FLORENTIN SMARANDACHE

COLLECTED PAPERS

(Vol. II)

A

\[
\begin{array}{cccc}
7 & 4 & 8 & 5 \\
10 & 9 & 7 & 8 \\
1 & 9 & 12 & 3 \\
13 & 9 & 1 & 4 \\
4 & 12 & 4 & 1 \\
4 & 6 & 9 & 2 \\
5 & 7 & 14 & 3 \\
7 & 14 & 12 & 5 \\
\end{array}
\]

B

\[
\begin{array}{cccc}
3 & 8 & 5 & 16 \\
10 & 4 & 6 & 14 \\
16 & 4 & 13 & 4 \\
13 & 4 & 8 & 2 \\
\end{array}
\]

Chișinău 1997
FLORENTIN SMARANDACHE
University of New Mexico
Department of Mathematics
Gallup, NM87301, USA

COLLECTED PAPERS
©U.S.M., 1997
CONTENTS

PHILOSOPHICAL MATHEMATICS:
Logica sau logica Matematică? .. 29
Mathematics and Alcohol and God .. 30

MATHEMATICAL EDUCATION:
Subjective Questions and Answers for a MathInstructor of Higher Education 32

GEOMETRY:
O Geometrie Paradoxistă ... 49
Geometric Conjecture ... 50

NUMBER THEORY:
A Function in the Number Theory .. 51
An Infinity of Unsolved Problems Concerning a Function in the Number Theory 57
Solving Problems by Using a Function in the Number Theory 79
Some Linear Equations Involving a Function in the Number Theory 82
Contribuții la Studiul unor Funcțiî și Conjecturi în Teoria Numerelor 85
"The Function that You Bear its Name" .. 112
Smarandache Type Functions Obtained by Duality 113
Funcții Analitice .. 129
Funcțiî Prime și Coprime ... 137
Asupra unor Conjecturi și Probleme Nerezolvate Referitoare la o Funcție in Teoria Numerelor ... 138
K-Divisibility and K-Strong Divisibility ... 152
Conjecture (Generalized Fermat Numbers) 154
Asupra unei Metode a lui W.Sierpinski de Rezolvare in Numere Intregi a Ecuatiilor Liniaire ... 155
În Legătură cu o Problema de la Concursul de Matematică, Faza Locală, Râmnicu Vâlcea ... 157
Numeralogy (I) or Properties of the Numbers 158
Numerology (II) or Properties of the Numbers	169
Numerology (III) or Properties of the Numbers	181
Some Periodical Sequences	192
Sequences of Sub-sequences	195
RECREATIONAL MATHEMATICS:	
Aritmogrif (I)	198
Aritmogrif (II)	199
The Lucky Mathematics [Lucky Method, Lucky Algorithm, Lucky Integration, Lucky Differentation, etc.]	200
PARADOXIST MATHEMATICS

Abstract. The goal of this paper is to experiment new math concepts and theories, especially if they run counter to the classical ones. To prove that contradiction is not a catastrophe, and to learn to handle it in an (un)usual way. To transform the apparently unscientific ideas into scientific ones, and to develop their study (The Theory of Imperfections). And finally, to interconnect opposite (and not only) human fields of knowledge into as-heterogeneous-as-possible another fields.

The author welcomes any contents, notes, articles on this paper and/or the 120 open questions bothering him, which will be published in a collective monograph about the paradoxist mathematics.

Key words: non-mathematics, anti-mathematics, dadaist algebra, surrealist probability, cubist geometry, impressionist analysis, theory of non-choice, wild algorithms, infinite computability theory, symbolist mechanics, abstract physics, formalist chemistry, expressionist statistics, hermetic combinatorics, Sturm-und-Drang computer science, romanistics topology, letterist number theory, illuminist set theory, aesthetic differential/integral/functional equations, paradoxist logics, anti-literature, experimental drama, nono-poems, MULTI-STRUCTURE, MULTI-SPACE, Euclidean spaces of non-integer or negative dimension, non-system, anti-system, system with infinitely many independent axioms, unlimited theory, system of axioms based on a set with a single element, INCONSISTENT SYSTEMS OF AXIOMS, CONTRADICTORY THEORY, (unscientific, wrong, amalgam) geometry, (CHAOS or MESS) GEOMETRIES (PARADOXIST GEOMETRY, NON-GEOMETRY, COUNTER-PROJECTIVE GEOMETRY, ANTI-GEOMETRY), paradoxist model, critical area of a model, paradoxist axioms, counter-axioms, counter-model, counter-projective space, anti-axioms, anti-model, theory of distorted buildings of Tits, paradoxist trigonometry, DISCONTINUOUS MODELS, DISCONTINUOUS GEOMETRIES.

INTRODUCTION.

The "Paradoxist Mathematics" may be understood as Experimental Mathematics, Non-Mathematics, or even Anti-Mathematics: not in a nihilistic way, but in positive one. The truly innovative researchers will banish the old concepts in order of check, by heuristic processes, some
new ones: their opposites. Don't simply follow the crowd, and don't accept to be manipulated by any (political, economical, social, even scientific, or artistic, cultural, etc.) media! Learn to contradict everything and everybody!! "Dubitare, ergo cogito; cogito, ergo sum", said Rene Descartes, "I doubt, therefore I think; I think, therefore I exist" (metaphysical doubt). See what happens if you deny the classics' theory!

Since my childhood I didn't like the term of 'exact' sciences... I hated it! I didn't like the 'truth' displayed and given to me on a plate - as food to be swallowed although not to my taste.

I considered the axioms as dogmas (not to think with your brain, but with others!), and I refused to follow them. I wanted to be free in life - because at that time I was experiencing a political totalitarian system, without civil rights - hence I got the same feelings in science. That's why I didn't trust anybody, especially the 'official' peoples. (This is REVOLT against all petrified knowledge).

A system of axioms means to me a dictatorship model in science. It's not possible to perfectly formalize, i.e. without any intuition, but sometimes researchers like to trick themselves! Even Hilbert recognized that just in his 1898 book of <Foundations of Geometry> saying about the groups of axioms that: "Each of these groups expresses, by itself, certain related fundamental facts of our intuition". And Kant in <Kritik der reinen Vernunft, Elementarlehre>, Part 2, Sec. 2: "All human knowledge begins with intuition, thence passes to concepts and ends with ideas". Therefore, axiomatization begins with intuition - is it a paradox? The "traditional concept of recognizing the axioms as obvious truths was replaced by the understanding that they are hypotheses for a theory" [<Encyclopedic Dictionary of Mathematics>, second edition, by the Mathematical Society of Japan, edited by Kiyosi Ito, translated in English, MIT Press, Cambridge, Massachusetts, London, 1993, 35A, p. 155].

The really avant-garde mind will entirely deny everything from the past. "No army can withstand the strength of an idea whose time has come" (Victor Hugo).

Questions 1-17 (one for each defined below section):

While, in a usual way, people apply mathematics to other human fields - what about inserting literary and art theory in mathematics?

How would we define the 'dadaist algebra', referring to the 1916-22 nihilistic movement in literature, painting, sculpture that rejected all accepted conventions and produced non-sens and unreadable creations? How can we introduce this style and similar <laws> in algebra?

But the 'surrealist probability'? (this syntagme makes a little sense, doesn't it?).
Or the 'cubist geometry', referring to the cubist paintings? (this may be exciting!).
The 'impressionist analysis'?
The 'theory of ... non-choice':
- from two possibilities, pick the third one! (Buridan's ass!)
- the best and unregrettable choice occurs when it's one and only possibility
to choose from!
The 'wild algorithms', meaning algorithms with an infinite number of (non-linear) steps;
And the 'infinite computability theory' = how much of mathematics can be described in
such wild algorithms.

Same directions of study towards:
'symbolist mechanics',
'abstract physics' (suppose, for example, as an axiom, that the speed of light is
surpassed - [see Homer B. Tilton, "Light beyond belief", Echo Electronic
Press, Tucson, 1995], but if the speed of a material body can be unbounded,
even towards infinite? and see what you get by this anti-relativity theory:
-inventing new physics),
'formalist chemistry',
'expressionist statistics',
'hermetic combinators',
'Sturn-and-Drang computer science' (!)
'romanticist topology' (wow, love is involving!)
'letterist number theory' (!)
'iluminist set theory',
'esthetic differential/integral/functional equations', etc.

Question 18:
The 'paradoxist logics', referring to the F. Smarandache's 1980 Paradoxist Literary Mov­
ment of avant-gardes, which may lead you to the anti-logic (which is logical!).
Features of the 'paradoxist logics':
The Basic Thesis of paradoxism:
everything has a meaning and a non-meaning in a harmony each other.
The Essence of the paradoxism:
a) the sense has a non-sense, and reciprocally
b) the non-sense has a sens.
19. The Motto of the paradoxism:
"All is possible, the impossible too!"

20. The Symbol of paradoxism:
(a spiral - optic illusion, or vicious circle)

21. The Delimitation from other avant-gardes:
- the paradoxism has a significance (in literature, art, science), while the
dadaism, the lettrism, the absurd movement do not;
- the paradoxism especially reveals the contradictions, the anti-nomies, the
anti-theses, the anti-phrases, the antagonism, the non-conformism, the
paradoxes in other words of anything (in literature, art, science), while
the futurism, cubism, surrealism, abstractism and all other avant-gardes
do not focus on them.

22. The Directions of the paradoxism:
- to use scientific methods (especially algorithms) for generating (and also
studying) contradictory literary and artistic works;
- to use artistic and literary methods for generating (and also studying)
contradictory scientific works;
- to create contradictory literary and artistic works in scientific spaces
(using scientific: symbols, meta-language, matrices, theorems, lemmas,
definitions, etc.).

Question 19:

From Anti-Mathematics to Anti-Literature:
- I wrote a drama trilogy, called "MetaHistory", against the totalitarianism of any kind:
 political, economical, social, cultural, artistic, even scientific (tendency of someones
to monopolize the information system, and to build not only political, economical,
social dictatorships, but even distatorships in culture, art, and science ... promoting
only their people and friends, and boycotting the others);
 one of them, called "A Upside-Down World", with the property that by combinations
 of its scenes (which are independent modules) one gets 1,000,000,000 of billions of
different dramas!
 another drama, called "The Country of the Animals", has no ... dialogue! (the
characters' speech is showing on written placards).
- I wrote "Non-poems":

8
poems with no words!
universal poems: poem-graffiti, poem-drawing, etc.
poems in 3-dimensional spaces;
poems in Beltrami/Poincare/Hausdorff/etc. spaces;
poems poetical models of ... mathematics: poem-theorem, poem-lemma.

Try the reverse way: to apply math (and generally speaking science) in arts and literature. (There are famous people, as Lewis Carroll, Raymond Queneaux, Ion Barbu, etc. mathematicians and writers simultaneously.)

Learn to deny (in a positive way) the masters and their work. Thus will progress our society. Thus will make revolutionary steps towards infinite... Look at some famous examples:
- Lobacevsky contradicted Euclid in 1826: "In geometry I find certain imperfections", he said in his <Theory of Parallels>.
- Riemann came to contradict both his predecessors in 1854.
- Einstein contradicted Newton in early years of the XX-th century, saying that if an object moves at velocity close to the speed of light, then time slows down, mass increases, and length in the direction of motion decreases, and so on...

Sometimes, people give new interpretations to old things... (and old interpretation to new things)!

[Don't talk about the humanistic field (art, literature, philosophy, sociology, etc.), where to reject other people's creation was and is being very common! And much easier, comparing with the scientific field.]

What would be happened if everybody had obeyed the predecessors? (a stagnation).

MULTI-STRUCTURE and MULTI-SPACE.

I consider that life and practice do not deal with 'pure' spaces, but with a group of many spaces, with a mixture of structures, a 'mongrel', a heterogeneity - the ardently preoccupation is to reunite them, to constitute a multi-structure.

I thought to a multi-space also: fragments (potsherds) of spaces put together, say as an example: Banach, Hausdorff, Tikhonov, compact, paracompact, Fock symmetric, Fock anti-symmetric, path-connected, simply connected, discrete metric, indiscrete pseudo-metric, etc.
spaces that work together as a whole mechanism. The difficulty is to be the passage over 'frontiers' (borders between two disjoint spaces); i.e. how can we organically tie a point P_1 from a space S_1 with a point P_2 from a structurally opposite space S_2? Does the problem become more complicated when the spaces' sets are not disjoint?

Question 20:
Can you define/construct Euclidean spaces of non-integer or negative dimension? [If so, are they connected in some way to Hausdorff's, or Kodaira's, Lebesgue's (of a normal space) algebraic/cohomological (of a topological space; a scheme, or an associative algebra)/homological/ (of a topological space, or a module) etc. dimension(s)?]

Question 21:
Let's have the case of Euclid + Lobachevsky + Reiman geometric spaces (with corresponding structures) into single space. What is the angles sum of a triangle with a vertex in each of these spaces equal to? and is it the same anytimes?
Especially to find a model of the below geometry would be interesting, or properties and applications of it.
Paradoxically, the multi-, non-, or even anti- notions become after a while common notions. Their mystery, shock, novelty enter in the room of obvious things. This is the route of any invention and discovery.

Time is not uniform, but in a zigzag:
a today's truth will be the toomorrow's falsehood - and reciprocally, the opposite phenomena are complementary and may not survive independently.
The everyday reality is a sumum or multitude of rules, some of them opposite each other, accepted by ones and refused by others, on different surfaces of positive, negative, and null Gauss's curvatures in the same time (especially on non-constant curvature surfaces).

Question 22:
After all, what mathematical apparatus to use for subsequent improvement of this theory? [my definition is elementary].

Logics without logics?
System without system? (will be a non-system or anti-system?)
Mathematics without mathematics!

World is an ordered disorder and disordered order! Homogeneity exists only in pure sciences without our imagination, but practice is quite different from theory.

If one defines another system with a sole axiom, which is the negation of the previous axiom, one gets an opposite theory.

Question 23:
Try to construct a consistent system of axioms, with infinitely many independent axioms, in order to define a Unlimited Theory. A theory to whom you may add at any time a new axiom to develop it in all directions you like.

Question 24:
Try to construct a consistent system of axioms based on a set with a single object (element).

(But if the set is... empty?)

Inconsistent Systems of Axioms and Contradictory Theory.

Let \((a_1), (a_2), \ldots, (a_n), (b) \) be \(n + 1 \) independent axioms, with \(n \geq 1 \); and let \(b' \) be another axiom contradictory to \((b) \). We construct the system of \(n + 2 \) axioms:

\[
[I] \quad (a_1), (a_2), \ldots, (a_n), (b), (b')
\]

which is inconsistent. But this system may be shared into two consistent systems of independent axioms

\[
[C] \quad (a_1), (a_2), \ldots, (a_n), (b),
\]

and

\[
[C'] \quad (a_1), (a_2), \ldots, (a_n), (b').
\]

We also consider the partial system of independent axioms

\[
[P] \quad (a_1), (a_2), \ldots, (a_n).
\]

Developing \([P]\), we find many propositions (theorems, lemmas) \((p_1), (p_2), \ldots, (p_m)\), by combinations of its axioms.

Developing \([C]\), we find all propositions of \([P]\) \((p_1), (p_2), \ldots, (p_m)\), resulted by combinations of \((a_1), (a_2), \ldots, (a_n)\), plus other propositions \((r_1), (r_2), \ldots, (r_l)\), results by combination of \((b)\) with any of \((a_1), (a_2), \ldots, (a_n)\).
Similarly for \([C']\), we find the propositions of \([P']\) \((p_1), (p_2), ..., (p_m)\), plus other propositions \((r'_1), (r'_2), ..., (r'_t)\), resulted by combinations of \((b')\) with any of \((a_1), (a_2), ..., (a_n)\), where \((r'_t)\) is an axiom contradictory to \((r_1)\), and so on.

Now, developing \([I]\), we’ll find all the previous resulted propositions:

\[(p_1), (p_2), ..., (p_m),\]
\[(r_1), (r_2), ..., (r_t),\]
\[(r'_1), (r'_2), ..., (r'_t).\]

Therefore, \([I]\) is equivalent to \([C]\) reunited to \([C']\). From one pair of contradictory propositions \((\{b\} and \{b'\})\) in its beginning, \([I]\) adds \(t\) more such pairs, where \(t \geq 1\), \((\{r_1\} and \{r'_1\}), ..., (\{r_t\} and \{r'_t\})\), after a complete step. The further we go, the more pairs of contradictory propositions are accumulating in \([I]\).

Question 25:
Develop the study of an inconsistent system of axioms.

Question 26:
It is interesting to study the case when \(n = 0\).

Why do people avoid thinking about the CONTRADICTORY THEORY? As you know, nature is not perfect:

- and opposite phenomena occur together,
- and opposite ideas are simultaneously asserted and, ironically, proved that both of them are true! How is that possible?...

A statement may be true in a referential system, but false in another one. The truth is subjective. The proof is relative. (In philosophy there is a theory: that "knowledge is relative to the mind, or things can be known only through their effects on the mind, and consequently there can be no knowledge of reality as it is in itself", called "the Relativity of Knowledge": <Webster’s New World Dictionary of American English>, Third College Edition, Cleveland & New York, Simon & Schuster Inc., Editors: Victoria Neufeldt, David B. Guralnik, 1968, p. 1133.) You know? ... sometimes is good to be wrong!

Question 27:
Try to develop a particular contradictory theory.

I was attracted by Chaos Theory, deterministic behaviour which seems to be randomly:

when initial conditions are varying little, the differential equation solutions are varying tremen-
dously much. Originated by Poincare, and studied by Lorenz, a meteorologist, in 1963, by computer help. These instabilities occurring in the numerical solutions of differential equations are thus connected to the phenomena of chaos. Look, I said, chaos in mathematics, like in life and world!

Somehow consequently are the following four concepts in the paradoxist mathematics, that may be altogether called, CHAOS (or MESS) GEOMETRIES!

PARADOXIST GEOMETRY

In 1969, intrigued by geometry, I simultaneously constructed a partially euclidean and partially non-euclidean space by a strange replacement of the Euclid's fifth postulate (axiom of parallels) with the following five-statement proposition:

a) there are at least a straight line and a point exterior to it in this space for which only one line passed through the point and does not intersect the initial line; [1 parallel]
b) there are at least a straight line and point exterior to it in this space for which only a finite number of lines $l_1, \ldots, l_k (k \geq 2)$ pass through the point and do not intersect the initial line; [2 or more (in a finite number) parallels]
c) there are at least a straight line and point exterior to it in this space for which any line that passes through the point intersects the initial line; [0 parallels]
d) there are at least a straight line and point exterior to it in this space for which an infinite number of lines that passes through the point (but not all of them) do not intersect the initial line; [an infinite number of parallels, but not all lines passing through]
e) there are at least a straight line and a point exterior to it in this space for which any line that passes through the point does not intersect the initial line; [an infinite number of parallels, all lines passing through the point]

I have called it the PARADOXIST GEOMETRY. This geometry unites all together: Euclid, Lobachevsky, Bolyai, and Riemann geometries. And separates them as well!

Question 28:

Now, the problem is to find a nice model (on manifolds) for this Paradoxist Geometry, and study some of its characteristics.
NON-GEOMETRY

It's a lot easier to deny Euclid's five postulates than Hilbert's twenty thorough axioms.

1. It is not always possible to draw a line from an arbitrary point to another arbitrary point.
 For example: this axiom can be denied only if the model's space has at least a discontinuity point; (in our below model MD, one takes an isolated point I in between f_1 and f_2, the only one which will not verify the axiom).

2. It is not always possible to extend by continuity a finite line to an infinite line.
 For example: consider the below Model, and the segment AB, the both A and B lie on f_1, A in between P and N, while B on the left side of N; one can not at all extend AB either beyond A or beyond B, because the resulted curve, noted say $A' - A - B - B'$, would not be a geodesic (i.e. line in our Model) anymore.
 If A and B lie in $d_1 - f_1$, both of them closer to f_1, A in the left side of P, while B in the right side of P, then the segment AB, which is in fact $A - P - B$, can be extended beyond A and also beyond B only up to f_1 (therefore one gets a finite line too, $A' - P - B - B'$), where A', B' are the intersections of PA, PB respectively with f_1.
 If A, B lie in $d_1 - f_1$, far enough from f_1 and P, such that AB is parallel to f_1, then AB verifies this postulate.

3. It is not always possible to draw a circle from an arbitrary point and of an arbitrary interval.
 For example: same as for the first axiom; the isolated point I, and a very small interval not reaching f_1 neither f_2, will deny this axiom.

4. Not all the right angles are congruent. (See example of the Anti-Geometry, explained below.)

5. If a line, cutting two other lines, forms the interior angles of the same side of it strictly less than two right angles, then not always the two lines extended towards infinite cut each other in the side where the angles are strictly less than two right angles.
 For example: let h_1, h_2, i be three lines in $d_1 - d_2$, where h_1 intersects f_1 in A, and h_2 intersects f_2 in B, with A, B, P different each other, such that h_1 and h_2 do not intersect, but i cuts h_1 and h_2 and forms the interior angles of one of its side (towards f_1) strictly less than two right angles;
the assumption of the fifth postulate is fulfilled, but the consequence does not hold, because h_1 and h_2 do not cut each other (they may not be extended beyond A and B respectively, because the lines would not be geodesics anymore).

Question 29

Find a more convincing model for this non-geometry.

COUNTER-PROJECTIVE GEOMETRY

Let P, L be two sets, and r a relation included in $P \times L$. The elements of P are called points, and those of L lines. When (p, l) belongs to r, we say that the line l contains the point p. For these, one imposes the following COUNTER-AXIOMS:

(I) There exist: either at least two lines, or no line, that contains two given distinct points.

(II) Let p_1, p_2, p_3 be three non-collinear points, and q_1, q_2 two distinct points. Suppose that $\{p_1, q_1, p_2\}$ and $\{p_2, q_2, p_3\}$ are collinear triples. Then the line containing p_1, p_2, and the line containing q_1, q_2 do not intersect.

(III) Every line contains at most two distinct points.

Questions 30-31:

Find a model for the Counter-(General Projective) Geometry (the previous I and II counter-axioms hold), and a model for the Counter-Projective Geometry (the previous I, II, and III counter-axioms hold). [They are called COUNTER-MODELS for the general projective, and projective geometry, respectively.]

Questions 32-33:

Find geometric models for each of the following two cases:
- There are points/lines that verify all the previous counter-axioms, and other points/lines in the same COUNTER-PROJECTIVE SPACE that do not verify any of them;
- Some of the counter-axioms I, II, III are verified, while the others are not (there are particular cases already known).

Question 34:

The study of these counter-models may be extended to Infinite-Dimensional Real (or Complex) Projective Spaces, denying the IV-th axioms, i.e.:
(IV) There exists no set of finite number of points for which any subspace that contains all of them contains P.

Question 35:

Does the Duality Principle hold in a counter-projective space?

What about Desargues's Theorem, Fundamental Theorem of Projective Geometry/Theorem of Pappus, and Staudt Algebra?

