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Abstract—In this paper, we analyze Bayes fusion rule in
details from a fusion standpoint, as well as the emblematic
Dempster’s rule of combination introduced by Shafer in his
Mathematical Theory of evidence based on belief functions. We
propose a new interesting formulation of Bayes rule and point
out some of its properties. A deep analysis of the compatibility of
Dempster’s fusion rule with Bayes fusion rule is done. We show
that Dempster’s rule is compatible with Bayes fusion rule only in
the very particular case where the basic belief assignments (bba’s)
to combine are Bayesian, and when the prior information is
modeled either by a uniform probability measure, or by a vacuous
bba. We show clearly that Dempster’s rule becomes incompatible
with Bayes rule in the more general case where the prior is truly
informative (not uniform, nor vacuous). Consequently, this paper
proves that Dempster’s rule is not a generalization of Bayes fusion
rule.

Keywords—Information fusion, Probability theory, Bayes fusion
rule, Dempster’s fusion rule.

I. INTRODUCTION

In 1979, Lotfi Zadeh questioned in [1] the validity of the
Dempster’s rule of combination [2], [3] proposed by Shafer in
Dempster-Shafer Theory (DST) of evidence [4]. Since more
than 30 years many strong debates [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15] on the validity of foundations of
DST and Dempster’s rule have bloomed. The purpose of this
paper is not to discuss the validity of Dempster’s rule, nor
the foundations of DST which have been already addressed in
previous papers [16], [17], [18]. In this paper, we just focus
on the deep analysis of the real incompatibility of Dempster’s
rule with Bayes fusion rule. Our analysis supports Mahler’s
one briefly presented in [19].

This paper is organized as follows. In section II, we recall
basics of conditional probabilities and Bayes fusion rule with
its main properties. In section III, we recall the basics of belief
functions and Dempster’s rule. In section IV, we analyze in
details the incompatibility of Dempster’s rule with Bayes rule
in general and its partial compatibility for the very particular
case when prior information is modeled by a Bayesian uniform
basic belief assignment (bba). Section V concludes this paper.

II. CONDITIONAL PROBABILITIES AND BAYES FUSION

In this section, we recall the definition of conditional prob-
ability [20], [21] and present the principle and the properties of

Bayes fusion rule. We present the structure of this rule derived
from the classical definition of the conditional probability in a
new uncommon interesting form that will help us to analyze its
partial similarity with Dempster’s rule proposed by Shafer in
his mathematical theory of evidence [4]. We will show clearly
why Dempster’s rule fails to be compatible with Bayes rule in
general.

A. Conditional probabilities

Let us consider two random events X and Z . The condi-
tional probability mass functions (pmfs) P (X ∣Z) and P (Z∣X)
are defined1 (assuming P (X) > 0 and P (Z) > 0) by [20]:

P (X ∣Z) ≜
P (X ∩ Z)

P (Z)
and P (Z∣X) ≜

P (X ∩ Z)

P (X)
(1)

From Eq. (1), one gets P (X ∩ Z) = P (X ∣Z)P (Z) =
P (Z∣X)P (X), which yields to Bayes Theorem:

P (X ∣Z) =
P (Z∣X)P (X)

P (Z)
and P (Z∣X) =

P (X ∣Z)P (Z)

P (X)
(2)

where P (X) is called the a priori probability of X , and
P (Z∣X) is called the likelihood of X . The denominator P (Z)
plays the role of a normalization constant warranting that
∑N

i=1 P (X = xi∣Z) = 1. In fact P (Z) can be rewritten as

P (Z) =

N
∑

i=1

P (Z∣X = xi)P (X = xi) (3)

The set of the N possible exclusive and exhaustive outcomes
of X is denoted Θ(X) ≜ {xi, i = 1, 2, . . . , N}.

B. Bayes parallel fusion rule

In fusion applications, we are often interested in computing
the probability of an event X given two events Z1 and Z2

that have occurred. More precisely, one wants to compute
P (X ∣Z1 ∩ Z2) knowing P (X ∣Z1) and P (X ∣Z2), where X
can take N distinct exhaustive and exclusive states xi, i =
1, 2, . . . , N . Such type of problem is traditionally called a
fusion problem. The computation of P (X ∣Z1 ∩ Z2) from

1For convenience and simplicity, we use the notation P (X∣Z) instead of
P (X = x∣Z = z), and P (Z∣X) instead of P (Z = z∣X = x) where x and
z would represent precisely particular outcomes of the random variables X

and Z .



P (X ∣Z1) and P (X ∣Z2) cannot be done in general without the
knowledge of the probabilities P (X) and P (X ∣Z1∪Z2) which
are rarely given. However, P (X ∣Z1 ∩ Z2) becomes easily
computable by assuming the following conditional statistical
independence condition expressed mathematically by:

(A1) : P (Z1 ∩ Z2∣X) = P (Z1∣X)P (Z2∣X) (4)

With such conditional independence condition (A1), then from
Eq. (1) and Bayes Theorem one gets:

P (X∣Z1 ∩ Z2) =
P (Z1 ∩ Z2 ∩X)

P (Z1 ∩ Z2)
=

P (Z1 ∩ Z2∣X)P (X)

P (Z1 ∩ Z2)

=
P (Z1∣X)P (Z2∣X)P (X)

∑N

i=1 P (Z1∣X = xi)P (Z2∣X = xi)P (X = xi)

Using again Eq. (2), we have:

P (Z1∣X) =
P (X ∣Z1)P (Z1)

P (X)
and P (Z2∣X) =

P (X ∣Z2)P (Z2)

P (X)

and the previous formula of conditional probability P (X ∣Z1∩
Z2) can be rewritten as:

P (X ∣Z1 ∩ Z2) =

P (X∣Z1)P (X∣Z2)
P (X)

∑N
i=1

P (X=xi∣Z1)P (X=xi∣Z2)
P (X=xi)

(5)

