.5) (0.9,0.2,0.1,0.0,-0.6,-0.5) (0.6,0.2,0.1,-0.2,-0.3,-0.5)

By applying the bipolar neutrosophic average operator 5.1 on Table 1, the average values are given in

Table.2.

Table 2: Bipolar neutrosophic average normalized table

Average Value

Chemical Exposures (0.39,0.023,0.014,-0.04,-0.167,-0.515)

Oxidizing materials (0.619,0.032,0.001,-0.08,-0.483,-0.165)

Toxic vapour cloud (0.53,0.003,0.001,-0.04,-0.198,-0.261)

Electric Hazard (0.570,0.032,0.032,-0.014,-0.465,-0.422)

Oil Spill (0.558,0.007,0.014,-0.009,-0.384,-0.445)

Hydrocarbon gas leakage (0.493,0.004,0.002,-0.011,-0.543,-0.229)

Ammonium Nitrate (0.546,0.003,0.001,0.0,-0.464,-0.417)

With regard to the weight vector (0.35, 0.80, 0.30, 0.275, 0.65, 0.75, 0.50) associated to each cause of acci-

dent, the weighted average values are obtained by multiplying each average value with corresponding weight

and are given in Table 3.

Table 3: Bipolar neutrosophic weighted average table

Average Value

Chemical Exposures (0.1365,0.0081,0.0049,-0.0140,-0.0585,-0.1803)

Oxidizing materials (0.4952,0.0256,0.0008,-0.0640,-0.3864,-0.1320)

Toxic vapour cloud (0.1590,0.0009,0.0003,-0.012,-0.0594,-0.0783)

Electric Hazard (0.2850,0.0160,0.0160,-0.0070,-0.2325,-0.2110)

Oil Spill (0.1535,0.0019,0.0039,-0.0025,-0.1056,-0.1224)

Hydrocarbon gas leakage (0.3205,0.0026,0.0013,-0.0072,-0.3530,-0.1489)

Ammonium Nitrate (0.4095,0.0023,0.0008,0.0,-0.3480,-0.2110)

Using formula 5.2, the resulting normalized values are shown in Table 4.
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Table 4: Normalized values

Normalized value

Chemical Exposures 1.5966

Oxidizing materials 1.5006

Toxic vapour cloud 1.6540

Electric Hazard 1.6090

Oil Spill 1.4938

Hydrocarbon gas leakage 1.6036

Ammonium Nitrate 1.5089

The accident possibilities can be placed in the following order: Toxic vapour cloud ≻ Electric Hazard ≻

Hydrocarbon gas leakage ≻ Chemical Exposures ≻ Ammonium Nitrate ≻ Oxidizing materials ≻ Oil Spill

where, the symbol ≻ represents partial ordering of objects. It can be easily seen that the formation of toxic

vapour clouds, electrical and energy systems and hydrocarbon gas leakage are the major dangers to the

chemical industry. There is a very little danger due to oil spill. Chemical Exposures, oxidizing materials

and ammonium nitrate has an average accidental danger. Therefore, industry needs special precautions to

prevent the major hazards that could happen due the formation of toxic vapour clouds.

(2) Domination in bipolar neutrosophic graphs

Domination has a wide variety of applications in communication networks, coding theory, fixing surveil-

lance cameras, detecting biological proteins and social networks etc. Consider the example of a TV channel

that wants to set up transmission stations in a number of cities such that every city in the country get

access to the channel signals from at least one of the stations. To reduce the cost for building large stations

it is required to set up minimum number of stations. This problem can be represented by a neutrosophic

graph in which vertices represent the cities and there is an edge between two cities if they can communicate

directly with each other. Consider the network of ten cities {C1, C2, · · · , C10}. In the bipolar neutrosophic

graph, the degree of each vertex represents the level of signals it can transmit to other cities and the bipolar

neutrosophic value of each edge represents the degree of communication between the cities. The graph is

shown in Figure.9. D = {C8, C10} is the minimum dominating set. It is concluded that building only two

large transmitting stations in C8 and C10, a high economical benefit can be achieved.