Or Pascal's Theorem, Brianchon's Theorem? (I think none of them will hold!)

Question 36:

The theory of Buildings of Tits, which contains the Projective Geometry as a particular case, can be 'distorted' in the same 'paradoxist' way by deforming its axiom of a BN-pair (or Tits system) for the triple (G, B, N), where G is a group, and B, N its subgroups; [see J.Tits, "Buildings of spherical type and finite BN-pairs", Lecture notes in math. 386, Springer, 1974].

Notions as: simplex, complex, chamber, codimension, apartment, building will get contorted either...

Develop a Theory of Distorted Buildings of Tits!

ANTI-GEOMETRY

It is possible to de-formalize entirely Hilbert's groups of axioms of the Euclidean Geometry, and to construct a model such that none of his fixed axiom holds.

Let's consider the following things:
- a set of <points>: A, B, C, ...
- a set of <lines>: h, k, l, ...
- a set of <planes>: α, β, γ, ...

and

- a set of relationship among these elements: "are situated", "between", "parallel", "congruent", "continuous", etc.

Then, we can deny all Hilbert's twenty axioms [see David Hilbert, "Foundation of Geometry", translated by E.J.Towed, 1950; and Roberto Bonola, "Non-Euclidean Geometry", 1938]. There exist cases, within a geometric model, when the same axiom is verified by certain points/lines/planes and denied by others.
GROUP I. ANTI-AXIOMS OF CONNECTION

1.1. Two distinct points A and B do not always completely determine a line.

Let's consider the following model MD: get an ordinary plane δ, but with an infinite hole in of the following shape:

$$
\begin{array}{c}
\text{plane } \delta_1 \\
\text{semi-plane } \delta_1 \\
\text{curve } f_1 \text{ (frontier)}
\end{array}
\begin{array}{c}
\text{plane } \delta_2 \\
\text{semi-plane } \delta_2 \\
\text{curve } f_2 \text{ (frontier)}
\end{array}
$$

Plane delta is a reunion of two disjoint planar semi-planes; f_1 lies in MD, but f_2 does not; P, Q are two extreme points on f that belong to MD.

One defines a LINE l as a geodesic curve: if two points A, B that belong to MD lie in l, then the shortest curve lies in MD between A and B lies in l also. If a line passes two times through the same point, then it is called double point (KNOT).

One defines a PLANE α as a surface such that for any two points A, B that lie in α and belong to MD there is a geodesic which passes through A, B and lies in α also.

Now, let's have two strings of the same length: one ties P and Q with the first string s_1 such that the curve s_1 is folded in two or more different planes and s_1 is under the plane δ; next, do the same with string s_2, tie Q with P, but over the plane δ and such that s_2 has a different form from s_1; and a third string s_3, from P to Q, much longer than s_1, s_1, s_2, s_3 belongs to MD.

Let I, J, K be three isolated points - as some islands, i.e. not joined with any other points of MD, exterior to the plane δ.

This model has measure, because the (pseudo-) line is the shorter way (length) to go from a point to another (when possible).
Question 37:

Of course, the model is not perfect, and is far from the best. Readers are asked to improve it, or to make up a new one that is better.

(Let \(A, B \) be two distinct points in \(\delta_1 - f_1 \). \(P \) and \(Q \) are two points on \(s_1 \), but they do not completely determine a line, referring to the first axiom of Hilbert, because \(A - P - s_1 - Q \) are different from \(B - P - s_1 - Q \).)

1.2. There is at least a line \(l \) and at least two different points \(A \) and \(B \) of \(l \), such that \(A \) and \(B \) do not completely determine the line \(l \).

(Line \(A - P - s_1 - Q \) are not completely determine by \(P \) and \(Q \) in the previous construction, because \(B - P - s_1 - Q \) is another line passing through \(P \) and \(Q \) too.)

1.3. Three points \(A, B, C \) not situated in the same line do not always completely determine a plane.

(Let \(A, B \) be two distinct points in \(\delta_1 - f_1 \), such that \(A, B, P \) are not co-linear. There are many planes containing these three points: \(\delta_1 \) extended with any surface \(s \) containing \(s_1 \), but not cutting \(s_2 \) in between \(P \) and \(Q \), for example.)

1.4. There is at least a plane, \(\alpha \), and at least three points \(A, B, C \) in it not lying in the same line, such that \(A, B, C \) do not completely determine the plane \(\alpha \).

(See the previous example.)

1.5. If two points \(A, B \) of line \(l \) lie in a plane \(\alpha \), it doesn’t mean that every point of \(l \) lies in \(\alpha \).

(Let \(A \) be a point in \(\delta_1 - f_1 \), and \(B \) another point on \(s_1 \) in between \(P \) and \(Q \). Let \(\alpha \) be the following plane: \(\delta_1 \) extended with a surface \(s \) containing \(s_1 \), but not cutting \(s_2 \) in between \(P \) and \(Q \), and tangent to \(\delta_2 \) on a line \(QC \), where \(C \) is a point in \(\delta_1 - f_2 \). Let \(D \) be point in \(\delta_1 - f_2 \), not lying on the line \(QC \). Now, \(A, B, D \) are lying on the same line \(A - P - s_1 - Q - D, A, B \) are in the plane \(\alpha \), but \(D \) does not.)

1.6. If two planes \(\alpha, \beta \) have a point \(A \) in common, it doesn’t mean they have at least a second point in common.

(Construct the following plane \(\alpha \): a closed surface containing \(s_1 \) and \(s_2 \), and intersecting \(\delta_1 \) in one point only, \(P \). Then \(\alpha \) and \(\delta_1 \) have a single point in common.)

1.7. There exist lines where only one point lies, or planes where only two points lie, or
space where only three points lie.

(Hilbert's 1.7 axiom may be contradicted if the model has discontinuities. Let's consider the isolated points area.

The point \(I \) may be regarded as a line, because it's not possible to add any new point to \(I \) to form a line.

One constructs a surface that intersects the model only in the points \(I \) and \(J \).

GROUP II. ANTI-AXIOMS OF ORDER

II.1. If \(A, B, C \) are points of line and \(B \) lies between \(A \) and \(C \), it doesn't mean that always \(B \) lies also between \(C \) and \(A \).

[Let \(T \) lie in \(s_1 \), and \(V \) lie in \(s_2 \), both of them closer to \(Q \), but different from it. Then:

\(P, T, V \) are points on the line \(P - s_1 - Q - s_2 - P \) (i.e. the closed curve that starts from the point \(P \) and lies in \(s_1 \) and passes through the point \(Q \) and lies back to \(s_2 \) and ends in \(P \)), and \(T \) lies between \(P \) and \(V \)

- because \(PT \) and \(TV \) are both geodesics, but \(T \) doesn't lie between \(V \) and \(P \)
- because from \(V \) the line goes to \(P \) and then to \(T \), therefore \(P \) lies between \(V \) and \(T \).]

[By definition: a segment \(AB \) is a system of points lying upon a line between \(A \) and \(B \) (the extremes are included.)

Warning: \(AB \) may be different from \(BA \); for example:]

the segment \(PQ \) formed by the system of points starting with \(P \), ending with \(Q \), and lying in \(s_1 \), is different from the segment \(PQ \) formed by the system of points starting with \(P \), ending with \(Q \), but belong to \(s_2 \).]

II.2. If \(A \) and \(C \) are two points of a line, then: there does not always exist a point \(B \) lying between \(A \) and \(C \), or there does not always exist a point \(D \) such that \(C \) lies between \(A \) and \(D \).

[For example:

let \(F \) be a point on \(f_1 \), \(F \) different from \(P \), and \(G \) a point in \(s_1 \); \(G \) doesn't belong to \(f_1 \); draw the line \(l \) which passes through \(G \) and \(F \); then: there exists a point \(B \)
lying between G and F - because GF is an obvious segment, but there is no point
D such that F lies between G and D - because GF is right bounded in F (GF may
not be extended to the other side of F, because otherwise the line will not remain
a geodesic anymore).]

II.3. There exist at least three points situated on a line such that:

one point lies between the other two, and another point lies also between the other
two.

[For example:
let R, T be two distinct points, different from P and Q, situated on the line P - s₁ -
Q - s₂ - P, such that the lengths PR, RT, TP are all equal; then:
R lies between P and T, and T lies between R and P; also P lies between
T and R].

II.4. Four points A, B, C, D of a line can not always be arranged: Such that B lies
between A and C and also between A and D, and such that C lies between A and
D and also between B and D.

[For example:
let R, T be two distinct points, different from P and Q, situated on the line P -
s₁ - Q - s₂ - P such that the lengths PR, RQ, QT, TP are all equal, therefore
R belongs to s₁, and T belongs to s₂; then P, Q, R, T are situated on the same
line: such that R lies between P and Q, but not between P and T - because the
geodesic PT does not pass through R, and such that Q does not be between P and
T, because the geodesic PT does not pass through Q, but lies between R and T;
let A, B be two points in δ₂ - f₂ such that A, Q, B are collinear, and C, D two
points on s₁, s₂ respectively, all of the four points being different from P and Q;
then A, B, C, D are points situated on the same line A - Q - s₁ - P - s₂ - Q - B,
which is the same with line A - Q - s₁ - P - s₁ - Q - B, therefore we may have two
different orders of these four points in the same time: A, C, D, B and A, D, C, B.]

II.5. Let A, B, C be three points not lying in the same line, and l a line lying in the
same plane ABC and not passing through any of the points A, B, C. Then, if the
line l passes through a point of the segment AB, it doesn't mean that always the
line I will pass through either a point of the segment BC or a point of the segment AC.

[For example: let AB be a segment passing through P in the semi-plane δ_1, and C point lying in δ_1 too on the left side of the line AB; thus A, B, C do not lie on the same line; now, consider the line $Q - s_1 - P - s_1 - Q - D$, where D is a point lying in the semi-plane δ_1 not on s_1; therefore this line passes through the point P of the segment AB, but does not pass through any point of the segment BC, nor through any point of the segment AC.]

GROUP III. ANTI-AXIOMS OF PARALLELS

In a plane α there can be drawn through a point A, lying outside of a line I, either no line, or only one line, or a finite number of lines which do not intersect the line I. (At least two of these situations should occur.) The line(s) is (are) called the parallel(s) to I through the given point A.

[For examples:
- let l_0 be the line $N - P - s_1 - Q - R$, where N is a point lying in δ_1 not on s_1, and R is a similar point lying in δ_2 not on s_2, and let A be a point lying on s_2, then: no parallel to l_0 can be drawn through A (because any line passing through A, hence through s_2, will intersect s_1, hence l_0, in P and Q);
- if the line l_1 lies in δ_1 such that l_1 does not intersect the frontier f_1, then: through any point lying on the left side of l_1 one and only one parallel will pass;
- let B be a point lying in f_1, different from P, and another point G lying in δ_1, not on f_1; let A be a point lying in δ_1 outside of BC, then: an infinite number of parallels to the line BC can be drawn through the point A.]

Theorem. There are at least two lines l_1, l_2 of a plane, which do not meet a third line l_3 of the same plane, but they meet each other, (i.e. if l_1 is parallel to l_3, and l_2 is parallel to l_3, and all of them are in the same plane, it's not necessary that l_1 is parallel to l_2).

[For example: consider three points A, B, C lying in f_1, and different from P, and D a point in δ_1 not on f_1; draw the lines AD, BE and CE such that E is a point in δ_1 not on f_1 and both...
BE and CE do not intersect AD; then: BE is parallel to AD, CE is also parallel to AD, but BE is not parallel to CE because the point E belong to both of them.]

GROUP IV. ANTI-AXIOMS OF CONGRUENCE

IV.1. If A, B are two points on a line l, and A' is a point upon the same or another line l', then: upon a given side of A' on the line l', we can not always find only one point B' so that the segment AB is congruent to the segment A'B'.

[For examples:
- let AB be segment lying in δ1 and having no point in common with f1, and construct the line C-P-s1-Q-s2-P (noted by l') which is the same with C-P-s2-Q-s1-P, where C is a point lying in δ1 not on f1 nor on AB; take the point A' on l', in between C and P, such that A'P is smaller than AB; now, there exist two distinct points B'1 on s1 and B'2 on s2, such that A'B'1 is congruent to AB and A'B'2 is congruent to AB, with A'B'1 different from A'B'2;
- but if we consider a line l lying in δ1 and limited by the frontier f1 on the right side (the limit point being noted by M), and take a point A' on l', close to M, such that A'M is less than A'B', then: there is no point B' on the right side of l' so that A'B' is congruent to AB.]

A segment may not be congruent to itself!

[For example:
- let A be a point on s1, closer to P, and B a point on s2, closer to P also: A and B are lying on the same line A-Q-B-P-A which is the same with line A-P-B-Q-A, but AB measured on the first representation of the line is strictly greater than AB measured on the second representation of their line.]

IV.2. If a segment AB is congruent to the segment A'B' and also to the segment A"B" then not always the segment A'B' is congruent to the segment A"B".

[For example:
- let AB be a segment lying in δ1-f1, and consider the line C-P-s1-Q-s2-P-D, where C, D are two distinct points in δ1-f1 such that C, P, D are colinear. Suppose that the segment AB is congruent to the segment CD (i.e. C-P-s1-Q-s2-P-D); get also an obvious segment A'B' in δ1-f1, different from the preceding ones, but
congruent to AB.

Then the segment $A'B'$ is not congruent to the segment CD (considered as $C - P - D$, i.e. not passing through Q.)

IV.3. If AB, BC are two segments of the same line I which have no points in common aside from the point B, and $A'B', B'C'$ are two segments of the same line or of another line I' having no point other than B' in common, such that AB is congruent to $A'B'$ and BC is congruent to $B'C'$, then not always the segment AC is congruent to $A'C'$.

[For example:
let l be a line lying in δ, not on f_1, and A, B, C three distinct points on l, such that AC is greater than s_1; let l' be the following line: $A' - P - s_1 - Q - s_2 - P$ where A' lies in δ, not on f_1, and get B' on s_1 such that $A'B'$ is congruent to AB, get C' on s_2 such that BC is congruent to $B'C'$ (the points A, B, C are thus chosen); then: the segment $A'C'$ which is first seen as $A' - P - B' - Q - C'$ is not congruent to AC, because $A'C'$ is the geodesic $A' - P - C'$ (the shortest way from A' to C' does not pass through B') which is strictly less than AC.]

Definitions.
Let h, k be two lines having a point O in common. Then the system (h, O, k) is called the angle of the lines h and k in the point O.

(Because some of our lines are curves, we take the angle of the tangents to the curves in their common point.)

The angle formed by the lines h and k situated in the same plane, noted by $< h, k >$, is equal to the arithmetic mean of the angles formed by h and k in all their common points.

IVA. Let an angle (h, k) be given in the plane α, and let a line h be given in the plane β.

Suppose that in the plane β a definite side of the line h is assigned, and a point O'. Then in the plane β there are one, or more, or even no half-line(s) k' emanating from the point O' such that the angle (h, k) is congruent to the angle (h', k'), and at the same time the interior points of the angle (h', k') lie upon one or both sides of h.

[Examples:
- Let A be a point in $\delta_1 - f_1$, and B, C two distinct points in $\delta_2 - f_2$; let h be the line $A - P - s_1 - Q - B$, and k be the line $A - P - s_2 - Q - C$; because h and k intersect in an infinite number of points (the segment AP), where they normally coincide - i.e. in each such point their angle is congruent to zero, the angle (h, k) is congruent to zero.]

23
Now, let \(A' \) be a point in \(\delta_1 - f_1 \), different from \(A \), and \(B' \) a point in \(\delta_2 - f_2 \), different from \(B \), and draw the line \(h' \) as \(A' - P - s_1 - Q - B' \); there exist an infinite number of lines \(k' \)'s, of the form \(A' - P - s_2 - Q - C' \) (where \(C' \) is any point in \(\delta_2 - f_1 \), not on the line \(QB' \), such that the angle \((h,k) \) is congruent to \((h',k') \), because \((h',k') \) is also congruent to zero, and the line \(A' - P - s_2 - Q - C' \) is different from the line \(A' - P - s_2 - Q - D' \) if \(D' \) is not on the line \(QC' \).

- If \(h,k \) and \(h' \) are three lines in \(\delta_1 - P \), which intersect the frontier \(f_1 \) in at most one point, then there exists only one line \(h' \) on a given part of \(h' \) such that the angle \((h,k) \) is congruent to the angle \((h',k') \).

- Is there any case when, with these hypotheses, no \(k' \) exists?

Not every angle is congruent to itself; for example: \(< s_1, s_2 > \) is not congruent to \(< s_1, s_2 > \) because one can construct two distinct lines: \(P - s_1 - Q - A \) and \(P - s_2 - Q - A', \) where \(A \) is point in \(\delta_1 - f_2 \), for the first angle, which becomes equal to zero; and \(P - s_2 - Q - A \) and \(P - s_2 - Q - B, \) where \(B \) is another point in \(\delta_1 - f_2; \) \(B \) different from \(A, \) for the second angle, which becomes strictly greater than zero!]

IV.5. If the angle \((h,k) \) is congruent to the angle \((h',k') \) and to the angle \((h'',k'') \), then the angle \((h',k') \) is not always congruent to the angle \((h'',k'') \).

(A similar construction to the previous one.)

IV.6. Let \(ABC \) and \(A'B'C' \) be two triangles such that \(AB \) is congruent to \(A'B', AC \) is congruent to \(A'C' \), \(\angle BAC \) is congruent to \(\angle B'A'C' \). Then not always \(\angle ABC \) is congruent to \(\angle A'B'C' \) and \(\angle ACB \) is congruent to \(\angle A'C'B' \).

[For example:

Let \(M, N \) be two distinct points in \(\delta_1 - f_2 \), thus obtaining the triangle \(PMN \); now take three points \(R, M', N' \) in \(\delta_1 - f_1 \), such that \(RM' \) is congruent to \(PM, R'N' \) is congruent to \(RN \), and the angle \((RM',RN') \) is congruent to the angle \((PM,PN). \)

\(RM'N' \) is an obvious triangle. Of course, the two triangles are not congruent, because for example \(PM \) and \(PN \) cut each other twice - in \(p \) and \(Q \) - while \(RM' \) and \(RN' \) only once - in \(R \). (These are geodesical triangles.)]

Definitions. Two angles are called supplementary if they have the same vertex, one side in common, and the other sides not common form a line.

A right angle is an angle congruent to its supplementary angle.

Two triangles are congruent if their angles are congruent two by two, and its sides are
congruent two by two.

Propositions:
A right angle is not always congruent to another right angle.

For example:
Let $A - P - s_1 - Q$ be a line, with A lying in $s_1 - f_1$, and $B - P - s_1 - Q$ another line, with B lying in $s_1 - f_1$ and B not lying in the line AP; we consider the tangent t at s_1 in P, and B chosen in a way that $< (AP, t)$ is not congruent to $< (BP, t)$; let A', B' be other points lying in $s_1 - f_1$ such that $< APA'$ is congruent to $< A'P - s_1 - Q$, and $< BPP'$ is congruent to $< B'P - s_1 - Q$. Then:
- the angle APA' is right, because it is congruent to its supplementary (by construction);
- the BPP' is also right, because it is congruent to its supplementary (by construction);
- but $< APA'$ is not congruent to $< BPP'$, because the first one is half of the angle $A - P - s_1 - Q$, i.e. half of $< (AP, t)$, while the second one is half of the $B - P - s_1 - Q$, i.e. half of $< (BP, t)$.

The theorems of congruence for triangles [side, side, and angle in between; angle, angle, and common side; side, side, side] may not hold either in the Critical Zone (s_1, s_2, f_1, f_2) of the Model.

Property:
The sum of the angles of a triangle can be:
- 180 degrees, if all its vertexes A, B, C are lying, for example, in $s_1 - f_1$;
- strictly less than 180 degrees [any value in the interval $[0, 180)$], for example:
 let R, T be two points in $s_1 - f_1$ such that Q does not lie in RT, and S another point on s_1; then the triangle STR has $< (SR, ST)$ congruent to O because SR and ST have an infinite number of common points (the segment SQ), and $< QSR < QTR$ congruent to $180 - < TQR$ [by construction we may very $< TQR$ in the interval $[0, 180]$];
 - even O degree!
 let A be a point in $s_1 - f_1$, B a point in $s_1 - f_2$, and C a point on s_3, very close to P; then ABC is a non-degenerated triangle (because its vertexes are non-colinear), but $< (A - P - s_1 - Q - B, A - P - s_1 - C) =$ $< (B - Q - s_1 - P - A, B - Q - s_1 - P - C) =$ $< (C - s_3 - P - A, C - s_2 - P - s_1 - Q - B) = 0$ (one considers the length $C - s_3 - P - s_1 - Q - B$ strictly less than $C - s_2 - B$); the area of this triangle is also 0;
 - more than 180 degrees, for example:
 let A, B be two points in $s_1 - f_1$, such that $< PAB + < PBA < (s_1, s_2; in Q)$ is strictly
greater than 180 degrees; then triangle \(ABQ \), formed by the intersection of the lines \(A - P - s_2, Q - s_1 - P - B \), \(AB \) will have the sum of its angles strictly greater than 180 degrees.

Definition. A circle of center \(M \) is a totality of all points \(A \) for which the segments \(MA \) are congruent to one another.

For example, if the center is \(Q \), and the length of the segments \(MA \) is chosen greater than the length of \(s_1 \), then the circle is formed by the arc of circle centered in \(Q \), of radius \(MA \), and lying in \(\delta_2 \), plus another arc of circle centered in \(P \), of radius \(MA \) - length of \(s_1 \), lying in \(\delta_1 \).

GROUP V. ANTI-AXIOMS OF CONTINUITY
(ANTI-ARCHIMEDEAN AXIOM)

Let \(A, B \) be two points. Take the point \(A_1, A_2, A_3, A_4, \ldots \) so that \(A_1 \) lies between \(A \) and \(A_2, A_3 \) lies between \(A_1 \) and \(A_2, A_3 \) lies between \(A_2 \) and \(A_4 \), etc. and the segments \(AA_1, A_1A_2, A_2A_3, A_3A_4, \ldots \) are congruent to one another.

Then, among this series of points, not always there exists a certain point \(A_n \) such that \(B \) lies between \(A \) and \(A_n \).

For example:

Let \(A \) be a point in \(\delta_1 - f_1 \), and \(B \) a point on \(f_1 \), \(B \) different from \(P \); on the line \(AB \) consider the points \(A_1, A_2, A_3, A_4, \ldots \) in between \(A \) and \(B \), such that \(AA_1, A_1A_2, A_2A_3, A_3A_4, \ldots \) are congruent to one another; then we find that there is no point behind \(B \) (considering the direction from \(A \) to \(B \)), because \(B \) is a limit point (the line \(AB \) ends in \(B \)).

The Bolzano's (intermediate value) theorem may not hold in the Critical Zone of the Model.

Question 38:
It's very interesting to find out if this system of axiom is complete and consistent (!) The apparent unscientific or wrong geometry, which looks more like an amalgam, is somehow supported by its attached model.