The rule of combination given by Eq. (5) is known as Bayes
parallel (or product) rule and dates back to Bernoulli [22]. In
the classification framework, this formula is also called the
Naive Bayesian Classifier because it uses the assumption (A1)
which is often considered as very unrealistic and too simplistic,
and that is why it is called a naive assumption. The Eq. (5)
can be rewritten as:

P (X ∣Z1 ∩ Z2) =
1

K(X,Z1, Z2)
⋅ P (X ∣Z1) ⋅ P (X ∣Z2) (6)

where the coefficient K(X,Z1, Z2) is defined by:

K(X,Z1, Z2) ≜ P (X) ⋅
N
∑

i=1

P (X = xi∣Z1)P (X = xi∣Z2)

P (X = xi)

(7)

C. Symmetrization of Bayes fusion rule

The expression of Bayes fusion rule given by Eq. (5)
can also be symmetrized in the following form that, quite
surprisingly, rarely appears in the literature:

P (X ∣Z1 ∩ Z2) =

P (X∣Z1)√
P (X)

⋅ P (X∣Z2)√
P (X)

∑N
i=1

P (X=xi∣Z1)√
P (X=xi)

⋅ P (X=xi∣Z2)√
P (X=xi)

(8)

or in an equivalent manner:

P (X ∣Z1 ∩ Z2) =
1

K ′(Z1, Z2)
⋅ P (X ∣Z1)
√

P (X)
⋅ P (X ∣Z2)
√

P (X)
(9)

where the normalization constant K ′(Z1, Z2) is given by:

K ′(Z1, Z2) ≜

N
∑

i=1

P (X = xi∣Z1)
√

P (X = xi)
⋅ P (X = xi∣Z2)
√

P (X = xi)
(10)

We call the quantity A2(X = xi) ≜
P (X=xi∣Z1)√

P (X=xi)
⋅

P (X=xi∣Z2)√
P (X=xi)

entering in Eq. (10) the Agreement Factor on

X = xi of order 2, because only two posterior pmfs are used
in the derivation. A2(X = xi) corresponds to the posterior
conjunctive consensus on the event X = xi taking into account
the prior pmf of X . The denominator of Eq. (8) measures
the level of the Global Agreement (GA) of the conjunctive
consensus taking into account the prior pmf of X . It is
denoted2 GA2.

GA2 ≜

N
∑

i1,i2=1∣i1=i2

P (X = xi1 ∣Z1)
√

P (X = xi1 )
⋅ P (X = xi2 ∣Z2)
√

P (X = xi2 )

=

N
∑

i=1

P (X = xi∣Z1)
√

P (X = xi)
⋅ P (X = xi∣Z2)
√

P (X = xi)
= K ′(Z1, Z2)

(11)

In fact, with assumption (A1), the probability P (X ∣Z1 ∩ Z2)
given in Eq. (9) is nothing but the simple ratio of the agreement
factor A2(X) (conjunctive consensus) on X over the global

agreement GA2 =
∑N

i=1 A2(X = xi), that is:

P (X ∣Z1 ∩ Z2) =
A2(X)

GA2
(12)

The quantity GC2 given in Eq. (13) measures the global
conflict (i.e. the total conjunctive disagreement) taking into
account the prior pmf of X .

GC2 ≜

N
∑

i1,i2=1∣i1 ∕=i2

P (X = xi1 ∣Z1)
√

P (X = xi1 )
⋅ P (X = xi2 ∣Z2)
√

P (X = xi2)
(13)

∙ Generalization to P (X ∣Z1 ∩ Z2 ∩ . . . ∩ Zs)

It can be proved that, when assuming conditional independence
conditions, Bayes parallel combination rule can be generalized
for combining s > 2 posterior pmfs as:

P (X ∣Z1 ∩ . . . ∩ Zs) =
1

K(X,Z1, . . . , Zs)
⋅

s
∏

k=1

P (X ∣Zk)

(14)

where the coefficient K(X,Z1, . . . , Zs) is defined by:

K(X,Z1, . . . , Zs) ≜ P (X)

N
∑

i=1

(
∏s

k=1 P (X = xi∣Zk))

P (X = xi)

(15)

The symmetrized form of Eq. (14) is:

P (X ∣Z1 ∩ . . . ∩ Zs) =
1

K ′(Z1, . . . , Zs)
⋅

s
∏

k=1

P (X ∣Zk)
s
√

P (X)

(16)

with the normalization constant K ′(Z1, . . . , Zs) given by:

K ′(Z1, . . . , Zs) ≜

N
∑

i=1

s
∏

k=1

P (X = xi∣Zk)
s
√

P (X = xi)
(17)

2The index 2 is introduced explicitly in the notations because we consider
only the fusion of two posterior pmfs.



The generalization of A2(X), GA2, and GC2 provides the
agreement As(X) of order s, the global agreement GAs and
the global conflict GCs for s sources as follows:

As(X = xi) ≜

s
∏

k=1

P (X = xi∣Zk)
s
√

P (X = xi)

GAs ≜

N
∑

i1,...,is=1∣i1=...=is

P (X = xi1 ∣Z1)
s
√

P (X = xi1 )
. . .

P (X = xis ∣Zs)
s
√

P (X = xis)

GCs ≜

N
∑

i1,...,is=1

P (X = xi1 ∣Z1)
s
√

P (X = xi1)
. . .