20



b

b b

b

bb

b

b

C1
(0.

5,
0.7

, 0
.2,

−

0.7
,−

0.3
,−

0.6
)

C3
(0.

7,
0.7

, 0
.5,

−

0.8
,−

0.7
,−

0.6
)

C2
(0.

4,
0.4

, 0
.5,

−

0.7
,−

0.8
,−

0.4
)

C7
(0.

5,
0.7

, 0
.2,

−

0.7
,−

0.3
,−

0.6
)

C6
(0.

4, 0
.4,

0.5
,−

0.7
,−

0.8
,−

0.4
)

C5
(0
.7,

0.7
, 0
.5,

−

0.8
,−

0.7
,−

0.6
)

C
8
(0
.9
,
0
.7
,
0
.2
,
−
0
.2
,
−
0
.6
,
−
0
.1
)

C
4
(0
.9
,
0
.7
,
0
.2
,
−
0
.2
,
−
0
.6
,
−
0
.1
)

C9(0.7, 0.6, 0.8,−0.7,−0.5,−0.1)

b b

C10(0.9, 0.4, 0.6,−0.1,−0.7,−0.5)

(0.5, 0.7, 0.2,−0.7,−0.3,−0.6) (0.4, 0.4, 0.5,−0.7,−0.8,−0.4)

(0.4, 0.4, 0.5,−0.7,−0.8,−0.4)(0.5, 0.7, 0.2,−0.7,−0.3,−0.6)

(0.7, 0.7, 0.8,−0.2,−0.6,−0.1) (0.7, 0.6, 0.8,−0.1,−0.7,−0.5) (0.9, 0.5, 0.6,−0.1,−0.7,−0.5)

C5C10(0.7, 0.7, 0.6,−0.8,−0.7,−0.5)C6C9(0.3, 0.5, 0.7,−0.6,−0.7,−0.4)

C3C10(0.7, 0.7, 0.6,−0.8,−0.7,−0.5)

C2C10(0.4, 0.4, 0.6,−0.1,−0.8,−0.5)

C6C10(0.4, 0.4, 0.6,−0.1,−0.8,−0.5)

(0
.5
, 0
.7
, 0
.2
,−
0.
2,
−

0.
6,
−

0.
6)

(0.5, 0.7, 0.2,
−

0.2,
−

0.6,
−

0.6)

C2C9(0.3, 0.5, 0.5,−0.6,−0.7,−0.3)

(0
.5
, 0
.7
, 0
.5
,−
0.
2,
−

0.
7,
−

0.
7)

(0.5, 0.7, 0.5,
−

0.2,
−

0.7,
−

0.7)

C1C9(0.4, 0.7, 0.8,−0.7,−0.4,−0.6)

C7C9(0.4, 0.7, 0.8,−0.7,−0.4,−0.6)

C9 C10

Figure 9: Domination in bipolar neutrosophic graph

6 Conclusion

Bipolar fuzzy graph theory has many applications in science and technology, especially in the fields of neural

networks, operations research, artificial intelligence and decision making. A bipolar neutrosophic graph is a

generalization of the notion bipolar fuzzy graph. We have introduced the idea of bipolar neutrosophic graph

and operations on bipolar neutrosophic graphs. Some properties of regular, totally regular, irregular and

totally irregular bipolar neutrosophic graphs are discussed in detail. We have investigated the dominating

and independent sets of certain graph products. Two applications of bipolar neutrosophic sets and bipolar

neutrosophic graphs are studied in chemical industry and construction of radio channels. We are planing to

extend our research work to (1) m−polar fuzzy neutrosophic graphs, (2) Roughness in neutrosophic graphs,

(3) m−polar fuzzy soft neutrosophic graphs.
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