Question 39:
How will the differential equations look like in this field?

Question 40:
How will the (so called by us:) "PARADOXIST" TRIGONOMETRY look like in this field?
Question 41:
First, one can generalize this using more bridges (connections/strings between δ_1 and δ_2) of many lengths, and many gates (points like P and Q on f_1 and f_2, respectively) - from a finite to an infinite number of such bridges and gates.

If one put all bridges in the δ plane, one gates a dimension-2 model; otherwise, the dimension is ≥ 3.

Some bridges may be replaced with (round or not necessarily) bodies, tangent (or not necessarily) to the frontiers f_1 and f_2.

Question 42:
Should it be indicated to remove the discontinuities?

But what about DISCONTINUOUS MODELS (on spaces not everywhere continuous - like our MD)? generating in this way DISCONTINUOUS GEOMETRIES.

Question 43:
The model MD can also be generalized to n-dimensional space as a hypersurface, considering the group of all projective transformations of an $(n+1)$-dimensional real projective space that leave MD invariant.

Questions 44-47:
Find geometric models for each of the following four cases:
- No point/line/plane in the model space verifies any of Hilbert's twenty axioms; (in our MD, some points/lines/planes did verify, and some others did not);
- The Hilbert's groups of axioms I, II, IV, V are denied for any point/line/plane in the model space, but the III-th one (axiom of parallels) is verified; this is an Opposite-(Lobachevski+Reimann) Geometry:
 neither hyperbolic, nor elliptic ... and yet Non-Euclidean!
- The groups of anti-axioms I, II, IV, V are all verified, but the III-th one (anti-axiom of parallels) is denied;
- Some of the groups of anti-axioms I, II, III, IV, V are verified, while the others are not - except the previous case; (there are particular cases already known).

Question 48:
What connections may be found among this Paradoxist Model, and the Cayley, Klein, Poincare, Beltrami (differential geometric) models?
Questions 49-120: (combining by twos, each new geometry - out of 4 - with an old geometry - out of 18 - all mentioned below):

CONCLUSION

The above 120 OPEN QUESTIONS are not impossible at all. "The world is moving so fast nowadays that the person, who says 'it can't be done', is often interrupted by someone doing it!" [Leadership journal, Editor Arthur F. Lenahan, October 24, 1995, p. 16, Fairfield, NJ].

The author encourages readers to send not only comments, but also new (solved or unsolved) questions arising from them.

Specials thanks to professors JoAnne Growney, Zahira S. Khan, and Paul Hartung of Bloomsburg University, Pennsylvania, for giving me the opportunity to write this article and to lecture it on November 13th, 1995, in their Department of Mathematics and Computer Sciences.
LOGICA SAU LOGICA MATEMATICĂ

Câte propoziţii sunt adevărate şi care anume dintre următoarele:
1. Există o propoziţie falsă printre cele n propoziţii.
2. Există două propoziţii false printre cele n propoziţii.
3. Există 3 propoziţii false printre cele n propoziţii.
4. Există 4 propoziţii false printre cele n propoziţii.

n. Există n propoziţii false printre cele n propoziţii.

(O generalizare a unei probleme propuse de prof. Francisco Bellot, revista NUMEROS, nr. 9/1984, p. 69, Insulele Canare, Spania).

Comentarii. Notăm cu \(P_i \) propoziţia \(i, 1 \leq i \leq n \). Dacă \(n \) este par atunci propoziţiile 1, 2, ..., \((n/2) \) sunt adevărate iar celelalte false. Se începe raţionamentul de la sfârşit; \(P_n \) nu poate să fie adevărată, deci \(P_1 \) este adevărată; apoi \(P_{n-1} \) nu poate fi adevărată, deci \(P_2 \) este adevărată, etc.)

Remarca. Dacă \(n \) este impar se obţine un paradox, deoarece urmând aceeaşi metodă de rezolvare glăim \(P_i \) falsă, implică \(P_i \) adevărată; \(P_{n-1} \) falsă implică \(P_{n-1} \) adevărată,

Dacă \(n = 1 \), se obţine o variantă a Paradohului minciunului ("Nu mint" este adevărat sau fals?)

1. Există o propoziţie falsă în acest dreptunghi.

Care este deşiur un paradox.

[*Gamma*, Braşov, Anul IX, Nr. 1, noiembrie 1986.]
MATHEMATICS AND ALCOHOL AND GOD

Imaginary
God
Transcendentality
What's the probability
for God to be
in Number Theory?
Artifica Mathematica -
in order to kill the zero, the nothing
I don't like people who are happy, who had a great career (because it pushed on others and depersonalized them) - but those living unhappily, poorly, sickly and dying young.

If there exist irrational elements in man, then God exists. When we know what God is, we shall be gods ourselves (G. B. Shaw).

If there exist wars, genocides, then God does not exist.

If there exist sentences which cannot be proved or disproved within the system (K. Godel), then God exists.

“What’s your religious beliefs?”, and Lagrange answered: “I don’t know”!

Mathematics and alcohol for God’s sake, and instead of Him and to replace Him. Mystic Mathematics. Are science researchers guilty in front of God because of stealing Nature’s secrets?

God’s Revolt
Mathematics’ Revolt
Alcohol’s Revolt

My revolt: I desire to create my own mathematics, new (and maybe strange, paradoxist) axioms - and put everything in it! Develop an entire theory on this system of anti-axioms. I’m writing the PARADOXIST MATHEMATICS the PARADOXIST PHILOSOPHY

"Sometimes great new ideas are born outside, not inside, the schools" (Dirk J. Struik).

God
Holy Mathematics with its fascinating infinite
Holy Alcohol with its degrees
Holy Philosophy
Music is sick in front of God
Picture is sick in front
Mathematics is sick

Creation is a drug I can't do without (Cecil B. DeMille). Therefore: pray to God and drink because in this way you get closer to Him. Drink alcohol and solve diophantine equations!

CALCULATE - DRINK - PRAY
(This is not a paradox !)
SUBJECTIVE QUESTIONS AND ANSWERS
FOR A MATH INSTRUCTOR OF HIGHER EDUCATION

1) What are the instructor's general responsibilities?
 - participation in committee work and planning
 - research and innovation
 - in-service training
 - meetings
 - to order necessary textbooks, audio-visual, and other instructional equipment for assigned courses
 - to submit requests for supplies, equipment, and budgetary items in good order and on time
 - to keep abreast of developments in subject field content and methods of instruction
 - to assess and evaluate individual student progress; to maintain student records, and refer students to other appropriate college staff as necessary
 - to participate on college-wide registration and advising
 - effective and full use of the designated class meeting time
 - adequate preparation for course instruction, course and curriculum planning
 - teaching, advising students
 - to be able to make decisions
 - knowledge and use of material
 - positive relationship
 - knowledge of content
 - to plan and implement these plans (or abandon them if they don't work) - short and long-term plannings
 - to be a facilitator, motivator, model, assessor and evaluator of learning, counselor, classroom manager (i.e. to manage the behaviour of students, the environment, the curriculum)
 - knowledge of teenage growth and development
 - to continuously develop instructional skills.

The most important personal and academic characteristics of a teacher of higher education are: to be very good professionally in his/her field, to improve permanently his/her skills, to be dedicated to his/her work, to understand the students' psychology, to be a good educator,
to do attractive and interesting lessons, to make students learn to think (to solve not only mathematical problems, but also life ones), to try approaching mathematics with what students are good at (telling them, for example, that mathematics are applied anywhere in the nature), to conduct students in their scientific research, to advise them, to be involved in all scholar activities and committee services; to enjoy teaching.

The first day of school can be more mathematically recreative. Ask the students: What do you like in mathematics, and what don't you like?

Tell them math jokes, games, proofs with mistakes (to be found!), stories about mathematicians lives, connections between math and ... opposite fields, such as: arts, music, literature, poetry, foreign languages, etc.

2) What is the students evaluation of you as an instructor (negative opinions)?
- don't be too nice in the classroom (because some students take advantage of that matter and waste their and class time)
- to be more strict and respond firmly
- don't say: "this is easy, you should know this" because one discourages students to ask questions.
- attendance policy to be clear
- grammar skills, and listening skills
- patience with the students
- allow students to help each other when they don't understand me
- clear English
- sometimes there isn't enough time to cover all material
- to self-study the material and solve a lot of unassigned problems
- to speak louder to the class; to be more oriented towards the students and not the board/self
- to understand what the students ask me
- to take off points if the homework problems are wrong, instead of just giving points for trying
- to challenge students in learning
- to give examples of harder problems on the board
- to enjoy teaching (smile, joke?)
- your methods should help students learning
3) What is the college’s and university’s mission and role in the society?
 - to assure that all students served by the College learn the skills, knowledge, behaviors, and attitudes necessary for productive living in a changing, democratic, multicultural society.

4) How do you see the future math teaching (new techniques)?
 - teaching online
 - telecourses (with videotapes and tapes)
 - teaching using internet
 - teaching by regular mail
 - more electronic device tools in teaching (especially computers)
 - interdisciplinarity teaching
 - self-teaching (helping students to teach themselves)
 - more mathematics taught in connection with the social life (mathematical modeling)
 - video conference style of teaching
 - laboratory experiments

5) What about <Creative Solutions>?
 - the focus of the program is on developing student understanding of concepts and skills rather than <apparent understanding>
 - students should be actively involved in problem-solving in new situations (creative solvers)
 - non-routine problems should occur regularly in the student homework
 - textbooks shall facilitate active involvement of students in the discovery of mathematical ideas
 - students should make conjectures and guesses, experiment and formulate hypotheses and seek meaning
 - the instructor should not let teaching of mathematics degenerate into mechanical manipulation without thought
 - to teach students how to think, how to investigate a problem, how to do research in their own, how to solve a problem for which no method of solution has been provided
- Homework assignments should draw the students' attention to underlying concepts
- To do a cognitive guided instruction
- To solve non-routine problems, multi-step problems
- To use a step-by-step procedure for problem solving
- To integrate tradition with modern style teaching
- To emphasize the universality of mathematics
- To express mathematical ideas in a variety of ways
- To show students how to write mathematics, and how to read mathematics
- To interpret solutions
- Using MINITAB graphics to teach statistics (on the computer)
- Tutorial programs on the computer
- Developing manageable assessment procedures
- Experimental teaching methods
- To motivate students to work and learn
- To stimulate mathematical reasoning
- To incorporate “real life” scenarios in teacher training programs
- Homo faber + homo sapiens are inseparable (Antonio Gramsci, Italian philosopher)
- To improve the critical thinking and reasoning skills of the students
- To teach students how to extend a concept
- To move from easy to medium and hard problems (gradually)
- Math is learned by doing, not by watching
- The students should dedicate to the school
- To become familiar with symbols, rules, algorithms, key words and definitions
- To visualize math notions
- To use computer-generated patterns
- To use various problem-solving strategies such as:
 - Perseverence
 - Achievement motivation
 - Role model
 - Confidence
 - Flexible thinking
 - Fresh ideas
 - Different approaches
- different data
- to use experimental teaching methods
- function plotters or computer algebra systems
- computer-based learning
- software development
- grant proposal writing
- innovative pedagogy
- to use multi-representational strategies
- to try experimental tools
- to develop discussion groups
- symbol manipulation rules
- to solve template problems
- to do laboratory-based courses
- to think analytically
- to picture ourselves as teacher, or as students
- to use computer-generated patterns and new software tools
- to give the students educational and psychological tests to determine if any of them need special education (for handicapped or gifted students). - American Association on Mental Deficiency measures it.

6) How to diminish the computer anxiety?
In order to diminish the computer anxiety, a teacher needs to develop to the students:
- positive attitudes towards appropriate computer usage
- feeling of confidence in use of computers
- feeling of comfort with computers
- acceptance of computers as a problem-solving tool
- willingness to use a computer for tasks
- attitude of responsibility for ethical use of computer
- attitude that computers are not responsible for "errors"
- free of fear and intimidation of computers (the students' anxiety towards computer is diminished as their knowledge about computers increased)
- only after an algorithm is completely understood it is appropriate to rely on the computer to perform it
computers help to remove the tedium of time-consuming calculations;
- enable the students to consolidate the learning of the concepts and algorithms in
math; the computer session is held at the end of the course when all the lectures
and tutorials have been completed
- to simulate real world phenomena
- all students should learn to use calculators
- math is easier if a calculator is used to solve problems
- calculator use is permissible on homework
- using calculators makes students better problem solvers
- calculators make mathematics fun
- using calculator will make students try harder
- the students should be able to
 - assemble and start a computer
 - understand the major parts of a computer
 - use a variety of educational software
 - distinguish the major instructional methodologies
 - use word processor, database and spreadsheet programs
 - attach and use a printer, peripherals, and lab probes
 - use telecommunications networking
 - use hypermedia technology
- an instructor helps students to help themselves (it’s interesting to study the epistemicology of experience)

In the future the technology’s role will increase due to the new kind of teaching: distance learning (internet, audio-visuals, etc.).

The technology is beneficial because the students do not waste time graphing function anymore, but focusing on their interpretations.

7) Describe your experience teaching developmental mathematics including course names, semester taught and methods and techniques used.

In my teaching career of more than ten years experience I taught a variety of developmental mathematics courses, such as:
8) Briefly describe your philosophy of teaching mathematics. Describe the application of this philosophy to a particular concept in a developmental mathematics course you have taught.

- My teaching philosophy is "concept centered" as well as "problem solving directed". Makarenko: Everything can be taught to anybody if it's done at his/her level of knowledge. This focuses on promoting a student friendly environment where I not only lecture to provide the student a knowledge base by centering on concepts, but I also encourage peer mentoring with groups work to facilitate problem solving. It is my firm conviction that a student's perception, reasoning, and cognition can be strengthened with the application of both traditional and Alternative Learning Techniques and Student Interactive Activities.

- In my Introductory Mathematics course I taught about linear equations:
 - first I had to introduce the concept of variable, and then define the concept of equation; afterwards, tell the students why the equation is called linear; how the linear equation is used in the real world, its importance in the every day's life;
 - secondly I gave students an example of solving a linear equation on the board, showing them different methods; I classified them into consistent and inconsistent.

9) Describe how you keep current with trends in mathematics instruction and give one example of how you have integrated such a trend into the classroom.

- I keep current with trends in math instruction reading journals such as: "Journal for Research in Mathematical Education", "Mathematics Teacher" (published by the National Council of Teachers of Mathematics, Reston, VA), "Journal of Computers in Mathematics and Science Teaching", "For the learning of mathematics", "Mathematics Teaching" (U.K.), "International Journal of Mathematical Education in Science and Technology"; and participating with papers to the educational congresses, as: The
10) Describe your experience integrating technology into teaching mathematics. Provide specific examples of ways you have used technology in the mathematics classroom.
- I use graphic calculators (TI-85) in teaching Intermediate Algebra; for example:
 - Programming it to solve a quadratic equation (in all 3 cases, when D is >, =, or < 0).
- I used various software packages of mathematics on IBM-PC or compatibles, such as: MPP, MAPLE, UA, etc. to give the students different approaches; for example in teaching Differential Equations I used MPP for solving a differential equation by Euler’s method, changing many times the initial conditions, and graphing the solutions.

11) Describe your knowledge and/or experience as related to your ability to prepare classroom materials.
Classroom materials that I use: handouts, different color markers, geometric instruments, take-home projects, course notes, group projects, teaching outline, calculators, graphic calculators, PC, projectors, books, journals, etc.

12) Describe the essential characteristics of an effective mathematics curriculum.
- To develop courses and programs that support the College’s vision of an educated person and a commitment to education as a lifelong process;
- To provide educational experiences designed to facilitate the individual’s progress towards personal, academic, and work-based goals;
- To encourage the development of individual ideas and insights and acquisition of knowledge and skills that together result in an appreciation of cultural diversity and a quest for further discovery;
- To respond to the changing educational, social, and technological needs of current and prospective students and community employers;

13) Provide specific examples of how you have and/or how you would develop and evaluate mathematics curriculum.
In order to develop a mathematics curriculum:
I identify unmet student need, faculty interest in a new area, request from employers,
recommendation of advisory committee, result of program review, university curriculum development.

Criteria for evaluation of a mathematics curriculum:
- course/program is educationally sound and positively affects course/program offerings within district; course does not unnecessarily duplicate existing course or course content in other disciplines offered throughout the district;
- development or modification of course/program does not adversely impact existing courses/programs offered throughout the district by competing for students and resources;
- course/program is compatible with the mission of the college.

14) Describe your experience, education and training that has provided you with the knowledge of and ability to assess student achievement in mathematics.

I taught mathematics in many countries, for many years, using various student assessments.

15) Provide specific examples of ways you have and/or ways you would assess student achievement in mathematics.

I assess students by: tests in the Testing Center, quizzes in the classroom, homeworks, class participation (either solving problems on the board, or giving good answers for my questions), extra-work (voluntarily), take-home exams, research projects, frequency. Normally a test contains 10 problems, total being 100 points. For each homework I give 5 points, same for each extra-work, for each class participation. For more than 3 absences I subtract points (one point for each absence), and later I withdraw the student.

Take-home exams, quizzes, and research project have the worth of a test.

Finally I compute the average (my students know to assess themselves according to these rules, explained in the class and written in the syllabus).
16) This question is about motivating a typical community college class of students, which is very diverse.

 a) What kinds of students are you likely to have in such a class?

 Students of different races, genders, religious, ages, cultures, national origins, levels of preparedness, with or without physical or mental handicaps.

 b) How would you teach them?

 Catching their common interest, tutoring on a one-to-one basis students after class (according to each individual level of preparedness, knowledge), working differentially with categories of students on groups, being a resource to all students, using multirepresentational strategies, motivating and making them dedicate to the study, finding common factors of the class. Varying teaching styles to respond to various student learning styles.

17) Given the fact that the community college philosophy encourages faculty members to contribute to the campus, the college, and the community, provide examples of how you have and/or would contribute to the campus, the college, and the community.

 I have contributed to the college by:
 - being an Associate Editor of the college (East Campus) "Math Power" journal;
 - donating books, journals to the college (East Campus) Library;
 - volunteering to help organizing the AMATYC math competitions (I have such experience from Romania and Morocco);
 - representing the college at National/International Conferences on Mathematical and Educational Topics (as, for example, at Bloomsburg University, PA, Nov. 14, 1995);
 - publishing papers, and therefore making free publicity for the college;

 I would contribute to the college by:
 - organizing a Math Club for interested students;
 - cooperating with my fellow colleagues on educational projects sponsored by various foundations: National Science Foundation, Fulbright ... Guggenheim?
 - socializing with my fellow colleagues to diverse activities needed to the college.
 - being a liaison between the College and University in order to frequently update the University math software and documentation (public property, reach done will a grant from NSF).

18) Describe your experience within the last three years in teaching calculus for science and
I have taught Calculus I, II, III in many countries. I have insisted on solving most creatively problems in calculus, because most of them are open-ended (they have more than one correct answer or approach); sometimes, solving a problem relies on common sense ideas that are not stated in the problem. The fundamental basis of the Calculus class is what graphs symbolize, not how to draw them.

Using calculators or computers the students got reasonable approximation of a solution, which was usually just useful as an exact one.

19) Reform calculus a significant issue in math education today. Describe your thoughts on the strengths and weaknesses of reform versus traditional calculus and indicate which form of calculus you would prefer to teach.

Of course, I prefer to teach the Harvard Calculus, because it gives the students the skills to read graphs and think graphically, to read tables and think numerically, and to apply these skills along with their algebraic skills to modeling the real world (The Rule of Three); and Harvard Calculus also states that formal mathematical theory evolves from investigations of practical problems (The Way of Archimedes).

Weaknesses: the students might rely too much on calculators or computers ("the machines will think for us!"), forgetting to graph, solve, compute.

20) Describe your experience in curriculum development including course development, textbook or lab manual development, and development of alternative or innovative instructional methods.

I have developed a course of Calculus I, wrote and published a textbook of Calculus I for students, associated with various problems and solutions on the topic.

Concerning the alternative instructional methods, I'm studying and developing The Intersubjectivity Method of Teaching in Mathematics (inspired by some articles from "Journal for Research in Mathematical Education" and "International Journal of Mathematical Education in Science and Technology").

21) Describe your education and/or experiences that would demonstrate your ability to proactively interact with and effectively teach students from each of the following: different races, cultures, ages, genders, and levels of preparedness. Provide examples of your interaction with and teaching of students from each of these groups.
I have taught mathematics in many countries: Romania (Europe), Morocco (Africa), Turkey (Asia), and USA. Therefore, I am accustomed to work with a diverse student population. More, each country had its educational rules, methods, styles, curriculum missions - including courses, programs, textbooks, math student competitions, etc. that I have acquired a very large experience. I like to work in a multi-cultural environment teaching in many languages, styles (according to the students' characteristics), being in touch with various professors around the world, knowing many cultural habits.

Describe your professional development activities that help you stay in the field of mathematics. Give your best example of how you have integrated one thing into the classroom that came out of your professional development activities.

I subscribe to math journals, such as: "College Mathematics Journal", as a member of the Mathematical Association of America, and often go to the University Libraries, Science Section, to consult various publications.

I keep in touch with mathematicians and educators from all over, exchanging math papers and ideas, or meeting them at Conferences or Congresses of math or education.

Studying about "intersurjectivity" in teaching, I got the idea of working differentially with my students, distributing them in groups of low level, medium level, high level according to their knowledge, and therefore assigning them appropriate special projects.

23)

a) What are the most important personal and academic characteristics of a teacher?
b) At the end of your first year of district employment how will you determine whether or not you have been successful?
c) What are the greatest challenges in public education today?
d) What do you want your students to learn?

a) To be very good professional in his/her field, improving his/her skills permanently. To be dedicated to his/her work. To love the students and understand their psychology. To be a very good educator. To prepare every day the lesson (its objectives). To do attractive and interesting lessons.
b) Regarding the level of the class (the knowledge in math), the students grades, even their hobby for math (or at least their interest).
c) To give the students a necessary luggage of knowledge and enough education such that they are able to fend for themselves in our society (they are prepared very well for the future).

d) To think. Brainstorm.
To solve not only mathematical problems, but also life problems.

24) What do you want to accomplish as a teacher?
To get well prepared students with good behaviours.

25) How will you go about finding out students' attitudes and feelings about your class?
I'll try to talk with every student to find out their opinions, difficulties, attitudes towards the teacher. Then, I'll try to adapt myself to the class level of knowledge and to be agreeable to the students. Besides that, I'll try to approach them in extracurricular activities: soccer, tennis, chess, creative art and literature using mathematical algorithms/methods, improving my Spanish language.

26) An experienced teacher offers you following advice: "When you are teaching, be sure to command the respect of your students immediately and all will go well". How do you feel about this?
I agree that in a good lesson the students should respect their teacher, and reciprocally. But the respect should not be "commanded", but earned. The teacher should not hurt the students by his/her words.