P (X = xis ∣Zs)
s
√

P (X = xis)
−GAs

∙ Symbolic representation of Bayes fusion rule

The (symmetrized form of) Bayes fusion rule of two posterior
probability measures P (X ∣Z1) and P (X ∣Z2), given in Eq. (9),
requires an extra knowledge of the prior probability of X . For
convenience, we denote symbolically this fusion rule as:

P (X ∣Z1 ∩ Z2) = Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) (18)

Similarly, the (symmetrized) Bayes fusion rule of s ≥ 2
probability measures P (X ∣Zk), k = 1, 2, . . . , s given by Eq.
(16), which requires also the knowledge of P (X), will be
denoted as:

P (X ∣Z1∩. . .∩Zs) = Bayes(P (X ∣Z1), . . . , P (X ∣Zs);P (X))

∙ Particular case: Uniform a priori pmf

If the random variable X is assumed as a priori uniformly
distributed over the space of its N possible outcomes, then
the probability of X is equal to P (X = xi) = 1/N for i =
1, 2, . . . , N . In such particular case, all the prior probabilities

values
√

P (X = xi) =
√

1/N and s
√

P (X = xi) =
s
√

1/N
can be simplified in Bayes fusion formulas Eq. (9) and Eq.
(10). Therefore, Bayes fusion formula (9) reduces to:

P (X ∣Z1 ∩ Z2) =
P (X ∣Z1)P (X ∣Z2)

∑N
i=1 P (X = xi∣Z1)P (X = xi∣Z2)

(19)

By convention, Eq. (19) is denoted symbolically as:

P (X ∣Z1 ∩ Z2) = Bayes(P (X ∣Z1), P (X ∣Z2)) (20)

Similarly, Bayes(P (X ∣Z1), . . . , P (X ∣Zs)) rule defined with
an uniform a priori pmf of X will be given by:

P (X ∣Z1 ∩ . . . ∩ Zs) =

∏s
k=1 P (X ∣Zk)

∑N
i=1

∏s
k=1 P (X = xi∣Zk)

(21)

When P (X) is uniform and from Eq. (19), one can redefine
the global agreement and the global conflict as:

GAunif
2 ≜

N
∑

i,j=1∣i=j

P (X = xi∣Z1)P (X = xj ∣Z2) (22)

GCunif
2 ≜

N
∑

i,j=1∣i∕=j

P (X = xi∣Z1)P (X = xj ∣Z2) (23)

Because
∑N

i=1 P (X = xi∣Z1) = 1 and
∑N

j=1 P (X =
xj ∣Z2) = 1, then

1 = (

N
∑

i=1

P (X = xi∣Z1))(

N
∑

j=1

P (X = xj ∣Z2))

=

N
∑

i,j=1

P (X = xi∣Z1)P (X = xj ∣Z2)

=

N
∑

i,j=1∣i=j

P (X = xi∣Z1)P (X = xj ∣Z2)

+

N
∑

i,j=1∣i∕=j

P (X = xi∣Z1)P (X = xj ∣Z2)

Therefore, one has always GAunif
2 +GCunif

2 = 1 when P (X)
is uniform, and Eq. (19) can be expressed as:

P (X ∣Z1 ∩ Z2) =
P (X ∣Z1)P (X ∣Z2)

GAunif
2

=
P (X ∣Z1)P (X ∣Z2)

1−GCunif
2

(24)
By a direct extension, one will have:

P (X ∣Z1 ∩ . . . ∩ Zs) =

∏s
k=1 P (X ∣Zk)

GAunif
s

=

∏s
k=1 P (X ∣Zk)

1−GCunif
s

(25)

GAunif
s =

N
∑

i1,...,is=1∣i1=...=is

P (X = xi1 ∣Z1) . . . P (X = xis ∣Zs)

GCunif
s = 1−GAunif

s

Remark 1: The normalization coefficient corresponding to the
global conjunctive agreement GAunif

s can also be expressed
using belief function notations [4] as:

GAunif
s =

∑

xi1
,...,xis

∈Θ(X)

xi1
∩...∩xis

∕=∅

P (X = xi1 ∣Z1) . . . P (X = xis ∣Zs)

and the global disagreement, or total conflict level, is given
by:

GCunif
s =

∑

xi1
,...,xis

∈Θ(X)

xi1
∩...∩xis

=∅

P (X = xi1 ∣Z1) . . . P (X = xis ∣Zs)

D. Properties of Bayes fusion rule

In this subsection, we analyze Bayes fusion rule (assuming
condition (A1) holds) from a pure algebraic standpoint. In
fusion jargon, the quantities to combine come from sources
of information which provide inputs that feed the fusion
rule. In the probabilistic framework, a source s to combine
corresponds to the posterior pmf P (X ∣Zs). In this subsection,
we establish five interesting properties of Bayes rule. Contrary
to Dempster’s rule, we prove that Bayes rule is not associative
in general.

∙ (P1) : The pmf P (X) is a neutral element of Bayes fusion
rule when combining only two sources.

Proof: A source is called a neutral element of a fusion
rule if and only if it has no influence on the fusion result.
P (X) is a neutral element of Bayes rule if and only if



Bayes(P (X ∣Z1), P (X);P (X)) = P (X ∣Z1). It can be easily
verified that this equality holds by replacing P (X ∣Z2) by
P (X) and P (X = xi∣Z2) by P (X = xi) (as if the
conditioning term Z2 vanishes) in Eq. (5). One can also ver-
ify that Bayes(P (X), P (X ∣Z2);P (X)) = P (X ∣Z2), which
completes the proof.

Remark 2: When considering Bayes fusion of more than
two sources, P (X) doesn’t play the role of a neutral element
in general, except if P (X) is uniform. For example, let us
consider 3 pmfs P (X ∣Z1), P (X ∣Z2) and P (X ∣Z3) to combine
with formula (14) with P (X) not uniform. When Z3 vanishes
so that P (X ∣Z3) = P (X), we can easily check that:

Bayes(P (X ∣Z1), P (X ∣Z2), P (X);P (X))

∕= Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) (26)

∙ (P2) : Bayes fusion rule is in general not idempotent.

Proof: A fusion rule is idempotent if the combination of all
same inputs is equal to the inputs. To prove that Bayes rule is
not idempotent it suffices to prove that in general:

Bayes(P (X ∣Z1), P (X ∣Z1);P (X)) ∕= P (X ∣Z1)

From Bayes rule (5), when P (X ∣Z2) = P (X ∣Z1) we clearly
get in general

1

P (X)

P (X ∣Z1)P (X ∣Z1)
∑N

i=1
P (X=xi∣Z1)P (X=xi∣Z1)

P (X=xi)

∕= P (X ∣Z1) (27)

but when Z1 and Z2 vanish, because in such case Eq. (27)
reduces to P (X) on its left and right sides.