27) How do you go about deciding what it is that should be taught in your class?
I follow the school plan, the mathematics text book, the school governing board directions. I talk with other mathematics teacher asking their opinions.

28) A parent comes to you and complains that what you are teaching his child is irrelevant to the child needs. How will you respond? I try to find out what he wants, what his needs are like. Then, maybe I have to change my teaching style. I respond that irrelevant subjects of today will be relevant subjects of tomorrow.

29) What do you think will provide you the greatest pleasure in teaching?
When students understand what I'm teaching about and they know how to use that in their
30) When you have some free time, what do you enjoy doing the most?

Improving my mathematical skills (subscription to mathematical and education journals). Teaching mathematics became a hobby for me!

31) How do you go about finding what students are good at?

I try to approach mathematics with what students are good at. For example, I tell ’em that mathematics are applied anywhere in nature and society, therefore in arts, in music, in literature, etc. Therefore, we can find a tangential joint between two apparent distinct (opposite) interests.

32) Would you rather try a lot of way-out teaching strategies or would you rather try to perfect the approaches which work best for you? Explain your position.

Both: the way-out teaching strategies combined with approaches to students. In each case the teacher should use the method/strategy that works better.

33) Do you like to teach with an overall plan in mind for the year, or would you rather just teach some interesting things and let the process determine the results? Explain your position.

Normally I like to teach with an overall plan in mind, but sometimes — according with the class level and feelings — I may use the second strategy.

34) A student is doing poorly in your class. You talk to him/her, and he/she tells you that he/she considers you to be the poorest teacher he/she has ever met. What would you do?

I try to find out the opinions of other students about my teaching and to get a general opinion of the entire class. I give students a test with questions about my character, skills, style, teaching methods etc. in order to find out my negative features and to correct/improve ’em by working hard.

35) If there were absolutely no restrictions placed upon you, what would you most want to do in life?

To set up a school (of mathematics especially) for gifted and talented students with a math
36) How do you test what you teach?
 By written test, final exams, homeworks, class participation, special projects, extra homeworks, quizzes, take-home exams.

37) Do you have and follow a course outline? When would a variation from the outline be appropriate?
 - Yes, I follow a course outline.
 - When I find out the students have gaps in their knowledge and, therefore, they are not able to understand the next topic to be taught. Or new topics are needed (due to scientific research or related to other disciplines).

38) Is student attendance important for your course? Why or why not? What are the student responsibilities necessary for success in your class?
 - Yes.
 - If they miss many courses they will have difficulties to understand the others, because mathematics is like a chain.
 - To work in the classroom, to pay attention and ask questions, to do independent study at home too.

39) Describe your turnaround time for returning graded tests and assignments.
 I normally grade the tests over the weekends. Same for all other assignments.

40) Are you satisfied with the present textbooks? Why or why not?
 - Yes.
 - Because they give the students the main ideas necessary in the technical world.

41) Describe some of the supplemental materials you might use for this course.
 - Personal computer with DERIVE software package.
 - TI-82 and an overhead projector.
 - Tables of Laplace Transforms.
42) Describe your method of student recordkeeping.
 - I keep track of: absences, homeworks, tests/grades, final exam's grade, class participations.

43) Describe how you assist or refer students who need remediation.
 - I advise them to go to the College Tutoring Center.
 - I encourage them to ask questions in the classroom, to work in groups with better students, to contact me before or after class.

44) What is your procedure for giving students feedback on their learning progress?
 - By the tests grades.
 - By the work they are doing in the classroom.

45) How do you monitor your evaluation methods so that they are both fair and constructive?
 - My students are motivated to work and improve their grades by doing extra (home)work.
 - I compare my evaluation methods with other instructors'.
 - I also feel when a student masters or not a subject.

46) Describe your relationship with your colleagues.
 - I share information, journals, books, samples of tests etc. with them.
 - Good communication.

47) What procedures do you use to motivate students?
 - Giving'em a chance to improve their grades.
 - Telling'em that if they don't learn a subject in mathematics, they would not understand the others (because mathematics is cyclic and linear).

48) Are you acquainted with district and campus policies and procedures? Do you have any problems with any of the policies and procedures?
 - I always try to adjust myself to each campus's policy.
49) What mathematical education topic are you working in?

- I'm studying the radical constructivism (Jean Lieget) and social constructivism (Vygotsky: to place communication and social life at the center of meaning-making), the intersubjectivity in mathematics, the meta-knowledge, the assessment standards.

Learning and teaching are processes of acculturation.
În 1969, fascinat de geometrie, am construit un spațiu parțial euclidian și parțial neeuclidian în același timp, înlocuind postulatul V al lui Euclid (axioma paralelor) prin următoarea propoziție stranie conținând cinci aseverări:

a) există cel puțin o dreaptă și un punct exterior ei în acest spațiu astfel încât prin acel punct trece o singură dreaptă care nu intersectează dreapta inițială;
 [1 paralelă]

b) există cel puțin o dreaptă și un punct exterior ei în acest spațiu astfel încât un număr finit de drepte l_1, \ldots, l_k $(k \geq 2)$ care trece prin acel punct nu intersectează dreapta inițială;
 [2 sau mai multe (dar în număr finit) paralele]

c) există cel puțin o dreaptă și un punct exterior ei în acest spațiu, astfel încât orice dreaptă trece prin acel punct intersectează dreapta inițială;
 [0 (zero) paralele]

d) există cel puțin o dreaptă și un punct exterior ei în acest spațiu astfel încât un număr infinit de dreptele care trece prin acest punct (dar nu toate) nu intersectează dreapta inițială;
 [un număr infinit de paralele, dar nu toate dreptele care trece prin acel punct]

e) există cel puțin o dreaptă și un punct exterior ei în acest spațiu astfel încât orice dreaptă care trece prin acel punct nu intersectează dreapta inițială;
 [un număr infinit de paralele, toate dreptele trece prin acel punct]

pe care am numit-o geometrie paradoxistă.

Aceasta reunește geometriile lui Euclid, Lobaczewski/Bolyai și Riemann.

Important este găsirea unui model pentru această geometrie, și studierea caracteristicilor ei.

GEOMETRIC CONJECTURE

a) Let \(M \) be an interior point in an \(A_1A_2 \ldots A_n \) convex polygon and \(P_i \) the projection of \(M \) on

\[A_iA_{i+1} \quad i=1, 2, 3, \ldots, n. \]

Then,

\[\sum_{i=1}^{n} MA_i \geq c \sum_{i=1}^{n} MP_i, \]

where \(c \) is a constant to be found.

For \(n = 3 \), it was conjectured by Erdős in 1935 and solved by Mordell in 1937 and Kazarinoff in 1945. In this case \(c = 2 \) and the result is called the Erdős-Mordell Theorem.

Question: What happens in 3-space when the polygon is replaced by a polyhedron?

b) More generally: If the projections \(P_i \) are considered under a given oriented angle \(\alpha \neq 90 \) degrees, what happens with the Erdős-Mordell Theorem and the various generalizations?

c) In 3-space, we make the same generalization for a convex polyhedron

\[\sum_{i=1}^{n} MA_i \geq c_1 \sum_{j=1}^{m} MP_j, \]

where \(P_j, 1 \leq j \leq m \), are projections of \(M \) on all the faces of the polyhedron.

Furthermore,

\[\sum_{i=1}^{n} MA_i \geq c_2 \sum_{k=1}^{r} MT_k, \]

where \(T_k, 1 \leq k \leq r \), are projections of \(M \) on all sides of the polyhedron and \(c_1 \) and \(c_2 \) are constants to be determined.

[Kazarinoff conjectured that for the tetrahedron

\[\sum_{i=1}^{4} MA_i \geq 2\sqrt{2} \sum_{i=1}^{4} MP_i, \]

and this is the best possible.

References

A FUNCTION IN THE NUMBER THEORY

Summary

In this paper I shall construct a function η having the following properties:

$$\forall \eta \in \mathbb{Z} \quad \eta(n) \neq 0 \quad (\eta(n)) \eta(n) = M - n,$$

(1)

$$\eta(n)$$ is the smallest natural number with the property (1).

(2)

We consider: $N = \{0, 1, 2, 3, \ldots \}$ and $N^* = \{1, 2, 3, \ldots \}$.

Lema 1. $\forall k, p \in N^*, p \neq 1, k$ is uniquely written under the shape: $k = t_1a_1^{(p)} + \ldots + t_\alpha a_\alpha^{(p)}$ where $a_\alpha^{(p)} = \frac{p^n-1}{p-1}$, $i = 1, \ldots, n_1 > n_2 > \ldots > n_\alpha > 0$ and $1 \leq t_j \leq p - 1$, $j = 1, l - 1$, $1 \leq t_l \leq p - 1$, $n_j, t_j \in N$, $i = 1, l \in N^*$.

Proof. The string $(a_\alpha^{(p)}a_\alpha^{(p)})\in N^*$ consists of strictly increasing infinite natural numbers and $a_\alpha^{(p)} - 1 = p \cdot a_\alpha^{(p)}$, $\forall n \in N^*, p$ is fixed,

$$a_\alpha^{(p)} = 1, a_\alpha^{(p)} = 1 + p, a_\alpha^{(p)} = 1 + p^2, \ldots \Rightarrow N^* = \bigcup_{a_\alpha^{(p)} \in N^*} ([a_\alpha^{(p)}, a_\alpha^{(p)} + 1) \cap N^*)$$

where $[a_\alpha^{(p)}, a_\alpha^{(p)} + 1) \cap N^* = 0$ because $a_\alpha^{(p)} < a_\alpha^{(p)} + 1 < a_\alpha^{(p)} + 2$.

Let $k \in N^*, N^* = \bigcup_{a_\alpha^{(p)} \in N^*} ([a_\alpha^{(p)}, a_\alpha^{(p)} + 1) \cap N^* \Rightarrow \exists n_1 \in N^*, k \in ([a_\alpha^{(p)}, a_\alpha^{(p)} + 1) \Rightarrow k$ is uniquely written under the shape $k = \left[\frac{k}{a_\alpha^{(p)}} \right] a_\alpha^{(p)} + r_1$ (integer division theorem). We note $k = \left[\frac{k}{a_\alpha^{(p)}} \right] = t_1 \Rightarrow k = t_1a_\alpha^{(p)} + r_1, r_1 < a_\alpha^{(p)}$.

If $r_1 = 0$, as $a_\alpha^{(p)} \leq k \leq a_\alpha^{(p)} - 1 \Rightarrow 1 \leq t_1 \leq p$ andLemma 1 is proved.

If $r_1 \neq 0 \Rightarrow \exists n_2 \in N^*, \forall n_2 \in [a_\alpha^{(p)}, a_\alpha^{(p)} + 1)$; $a_\alpha^{(p)} > r_1 \Rightarrow n_2 > n_1$, $r_1 \neq 0$ and $a_\alpha^{(p)} \leq k \leq a_\alpha^{(p)} - 1 \Rightarrow 1 \leq t_1 \leq p - 1$ because we have $t_1 \leq (a_\alpha^{(p)} - 1 - r_1) \cdot a_\alpha^{(p)} < p_1$.

The procedure continues similarly. After a finite number of steps l, we achieve $r_1 = 0$, as k is finite, $k \in N^*$ and $k > r_1 > r_2 > \ldots > r_l = 0$ and between 0 and k there is only a finite number of distinct natural numbers.

Thus:

k is uniquely written: $k = t_1a_\alpha^{(p)} + r_1, 1 \leq t_1 \leq p - 1, r$ is uniquely written: $r_1 = t_2a_\alpha^{(p)} + r_2, n_2 < n_1$,

$$1 \leq t_2 \leq p - 1,$$

51
r_{n-1} is uniquely written: $r_{n-1} = t_1a_1^{(p)} + r_1$ and $r_1 = 0$,

$$n_i < n_{i+1}, \ 1 \leq i \leq p,$$

k is uniquely written under the shape $k = t_1a_1^{(p)} + \ldots + t_ia_i^{(p)}$ with $n_1 > n_2 > \ldots > n_i > 0$ because $n_i \in N^*$, $1 \leq t_i < p-1$, $j = 1, \ldots, i - 1$, $1 \leq t_i \leq p$, $i \geq 1$.

Let $k \in N^*$, $k = t_1a_1^{(p)} + \ldots + t_ia_i^{(p)}$ with $a_i^{(p)} = \frac{p^i-1}{p-1}$, $i = 1, \ldots, l \geq 1$. $n_i, t_i \in N^*$, $i = 1, n_1 > n_2 > \ldots > n_i > 0$, $1 \leq t_i < p - 1$, $j = 1, \ldots, i - 1$, $1 \leq t_i < p$.

I construct the function η_p, $p = \text{prime} > 0$, $\eta_p : N^* \rightarrow N^*$ thus:

$$\forall n \in N^* \quad \eta_p(a_n^{(p)}) = p^n,$$

$$\eta_p(t_1a_1^{(p)} + \ldots + t_ia_i^{(p)}) = t_1\eta_p(a_1^{(p)}) + \ldots + t_i\eta_p(a_i^{(p)}).$$

Note 1. The function η_p is well defined for each natural number.

Proof.

Lema 2. $\forall k \in N^* \Rightarrow k$ is uniquely written as $k = t_1a_1^{(p)} + \ldots + t_ia_i^{(p)}$ with the conditions from Lemma 1 $\Rightarrow \exists t_1p_1^{(n)} + \ldots + t_ip_i^{(n)} = \eta_p(t_1a_1^{(p)} + \ldots + t_ia_i^{(p)})$ and $t_1p_1^{(n)} + \ldots + t_ip_i^{(n)} \in N^*$.

Lema 3. $\forall k \in N^*, \forall p \in N, p = \text{prime} \Rightarrow k = t_1p_1^{(n)} + \ldots + t_ia_i^{(p)}$ with the conditions from Lemma 2 $\Rightarrow \eta_p(k) = t_1p_1^{(n)} + \ldots + t_ip_i^{(p)}$.

It is known that $[a_1 + \ldots + a_k] \geq \left[\frac{a_1}{b} + \ldots + \frac{a_k}{b} \right]$ \ $\forall a, b \in N^*$ where through $[\alpha]$ we have written the integer side of number α. I shall prove that p's powers sum from the natural numbers make up the result factors $(t_1p_1^{(n)} + \ldots + t_ip_i^{(p)})$.

$$t_1p_1^{(n)} + \ldots + t_ip_i^{(n)} \geq t_1p_1^{(n)} + \ldots + \frac{t_ip_i^{(n)}}{p_i^{(p)}} = t_1p_1^{(n)} + \ldots + t_ip_i^{(p)}$$

$$t_1p_1^{(n)} + \ldots + \frac{t_ip_i^{(n)}}{p_i^{(p)}} \geq t_1p_1^{(n)} + \ldots + \frac{t_ip_i^{(n)}}{p_i^{(p)}} = t_1p_1^{(n)} + \ldots + \frac{t_ip_i^{(p)}}{p_i^{(p)}}.$$

Adding p's powers sum is $\geq t_1(p_1^{(n)} + \ldots + p_i^{(p)}) = t_1a_1^{(p)} + \ldots + t_1a_i^{(p)} = k.$

52
Theorem 1. The function $n_p, p = \text{prime},$ defined previously, has the following properties:

(1) $\forall k \in \mathbb{N}, \ (n_p(k))! = M_p^k$.

(2) $n_p(k)$ is the smallest number with the property (1).

Proof.

(1) results from Lemma 3.

(2) $\forall k \in \mathbb{N}, \ p \geq 2 \Rightarrow k = t_1a_p^{(0)} + \ldots + t_na_p^{(0)}$ (by Lemma 2) is uniquely written, where:

$n_i, t_i \in \mathbb{N}, \ n_1 > n_2 > \ldots > n_l \geq 0$, $a_p^{(0)} = \frac{p^n - 1}{p - 1} \in \mathbb{N}, \ i = \overline{1,l}, \ 1 \leq t_j \leq p - 1, \ j = \overline{1,l}, \ 1 < t_l < p.$

$\Rightarrow n_p(k) = t_1p^{n_1} + \ldots + t_lp^{n_l}$. I note: $z = t_1p^{n_1} + \ldots + t_lp^{n_l}$.

Let us prove the z is the smallest natural number with the property (1). I suppose by the method of reduction ad absurdum that $2z \in \mathbb{N}, \ \gamma < z$:

$\gamma! = M_p^z$;

$\gamma < z \Rightarrow \gamma \leq z - 1 \Rightarrow (z - 1)! = M_p^z.\]

$z - 1 = t_1p^{n_1} + \ldots + t_lp^{n_l} - 1; \ n_1 > n_2 > \ldots > n_l \geq 0$ and $n_j \in \mathbb{N}, \ j = \overline{1,l};$

$[\frac{z - 1}{p}] = t_1p^{n_1 - 1} + \ldots + t_{l-1}p^{n_{l-1} - 1} + t_lp^{n_l - 1} - 1 \Rightarrow [\frac{z - 1}{p}] = -1$ because $p \geq 2,$

$[\frac{z - 1}{p^{n_1}}] = t_1p^{n_1 - n_1} + \ldots + t_{l-1}p^{n_{l-1} - n_1} + t_lp^{n_l - n_1} - 1 \Rightarrow [\frac{z - 1}{p^{n_1}}] = -1$ as $p \geq 2, \ n_1 \geq 1,$

$[\frac{z - 1}{p^{n_1 + 1}}] = t_1p^{n_1 - n_1} + \ldots + t_{l-1}p^{n_{l-1} - n_1} + \frac{(t_lp^{n_1} - 1)}{p^{n_1 + 1}} = t_1p^{n_1 - n_1} + \ldots + t_{l-1}p^{n_{l-1} - n_1} - 1$ because $0 < t_lp^{n_1} - 1 \leq p \cdot p^{n_1} - 1 \leq p^{n_1 + 1}$ as $t_l < p$;

$[\frac{z - 1}{p^{n_1}}] = t_1p^{n_1 - n_1} + \ldots + t_{l-1}p^{n_{l-1} - n_1} + \frac{(t_lp^{n_1} - 1)}{p^{n_1 + 1}} = t_1p^{n_1 - n_1} + \ldots + t_{l-1}p^{n_{l-1} - n_1} - 1$ as $n_{l-1} > n_l,$

$[\frac{z - 1}{p^{n_1}}] = t_1p^{n_1} + \frac{(t_lp^{n_1} - 1)}{p^{n_1}} = t_1p^{n_1}$.

Because $0 < t_lp^{n_1} + \ldots + t_lp^{n_l} - 1 \leq (p - 1)p^{n_1} + \ldots + (p - 1)p^{n_l} - 1 \leq (p - 1) \times \prod_{i=m+1}^{n_1} p - 1 \Rightarrow \frac{(t_lp^{n_1} + \ldots + t_lp^{n_l} - 1)}{p^{n_1}} = 0$

$[\frac{z - 1}{p^{n+1}}] = \frac{t_1p^{n_1} + \ldots + t_lp^{n_l} - 1}{p^{n_1 + 1}} = 0$.
because: $0 < t_1p^n + \ldots + t_np^n - 1 < p^n+1$ according to a reasoning similar to the previous one.

Adding p's powers sum in the natural numbers which make up the product factors $(z-1)!$

is:

$t_1(p^{n-1} + \ldots + p^0 + \ldots + t_n(p^{n-1} + \ldots + p^0) - 1) \rightarrow k - n_1 < k - 1 < k$

because $n_1 > 1 \Rightarrow (z - 1)! \neq M^p$, this contradicts the supposition made.

$\Rightarrow n_0(k)$ is the smallest natural number with the property $(n_0(k))! = M^p$.

I construct a new function $\eta: \mathbb{Z} \setminus \{0\} \rightarrow \mathbb{N}$ as follows:

$$
\begin{cases}
\eta(\pm 1) = 0, \\
\forall n = e_p^{\alpha_1} \ldots p^\alpha_s \text{ with } \epsilon = \pm 1, p_i = \text{prime}, \\
p_i \neq p_j \text{ for } i \neq j, \alpha_i \geq 1, i = 1, \ldots, \eta(n) = \text{mag}(\eta_0(\alpha_i)).
\end{cases}
$$

Note 2. η is well defined and defined overall.

Proof.

(a) $\forall n \in \mathbb{Z}, n \neq 0, n \neq \pm 1, n$ is uniquely written, independent of the order of the factors, under the shape of $n = e_p^{\alpha_1} \ldots p^\alpha_s$ with $\epsilon = \pm 1$ where $p_i = \text{prime}, p_i \neq p_j, \alpha_i \geq 1$ (decompose into prime factors in $\mathbb{Z} =$ factorial ring).

$\Rightarrow \exists \eta(n) = \max_{i=1,2} \{\eta_0(\alpha_i)\}$ as s finite and $\eta_0(\alpha_i) \in \mathbb{N}^+ \text{ and } \exists \text{mag}(\eta_0(\alpha_i))$

(b) $n = \pm 1 \Rightarrow 3\eta(n) = 0$.

Theorem 2. The function η previously defined has the following properties:

1. $(\eta(n))! = M^n, \forall n \in \mathbb{Z} \setminus \{0\}$;

2. $\eta(n)$ is the smallest natural number with this property.

Proof.

(a) $\eta(n) = \max_{i=1,2} \{\eta_0(\alpha_i)\}, \text{ n = } \epsilon \cdot p_1^{\alpha_1} \ldots p_s^{\alpha_s}; (n \neq \pm 1); (\eta_0(\alpha_i))! = M^p, \ldots (\eta_0(\alpha_s))! = M^p$

Supposing $\max_{i=1,2} \{\eta_0(\alpha_i)\} = \eta_0(\alpha_i) \Rightarrow (\eta_0(\alpha_i))! = M^p, \eta_0(\alpha_i) \in \mathbb{N}^+ \text{ and because}$

$(p_i, p_j) = 1, i \neq j,$

$\Rightarrow (\eta_0(\alpha_i))! = M^p, j = 1, \ldots,$

$\Rightarrow (\eta_0(\alpha_i))! = M^p \ldots p_1^{\alpha_s}.$

(b) $n = \pm 1 \Rightarrow \eta(n) = 0; 0! = 1 \cdot 1 = M^n$.

54
(2) (a) If \(n \neq \pm 1 \) \(\Rightarrow n = \pm p_1^{a_1} \cdots p_s^{a_s} \Rightarrow \eta(n) = \max_{i=1,2} \eta_{a_i} \).

Let \(= \max_{i=1,2} \eta_{a_i} = \eta_{a_i} \), \(1 \leq i \leq s \).

\(\eta_{a_i} \) is the smallest natural number with the property:

\[
(\eta_{a_i}(\alpha_{a_i}))^2 = M_{\eta_{a_i}} \Rightarrow \forall \gamma \in N, \gamma < \eta_{a_i}(\alpha_{a_i}) \Rightarrow \gamma! \neq M_{\eta_{a_i}} \Rightarrow \gamma! = \gamma \cdot p_1^{a_1} \cdots p_s^{a_s} \cdots p_{a_s} = Mn.
\]

\(\eta_{a_i} \) is the smallest natural number with the property.

(b) \(n = \pm 1 \Rightarrow \eta(n) = 0 \) and it is the smallest natural number \(\Rightarrow 0 \) is the smallest natural number with the property \(0! = M(\pm 1) \).

Note 3. The functions \(\eta \) are increasing, not injective, on \(\mathbb{N}^* \rightarrow \{ p^k | k = 1,2, \ldots \} \) they are surjective.

The function \(\eta \) is increasing, not injective, it is surjective on \(\mathbb{Z} \setminus \{0\} \rightarrow \mathbb{N} \setminus \{1\} \).

CONSEQUENCE. Let \(n \in \mathbb{N}^*, n > 4 \). Then \(n \Rightarrow \eta(n) = n \).

Proof.

* \Rightarrow * \(n \Rightarrow \) prime and \(n \geq 5 \Rightarrow \eta(n) = \eta_{a_i}(1) = n \).

* \Rightarrow * Let \(\eta(n) = n \) and suppose by absurd that \(n \Rightarrow prime \Rightarrow \)

(a) or \(n = p_1^{a_1} \cdots p_s^{a_s} \) with \(s \geq 2, \alpha_i \in \mathbb{N}^*, i = 1,3, \cdots \).

\(\eta(n) = \max_{i=1,2} \eta_{a_i} = \eta_{a_i} \alpha_{a_i} < \alpha_{a_i}p_{a_i} < n \)

contradicts the assumption; or

(b) \(n = p_1^{a_1} \) with \(a_1 \geq 2 \Rightarrow \eta(n) = \eta_{a_i}(a_1) = p_1 \cdot a_1 < p_{a_1} = n \)

because \(a_1 \geq 2 \) and \(n > 4 \) and it contradicts the hypothesis.

Application

1. Find the smallest natural number with the property: \(n! = M(\pm 2^{31} \cdot 3^{73} \cdot 7^{13}) \).

Solution

\(\eta(\pm 2^{31} \cdot 3^{73} \cdot 7^{13}) = \max(\eta_2(31), \eta_3(27), \eta_7(13)) \).

Let us calculate \(\eta_2(31); \) we make the string \((\alpha_k)_{k \in \mathbb{N}^*} = 1,3,7,15,31,63, \ldots \).
31 = 1 \cdot 31 \Rightarrow \eta(31) = \eta(1 \cdot 31) = 1 \cdot 2^5 = 32.

Let's calculate \(\eta(27) \); making the string \((a_5^{(2)})_{n\in\mathbb{N}} = 1, 4, 13, 40, \ldots \); \(27 = 2 \cdot 13 + 1 \Rightarrow \eta(27) = \eta(2 \cdot 13 + 1) = 2 \cdot \eta(13) + 1 \cdot \eta(1) = 2 \cdot 3^5 + 1 \cdot 3^1 = 54 + 3 = 57. \)

Let's calculate \(\eta(13) \); making the string \((a_5^{(1)})_{n\in\mathbb{N}} = 1, 8, 57, \ldots \); \(13 = 1 \cdot 8 + 5 \cdot 1 \Rightarrow \eta(13) = 1 \cdot \eta(8) + 5 \cdot \eta(1) = 1 \cdot 7^2 + 5 \cdot 7^1 = 49 + 35 = 84 \Rightarrow \eta(\pm 2^{21}, 3^{7}, 7^{13}) = \max\{32, 57, 84\} = 84 \Rightarrow \eta(13) = 84! = M(\pm 2^{21}, 3^{7}, 7^{13}) \) and 84 is the smallest number with this property.

2. Which are the numbers with the factorial ending in 1000 zeros?

Solution

\(n = 10^{1000}, (\eta(n))! = M10^{1000} \) and it is the smallest number with this property.

\(\eta(10^{1000}) = \eta(2^{1000}, 5^{1000}) = \max\{\eta(1000), \eta(1000)\} = \eta(1 \cdot 781 + 1 \cdot 156 + 2 \cdot 31 + 1) = 1 \cdot 5^5 + 1 \cdot 5^4 + 2 \cdot 5^2 + 1 \cdot 5^0 = 4005, 4005 \) is the smallest number with this property. 4006, 4007, 4008, 4009 verify the property but 4010 does not because 4010! = 4009!\(4010 \) has 1001 zeros.

Florentin Smarandache
University of Craiova
Nature Science Faculty

AN INFINITY OF UNSOLVED PROBLEMS CONCERNING
A FUNCTION IN THE NUMBER THEORY

§1. Abstract.
W. Sierpinski has asserted to an international conference that if mankind lasted for ever
and numbered the unsolved problems, then in the long run all these unsolved problems
would be solved.

The purpose of our paper is that making an infinite number of unsolved problems to
prove his supposition is not true. Moreover, the author considers the unsolved problems
proposed in this paper can never be all solved!

Every period of time has its unsolved problems which were not previously recom­
mended until recent progress. Number of new unsolved problems are exponentially in­
creasing in comparison with ancient unsolved ones which are solved at present. Research
into one unsolved problem may produce many new interesting problems. The reader is
invited to exhibit his works about them.

§2. Introduction
We have constructed (*) a function \(\eta \) which associates to each non-null integer \(n \) the
smallest positive integer \(m \) such that \(m! \) is multiple of \(n \). Thus, if \(n \) has the standard form:
\(n = p_1^{a_1} \cdots p_r^{a_r} \), with all \(p_i \) distinct primes, all \(a_i \in N^* \), and \(\epsilon = \pm 1 \), then \(\eta(n) = \max \{ \eta_p(a_i) \} \),
and \(\eta(\pm 1) = 0 \).

Now, we define the \(\eta_p \) functions: let \(p \) be a prime and \(a \in N^* \); then \(\eta_p(a) \) is a smallest
positive integer \(b \) such that \(b! \) is a multiple of \(p^b \). Constructing the sequence:
\[
\alpha^{(k)} = \frac{p^k - 1}{p - 1}, \quad k = 1, 2, \ldots
\]
we have \(\eta_p(a^{(k)}) = p^k \), for all prime \(p \), an all \(k = 1, 2, \ldots \). Because any \(a \in N^* \) is uniquely
written in the form:
\[
a = t_1 a_1^{(p)} + \cdots + t_s a_s^{(p)}, \quad \text{where} \quad n_1 > n_2 > \ldots > n_s > 0,
\]
and \(1 \leq t_j \leq p-1 \) for \(j = 0, 1, \ldots, \epsilon - 1 \) and \(1 \leq t_s \leq p \), with all \(n_i, t_i \) from \(N \), the author
proved that
\[
\eta_p(a) = \sum_{i=1}^{n} \eta_p(a_i^{(p)}) = \sum_{i=1}^{s} t_i p^{n_i}.
\]
§3. Some Properties of the Function η

Clearly, the function η is even: $\eta(-n) = \eta(n),\ n \in \mathbb{Z}^*$. If $n \in \mathbb{N}^*$ we have:

$$\frac{-1}{(n-1)!} \leq \frac{\eta(n)}{n} \leq 1,$$

and: $\frac{\eta(n)}{n}$ is maximum if and only if n is prime or $n = 4$; $\frac{\eta(n)}{n}$ is minimum if and only if $n = k!$

Clearly η is periodic function. For p prime, the functions η_p are increasing, not injective but on $\mathbb{N}^* \to \{p^k \mid k = 1, 2, \ldots\}$ they are surjective. From (1) we find that $\eta = o(n^{1+\epsilon},\ \epsilon > 0,$ and $\eta = O(n)$.

The function η is generally increasing on \mathbb{N}^*, that is: $(\forall)n \in \mathbb{N}^*,\ (\exists)m_0 \in \mathbb{N}^*,\ m_0 = m_0(n),\ such\ that\ for\ all\ m \geq m_0\ we\ have\ \eta(m) \geq \eta(n)$ (and generally decreasing on \mathbb{Z}^*; it is not injective, but it is surjective on $\mathbb{Z} \setminus \{0\} \to \mathbb{N} \setminus \{1\}$).

The number n is called a barrier for a number-theoretic function $f(m)$ if, for all $m < n,\ m + f(m) \leq n$ (P.Erdős and J.Selfridge). Does $\eta P(m)$ have infinitely many barriers, with $0 < \epsilon \leq 1$? [No, because there is a $m_0 \in \mathbb{N}$ such that for all $n - 1 \geq m_0$ we have $\eta(n-1) \geq \frac{2}{\epsilon}$ (η is generally increasing), whence $n - 1 + \eta(n-1) \geq n+1$]

$$\sum_{n \geq 2} 1/\eta(n)$$ is divergent, because $1/\eta(n) \geq 1/n$.

Proof: Let $a_m^{(2^k)} = 2^m - 1,\ where\ m =$ \[\text{then } \eta(2^{2^k}) = \eta(2^m) = \]

$$\frac{2}{k \text{ times}}$$

$$= \eta(1 + a_m^{(2^k)}) = \eta(1) + \eta(a_m^{(2^k)}) = 2 + 2^m.$$
A-sequence: an integer sequence \(1 \leq a_1 < a_2 < \ldots\) so that no \(a_i\) is the sum of distinct members of the sequence other than \(a_i\) (R. K. Guy);

Average Order: if \(f(n)\) is an arithmetical function and \(g(n)\) is any simple function of \(n\) such that \(f(1) + \ldots + f(n) - g(1) + \ldots + g(n)\) we say that \(f(n)\) is of the average order of \(g(n)\);

d\((x)\): number of positive divisors of \(x\);

d\(_a\): difference between two consecutive primes: \(p_{a+1} - p_a\);

Dirichlet Series: a series of the form \(F(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}\), \(s\) may be real or complex;

Generating Function: any function \(F(s) = \sum_{n=1}^{\infty} a_n u_n(s)\) is considered as a generating function of \(a_n\); the most usual form of \(u_n(s)\) is: \(u_n(s) = e^{-\lambda_n s}\), where \(\lambda_n\) is a sequence of positive numbers which increases steadily to infinity;

Log\(x\): Napierian logarithm of \(x\), to base \(e\);

Normal Order: \(f(n)\) has the normal order \(F(n)\) if \(f(n)\) is approximately \(F(n)\) for almost all values of \(n\), i.e. \(\epsilon > 0, (1 - \epsilon) \cdot F(n) < f(n) < (1 + \epsilon) \cdot F(n)\) for almost all values of \(n\); "almost all" \(n\) means that the numbers less than \(N\) which do not possess the property (3) is \(o(x)\);

Lipschitz-Condition: a function \(f\) verifies the Lipschitz-condition of order \(\alpha \in (0,1]\) if \(k > 0 : |f(x) - f(y)| \leq k|x - y|^\alpha\); if \(\alpha = 1\), \(f\) is called a \(k\) Lipschitz-function; if \(k < 1\), \(f\) is called a contractant function;

Multiplicative Function: a function \(f : N^* \to C\) for which \(f(1) = 2\), and \(f(m \cdot n) = f(m) \cdot f(n)\) when \((m, n) = 1\);

\(p(x)\): largest prime factor of \(x\);

Uniformly Distributed: a set of points in \((a, b)\) is uniformly distributed if every sub-interval of \((a, b)\) contains its proper quota of points;

Incongruent Roots: two integers \(x, y\) which satisfy the congruence \(f(x) \equiv f(y) \equiv 0 \pmod{m}\) and so that \(x \not\equiv y \pmod{m}\);
a sequence of the form: \(a_1 = \ldots = a_s = 1 \) and \(a_{s+1} = a_{s+2} = \ldots + a_n, n \in \mathbb{N}^* \) (R. Queneau);

- \(s(n) \): sum of aliquot parts (divisors of \(n \) other than \(n \)) of \(n \); \(s(n) - n \);

- \(s'(n) \): \(k \)-th iterate of \(s(n) \);

- \(s^*(n) \): sum of unitary aliquot parts of \(n \);

- \(r_k(n) \): least number of numbers not exceeding \(n \), which must contain a \(k \)-term arithmetic progression;

- \(\pi(x) \): number of primes not exceeding \(x \);

- \(\pi(x; a, b) \): number of primes not exceeding \(x \) and congruent to \(a \) modulo \(b \);

- \(\sigma(n) \): sum of divisors of \(n \); \(\sigma_1(n) \);

- \(\sigma_k(n) \): sum of \(k \)-th powers of divisors of \(n \);

- \(\sigma^*(n) \): \(k \)-th iterate of \(\sigma(n) \);

- \(\nu(n) \): Euler's totient function: number of numbers not exceeding \(n \) and prime to \(n \);

- \(\nu^*(n) \): \(k \)-th iterate of \(\nu(n) \);

- \(\varphi(n) \): number of prime factors of \(n \), counting repetitions;

- \(\Omega(n) \): number of distinct prime factors of \(n \), counting repetitions;

- \(\lfloor a \rfloor \): floor of \(a \); greatest integer not greater than \(a \);

- \((m, n) \): g.c.d. (greatest common divisor) of \(m \) and \(n \);

- \([m, n] \): l.c.d. (least common multiple) of \(m \) and \(n \);

- \(|f| \): modulus or absolute value of \(f \);

- \(f(x) \rightarrow g(x) \): \(f(x)/g(x) \rightarrow 1 \) as \(x \rightarrow \infty \); \(f \) is asymptotic to \(g \).
\(f(x) = o(g(x)) \): \(f(x)/g(x) \to 0 \) as \(x \to \infty \);

\(f(x) = O(g(x)) \):

there is a constant \(c \) such that \(|f(x)| < c \cdot g(x) \) to any \(x \);

\(\Gamma(x) \):

Euler's function of first case (\(\gamma \)-function); \(\Gamma : \mathbb{R}^+ \to \mathbb{R}, \quad \Gamma(x) = \int_0^\infty e^{-x t} \, dt \). We have \(\Gamma(x) = (x-1)! \);

\(\beta(x) \):

Euler's function of second degree (\(\beta \)-function); \(\beta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}, \quad \beta(u,v) = \Gamma(u)\Gamma(v)/\Gamma(u+v) = \int_0^1 (1-t)^{u-1} \, dt \);

\(\mu(x) \):

Möbius' function; \(\mu : \mathbb{N} \to \mathbb{N}, \quad \mu(1) = 1; \quad \mu(n) = (-1)^k \) if \(n \) is the product of \(k \) distinct primes; \(\mu(n) = 0 \) in all others cases;

\(\theta(x) \):

Tchebycheff \(\theta \)-function; \(\theta : \mathbb{R}_+ \to \mathbb{R}, \quad \theta(x) = \sum \log p, \) where the summation is taken over all primes \(p \) not exceeding \(x \);

\(\Psi(x) \):

Tchebycheff's \(\Psi \)-function; \(\Psi(x) = \sum_{n \leq x} \Lambda(n), \) with

\[\Lambda(n) = \begin{cases} \log p, & \text{if } n \text{ is an integer power of the prime } p \\ 0, & \text{in all other cases.} \end{cases} \]

This glossary can be continued with OTHER (ARITHMETICAL) FUNCTIONS.

§ 5. General Unsolved Problems Concerning the Function \(\eta \)

1. Is there a closed expression for \(\eta(n) \)?
2. Is there a good asymptotic expression for \(\eta(n) \)? (If yes, find it.)
3. For a fixed non-null integer \(m \), does \(\eta(n) \) divide \(n - m \)? (Particularly when \(m = 1 \).) Of course, for \(m = 0 \) it is trivial: we find \(n = k! \), or \(n \) is squarefree, etc.
4. Is \(\eta \) an algebraic function? (If no, is there the \(\max \) \(\text{Card} \{ n \in \mathbb{Z} : \exists \in \mathbb{R}[x,y], \text{p non-null polynomial, with } p(n, \eta(n)) = 0 \text{ for all these } n \}? \) More generally we introduce the notion: \(g \) is a \(f \)-function if \(f(x, g(x)) = 0 \) for all \(x \), \(f \in \mathbb{R}[x,y], f \) non-null. Is \(\eta \) a \(f \)-function? (If no, is there the \(\max \) \(\text{Card} \{ n \in \mathbb{Z} : \exists \in \mathbb{R}[x,y], f \text{ non-null, } f(n, \eta(n)) = 0 \text{ for all these } n \}? \)
5. Let \(A \) be a set of consecutive integers from \(\mathbb{N}^\ast \). Find \(\max \) \(\text{Card} \ A \) for which \(\eta \) is monotonous. For example, \(\text{Card} \ A \geq 5 \), because for \(A = \{ 1, 2, 3, 4, 5 \} \) \(\eta \) is 0, 2, 3, 4, 5, respectively.
6. A number is called an \(\eta \)-algebraic number of degree \(n \in \mathbb{N}^\ast \) if it is a root of the polynomial
\(p_n(x) = \eta(n)x^n + \eta(n-1)x^{n-1} + \ldots + \eta(1)x^1 = 0. \)

An \(\eta \)-algebraic field \(M \) is the aggregate of all numbers

\[R_\nu(\nu) = \frac{A(\nu)}{B(\nu)} \]

where \(\nu \) is a given \(\eta \)-algebraic number, and \(A(\nu), B(\nu) \) are polynomials in \(\nu \) of the form \((p) \) with \(B(\nu) \neq 0 \). Study \(M \).

(7) Are the points \(p_n = \eta(n)/n \) uniformly distributed in the interval \((0, 1)\)?

(8) Is \(0.0234537465114 \ldots \), where the sequence of digits is \(\eta(n), n \geq 1 \), an irrational number?

* Is it possible to represent all integer \(n \) under the form:

\(n = \pm \eta(a_1)^{a_1} \pm \eta(a_2)^{a_2} \pm \ldots \pm \eta(a_k)^{a_k}, \) where the integers \(k, a_1, \ldots, a_k \), and the signs are conveniently chosen?

(10) But as \(n = \pm \eta(a_1)^{a_1} \pm \ldots \pm \eta(a_k)^{a_k}\)?

(11) But as \(n = \pm \eta(a_1)^{a_1} \pm \ldots \pm \eta(a_k)^{a_k}\)?

Find the smallest \(k \) for which: \((\forall)n \in \mathbb{N}^* \) at least one of the numbers \(\eta(n), \eta(n + 1), \ldots, \eta(n + k - 1) \) is:

(12) A perfect square.

(13) A divisor of \(k^n \).

(14) A multiple of fixed nonzero integer \(p \).

(15) A factorial of a positive integer.

* Find a general form of the continued fraction expansion of \(\eta(n)/n \), for all \(n \geq 2 \).

(17) Are there integers \(m, n, p, q \), with \(m \neq n \) or \(p \neq q \), for which: \(\eta(m) + \eta(m + 1) + \ldots + \eta(m + p) = \eta(n) + \eta(n + 1) + \ldots + \eta(n + q) \)?

(18) Are there integers \(m, n, p, k \) with \(m \neq n \) and \(p > 0 \), such that:

\[\frac{\eta(m)^2 + \eta(m + 1)^2 + \ldots + \eta(m + p)^2}{\eta(n)^2 + \eta(n + 1)^2 + \ldots + \eta(n + p)^2} = k? \]

(19) How many primes have the form:

\[\eta(n) \eta(n + 1) \ldots \eta(n + k), \]

62
for a fixed integer k? For example: $\eta(2) \eta(3) = 23$, $\eta(5) \eta(6) = 53$ are primes.

(20) Prove that $\eta(x^n) + \eta(y^n) = n(z^n)$ has an infinity of integer solutions, for any $n \geq 1$. Look, for example, at the solution $(5,7,2048)$ when $n = 3$. (On Fermat's last theorem.) More generally: the diophantine equation $\sum_{i=1}^{n} \eta(x_i) = \sum_{i=1}^{n} \eta(y_i)$ has an infinite number of solutions.

(21) Are there m, n, k non-null positive integers, $m \neq 1 \neq n$, for which $\eta(m \cdot n) = m^{k} \eta(n)$? Clearly, η is not homogenous to degree k.

(22) Is it possible to find two distinct numbers k, n for which $\log_{\eta(k^n)} \eta(n^k)$ be an integer? (The base is $\eta(k^n)$.)

(23) Let the congruence be: $h_{n}(x) = c_{0}x^{n(n)} + \ldots + c_{n}x^{n(n)} \equiv 0 \pmod{m}$. How many incongruent roots has h_{n}, for some given constant integers n, c_{1}, \ldots, c_{n}?

(24) We know that $e^{x} = \sum_{n=0}^{\infty} x^{n}/n!$. Calculate $\sum_{n=1}^{\infty} x^{n(n)}/n!$, $\sum_{n=1}^{\infty} x^{n(n)}/\eta(n)!$ and eventually some of their properties.

(25) Find the average order of $\eta(n)$.

(26) Find some $u_{n}(s)$ for which $F(s)$ is a generating function of $\eta(n)$, and $F(s)$ have at all a simple form. Particularly, calculate Dirichlet series $F(s) = \sum_{n=1}^{\infty} \eta(n)/n^{s}$, with $s \in \mathbb{R}$ (or $s \in \mathbb{C}$).

(27) Does $\eta(n)$ have a normal order?

(28) We know that Euler's constant is $\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \ldots + \frac{1}{n} - \log n \right)$.

Is $\lim_{n \to \infty} \left(1 + \sum_{k=2}^{n} \frac{1}{\eta(k)} - \log \eta(n) \right)$ a constant? If yes, find it.

(29) Is there an m for which $\eta^{-1}(m) = \{a_{1}, a_{2}, \ldots, a_{p}\}$ such that the numbers $a_{1}, a_{2}, \ldots, a_{p}$ can constitute a matrix of p rows and q columns with the sum of elements on each row and each column constant? Particularly when the matrix is square.

(30) Let $(x_{n}^{(k)})_{n \geq 1}$ be a s-additive sequence. Is it possible to have $\eta(x_{n}^{(k)}) = x_{n}^{(m)}$, $n \neq m$? But $x_{n}^{(m)} = \eta(x_{n}^{(k)})$?

(31) Does η verify a Lipschitz Condition?

(32) Is η a k-Lipschitz Condition?

(33) Is η a contractant function?

(34) Is it possible to construct an A-sequence a_{1}, \ldots, a_{n} such that $\eta(a_{1}), \ldots, \eta(a_{n})$ is an A-sequence, too? Yes, for example $2,3,7,31, \ldots$. Find such an infinite sequence.
Find the greatest \(n \) such that: if \(a_1, \ldots, a_n \) constitute a \(p \)-sequence then \(\eta(a_1), \ldots, \eta(a_n) \) constitute a \(p \)-sequence too; where a \(p \)-sequence means:

(35) Arithmetical progression.
(36) Geometrical progression.
(37) A complete system of modulo \(n \) residues.

Remark: let \(p \) be a prime, and \(p, p^2, \ldots, p^r \) a geometrical progression, then \(\eta(p^r) = 1p, i \in \{1, 2, \ldots, p\} \), constitute an arithmetical progression of length \(p \). In this case \(n \to \infty \).

(38) Let's use the sequence \(a_n = \eta(n), n \geq 1 \). Is there a recurring relation of the form \(a_n = f(a_{n-1}, a_{n-2}, \ldots) \) for any \(n \)?