Remark 3: In the particular (two sources) degenerate
case where Z1 and Z2 vanish, one has always:
Bayes(P (X), P (X);P (X)) = P (X). However, in
the more general degenerate case (when considering
more than 2 sources), one will have in general:
Bayes(P (X), P (X), . . . , P (X);P (X)) ∕= P (X), but
when P (X) is uniform, or when P (X) is a “deterministic”
probability measure such that P (X = xi) = 1 for a given
xi ∈ Θ(X) and P (X = xj) = 0 for all xj ∕= xi.

∙ (P3) : Bayes fusion rule is in general not associative.

Proof: A fusion rule f is called associative if and only if it
satisfies the associative law: f(f(x, y), z) = f(x, f(y, z)) =
f(y, f(x, z)) = f(x, y, z) for all possible inputs x, y and z.
Let us prove that Bayes rule is not associative from a very
simple example.

Example 1: Let us consider the simplest set of outcomes
{x1, x2} for X , with prior pmf:

P (X = x1) = 0.2 and P (X = x2) = 0.8

and let us consider the three given sets of posterior pmfs:
⎧

⎨

⎩

P (X = x1∣Z1) = 0.1 and P (X = x2∣Z1) = 0.9

P (X = x1∣Z2) = 0.5 and P (X = x2∣Z2) = 0.5

P (X = x1∣Z3) = 0.6 and P (X = x2∣Z3) = 0.4

Bayes fusion Bayes(P (X ∣Z1), )P (X ∣Z2), P (X ∣Z3);P (X))
of the three sources altogether according to Eq. (16) provides:
{

P (X = x1∣Z1 ∩ Z2 ∩ Z3) =
1

K123

0.1
3
√
0.2

0.5
3
√
0.2

0.6
3
√
0.2

= 0.40

P (X = x2∣Z1 ∩ Z2 ∩ Z3) =
1

K123

0.9
3√0.8

0.5
3√0.8

0.4
3√0.8

= 0.60

where the normalization constant K123 is given by:

K123 =
0.1
3
√
0.2

0.5
3
√
0.2

0.6
3
√
0.2

+
0.9
3
√
0.8

0.5
3
√
0.8

0.4
3
√
0.8

= 0.3750

Let us compute the fusion of P (X ∣Z1) with P (X ∣Z2) using
Bayes(P (X ∣Z1), P (X ∣Z2);P (X)). One has:

{

P (X = x1∣Z1 ∩ Z2) =
1

K12

0.1√
0.2

0.5√
0.2

≈ 0.3077

P (X = x2∣Z1 ∩ Z2) =
1

K12

0.9√
0.8

0.5√
0.8

≈ 0.6923

where the normalization constant K12 is given by:

K12 =
0.1√
0.2

0.5√
0.2

+
0.9√
0.8

0.5√
0.8

= 0.8125

Let us compute the fusion of P (X ∣Z2) with P (X ∣Z3) using
Bayes(P (X ∣Z2), P (X ∣Z3);P (X)). One has

{

P (X = x1∣Z2 ∩ Z3) =
1

K23

0.5√
0.2

0.6√
0.2

≈ 0.8571

P (X = x2∣Z2 ∩ Z3) =
1

K23

0.5√
0.8

0.4√
0.8

≈ 0.1429

where the normalization constant K23 is given by:

K23 =
0.5√
0.2

0.6√
0.2

+
0.5√
0.8

0.4√
0.8

= 1.75

Let us compute the fusion of P (X ∣Z1) with P (X ∣Z3) using
Bayes(P (X ∣Z1), P (X ∣Z3);P (X)). One has:

{

P (X = x1∣Z1 ∩ Z3) =
1

K13

0.1√
0.2

0.6√
0.2

= 0.4

P (X = x2∣Z1 ∩ Z3) =
1

K13

0.9√
0.8

0.4√
0.8

= 0.6

where the normalization constant K13 is given by:

K13 =
0.1√
0.2

0.6√
0.2

+
0.9√
0.8

0.4√
0.8

= 0.75

Let us compute the fusion of P (X ∣Z1 ∩ Z2) with P (X ∣Z3)
using Bayes(P (X ∣Z1 ∩ Z2), P (X ∣Z3);P (X)). One has
{

P (X = x1∣(Z1 ∩ Z2) ∩ Z3) =
1

K(12)3

0.3077√
0.2

0.6√
0.2

≈ 0.7273

P (X = x2∣(Z1 ∩ Z2) ∩ Z3) =
1

K(12)3

0.6923√
0.8

0.4√
0.8

≈ 0.2727

where the normalization constant K(12)3 is given by

K(12)3 =
0.3077√

0.2

0.6√
0.2

+
0.6923√

0.8

0.4√
0.8

≈ 1.26925

Let us compute the fusion of P (X ∣Z1) with P (X ∣Z2 ∩ Z3)
using Bayes(P (X ∣Z1), P (X ∣Z2 ∩ Z3);P (X)). One has
{

P (X = x1∣Z1 ∩ (Z2 ∩ Z3)) =
1

K1(23)

0.1√
0.2

0.8571√
0.2

≈ 0.7273

P (X = x2∣Z1 ∩ (Z2 ∩ Z3)) =
1

K1(23)

0.9√
0.8

0.1429√
0.8

≈ 0.2727

where the normalization constant K1(23) is given by

K1(23) =
0.1√
0.2

0.8571√
0.2

+
0.9√
0.8

0.1429√
0.8

≈ 0.58931

Let us compute the fusion of P (X ∣Z1 ∩ Z3) with P (X ∣Z2)
using Bayes(P (X ∣Z1 ∩ Z3), P (X ∣Z2);P (X)). One has
{

P (X = x1∣(Z1 ∩ Z3) ∩ Z2) =
1

K(13)2

0.4√
0.2

0.5√
0.2

≈ 0.7273

P (X = x2∣(Z1 ∩ Z3) ∩ Z2) =
1

K(13)2

0.6√
0.8

0.5√
0.8

≈ 0.2727



where the normalization constant K(13)2 is given by

K(13)2 =
0.4√
0.2

0.5√
0.2

+
0.6√
0.8

0.5√
0.8

= 1.375

Therefore, one sees that even if in our example one has
f(x, f(y, z)) = f(f(x, y), z) = f(y, f(x, z)) because
P (X ∣(Z1 ∩ Z2) ∩ Z3) = P (X ∣Z1 ∩ (Z2 ∩ Z3)) = P (X ∣Z2 ∩
(Z1 ∩ Z3)), Bayes fusion rule is not associative since:

⎧

⎨

⎩

P (X ∣(Z1 ∩ Z2) ∩ Z3) ∕= P (X ∣Z1 ∩ Z2 ∩ Z3)

P (X ∣Z1 ∩ (Z2 ∩ Z3)) ∕= P (X ∣Z1 ∩ Z2 ∩ Z3)

P (X ∣Z2 ∩ (Z1 ∩ Z3)) ∕= P (X ∣Z1 ∩ Z2 ∩ Z3)

∙ (P4) : Bayes fusion rule is associative if and only if P (X)
is uniform.

Proof: If P (X) is uniform, Bayes fusion rule is given by Eq.
(21) which can be rewritten as:

P (X∣Z1 ∩ . . .∩Zs) =
P (X∣Zs)

∏s−1
k=1 P (X∣Zk)

∑N

i=1 P (X = xi∣Zs)
∏s−1

k=1 P (X = xi∣Zk)

By introducing the term 1/
∑N

i=1

∏s−1
k=1 P (X = xi∣Zk) in

numerator and denominator of the previous formula, it comes:

P (X∣Z1∩ . . .∩Zs) =

∏s−1
k=1

P (X∣Zk)
∑

N
i=1

∏s−1
k=1

P (X=xi∣Zk)
P (X∣Zs)

∑N

i=1

∏s−1
k=1

P (X=xi∣Zk)
∑

N
i=1

∏s−1
k=1

P (X=xi∣Zk)
P (X = xi∣Zs)

which can be simply rewritten as:

P (X∣Z1 ∩ . . . ∩ Zs) =
P (X∣Z1 ∩ . . . ∩ Zs−1)P (X∣Zs)

∑
N
i=1 P (X = xi∣Z1 ∩ . . . ∩ Zs−1)P (X = xi∣Zs)

Therefore when P (X) is uniform, one has:

Bayes(P (X ∣Z1), . . . , P (X ∣Zs)) =

Bayes(Bayes(P (X ∣Z1), . . . , P (X ∣Zs−1)), P (X ∣Zs))

The previous relation was based on the decomposition of
∏s

k=1 P (X ∣Zk) as P (X ∣Zs)
∏s−1

k=1 P (X ∣Zk). This choice of
decomposition was arbitrary and chosen only for convenience.
In fact

∏s
k=1 P (X ∣Zk) can be decomposed in s different

manners, as P (X ∣Zj)
∏s

k=1∣k ∕=j P (X ∣Zk), j = 1, 2, . . . s and

the similar analysis can be done. In particular, when s = 3,
we will have:

Bayes(P (X ∣Z1), P (X ∣Z2), P (X ∣Z3)) =

Bayes(Bayes(P (X ∣Z1), P (X ∣Z2)), P (X ∣Z3))

= Bayes(P (X ∣Z1), Bayes(P (X ∣Z2), P (X ∣Z3)))

which completes the proof.

∙ (P5) : The levels of global agreement and global conflict
between the sources do not matter in Bayes fusion rule.

Proof: This property seems surprising at first glance, but,
since the results of Bayes fusion is nothing but the ratio
of the agreement on xi (i = 1, 2, . . . , N ) over the global
agreement factor, many distinct sources with different global
agreements (and thus with different global conflicts) can yield
same Bayes fusion result. Indeed, the ratio is kept unchanged
when multiplying its numerator and denominator by same non
null scalar value. Consequently, the absolute levels of global
agreement between the sources (and therefore of global conflict

also) do not matter in Bayes fusion result. What really matters
is only the proportions of relative agreement factors.

Example 2: To illustrate this property, let us consider
Bayes fusion rule applied to two distinct sets3 of sources
represented by Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) and by
Bayes(P ′(X ∣Z1), P

′(X ∣Z2);P (X)) with the following prior
and posterior pmfs:

P (X = x1) = 0.2 and P (X = x2) = 0.8
{

P (X = x1∣Z1) ≈ 0.0607 and P (X = x2∣Z1) ≈ 0.9393

P (X = x1∣Z2) ≈ 0.6593 and P (X = x2∣Z2) ≈ 0.3407
{

P ′(X = x1∣Z1) ≈ 0.8360 and P ′(X = x2∣Z1) ≈ 0.1640

P ′(X = x1∣Z2) ≈ 0.0240 and P ′(X = x2∣Z2) ≈ 0.9760

Applying Bayes fusion rule given by Eq. (5), one gets for
Bayes(P (X ∣Z1), P (X ∣Z2);P (X)):

{

P (X = x1∣Z1 ∩ Z2) =
0.2

0.2+0.4 = 1/3

P (X = x2∣Z1 ∩ Z2) =
0.4

0.2+0.4 = 2/3
(28)

Similarly, one gets for Bayes(P ′(X ∣Z1), P
′(X ∣Z2);P (X))

{

P ′(X = x1∣Z1 ∩ Z2) =
0.1

0.1+0.2 = 1/3

P ′(X = x2∣Z1 ∩ Z2) =
0.2

0.1+0.2 = 2/3
(29)

Therefore, one sees that Bayes(P (X ∣Z1), P (X ∣Z2);P (X)) =
Bayes(P ′(X ∣Z1), P

′(X ∣Z2);P (X)) even if the levels of
global agreements (and global conflicts) are different. In this
particular example, one has:

{

(GA2 = 0.60) ∕= (GA′
2 = 0.30)

(GC2 = 1.60) ∕= (GC′
2 = 2.05)

(30)

In summary, different sets of sources to combine (with differ-
ent levels of global agreement and global conflict) can provide
exactly the same result once combined with Bayes fusion
rule. Hence the different levels of global agreement and global
conflict do not really matter in Bayes fusion rule. What really
matters in Bayes fusion rule is only the distribution of all the
relative agreement factors defined as As(X = xi)/GAs.