(39) Are there blocks of consecutive composite numbers \(m + 1, \ldots, m + n \) such that \(\eta(m + 1), \ldots, \eta(m + n) \) are composite numbers, too? Find the greatest \(n \).

(40) Find the number of partitions of \(n \) as sum of \(\eta(m), 2 < m \leq n \).

MORE UNSOLVED GENERAL PROBLEMS CONCERNING THE FUNCTION \(\eta \)

§6. Unsolved Problems Concerning the Function \(\eta \)
and Using the Number Sequences

41-2065) Are there non-null and non-prime integers \(a_1, a_2, \ldots, a_n \) in the relation \(P \), so that \(\eta(a_1), \eta(a_2), \ldots, \eta(a_n) \) are in the relation \(R \)? Find the greatest \(n \) with this property. (Of course, all \(a_n \) are distinct). Where each \(P, R \) can represent one of the following number sequences:

1. Abundant numbers; \(a \in N \) is abundant if \(\sigma(a) > 2a \).
2. Almost perfect numbers; \(a \in N, \sigma(a) = 2a - 1 \).
3. Amicable numbers; in this case we take \(n = 2; a, b \) are called amicable if \(a \neq b \) and \(\sigma(a) = \sigma(b) = a + b \).
4. Augmented amicable numbers; in this case \(n = 2; a, b \) are called augmented amicable if \(\sigma(a) = \sigma(b) = a + b - 1 \) (Walter E. Beck and Rudolph M. Najaf).
5. Bell numbers: \(b_n = \sum_{k=1}^{n} S(n, k) \), where \(S(n, k) \) are Stirling numbers of second case.
6. Bernulli numbers (Jacques 1st): \(B_n \), the coefficients of the development in integer sequence of
\[
\frac{1}{e^t - 1} = 1 - \frac{t}{2} + \frac{B_2 t^2}{2!} - \frac{B_4 t^4}{4!} + \ldots + (-1)^{n-1} \frac{B_{2n} t^{2n}}{(2n)!} + \ldots,
\]
for \(0 < |t| < 2\pi\) (here we always take \(1/B_n\)).

(7) Catalan numbers; \(C_n = 1, C_n = \frac{1}{n} \left(\begin{array}{c} 2n \\ n \end{array} \right) \) for \(n \geq 2\).

(8) Carmichael numbers; an odd composite number \(a\), which is a pseudoprime to base \(b\) for every \(b\) relatively prime to \(a\), is called a Charmichael number.

(9) Congruent numbers; let \(n = 3\), and the numbers \(a, b, c\); we must have \(a = \sqrt{b^n (mod c)}\).

(10) Cullen numbers: \(c_n = n \times 2^n + 1, n \geq 0\).

(11) \(C_n\)-sequence of integers; the author introduced a sequens \(a_1, a_2, \ldots\) so that:

(\(\forall\) \(i \in \mathbb{N}^*\)) \((\exists) j, k \in \mathbb{N}^*, j \neq i \neq k : a_i \equiv a_j (mod a_k)\).

(12) \(C_2\)-sequence of integers; the author defined other sequenese \(a_0, a_1, \ldots\) so that:

(\(\forall\) \(i \in \mathbb{N}^*\)) \((\exists) j, k \in \mathbb{N}^*, j \neq i \neq k : a_i \equiv a_j (mod a_k)\).

(13) Deficient numbers; \(a \in \mathbb{N}^*, \sigma(a) < 2a\).

(14) Euler numbers; the coefficients \(E_n\) in the expansion of \(\sec x = \sum_{n=0}^{\infty} E_n x^n / n!\); here we will take \(|E_n|\).

(15) Fermat numbers; \(F_n = 2^{2^n} + 1, n \geq 0\).

(16) Fibonacci numbers; \(f_1 = 1, f_2 = 1, f_n = f_{n-1} + f_{n-2}, n \geq 3\).

(17) Genocchi numbers; \(G_n = 2(2^{2n-1})B_n, \) where \(B_n\) are Bernoulli numbers; always \(G_n \in \mathbb{Z}\).

(18) Harmonic mean; in this case every member of the sequence is the harmonic mean of the preceding members.

(19) Harmonic numbers; a number \(n\) is called harmonic if the harmonic mean of all divisors of \(n\) is an integer (C. Pomerance).

(20) Heteromealous numbers; \(h_n = n(n + 1, n \in \mathbb{N}^*)\).

(21) \(K\)-hyperperfect numbers; \(a\) is \(k\)-hyperperfect if \(a = 1 + \sum d_i\), where the numeration is taken over all proper divisors, \(1 < d_i < a\), or \(k\sigma(a) = (k + 1)a + k - 1\) (Daniel Minoli and Robert Bear).

(22) Kurepa numbers; \(K_n = 0! + 1! + 2! + \ldots + (n - 1)!\)

(23) Lucas numbers; \(L_1 = 1, L_2 = 3, L_n = L_{n-1} + L_{n-2}, n \geq 3\).

(24) Lucky numbers; from the natural numbers strike out all even numbers, leaving the odd numbers; apart from 1, the first remaining number is 3; strike out every third member in

65
the new sequence; the next member remaining is 7; strike out every seventh member in this sequence; next 9 remains; etc. (V. Gardiner, R. Lazarus, N. Metropolis, S. Ulam).

(25) Mersenne numbers: \(M_p = 2^p - 1 \).

(26) \(m \)-perfect numbers; \(a \) is \(m \)-perfect if \(a = 2a \) (D. Bode).

(27) Multiply perfect (or \(k \)-fold perfect) numbers; \(a \) is \(k \)-fold perfect if \(\sigma(a) = ka \).

(28) Perfect numbers; \(a \) is perfect if \(\sigma(a) = 2a \).

(29) Polygonal numbers (represented on the perimeter of a polygon): \(P_k = k(n - 1) \).

(30) Polygonal numbers (represented on the closed surface of a polygon):

\[
P_k = \frac{(k - 2)n^2 - (k - 4)n}{2}.
\]

(31) Primitive abundant numbers; \(a \) is a primitive abundant if it is abundant, but none of its proper divisors are.

(32) Primitive pseudoperfect numbers; \(a \) is primitive pseudoperfect if it is pseudoperfect, but none of its proper divisors are.

(33) Pseudoperfect numbers; \(a \) is pseudoperfect if it is equal to the sum of some of its proper divisors (W. Sierpinski).

(34) Pseudoprime numbers to base \(b \); \(a \) is pseudoprime to base \(b \) if \(a \) is an odd composite number for which \(b^{a-1} \equiv 1 \pmod{a} \) (C. Pomerance, J.-L. Selfridge, S. Wagstaff).

(35) Pyramidal numbers: \(P_n = \frac{1}{6}n(n + 1)(n + 2) \), \(n \in \mathbb{N}^* \).

(36) Pythagorean numbers; let \(n = 3 \) and \(a, b, c \) be integers; then one must have the relation:

\[a^2 = b^2 + c^2. \]

(37) Quadratic residues of a fixed prime \(p \); the nonzero number \(r \) for which the congruence \(r \equiv x^2 \pmod{p} \) has solutions.

(38) Quasi perfect numbers; \(a \) is quasi perfect if \(\sigma(a) = 2a + 1 \).

(39) Reduced amicable numbers; we take \(n = 2 \); two integers \(a, b \) for which \(\sigma(a) = \sigma(b) = a + b + 1 \) are called reduced amicable numbers (Walter E. Beck and Rudolph M. Najar).

(40) Stirling numbers of first case: \(s(0,0) = 1 \), and \(s(n,k) \) is the coefficient of \(x^k \) from the development \(x(x-1)(x-2) ... (x-n+1) \).

(41) Stirling numbers of second case: \(S(0,0) = 1 \), and \(S(n,k) \) is the coefficient of the polynomial \(x^k \) in \(x(x-1)(x-2) ... (x-k+1) \), \(1 \leq k \leq n \), from the development (which is uniquely written):

\[x^n = \sum_{k=1}^{n} S(n,k)x^k. \]

(42) Superperfect numbers; \(a \) is superperfect if \(\sigma^2(a) = 2a \) (D. Suryanaryana).
Untouchable numbers; a is untouchable if $s(a) = 1$ has no solution (Jack Alano).

U-numbers: starting from arbitrary u_1 and u_2 continue with those numbers which can be expressed in just one way as the sum of two distinct earlier members of the sequence (S.M. Ulam).

Weird numbers: a is called weird if it is abundant but not pseudoperfect (S.J. Benkoški).

MORE NUMBER SEQUENCES

The unsolved problem No. 41 is obtained by taking $P = (1)$ and $R = (1)$.

The unsolved problem No. 42 is obtained by taking $P = (1), R = (2)$.

The unsolved problem No. 2065 is obtained by taking $p = (45), R = (45)$.

OTHER UNSOLVED PROBLEMS CONCERNING THE FUNCTION η AND USING NUMBER SEQUENCES

§7. Unsolvable Diophantine Equations Concerning the Function η

2066) Let $0 < k \leq 1$ be a rational number. Does the diophantine equation $\eta(n)/n = k$ always have solutions? Find all k so that this equation has an infinite number of solutions. (For example, if $k = 1/r, r \in N^*$, then $n = r p_{a+1}, \, h = 1, 2, \ldots, \, a_{a+1}$ are primes, and a is a chosen index such that $p_{a+1} > r$.)

2067) Let $\{a_n\}_{n \geq 0}$ be a sequence, $a_0 = 1, a_1 = 2$, and $a_{n+1} = a_{a_1} + \eta(a_n)$. Are there infinitely many pairs $(m, n), \, m \neq n$, for which $a_m = a_n$? (For example: $a_9 = a_{13} = 16$.)

2068) Conjecture: the equation $\eta(x) = \eta(x+1)$ has no solution.

Let m, n be fixed integers. Solve the diophantine equations:

2069) $\eta(mx + n) = x$.

2070) $\eta(mx + n) = m + nx$.

2071) $\eta(mx + n) = x!$.

2072) $\eta(x^n) = x^n$.

2073) $\eta(x)^n = \eta(x^n)$.

2074) $\eta(mx + n) = \eta(x)^n$.

67
2075) \(\eta(x) + y = x + \eta(y), x \) and \(y \) are not primes.

2076) \(\eta(x) + \eta(y) = \eta(x+y), x \) and \(y \) are not twin primes. (Generally, \(\eta \) is not additive.)

2077) \(\eta(x+y) = \eta(x) \cdot \eta(y). \) (Generally, \(\eta \) is not an exponential function.)

2078) \(\eta(xy) = \eta(x) \eta(y). \) (Generally, \(\eta \) is not a multiplicative function.)

2079) \(\eta(mx + n) = x^2. \)

2080) \(\eta(x)/y = x/\eta(y), x \) and \(y \) are not primes.

2081) \(\eta(x)/y = x/\eta(y), x \) and \(y \) are not primes. (Particularly when \(y = 2^k, k \in \mathbb{N} \), i.e., \(\eta(x)/2^k \) is a dyadic rational numbers.)

2082) \(\eta(x)^2 = x^{\eta(x)}, x \) and \(y \) are not primes.

2083) \(\eta(x)^{y^2} = \eta(x^y). \)

2084) \(\eta(x^y) - \eta(x^y) = 1, \) with \(y \neq 1 \neq w. \) (On Catalan's problem.)

2085) \(\eta(x^y) = m, y \geq 2. \)

2086) \(\eta(x^y) = y^2. \) (A trivial solution: \(x = y = 2 \).)

2087) \(\eta(x^y) = y^n. \) (A trivial solution: \(x = y = 2 \).)

2088) \(\eta(x) = y^! \) (An example: \(x = 9, y = 3 \).)

2089) \(\eta(mx) = m\eta(x), m \geq 2. \)

2090) \(\eta(x)^{y^2} + \eta(x)^y = m^x. \)

2091) \(\eta(x)^{y^2}/m \pm \eta(y^2)/n = 1. \)

2092) \(\eta(x^1 + \ldots + x^w) = \eta(x^1) + \ldots + \eta(x^w). \)

2093) \(\eta(x^1 + \ldots + x^w) = \eta(x)^1 + \ldots + \eta(x)^w. \)

2094) \(\eta(x,y) = \eta(x), \eta(y), x \) and \(y \) are not primes.

2095) \(\eta(x,y) = \eta(x), \eta(y), x \) and \(y \) are not primes.

OTHER UNSOLVED DIOPHANTINE EQUATIONS CONCERNING THE FUNCTION \(\eta \) ONLY

§8. Unsolved Diophantine Equations Concerning the Function \(\eta \) in Correlation with Other Functions

Let \(m, n \) be fixed integers. Solve the diophantine equations:

2096-2098) \(\eta(x) = d(mx + n) \)

\(\eta(x)^m = d(x^3) \)
\[\eta(x) + y = x + d(y)\]
\[\eta(x) - y = x - d(y)\]
\[\eta(x)/y = d(y)/x\]
\[\eta(x)^r = x^{d(r)}\]
\[\eta(x)^s = d(y)^s\]

2105-2221) Same equations as before, but we substitute the function \(d(x)\) with \(d_x\), \(p(x)\), \(s(x)\), \(s^*(x)\), \(r(x)\), \(\pi(x)\), \(\pi(x; m, n)\), \(\sigma_2(x)\), \(\sigma^*(x)\), \(\psi(x)\), \(\varphi(x)\), \(\varphi^*(x)\), \(\beta(x)\), \(\Omega(x)\), \(\omega(x)\) respectively.

2222) \(\eta(s(x, y)) = s(\eta(x), \eta(y))\).
2223) \(\eta(S(x, y)) = S(\eta(x), \eta(y))\).
2224) \(\eta([x]) = [\Gamma(x)]\).
2225) \(\eta([x - y]) = [\beta(x, y)]\).
2226) \(\beta(\eta([x], y)) = \beta(x, \eta([y]))\).
2227) \(\eta(\beta(x, y)) = [\beta(\eta([x]), \eta([y]))]\).
2228) \(\mu(\eta(x)) = \mu(\psi(x))\).
2229) \(\eta(x) = [\Theta(x)]\).
2230) \(\eta(x) = [\Psi(x)]\).
2231) \(\eta(mx + n) = A^*_x = x(x - 2) \ldots (x - n + 1)\).
2232) \(\eta(mx + n) = Ax^n\).

2233) \(\eta(mx + n) = \binom{x}{n} = \frac{x!}{n!(x - n)!}\).
2234) \(\eta(mx + n) = \binom{x}{m}\).

2235) \(\eta(mx + n) = \mu_x = \text{the } x\text{-th prime.}\)
2236) \(\eta(mx + n) = [1/B_x]\).
2237) \(\eta(mx + n) = G_x\).
2238) \(\eta(mx + n) = k_x = \binom{x + n - 1}{n}\).
2239) \(\eta(mx + n) = k_x^n\).
2240) \(\eta(mx + n) = s(m, x)\).
2241) \(\eta(mx + n) = s(x, n)\).
2242) \(\eta(mx + n) = S(m, x)\).
2243) \(\eta(mx + n) = S(x, n) \).
2244) \(\eta(mx + n) = \pi_x \).
2245) \(\eta(mx + n) = b_x \).
2246) \(\eta(mx + n) = |E_x| \).
2247) \(\eta(mx + n) = |x| \).
2248) \(\eta(x) \equiv \eta(y) \mod m \).
2249) \(\eta(xy) = x \mod y \).
2250) \(\eta(x)(x + m) + \eta(y)(y + m) = \eta(x + m) \).
2251) \(\eta(mx + n) = f_x \).
2252) \(\eta(mx + n) = F_x \).
2253) \(\eta(mx + n) = M_x \).
2254) \(\eta(mx + n) = c_x \).
2255) \(\eta(mx + n) = C_x \).
2256) \(\eta(mx + n) = h_x \).
2257) \(\eta(mx + n) = L_x \).

More unsolved diophantine equations concerning the function \(\eta \) in correlation with other functions.

§9. Unsolved Diophantine Equations Concerning The Function \(\eta \) in Composition with Other Functions

2258) \(\eta(d(x)) = d(\eta(x)), x \) is not prime.
2259-2275) Same equations as this, but we substitute the function \(d(x) \) with \(d_x, \rho(x), \ldots, \omega(x) \) respectively.

More unsolved diophantine equations concerning the function \(\eta \) in composition with other functions. (For example: \(\eta(\pi(d(x))) = \varphi(\pi(x)), \) etc.)

*

§10. Unsolved Diophantine Inequalities Concerning the Function \(\eta \)

Let \(m, n \) be fixed integers. Solve the following diophantine inequalities:
2276) \(\eta(x) \geq \eta(y) \).
2277) is \(0 < \{x/\eta(x)\} < \{\eta(x)/x\}\) infinitely often?

where \([a]\) is the factorial part of \(a\).

2278) \(\eta(mx + n) < \eta(x)\).

2279-2300) Same (or similar) inequalities as this, but we substitute the function \(d(x)\) with \(d_1, p(x), \ldots, \omega(x), \Gamma(x), N(x, x), \mu(x), \Theta(x), \Psi(x)\), respectively.

More unsolved diophantine inequalities concerning the function \(\eta\) in correlation (or composition, etc.) with other function. (For example: \(\Theta(\eta([x])) < \eta([\Theta(x)])\)), etc.)

\[
\sum_{n \leq x} \eta(n)
\]

§11. Arithmetic Functions Constructed by Means of the Function \(\eta\)

UNSOLVED PROBLEMS CONCERNING THESE NEW FUNCTIONS

I. The function \(S : N^* \rightarrow N, S(x) = \sum_{n \leq x} \eta(n)\).

2301) Is \(\sum_{n \leq x} S(n)^{-1}\) a convergent series?

2302) Find the smallest \(k\) for which \((S_k \circ \ldots \circ S_k)(m) \geq n\), for \(m, n\) fixed integers.

2303-2602) Study \(S_k\). The same (or similar) questions for \(S_k\) as for \(\eta\).

II. The function \(C : N^* \rightarrow Q, C(x) = \frac{1}{x}(\eta(1) + \eta(2) + \ldots + \eta(x))\) (sum of Cesaro concerning the function \(\eta\)).

4603) Is \(\sum_{n \leq x} C(n)^{-1}\) a convergent series?

4604) Find the smallest \(k\) for which \((C_k \circ \ldots \circ C_k)(m) \geq n\), for \(m, n\) fixed integers.

4605-6904) Study \(C_k\). The same (or similar) questions for \(C_k\) as for \(\eta\).

III. The function \(E : N^* \rightarrow N, E_n(x) = \sum_{k=1}^{x} \eta^{(k)}(x)\), where \(\eta^{(1)} = \eta\) and \(\eta^{(k+1)} = \eta \circ \ldots \circ \eta \) of \(k\) times, and \(k_0\) is the smallest integer \(k\) for which \(\eta^{(k+1)}(x) = \eta^{(k)}(x)\).

6905) Is \(\sum_{n \leq x} E_n(x)^{-1}\) a convergent series?

6906) Find the smallest \(x\) for which \(E_n(x) > m\), where \(m\) is a fixed integer.

6907-9206) Study \(E_n\). The same (or similar) questions for \(S\) as for \(\eta\).
IV. The function \(F : N \setminus \{0, 1\} \to N, F_0 = \sum_{0 < p \leq x} \eta_p(x), \)
\(p \) prime

9207) Is \(\sum_{x \geq 1} F_x(x)^{-1} \) a convergent series?

9208-11507) Study the function \(F_x \). The same (or similar) questions for \(F_x \) as for \(n \).

V. The function \(\alpha_n : N^* \to N, \alpha_n(x) = \sum \beta(n), \) where \(\beta(n) = \begin{cases} 0, & \text{if } \eta(n) \text{ is even;} \\ 1, & \text{if } \eta(n) \text{ is odd.} \end{cases} \)

11508) Let \(n \in N^* \). Find the smallest \(k \) for which \(\alpha_n \circ \cdots \circ \alpha_n(n) = 0. \)

11509-13808) Study \(\alpha_n \). The same (or similar) questions for \(\alpha_n \) as for \(\eta \).

VI. The function \(m_n : N^* \to N, m_n(j) = a_j, 1 \leq j \leq n, \) fixed integers, and \(m_n(n+1) = \min\{\eta(a_1 + a_\infty), \text{etc.} \} \)

13809) Is \(\sum_{x \geq 1} m_n(x)^{-1} \) a convergent series?

13810-16109) Study \(m_n \). The same (or similar) questions for \(m_n \) as for \(\eta \).

VII. The function \(M_n : N \to N \). A given finite positive integer sequence \(a_1, \ldots, a_n \) is successively extended by:
\[M_n(n+1) = \max\{\eta(a_1 + a_\infty), \text{etc.} \}, \]
\[M_n(j) = a_j, 1 \leq j \leq n. \]

16110) Is \(\sum_{x \geq 1} M_n(x)^{-1} \) a convergent series?

16111-18410) Study \(M_n \). The same (or similar) questions for \(M_n \) as for \(\eta \).

VIII. The function \(\eta_{\min} : N \setminus \{1\} \to N, \eta_{\min}^{-1}(x) = \min\{\eta^{-1}(x) \} \) where \(\eta^{-1}(x) = \{a \in N | \eta(a) = x\} \). For example \(\eta^{-1}(2) = \{2^2, 2^3 \cdot 3, 2^4 \cdot 3^2, 2^5 \cdot 3^3 \cdot 2, 2^6 \cdot 3^2, 2^7 \cdot 3^3, \ldots \} \), whence \(\eta_{\min}^{-1}(6) = 9 \).

18411) Find the smallest \(k \) for which \((\eta_{\min}^{-1} \circ \cdots \circ \eta_{\min}^{-1})(m) \geq n. \)

18412-20711) Study \(\eta_{\min}^{-1} \). The same (or similar) questions for \(\eta_{\min}^{-1} \) as for \(\eta \).

IX. The function \(\eta_{\card} : N \to N, \eta_{\card}^{-1}(x) = \card(\eta^{-1}(x)), \) where \(\card A \) means the number of elements of the set \(A \).

20712) Find the smallest \(k \) for which \((\eta_{\card}^{-1} \circ \cdots \circ \eta_{\card}^{-1})(m) \geq n, \) for \(m, n \) fixed integers.

20713-23012) Study \(\eta_{\card}^{-1} \). The same (or similar) questions for \(\eta_{\card}^{-1} \) as for \(\eta \).
X. The function \(d_n : \mathbb{N}^* \to \mathbb{N}, d_n(x) = \lceil \eta(x) \rceil - \eta(x) \rceil \). Let \(d^{k+1}_n : \mathbb{N}^* \to \mathbb{N}, d_n(x) = \lceil d^k_n(x+1) - d^k_n(x) \rceil \), for all \(k \in \mathbb{N}^* \), where \(d^0_n(x) = d_n(x) \).