III. BELIEF FUNCTIONS AND DEMPSTER’S RULE

The Belief Functions (BF) have been introduced in 1976 by
Glenn Shafer in his mathematical theory of evidence [4], also
known as Dempster-Shafer Theory (DST) in order to reason
under uncertainty and to model epistemic uncertainties. We
will not present in details the foundations of DST, but only
the basic mathematical definitions that are necessary for the
scope of this paper. The emblematic fusion rule proposed by
Shafer to combine sources of evidences characterized by their
basic belief assignments (bba) is Dempster’s rule that will be
analyzed in details in the sequel. In the literature over the years,
DST has been widely defended by its proponents in arguing
that: 1) Probability measures are particular cases of Belief

3The values chosen for P (X∣Z1), P (X∣Z2), P ′(X∣Z1), P ′(X∣Z2) here
have been approximated at the fourth digit. They can be precisely determined
such that the expressions for P (X∣Z1∩Z2) and P ′(X∣Z1∩Z2) as given in
Eqs. (28) and (29) hold. For example, the exact value of P (x1∣Z2) is obtained
by solving a polynomial equation of degree 2 having as a possible solution

P (x1∣Z2) = 1
2
(0.72 +

√
0.722 − 4× 0.04) = 0.659332590941915 ≈

0.6593, etc.



functions; and 2) Dempster’s fusion rule is a generalization
of Bayes fusion rule. Although the statement 1) is correct
because Probability measures are indeed particular (additive)
Belief functions (called as Bayesian belief functions), we will
explain why the second statement about Dempster’s rule is
incorrect in general.

A. Belief functions

Let Θ be a frame of discernment of a problem under
consideration. More precisely, the set Θ = {�1, �2, . . . , �N}
consists of a list of N exhaustive and exclusive elements �i,
i = 1, 2, . . . , N . Each �i represents a possible state related to
the problem we want to solve. The exhaustivity and exclusivity
of elements of Θ is referred as Shafer’s model of the frame
Θ. A basic belief assignment (bba), also called a belief mass
function, m(.) : 2Θ → [0, 1] is a mapping from the power set
of Θ (i.e. the set of subsets of Θ), denoted 2Θ, to [0, 1], that
verifies the following conditions [4]:

m(∅) = 0 and
∑

X∈2Θ

m(X) = 1 (31)

The quantity m(X) represents the mass of belief exactly
committed to X . An element X ∈ 2Θ is called a focal element
if and only if m(X) > 0. The set ℱ(m) ≜ {X ∈ 2Θ∣m(X) >
0} of all focal elements of a bba m(.) is called the core of
the bba. A bba m(.) is said Bayesian if its focal elements
are singletons of 2Θ. The vacuous bba characterizing the total
ignorance denoted4 It = �1 ∪ �2 ∪ . . . ∪ �N is defined by
mv(.) : 2Θ → [0; 1] such that mv(X) = 0 if X ∕= Θ, and
mv(It) = 1.

From any bba m(.), the belief function Bel(.) and the
plausibility function Pl(.) are defined for ∀X ∈ 2Θ as:

{

Bel(X) =
∑

Y ∈2Θ∣Y⊆X m(Y )

Pl(X) =
∑

Y ∈2Θ∣X∩Y ∕=∅ m(Y )
(32)

Bel(X) represents the whole mass of belief that comes from
all subsets of Θ included in X . It is interpreted as the
lower bound of the probability of X , i.e. Pmin(X). Bel(.)
is a subadditive measure since

∑

�i∈Θ Bel(�i) ≤ 1. Pl(X)
represents the whole mass of belief that comes from all
subsets of Θ compatible with X (i.e., those intersecting X).
Pl(X) is interpreted as the upper bound of the probability
of X , i.e. Pmax(X). Pl(.) is a superadditive measure since
∑

�i∈Θ Pl(�i) ≥ 1. Bel(X) and Pl(X) are classically seen
[4] as lower and upper bounds of an unknown probability
P (.), and one has the following inequality satisfied ∀X ∈ 2Θ:
Bel(X) ≤ P (X) ≤ Pl(X). The belief function Bel(.) (and
the plausibility function Pl(.)) built from any Bayesian bba
m(.) can be interpreted as a (subjective) conditional probability
measure provided by a given source of evidence, because if
the bba m(.) is Bayesian the following equality always holds
[4]: Bel(X) = Pl(X) = P (X).

4The set {�1, �2, . . . , �N} and the complete ignorance �1 ∪ �2 ∪ . . .∪ �N
are both denoted Θ in DST.

B. Dempster’s rule of combination

Dempster’s rule of combination, denoted DS rule5 is a
mathematical operation, represented symbolically by ⊕, which
corresponds to the normalized conjunctive fusion rule. Based
on Shafer’s model of Θ, the combination of s > 1 independent
and distinct sources of evidences characterized by their bba
m1(.), . . . , ms(.) related to the same frame of discernment
Θ is denoted mDS(.) = [m1 ⊕ . . . ⊕ ms](.). The quantity

mDS(.) is defined mathematically as follows: mDS(∅) ≜ 0
and ∀X ∕= ∅ ∈ 2Θ

mDS(X) ≜
m12...s(X)

1−K12...s
(33)

where the conjunctive agreement on X is given by:

m12...s(X) ≜
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=X

m1(X1)m2(X2) . . .ms(Xs)

(34)
and where the global conflict is given by:

K12...s ≜
∑

X1,X2,...,Xs∈2Θ

X1∩X2∩...∩Xs=∅

m1(X1)m2(X2) . . .ms(Xs) (35)

When K12...s = 1, the s sources are in total conflict and their
combination cannot be computed with DS rule because Eq.
(33) is mathematically not defined due to 0/0 indeterminacy
[4]. DS rule is commutative and associative which makes it
very attractive from engineering implementation standpoint.

It has been proved in [4] that the vacuous bba mv(.)
is a neutral element for DS rule because [m ⊕ mv](.) =
[mv ⊕ m](.) = m(.) for any bba m(.) defined on 2Θ. This
property looks reasonable since a total ignorant source should
not impact the fusion result because it brings no information
that can be helpful for the discrimination between the elements
of the power set 2Θ.

IV. ANALYSIS OF COMPATIBILITY OF DEMPSTER’S RULE

WITH BAYES RULE

To analyze the compatibility of Dempster’s rule with
Bayes rule, we need to work in the probabilistic framework
because Bayes fusion rule has been developed only in this
theoretical framework. So in the sequel, we will manipulate
only probability mass functions (pmfs), related with Bayesian
bba’s in the Belief Function framework. This perfectly justifies
the restriction of singleton bba as a prior bba since we want
to manipulate prior probabilities to make a fair comparison
of results provided by both rules. If Dempster’s rule is a true
(consistent) generalization of Bayes fusion rule, it must provide
same results as Bayes rule when combining Bayesian bba’s,
otherwise Dempster’s rule cannot be fairly claimed to be a
generalization of Bayes fusion rule. In this section, we analyze
the real (partial or total) compatibility of Dempster’s rule with
Bayes fusion rule. Two important cases must be analyzed
depending on the nature of the prior information P (X) one
has in hands for performing the fusion of the sources. These

5We denote it DS rule because it has been proposed historically by Dempster
[2], [3], and widely promoted by Shafer in the development of DST [4].



sources to combine will be characterized by the following
Bayesian bba’s:

⎧



⎨



⎩

m1(.) ≜ {m1(�i) = P (X = xi∣Z1), i = 1, 2, . . . , N}
...

...
...

ms(.) ≜ {ms(�i) = P (X = xi∣Zs), i = 1, 2, . . . , N}
(36)

The prior information is characterized by a given bba denoted
as m0(.) that can be defined either on 2Θ, or only on Θ if
we want to deal for the needs of our analysis with a Bayesian
prior. In the latter case, if m0(.) ≜ {m0(�i) = P (X = xi), i =
1, 2, . . . , N} then m0(.) plays the same role as the prior pmf
P (X) in the probabilistic framework.

When considering a non vacuous prior m0(.) ∕= mv(.), we
denote Dempster’s combination of s sources symbolically as:

mDS(.) = DS(m1(.), . . . ,ms(.);m0(.))

When the prior bba is vacuous m0(.) = mv(.) then m0(.)
has no impact on Dempster’s fusion result, and so we denote
symbolically Dempster’s rule as:

mDS(.) = DS(m1(.), . . . ,ms(.);mv(.))

= DS(m1(.), . . . ,ms(.))

A. Case 1: Uniform Bayesian prior

It is important to note that Dempster’s fusion formula
proposed by Shafer in [4] and recalled in Eq. (33) makes no
real distinction between the nature of sources to combine (if
they are posterior or prior information). In fact, the formula
(33) reduces exactly to Bayes rule given in Eq. (25) if the bba’s
to combine are Bayesian and if the prior information is either
uniform or vacuous. Stated otherwise the following functional
equality holds

DS(m1(.), . . . ,ms(.);m0(.)) ≡
Bayes(P (X ∣Z1), . . . , P (X ∣Zs);P (X)) (37)

as soon as all bba’s mi(.), i = 1, 2, . . . , s are Bayesian and
coincide with P (X ∣Zi), P (X) is uniform, and either the prior
bba m0(.) is vacuous (m0(.) = mv(.)), or m0(.) is the uniform
Bayesian bba.

Example 3: Let us consider Θ(X) = {x1, x2, x3} with two
distinct sources providing the following Bayesian bba’s

⎧

⎨

⎩

m1(x1) = P (X = x1∣Z1) = 0.2

m1(x2) = P (X = x2∣Z1) = 0.3

m1(x3) = P (X = x3∣Z1) = 0.5

and

⎧

⎨

⎩

m2(x1) = 0.5

m2(x2) = 0.1

m2(x3) = 0.4

∙ If we choose as prior m0(.) the vacuous bba, that is m0(x1∪
x2 ∪ x3) = 1, then one will get
⎧

















⎨

















⎩

mDS(x1) = 1
1−Kvacuous

12
m1(x1)m2(x1)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.2 ⋅ 0.5 ⋅ 1 = 0.10

0.33 ≈ 0.3030

mDS(x2) = 1
1−Kvacuous

12
m1(x2)m2(x2)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.3 ⋅ 0.1 ⋅ 1 = 0.03

0.33 ≈ 0.0909

mDS(x3) = 1
1−Kvacuous

12
m1(x3)m2(x3)m0(x1 ∪ x2 ∪ x3)

= 1
1−0.670.5 ⋅ 0.4 ⋅ 1 = 0.20

0.33 ≈ 0.6061

with

Kvacuous
12 = 1−m1(x1)m2(x1)m0(x1 ∪ x2 ∪ x3)

−m1(x2)m2(x2)m0(x1 ∪ x2 ∪ x3)

−m1(x3)m2(x3)m0(x1 ∪ x2 ∪ x3) = 0.67

∙ If we choose as prior m0(.) the uniform Bayesian bba given
by m0(x1) = m0(x2) = m0(x3) = 1/3, then we get

⎧



















⎨



















⎩

mDS(x1) = 1

1−Kuniform
12

m1(x1)m2(x1)m0(x1)

= 1
1−0.890.2 ⋅ 0.5 ⋅ 1/3 = 0.10/3

0.11 ≈ 0.3030

mDS(x2) = 1

1−Kuniform
12

m1(x2)m2(x2)m0(x2)

= 1
1−0.890.3 ⋅ 0.1 ⋅ 1/3 = 0.03/3

0.11 ≈ 0.0909

mDS(x3) = 1

1−Kuniform
12

m1(x3)m2(x3)m0(x3)

= 1
1−0.890.5 ⋅ 0.4 ⋅ 1/3 = 0.20/3

0.11 ≈ 0.6061

where the degree of conflict when m0(.) is Bayesian and

uniform is now given by Kuniform
12 = 0.89.