20013) Conjecture: \(d^k_n(1) = 1 \) or \(0 \), for all \(k \geq 2 \). (This reminds us of Gillreath’s conjecture on primes.) For example:

\begin{align*}
\eta(1) &= 0 \\
\eta(2) &= 2 \\
\eta(3) &= 3 \\
\eta(4) &= 4 \\
\eta(5) &= 5 \\
\eta(6) &= 3 \\
\eta(7) &= 7 \\
\eta(8) &= 4 \\
\eta(9) &= 6 \\
\eta(10) &= 5 \\
\eta(11) &= 11 \\
\eta(12) &= 4 \\
\eta(13) &= 13 \\
\eta(14) &= 7 \\
\eta(15) &= 5 \\
\eta(16) &= 6 \\
\eta(17) &= 17 \\
\eta(18) &= 6 \\
\eta(19) &= 19 \\
\eta(20) &= 5
\end{align*}

20014-231313) Study \(d^k_n \). The same (or similar) questions for \(d^k_n \) as for \(\eta \).

XI. The function \(\omega_n : \mathbb{N}^* \to \mathbb{N}, \omega_n(x) \) is the number of \(m \), with \(0 < m \leq x \), so that \(\eta(m) \) divides \(x \). Hence, \(\omega_n(x) \geq \omega(x) \), and we have equality if \(x = 1 \) or \(x \) is a prime.
25314) Find the smallest \(k \) for which \((\omega_{0} \circ \ldots \circ \omega_{k})(x) = 0 \), for a fixed integers \(x \).

25315-27614) Study \(\omega_{k} \). The same (or similar) questions for \(\omega_{n} \) as for \(\eta \).

XII. The function \(M_{n} : N^{*} \rightarrow N \), \(M_{n}(x) \) is the number of \(m \), with \(0 < m \leq x^{k} \), so that \(\eta(mn) \) is a multiple of \(z \). For example \(M_{s}(3) = \text{Card}(1,3,6,9,12,27) = 6 \). If \(p \) is a prime \(M_{s}(p) = \text{Card}(1,a_{2},\ldots,a_{r}) \), then all \(a_{i},2 \leq i \leq r \), are multiples of \(p \).

27615) Let \(m,n \) be integer numbers. Find the smallest \(k \) for which \((M_{m} \circ \ldots \circ M_{n})(m) \geq n \).

XIII. The function \(\sigma_{n} : N^{*} \rightarrow N \), \(\sigma_{n}(x) = \sum_{d \mid x} \eta(d) \).

For example \(\sigma_{s}(18) = \eta(1) + \eta(2) + \eta(3) + \eta(6) + \eta(9) + \eta(18) = 20, \sigma_{s}(9) = 9 \).

29916) Are there an infinity of nonprimes \(n \) so that \(\sigma_{s}(n) = n ? \)

XIV. The function \(\tau_{s} : N \rightarrow N \), \(\tau_{s}(x) \) is the number of numbers \(n \) so that \(\eta(n) \leq x \). If \(p_{1} < p_{2} < \ldots < p_{k} \leq n < p_{k+1} \) is the primes sequence, and for all \(i = 1,2,\ldots,k \) we have \(p_{i}^{k} \) divides \(n! \) but \(p_{i+1}^{k} \) does not divide \(n! \), then:

\[\tau_{s}(n) = (a_{1} + 1) \ldots (a_{k} + 1). \]

32217-34516) Study \(\pi_{s} \). The same (or similar) questions for \(\pi_{n} \) as for \(\eta \).

XV. The function \(\varphi_{s} : N^{*} \rightarrow N \), \(\varphi_{s}(x) \) is the number of \(m \), with \(0 < m \leq x \), having the property \((\eta(m),x) = 1 \).

34517) Is always true that \(\varphi_{s}(x) < \varphi(x) ? \)

34518) Find \(x \) for which \(\varphi(x) \geq \varphi(x) \).

34519) Find the smallest \(k \) so that \((\varphi_{s} \circ \ldots \circ \varphi_{s})(x) = 1 \), for a fixed integers \(x \).

34520-36819) Study \(\varphi_{s} \). The same (or similar) questions for \(\varphi_{n} \) as for \(\eta \).

More unsolved problems concerning these 15 functions.

More new (arithmetic) functions constructed by means of the function \(\eta \), and new unsolved problems concerning them.
We can continue these recurring sequences of unsolved problems in number theory to infinity. Thus, we construct an infinity of more new functions: Using the functions $S_0, C_0, \ldots, \varphi_0$ construct the functions $f_{11}, f_{12}, \ldots, f_{1n}$ (by varied combinations between $S_0, C_0, \ldots, \varphi_0$; for example: $S_1^{(0)}(x) = \sum_{n \in \mathbb{N}, \leq x} S_n^{(0)}$ for all $x \in \mathbb{N}$, $S_0^{(i)} : \mathbb{N}^* \rightarrow \mathbb{N}$ for all $i = 0, 1, 2, \ldots$, where $S_0^{(0)} = S_0$. Or: $SC_0(x) = \frac{1}{x} \sum_{n \leq x} S_c(n)$, $SC_0 : \mathbb{N}^* \rightarrow \mathbb{Q}$, SC_0 being a combination between S_0 and C_0 etc.; analogously by means of the functions $f_{11}, f_{12}, \ldots, f_{1n}$ we construct the functions $f_{21}, f_{22}, \ldots, f_{2n}$ etc. The method to obtain new functions continues to infinity. For each function we have at least 2300 unsolved problems, and we have an infinity of functions. The method can be represented in the following way:

$$\eta \rightarrow S_{11}, C_{11}, \ldots, \varphi \rightarrow f_{11}, f_{12}, \ldots, f_{1n},$$

$$f_{11}, f_{12}, \ldots, f_{1n} \rightarrow f_{11}, f_{12}, \ldots, f_{2n},$$

$$f_{21}, f_{22}, \ldots, f_{2n} \rightarrow f_{31}, f_{32}, \ldots, f_{3n},$$

$$\vdots$$

$$f_{i1}, f_{i2}, \ldots, f_{in} \rightarrow f_{i+1, 1}, f_{i+1, 2}, \ldots, f_{i+1, n+1},$$

*

§12. Conclusion

With this paper the author wants to prove that we can construct infinitely many unsolved problems, especially in number theory: you "rock and roll" the numbers until you create interesting scenarios! Some problems in this paper could effect the subsequent development of mathematics.

The world is in a general crisis. Do the unsolved problems really constitute a mathematical crisis, or contrary to that, do their absence lead to an intellectual stagnation? Making will always have problems to solve, they even must again solve previously solved problems (!) For example, this paper shows that people will be more and more overwhelmed by (open) unsolved problems. [It is easier to ask than to answer.]
Here, there are proposed (un)solved problems which are enough for ever!! Suppose you solve an infinite number of problems, there will always be an infinity of problems remaining. Do not assume those proposals are trivial and non-important, rather, they are very substantial.

§13. References (books and papers which have inspired the author)

Florentin Smarandache,
Department of Mathematics, N. Balcescu College, Craiova. [Presented at the 14th American Romanian Academy Annual Convention, held in Los-Angeles, California, hosted by the University of Southern California, from April 20 to April 22, 1989. An abstract was published by Prof. Constantin Corduneanu, Department of Mathematics, University of Texas at Arlington, in "Libertas Mathematica", tomos IX, p. 175, The Grid, Arlington, Texas. Another abstract had been published in the proceedings of the short communications, International Congress of Mathematicians, Berkeley, California, 1986.]
SOLVING PROBLEMS BY USING A FUNCTION IN THE NUMBER THEORY

Let \(n \geq 1, h \geq 1 \) and \(a \geq 2 \) be integers. For which values of \(a \) and \(n \) is \((n + h)!\) a multiple of \(a^a \)? (A generalization of the problem \(n^o = 1270 \), Mathematics Magazine, Vol. 60, No. 3, June 1987, p. 179, proposed by Roger B. Eggleton, The University of Newcastle, Australia.)

Solution (For \(h = 1 \) the problem \(n^o = 1270 \) is obtained.)

§1. Introduction

We have constructed a function \(\eta \) (see [1]) having the following properties:

(a) For each non-null integer \(n, \eta(n)! \) is multiple of \(n; \)

(b) \(\eta(n) \) is the smallest natural number with the property (a).

It is easy to prove:

Lemma 1. \((\forall)k, p \in N^*, p \neq 1, k \) is uniquely written in the form:

\[k = t_1a_1^{(p,q)} + \ldots + t_ia_i^{(p,q)}, \]

where \(a_i^{(p,q)} = (p^{q_i} - 1)/(p - 1), i = 1,2,\ldots, l, n_1 > n_2 > \ldots > n_l > 0 \) and \(1 \leq t_i \leq (p - 1), \)

\(j = 1, 2, \ldots, l - 1, 1 \leq t_i \leq p, n_j, t_j \in N, i = 1,2,\ldots, l, l \in N^*. \)

We have constructed the function \(\eta_p, p \textnormal{ prime} > 0, \eta_p: N^* \rightarrow N^* \), thus:

\((\forall)n \in N^*, \eta_p(a_n^{(p,q)}) = p, \) and \(\eta_p(t_1a_1^{(p,q)} + \ldots + t_ia_i^{(p,q)}) = t_1\eta_p(a_1^{(p,q)}) + \ldots + t_i\eta_p(a_i^{(p,q)}). \)

Of course:

Lemma 2. (a) \((\forall)k \in N^*, \eta_k(k)! = Mp^k. \)

(b) \(\eta_k(k) \) is the smallest number with the property (a). Now, we construct another function:

\[\eta : Z \setminus 0 \rightarrow N \textnormal{ defined is follows}: \]

\[\eta(\pm 1) = 0, \]

\[\{(\forall)n = \epsilon p_1^{e_1} \ldots p_l^{e_l} \textnormal{ with } \epsilon = \pm 1, p_i \textnormal{ prime and } p_i \neq p_j \textnormal{ for } i \neq j, \textnormal{ all} \]

\[\{a_i \in N^*, \eta(n) = \max_{1 \leq i \leq l} \{\eta_p(a_i)\} \} \]

It is not difficult to prove \(\eta \) has the demanded properties of §1.

§2. Now, let \(a = p_1^{e_1} \ldots p_l^{e_l}, \) with all \(a_i \in N^* \) and all \(p_i \) distinct primes. By the previous theory we have:

\[\eta(a) = \max_{1 \leq i \leq l} \{\eta_p(a_i)\} = \eta_p(a) \textnormal{ (by notation).} \]

Hance \(\eta(a) = \eta(p^a), \eta(p^a)! = Mp^a. \)

79
We know:
\[
(t_1 p^n + \ldots + t_p p^n) = M \frac{p^n - 1}{p - 1} + \ldots + t_p p^n - 1
\]
We put:
\[
t_1 p^n + \ldots + t_p p^n = n + h \quad \text{and} \quad t_1 \frac{p^n - 1}{p - 1} + \ldots + t_p \frac{p^n - 1}{p - 1} = o.m.
\]
Whence
\[
\frac{1}{a^1} \left(p^n - 1 \right) + \ldots + \frac{1}{a^p} p^n - \frac{1}{p - 1} \geq t_1 p^n + \ldots + t_p p^n - h \quad \text{or}
\]
(1) \(a(p - 1) h \geq (ap - a - 1)[t_1 p^n + \ldots + t_p p^n] + (t_1 + \ldots + t_p)\).

On this condition we take \(n_0 = t_1 p^n + \ldots + t_p p^n - h \) (see Lemma 1), hence \(n = \begin{cases} n_0, n_0 > 0; \\ 1, n_0 \leq 0. \end{cases}\)

Consider giving \(a \neq 2\), we have a finite number of \(n\). There is an infinite number of \(n\) if and only if \(ap - a - 1 = 0\) i.e., \(a = 1\) and \(p = 2\), i.e., \(a = 2\)

§3 Particular Case

If \(h = 1\) and \(a \neq 2\), because \(t_1 p^n + \ldots + t_p p^n \geq p^n > 1\)
and \(t_1 + \ldots + t_p \geq 1\), it follows from (1) that:

(1') \((ap - a) > (ap - a - 1) \cdot 1 + 1 = ap - a\),
which is impossible. If \(h = 1\) and \(a = 2\) then \(\alpha = 1, p = 2\), or

(1'') \(1 \leq t_1 + \ldots + t_p\),
whence \(i = 1, t_1 = 1\) whence \(n = t_1 p^n + \ldots + t_p p^n - h = 2^n - 1, n_1 \in N^*\) (the solution to problem 1270).

Example 1. Let \(h = 16\) and \(a = 3^4 \cdot 5^2\). Find all \(n\) such that

\((n + 16)! = M 2025^n\).

Solution

\(\eta(2025) = \max\{\eta(4), \eta(25)\} = \max\{9, 10\} = 10 = \eta(25) = \eta(5^2)\). Whence \(\alpha = 2, p = 5\).

From (1) we have:

\[
128 \geq 7[t_1 5^n + \ldots + t_5 5^n] + t_1 + \ldots + t_4.
\]

Because \(5^4 > 128\) and \(7[t_1 5^n + \ldots + t_5 5^n] < 128\) we find \(i = 1,\)

\[
128 \geq 7t_1 5^n + t_1,
\]
whence \(n_1 \leq 1, i.e. n_1 = 1, \) and \(t_1 = 1, 2, 3\). Then \(n_0 = t_1 5 - 16 < 0, i.e. we take n = 1.\)
Example 2. \((n + 7)! = M3^n\) when \(n = 1, 2, 3, 4, 5\).

\((n + 7)! = M5^n\) when \(n = 1\).

But \((n + 7)! \neq Mp^n\) for \(p \text{ prime} > 7, (\forall)n \in N^*\).

\((n + 7)! \neq M2^n\) when

\[n_0 = t_1 2^{n_0} + \ldots + t_2^{n_0} - 7, \]

\[t_1, \ldots, t_{n_0 - 1} = 1, \]

\[1 \leq t_1 \leq 2, t_1 + \ldots + t_{n_0 - 1} \leq 7\]

and \(n = \left\{ \begin{array}{ll}
 n_0, & n_0 > 0; \\
 1, & n_0 \leq 0.
\end{array} \right.\) etc.

Exercise for Readers

If \(n \in N^*, a \in N^* \setminus \{1\}\), find all values of \(a\) and \(n\) such that:

\((n + 7)!\) is a multiple of \(a^n\).

Some Unsolved Problems (see [2])

Solve the diophantine equations:

1. \(n(x) \cdot n(y) = n(x + y)\).
2. \(n(x) = y!\) (A solution: \(x = 9, y = 3\)).
3. Conjecture: the equation \(n(x) = n(x + 1)\) has no solution.

References

[A comment about this generalization was published in "Mathematics Magazine", Vol. 61, No. 3, June 1988, p. 202: "Smarandache considered the general problem of finding positive integers \(n, a\) and \(k\), so that \((n + k)!\) should be a multiple of \(a^n\). Also, for positive integers \(p\) and \(k\), with \(p\) prime, he found a formula for determining the smallest integer \(f(k)\) with the property that \((f(k))!\) is a multiple of \(p^n\)."]

81
SOME LINEAR EQUATIONS INVOLVING A FUNCTION IN THE NUMBER THEORY

We have constructed a function η which associates to each non-null integer m the smallest positive n such that $n!$ is a multiple of m.

(a) Solve the equation $\eta(n) = n$, where $n \in N$.

(b) Solve the equation $\eta(mz) = z$, where $m \in Z$.

Discussion.

(c) Let $\eta^{(i)}$ denote $\eta \circ \eta \circ \ldots \circ \eta$ of i times. Prove that there is a k for which $\eta^{(k)}(m) = \eta^{(k+1)}(m) = n_m$, for all $m \in Z^* \setminus \{1\}$.

Find n_m and the smallest k with this property.

Solution

(a) The cases $n = 0, 1$ are trivial.

We note the increasing sequence of primes less or equal than n by P_1, P_2, \ldots, P_k, and

$$\beta_t = \sum_{i=1}^{\log_p n} \left\lfloor \frac{n}{P_i^t} \right\rfloor, t = 1, 2, \ldots, k;$$

where $[y]$ is greatest integer less or equal than y.

Let $n = P_1^{\alpha_1} \ldots P_k^{\alpha_k}$, where all P_i are distinct primes and all α_i are from N.

Of course we have $n \leq x \leq n!$

Thus $x = P_1^{\alpha_1} \ldots P_k^{\alpha_k}$ where $0 \leq \sigma_t \leq \beta_t$ for all $t = 1, 2, \ldots, k$ and there exists at least a $j \in \{1, 2, \ldots, s\}$ for which

$$\sigma_j \in \beta_j, \{\beta_1, \ldots, \beta_j - \alpha_j + 1\}.$$

Clearly $n!$ is a multiple of x, and is the smallest one.

(b) See [1] too. We consider $m \in N^*$.

Lemma 1. $\eta(m) \leq m$, and $\eta(m) = m$ if and only if $m = 4$ or m is a prime.

Of course $m!$ is a multiple of m.

If $m \neq 4$ and m is not a prime, the Lemma is equivalent to there are m_1, m_2 such that $m = m_1 \cdot m_2$ with $1 < m_1 \leq m_2$ and $(2m_2 < m$ or $2m_2 < m)$. Whence $\eta(m) \leq 2m_2 < m$, respectively $\eta(m) \leq \max\{m_2, 2m\} < m$.

Lemma 2. Let p be a prime ≤ 5. Then $\eta(pz) = z$ if and only if z is a prime $> p$, or $z = 2p$. 82
Proof: \(\eta(p) = p \). Hence \(x > p \).

Analogously: \(x \) is not a prime and \(x \neq 2p \leftrightarrow x = z_1 z_2, 1 < z_1 \leq z_2 \) and \((2z_2 \neq z_1, z_2 \neq p_1, \) and \(2z_1 < x \leftrightarrow \eta(px) \leq \max\{p, 2z_2\} < x \) respectively \(\eta(px) \leq \max\{p, 2z_1, z_2\} < x \).

Observations

\(\eta(2x) = x \iff x = 4 \) or \(x \) is an odd prime.

\(\eta(3x) = x \iff x = 4, 6, 9 \) or \(x \) is a prime \(> 3 \).

Lemma 3. If \((m, x) = 1 \) then \(x \) is a prime \(> \eta(m) \).

Of course, \(\eta(mx) = \max\{\eta(m), \eta(x)\} = \eta(x) = x \). And \(x \neq \eta(m) \), because if \(x = \eta(m) \) then \(m \cdot \eta(m) \) divides \(\eta(m)! \) that is \(m \) divides \((\eta(m) - 1)! \) whence \(\eta(m) \leq \eta(m) - 1 \).

Lemma 4. If \(x \) is not a prime then \(\eta(m) < x \leq 2\eta(m) \) and \(z = 2\eta(m) \) if and only if \(\eta(m) \) is a prime.

Proof: If \(x > 2\eta(m) \) there are \(z_1, z_2 \) with \(1 < z_1 \leq z_2, x = z_1 z_2 \). For \(z_t < \eta(m) \) we have \((z - 1)! \) is a multiple of \(m \). Same proof for other cases.

Let \(x = 2\eta(m) \); if \(\eta(m) \) is not a prime, then \(x = 2ab, 1 < a \leq b \), but the product \((\eta(m) + 1)(\eta(m) + 2) \ldots (2\eta(m) - 1) \) is divided by \(x \).

If \(\eta(m) \) is a prime, \(\eta(m) \) divides \(m \), whence \(m \cdot 2\eta(m) \) is divided by \(\eta(m)! \), it results in \(\eta(m \cdot 2\eta(m)) \geq 2 \cdot \eta(m) \), but \((\eta(m) + 1)(\eta(m) + 2) \ldots (2\eta(m)) \) is a multiple of \(2\eta(m) \), that is \(\eta(m \cdot 2\eta(m)) = 2\eta(m) \).

Conclusion.

All \(x \), prime number \(> \eta(m) \), are solutions.

*If \(\eta(m) \) is prime, then \(x = 2\eta(m) \) is a solution.

*If \(m \) is a prime then \(m = \eta(m) \).

Lemma 5. \(\eta(ab) \leq \eta(a) + \eta(b) \).

Of course, \(\eta(a) = a' \) and \(\eta(b) = b' \) involves \((a' + b')! = b!(b' + 1 \ldots (b' + a') \). Let \(a' \leq b' \).

Then \(\eta(ab) \leq a' + b' \), because the product of \(a' \) consecutive positive integers is a multiple of \(a' \)

Clearly, if \(m \) is a prime then \(k = 1 \) and \(n_m = m \).

If \(m \) is a prime then \(\eta(m) < m \), hence there is a \(k \) for which \(\eta^{(k)}(m) = \eta^{(k+1)}(m) \).

If \(m = 1 \) then \(2 \leq n_m \leq m \).
Lemma 6. \(n_m = 4 \) or \(n_m \) is a prime.

If \(n_m = n_1 n_2, 1 < n_1 \leq n_2, \) then \(\eta(n_m) < n_m \). Absurd. \(n_m \neq 4 \).

(**) This question remains open.

References

[Published on "Gamma" Journal, "Stegarul Rosu" College, Brașov, 1987.]
CONTRIBUȚII LA STUDIUL UNOR FUNCȚII ȘI CONJECTURI
ÎN TEORIA NUMERELELOR

Teoria Numerelor reprezintă pentru mine o pasiune. Rezultatele expuse mai departe constituie rodul câtorva ani buni de cercetări și căutări.

În felul acesta se deschid noi drumuri în Teoria Numerelor, formând un domeniu aparte, care a trezit interesul științelor specialiști.

Membrii acestui grup se întâlnesc o dată pe săptămână, în timpul anului școlar, și expun ultimele cercetări asupra funcției ș, precum și încercări de generalizare.

În afara grupului de cercetare de la Craiova, destui matematicieni și informaticieni străini s-au ocupat de studiul funcției ș, cei mai activi fiind: Henry Ibstedt (Suedia), Pål Grønås (Norvegia), Jim Duncan, John C.MacCarthy, John R. Sutton (Anglia), Ken Tauscher (Australia), Th. Martin (SUA), Pedro Melendez (Brasilia), M.Costewitz (Franța), J.Rodríguez (Mexc), etc. [Pentru o imagine mai detaliată, vezi cele 240 de "Referințe" de la sfârșit.]

Despre însemnătatea "Funcției Smarandache", cum a fost botenată în revista londoneză
Articolele, notele, problemele (rezolvate sau deschise), conjecturile referitoare la această nouă funcție în teoria numerelor sunt colectate într-o revistă specială numită "Smarandache Function Journal", publicată annual ori bianual, de Dr. R. Muller, Number Theory Publishing Co., Glendale, Arizona, SUA.

Mai mult, Ch. Ashbacher (SUA) i-a dedicat însăși o monografie: "An introduction to the Smarandache function", Erhus Univ. Press, Vail, 1995 [194], iar Kenichiro Kashihara (Japonia) are în pregătire o altă carte despre ,.,, [235].