Clearly Kuniform
12 ∕= Kvacuous

12 , but the fusion results
obtained with two distinct priors m0(.) (vacuous or uniform)
are the same because of the algebraic simplification by 1/3 in
Dempster’s fusion formula when using uniform Bayesian bba.
When combining Bayesian bba’s m1(.) and m2(.), the vacuous
prior and uniform prior m0(.) have therefore no impact on the
result. Indeed, they contain no information that may help to
prefer one particular state xi with respect to the other ones,
even if the level of conflict is different in both cases. So, the
level of conflict doesn’t matter at all in such Bayesian case.
As already stated, what really matters is only the distribution
of relative agreement factors. It can be easily verified that we
obtain same results when applying Bayes Eq. (14), or (16).

Only in such very particular cases (i.e. Bayesian bba’s,
and vacuous or Bayesian uniform priors), Dempster’s rule is
fully consistent with Bayes fusion rule. So the claim that
Dempster’s is a generalization of Bayes rule is true in this
very particular case only, and that is why such claim has been
widely used to defend Dempster’s rule and DST thanks to its
compatibility with Bayes fusion rule in that very particular
case. Unfortunately, such compatibility is only partial and not
general because it is not longer valid when considering the
more general cases involving non uniform Bayesian prior bba’s
as shown in the next subsection.

B. Case 2: Non uniform Bayesian prior

Let us consider Dempster’s fusion of Bayesian bba’s with
a Bayesian non uniform prior m0(.). In such case it is easy
to check from the general structures of Bayes fusion rule
(16) and Dempster’s fusion rule (33) that these two rules are
incompatible. Indeed, in Bayes rule one divides each posterior

source mi(xj) by s
√

m0(xj), i = 1, 2, . . . s, whereas the prior
source m0(.) is combined in a pure conjunctive manner by
Dempster’s rule with the bba’s mi(.), i = 1, 2, . . . s, as if m0(.)
was a simple additional source. This difference of processing
prior information between the two approaches explains clearly
the incompatibility of Dempster’s rule with Bayes rule when
Bayesian prior bba is not uniform. This incompatibility is
illustrated in the next simple example. Mahler and Fixsen
have already proposed in [23], [24], [25] a modification of



Dempster’s rule to force it to be compatible with Bayes
rule when combining Bayesian bba’s. The analysis of such
modified Dempster’s rule is out of the scope of this paper.

Example 4: Let us consider the same frame Θ(X), and same
bba’s m1(.) and m2(.) as in the Example 3. Suppose that
the prior information is Bayesian and non uniform as follows:
m0(x1) = P (X = x1) = 0.6, m0(x2) = P (X = x2) = 0.3
and m0(x3) = P (X = x3) = 0.1. Applying Bayes rule (12)
yields:
⎧



⎨



⎩

P (x1∣Z1 ∩ Z2) = A2(x1)
GA2

= 0.2⋅0.5/0.6
2.2667 = 0.1667

2.2667 ≈ 0.0735

P (x2∣Z1 ∩ Z2) = A2(x2)
GA2

= 0.3⋅0.1/0.3
2.2667 = 0.1000

2.2667 ≈ 0.0441

P (x3∣Z1 ∩ Z2) = A2(x3)
GA2

= 0.5⋅0.4/0.1
2.2667 = 2.0000

2.2667 ≈ 0.8824

Applying Dempster’s rule yields mDS(xi) ∕= P (xi∣Z1 ∩ Z2)
because:
⎧



⎨



⎩

mDS(x1) = 1
1−0.9110 ⋅ 0.2 ⋅ 0.5 ⋅ 0.6 = 0.060

0.089 ≈ 0.6742

mDS(x2) = 1
1−0.9110 ⋅ 0.3 ⋅ 0.1 ⋅ 0.3 = 0.009

0.089 ≈ 0.1011

mDS(x3) = 1
1−0.9110 ⋅ 0.5 ⋅ 0.4 ⋅ 0.1 = 0.020

0.089 ≈ 0.2247

Therefore, one has in general6:

DS(m1(.), . . . ,ms(.);m0(.)) ∕=
Bayes(P (X ∣Z1), . . . , P (X ∣Zs);P (X)) (38)

V. CONCLUSIONS

In this paper, we have analyzed in details the expression
and the properties of Bayes rule of combination based on
statistical conditional independence assumption, as well as the
emblematic Dempster’s rule of combination of belief functions
introduced by Shafer in his Mathematical Theory of evidence.
We have clearly explained from a theoretical standpoint, and
also on simple examples, why Dempster’s rule is not a gen-
eralization of Bayes rule in general. The incompatibility of
Dempster’s rule with Bayes rule is due to its impossibility to
deal with non uniform Bayesian priors in the same manner
as Bayes rule does. Dempster’s rule turns to be compatible
with Bayes rule only in two very particular cases: 1) if all the
Bayesian bba’s to combine (including the prior) focus on same
state (i.e. there is a perfect conjunctive consensus between the
sources), or 2) if all the bba’s to combine (excluding the prior)
are Bayesian, and if the prior bba cannot help to discriminate a
particular state of the frame of discernment (i.e. the prior bba is
either vacuous, or Bayesian and uniform). Except in these two
very particular cases, Dempster’s rule is totally incompatible
with Bayes rule. Therefore, Dempster’s rule cannot be claimed
to be a generalization of Bayes fusion rule, even when the bba’s
to combine are Bayesian.
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6but in the very degenerate case when manipulating deterministic Bayesian
bba’s, which is of little practical interest from the fusion standpoint.
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