De asemenea, multe reviste și chiar enciclopedii și-au deschis paginile inserând de lucrări pe care aceasta, recenzând, sau citind funcția \(f \) și valorile ei (vezi "Personal Computer World" (Londra), "Humanistic Mathematics Network Journal" (Harvey Mudd College, Claremont, CA, SUA), "Libertas Mathematica" (Texas State University), "Octogon" (Brășov, România), "Encyclopedia of Integer Sequences" N. J. A. Sloane & Simon Plouffe (Academic Press; San Diego, New York, Boston, London, Sydney, Tokyo, Toronto; 1995), "Journal of Recreational Mathematics" (SUA), "Foșa Matematică" (Chișinău, Moldova), "The Mathematical Spectrum" (University of Sheffield, Anglia), "Elemente der Mathematik" Elveția, "Zentralblatt für Mathematik" (Berlin, Germania), "The Mathematical Reviews" (Ann Arbor, SUA), "The Fibonacci Quarterly" (SUA), etc.).

Iar la conferințe naționale și internaționale organizate, de exemplu la New Mexico State University of San Antonio (Texas), University of Arizona (Tucson), University of San Antonio (Texas), State University of New York at Farmingdale, University of Victoria (Canada), Congrès International < Henry Poincaré > (Université de Nancy, Franța), <26th Annual Iranian Mathematics Conference> (Kerman, Iran), <The Second Asian Mathematics Conference> (Nakbon Hatchavima, Tailand), <Programul manifestării organizate cu prilejul împlinirii a 100 ani de la apariția primului număr al revistei 'Gazeta Matematică' 1895-1995> (Alba-Iulia, România), etc. s-au prezentat articole științifice despre \(f \) în perioada 1991-5.

Arhivele care stochează cercetările asupra funcției \(f \) (cărți, reviste, broșuri, manuscrise
publicate ori inedite, articole note, comentarii, scrisori, - obișnuite ori electronice - de la diverși matematicieni și editori, probleme, aplicații, programe de conferințe și simpozionc, etc.), căi și asupra altor noțiuni din teză, se genesc la:

a) Arizona State University, Hayden Library, Colecția Specială (online) "The Florentine Smarandache papers", Tempe, AZ 85287, USA; phone:(602) 965-6515, e-mail: ICCLM@ASUACAD.BITNET, responsabile:Carol Moore & Marilyn Wurzburger;

b) Archives of American Mathematics, Center for American History SRH 2.109, University of Texas, Colecția Specială "The Florentine Smarandache papers", Austin, TX 78713, USA; phone: (512) 495-4129, fax: (512) 495-4542, director Don Carleton;

c) Biblioteca University din Craiova, Str. Al. I. Cuza, Nr. 13, Secția de Informare și Documentare "Florentine Smarandache" din cadrul Seminarului Matematic "Gh. Țițeica", director O. Lohan, bibliotecară Maria Buz, fax: (051) 411688, România;

Se definește, apăsă, o nouă funcție:

\[\eta : \mathbb{Z}^* \rightarrow \mathbb{N} \]

\(\eta(n) \) este cel mai mic întreg \(m \) astfel încât \(m! \) este divizibil cu \(n \).

Această funcție este importantă deoarece caracterizează numerele prime - prin următoarea proprietate fundamentală:

Fixează \(p \) un număr întreg \(> 4 \), atunci \(p \) este prim dacă și numai dacă \(\eta(p) = p \).

Deci, punctele fixe ale acestei funcții sunt numere prime (la care se adaugă și 4). Dar toate aceste proprietăți, funcția \(\eta \) se folosește ca un instrument pentru cercetarea numerelor prime.

Studierea și descoperirea unor relații despre funcția \(\eta \) duce implicit la aprofundarea cunoștințelor despre numerele prime, o preocupare în prezent fiind distribuirea lor. [F. Burton încearcă generalizarea funcției \(\eta \) în corpul numerelor complexe [169].]

Totodată, funcția \(\eta \) intră în conexiune și cu foarte cunoscuta Funcție \(\Pi(x) \), care reprezintă numărul de numere prime mai mici decât sau egale cu \(x \), prin următoarea formulă:

\[\Pi(x) = \sum_{k=1}^{x} \eta(k)/k - 1, \]

\[87 \]
unde \(b \) înseamnă parte intreagă a lui \(b \).

Alte proprietăți:

Dacă \((a, b) = 1 \), atunci \(\eta(ab) = \max\{\eta(a), \eta(b)\} \).

Pentru orice numere pozitive nevide, \(\eta(ab) \leq \eta(a) + \eta(b) \).

\(\eta \) este o funcție general crescătoare, adică:

\[
\forall a \in \mathbb{N} \exists b \in \mathbb{N}, b = b(a), \forall c \in \mathbb{N}, c > b, \eta(c) > a.
\]

Funcția \(\eta \) face obiectul multor probleme deschise, care au trezit interesul matematicienilor. De exemplu:

a) Ecuatia \(\eta(n) = \eta(n + 1) \) nu are nicăi soluții. Nu a fost încă demonstrată, deși I.Prodanescu [29, 92] crezuse inițial că i-a găsit soluția. L.Țuțescu [30] i-a dat o extindere acestei conjecturi.

b) A. Mullin [239], inspirat de problema anterioră, conjecturează că ecuația \(\eta(n) = \eta(n + 2) \) are doar un număr finit de soluții.

c) T. Yau [63] a propus determinarea tuturor valorilor pentru care funcția \(\eta \) păstrează relația de recurență a lui Fibonacci, adică:

\[
\eta(n) + \eta(n + 1) = \eta(n + 2),
\]

necășindu-se dacă acestea sunt în număr finit sau infinit. El însuși aflând pe \(n = 9, 119 \), Ch. Ashbacher [182, 207] a investigat relația de mai sus cu un program pe calculator până la \(n = 1000000 \), descoperind valori adiționale pentru \(n = 4900, 26243, 32110, 54008, 368138, 415662 \), dar nedemonstrând cazul general. H. Ibstedt [224] presupune că există o infinitate de astfel de triplete.

d) Renunțul academician, P. Erdős [147], de la Academia Ungură de Științe, solicită cititorilor revistei engleză <Mathematical Spectrum>, în care publică o scrisoare, să găsească o formulă asimptotăcă pentru:

\[
\sum_{n < x} \frac{\eta(n)^2}{\eta(n) > P(n)}
\]
unde $P(n)$ reprezintă cel mai mare factor prim al lui n.

Fiecare perioadă de timp are problemele ei deschise, cărora de obicei îi se dă de cap mai târziu, odată cu progresul științei. Și, totuși, numărul noilor probleme nerezolvate, care apar datorită cercetărilor firește, crește exponențial, în comparație cu numărul vechilor probleme nerezolvate ce sunt în prezent soluționate. Oare existența problemelor deschise constituie o criză matematică oră, dimpotrivă, abența lor ar însemna mai degrabă o stagnare intelectuală?

"Funcția Smarandache" este pusă în combinații și relații cu alte funcții ori noțiuni din teoria numerelor și analiză, precum: secvențe-A, numărul de divizori, diferență dintre două numere prime consecutive, serii Dirichlet, funcții generatoare, funcția logaritm, ordin normal, condiții Lipschitz, funcții multiplicative ori aditive, cel mai mare factor, distribuție uniformă, rădăcină necongruente, cardinal, triunghiul lui Pascal, secvență s-aditivă, suma părților alicuante, suma părților de ordin k ale părților alicuante, suma părților alicuante unitare, medii aritmetice și geometrică, șiruri recurente, ecuații și inecuații diofantice, numărul de numere prime, numărul de numere prime congruente cu a modulo b, suma divizorilor, suma numărului de ordin k ale divizorilor, suma divizorilor unitari, funcția ϕ a lui Euler, funcțiile gamma și beta, numărul de factori primi (cu repetiție), numărul factorilor primi distincti, partea întreagă, aproximări asimptotice, câmpuri algebrice, funcția Mobius, funcțiile Cebișev Θ și Ψ, etc.

Iar "Numerele Smarandache" sunt asociate și întrepatrurnse respectiv cu: numerele abundente, aproape perfecte, amicale, amicale mărite, numerele Bell, Bernoulli, Catalan, Carmichael, deficiente, Euler, Fermat, Fibonacci, Genocchi, numerele armonice, k-hiperperfecte, Kurepa, Mersenne, m-perfecte, numerеле norocoase, k-îndoiute perfecte, perfecte, poligonale, piramidale, poliedrale, primitive abundente, primitive pseudoperfecte, pseudoperfecte, pseudoprimă, pitagoreice, residui păstrate, evasperfecte, Stirling de ordinul I și II, superperfecte, intangibile, numerele sinistre, numerele Ulam, etc.

References

Phoenix, New York, Lyon, Vol. 1, No. 1, 1990, ISSN 1053-4792:

Prof. Dr. V. Seleacu & Lect. Dr. C. Dumitrescu, Department of Mathematics, University of Craiova, Romania, editors for the next issue;

registered by the Library of Congress (Washington, D.C., USA) under the code: QA 246. 563;

mentioned by Dr. Sieban Andronescu in <New York Spectator>, No. 39-40, Math 1991, 51;

the journal was indexed by the <Mathematical Reviews>, Ann Arbor, MI., 94c, March 1994, XXI;

and by <Zentralblatt für Mathematik>, Berlin, 1995;

and <Current Mathematical Publications>, Providence, RI, USA, No. 5, April 1994;

reviewed by Constantin Corduneanu in <Libertas Mathematica>, tomus XI, 1991, 202;

mentioned in the list of serials by <Zentralblatt für Mathematik>, (Berlin), Vol. 730, June 1992, 620;

and reviewed by L. Töth (Cluj-Napoca, Romania) in <Zentralblatt für Mathematik>, Vol. 745 (11004-11007), 1992;

mentioned in <Mathematics Magazine>, Washington, D.C., Vol. 6, No. 4, October 1993, 280;

and Canadian Mathematical Society, Winter Meeting, December 9th, 1991, University of Victoria, BC;
and The South West Section of the Mathematical Association of America / The Arizona Mathematics Consortium, University of Arizona, Tucson, April 3, 1992;

[12] Florea Miu, "Interviul nostru" in <Cuvântul Libertății>, Craiova, Romania, Anul III, Nr. 668, 14 iulie 1992, 1&3;

and The South West Section of the Mathematical Association of America, New Mexico Tech., Socorro, NM, April 16, 1993;

[26] Pedro Melendez, Belo Horizonte, Brasil, Two proposed problems concerning the Smarandache Function (unpublished), May 1993;

[28] Thomas Martin, Aufgabe 1075 (using the reverse of the Smarandache Function) in <Elemente der Mathematik>, Editors: Dr. Peter Gallin & Dr. Hans Walser, CH-8494 Bauma & CH-8500 Frauendorff, Switzerland, Vol. 48, No. 3, 1993;

[29] I.Prodanescu, Problema Propusa privind Functia Smarandache (nepublicată), Lic. N. Bălcescu, Rm. Vâlcea, România, Mai 1993;

[31] T.Pedreira, Bluffton College, Ohio, "Quelques Équations Diophantiennes avec la Fonction Smarandache", abstract for the <Theorie des Nombres et Automates>, CIRM, Marseille, France, May 24-8, 1993;

[34] Debra Austin, "Smarandache Function featured" in <Honeywell Pride>, Phoenix, Arizona, June 22, 1993, 8;

[37] Ian Parberry, Editor of <SIGACT News>, Denton, Texas, Letter to R. Muller (about computing the Smarandache Function), July 19, 1993;

[38] G. Fernandez, Paradise Valley Community College, "Smarandache Function as a Screen for the Prime Numbers", abstract for the Cryptography and Computational Number Theory Conference, North Dakota State University, Fargo, ND, July 26-30, 1993;

[39] T. Yau, "Teaching the Smarandache Function to the American Competition Students", abstract for <Mathematics Seminar>, 1993; and the American Mathematical Society Meetings, Cincinnati, Ohio, January 14, 1994;

[40] J. Rodriguez, Sonora, Mexico, Two open problems concerning the Smarandache Function (unpublished), August 1993;

[43] Dan Brown, Account Executive, Wolfram Research, Inc., Champaign, IL, Letter to T.Yau (about setting up the Smarandache Function on the computing using Mathematica software), August 17, 1993;

[44] Constantin Dumitrescu, "A brief History of the Smarandache Function" (former version), abstract for the Nineteenth International Congress of the History of Science, Zaragoza, Spain, August 21-9, 1993;

[45] Florin Vasiliu, "Florentin Smarandache, le poète du point sur le 7", étude introductive au volume trilingue des poèmes haiku-s <Clopotul Tăcerii / La Cloche du Silence /
Silence's Bell>, par Florentin Smarandache, Editura Haiku, Bucharest, translator Rodica Ștefănescu, Fall 1993, 7-8 & 121-150;

and "Literatura paradoxistă in-creată de Smarandache", in <Jurnalul de Dolj>, Director Sebastian Domoiată, Craiova, No. 38, 1-7 November, 1993;

[47] G. Vasile, "Apocalipsul ca formă de guvernare", in <Baricada>, Nr. 37 (192), 24, Bucharest, 14 september, 1993;

[49] Pål Crønå, Norway, Submitted theoretical results on both problems (0) & (V) from [13], to Mike Mudge, Summer 1993;

[50] Henry Ibstedt, Broby, Sweden, completed a great work on the problems (0) to (V), from [13], and won the <Personal Computer World>'s award (concerning some open problems related to the Smarandache Function) od August 1993;

[51] Dumitru Acu, Universitatea din Sibiu, Catedra de Matematică, România, Scrisoarea din 29.08.1993;

[52] Francisco Belot Rosado, Valladolid, Spain, Letra del 02.09.1993;

[53] Dr. Petra Dini, Université de Montréal, Québec, e-mail du 23-Sep-1993;

[54] Ken Tauscher, Sydney, Australia, Solved problem: To find the best bond for the Smarandache Function (unpublished), September, 1993;

[56] M. Costezea, Bordeaux, France, Généralisation du problème 1075 de l'<Ellemente der Mathematik>' (unpublished), October 1993;
96
[68] P. Melendez, Belo Horizonte, Brazil, respectively T. Martin, Phoenix, Arizona, USA,
"Problem 26.5" [questions (a), respectively (b) and (c)], in <Mathematical Spectrum>,
Sheffield, UK, Vol. 26, No. 2, 56, 1993;

[69] Jim Duncan, "Algorithm in Lattice C to generate S(n)", <Smarandache Function

[70] Jim Duncan, "Monotonic Increasing and Decreasing Sequences of S(n)", <Smarandache

[71] Jim Duncan, "On the Conjecture D(k)(1) = 1 or 0 for k ≥ 2", <Smarandache Function

[72] John McCarthy, "A Simple Algorithm to Calculate S(n)", <Smarandache Function

33, December 1993;

[74] Pál Grőnas, "A Proof of the Non-existence of "Samma"", <Smarandache Function

[75] John Sutton, "A BASIC PROCedure to calculate S(p')", <Smarandache Function

[76] Henry Ibstedt, "The Florentin Smarandache Function S(n) - programs, tables, graphs,
1993;

[77] Veronica Balaj, Interview for the Radio Timișoara, November 1993, published in
<Abracadabra>, Salinas, CA, Anul II, Nr. 15, 6-7, January 1994;

[78] Gheorghe Stroe, Postface for <Fugit ... / jurnal de lagăr> (on the forth cover), Ed.
Tempus, Bucharest, 1994;

[79] Peter Lucaci, "Un membru de valoare in Arizona", in <Ametrista>, Cleveland, Ohio,
Anul 88, Vol. 88, No. 1, p. 6, January 20, 1994;
[80] Debra Austin, "New Smarandache journal issued", in <Honeywell>, Phoenix, Year 7, No. 1, p. 4, January 26, 1994;
[82] Dr. Nicolae Radescu, Department of Mathematics, University of Craiova, "Teoria Numerelor", 1994;
[84] Th. Marcarov, "Fugit ... / jurnal de lagăr", in <România liberă>, Bucharest, March 11, 1994;
[88] Ion Soare, "Valori spirituale văzute peste hotare", in <Revista Valea>, Rm. Valea, Anul III, Nr. 2(33), February 1994;
[89] Ștefan Smârăndoiu, "Miscellaneous", in <Pan Matematica>, Rm. Valea, Vol. 1, Nr. 1, 31;
[90] Thomas Martin, Problem L14, in <Pan Matematica>, Rm. Valea, Vol. 1, Nr. 1, 22;
[92] Ion Prodanescu, Problem PP 22, in <Octogon>, Vol. 2, No. 1, 31;
Dr. C. Dumitrescu, "La Fonction de Smarandache - une nouvelle dans la théorie des nombres", Congres International <Henry-Poincaré>, Université de Nancy 2, France, 14-18 Mai, 1994;

C. Dumitrescu, "La Fonction de Smarandache - une nouvelle fonction dans la théorie des nombres", Congres International <Henry-Poincaré>, Université de Nancy 2, France, 14-18 Mai, 1994;

C. Dumitrescu, "A brief history of the <Smarandache Function>", republished in <New Wave>, 34, 7-8, Summer 1994, Bluffton College, Ohio; Editor Teresa Pereira;

C. Dumitrescu, "A brief history of the <Smarandache Function>", republished in <Octogon>, Braşov, Vol. 2, No. 1, 15-6, April 1994; Editor Mihaly Bencze;

Magda Iancu, "Se întoarce acasă americanul / Florentin Smarandache", in <Curentul de Vâlcea>, Rm. Vâlcea, June 4, 1994;

I.M. Radu, Bucharest, Unsolved Problem (unpublished);

W.A. Rose, University of Cambridge, (and Gregory Economides, University of Newcastle upon Tyne Medical School, England), Solution to Problem 26.5 [(a), (b), (c)], in <Mathematical Spectrum>, U.K., Vol. 26, No. 4, 124-5;

Carol Moore, Arizona State University Library, Letter to C. Dumitrescu and V. Seleacu concerning the Smarandache Function Archives, April 20, 1994;

T. Yau, "Teaching the Smarandache Function to the American Competition Students", abstract, Department of Mathematics, University of Oregon, 1994;

George Fernandez, Paradise Valley Community College, "An inequality concerning the Smarandache Function", to the International Congress of Mathematicians (ICM 94), Zürich, 3-11 August 1994;

[107] Paula Shanks, <Mathematical Reviews>, Letter to R. Muller, December 6, 1993;

[111] Geo Stroe, postface for "Fugit ... jurnal de lagăr", cover IV, Ed. Tempus, Bucharest, 1994;

[114] Pål Grønås, "The Solution of the diophantine equation \(\sigma_s(n) = n(\Omega) \)", <Smarandache Function Journal>, Vol. 4-5, No. 1, pp. 14-6, September 1994;

and Harald Fripertinger (Graz, Austria), Walter Janous (Innsbruck, Austria), Hans Irminger (Wetzikon, CH), Joachim Klose (Bonn), Hansjürg Ladrach (Aarwangen, CH), Pieter Moree (Princeton, USA), Andreas Muller (Altendorf, CH), Werner Raffke (Vechta, Germany), Hans Schneider (Freiburg i. Br.), H.-J. Seiffert (Berlin), Michael Vowe (Therwil, CH) solved the problem either;

also in <Literatorial>, Bucharest, Nr. 42 (159), 14-21 October 1994, p. 6;

[120] Khalid Khan, London School of Economics, "Letter to the Editor / The Smarandache function", in <Mathematical spectrum>, Vol. 27, No. 1, 1994/5, 20-1;

[121] Pál Grönnás, Stjordal, Norway, "Letter to the Editor / The Smarandache function", in <Mathematical Spectrum>, Vol. 27, No. 1, 1994/5, 21;

[122] Khalid Khan, London School of Economics, Solution to Problem 26.8, in <Mathematical Spectrum>, Vol. 27, No. 1, 1994/5, 22;

[125] Dumitru Ichim, Cronici, in <Cuvantul Românesc>, Hamilton, Ontario, Canada, Anul 20, Nr. 221, November 1994, p. 12;

[127] Pr. R. Halleux, rédacteur en chef, <Archives Internationales d'Histoire des Sciences>, Université de Liége, Belgique, Lettre vers R. Muller, le 14 novembre 1994;

[128] Marian Mirescu, "Catedra1a Funcţiei Smarandache" (drawing), in <Abracadabra>, Salinas, CA, December 1994, p. 20;

[129] A. D. Rachieru, "Avalanşa Smarandache", in <Banatul>, Timişoara, Nr. 4, 1994;

 reviewed in <Mathematical Reviews>, Ann Arbor, 94m: 11005, 11-06;

[134] Dr. Dumitru Acu, University of Sibiu, "Funcţia Smarandache ...", <Abracadabra>, Salinas, CA, January 1995, No. 27, Anul III, p. 20;

[135] Lucian Taşescu, "... funcţia Smarandache...", in <Abracadabra>, Salinas, CA, January 1995, No. 27, Anul III, p. 20;

[136] Constantin M. Popa, "Funcţia...", in <Abracadabra>, Salinas, CA, January 1995, No. 27, Anul III, p. 20;

"SMARANDACHE NUMBERS": $S(n)$, for $n = 1, 2, 3, \ldots$, [M043], (the values of the Smarandache Function),

and

"SMARANDACHE QUOTIENTS": for each integer $n > 0$, find the smallest k such that nk is a factorial, i.e. $S(n)/n$, for $n = 1, 2, 3, \ldots$;

and in the newest electronic version of the encyclopedia there are some other notions:

"SMARANDACHE DOUBLE FACTORIALS", "SMARANDACHE SQUARE BASE", "SMARANDACHE CUBIC BASE", "SMARANDACHE PRIME BASE", "SMARANDACHE SYMMETRIC SEQUENCE", "SMARANDACHE CONSECUTIVE SEQUENCE", "SMARANDACHE DESCRIPTIVE SEQUENCE", "SMARANDACHE MIRROR SEQUENCE", "SMARANDACHE PERMUTATION SEQUENCE", "SMARANDACHE REVERSE SEQUENCE", "SMARANDACHE CONSECUTIVE SIEVE";

also online: SUPERSEEKER@RESEARCH.ATT.COM (by N.J.A. Sloane, S. Plouffe, B. Salvy, AT&T Bell Laboratories, Murray Hill, New Jersey 07974, USA)

presented as:

"SMARANDACHE NUMBERS": $S(n)$, for $n = 1, 2, 3, \ldots$, [M043], (the values of the Smarandache Function),

and

"SMARANDACHE QUOTIENTS": for each integer $n > 0$, find the smallest k such that nk is a factorial, i.e. $S(n)/n$, for $n = 1, 2, 3, \ldots$;

and in the newest electronic version of the encyclopedia there are some other notions:

"SMARANDACHE DOUBLE FACTORIALS", "SMARANDACHE SQUARE BASE", "SMARANDACHE CUBIC BASE", "SMARANDACHE PRIME BASE", "SMARANDACHE SYMMETRIC SEQUENCE", "SMARANDACHE CONSECUTIVE SEQUENCE", "SMARANDACHE DESCRIPTIVE SEQUENCE", "SMARANDACHE MIRROR SEQUENCE", "SMARANDACHE PERMUTATION SEQUENCE", "SMARANDACHE REVERSE SEQUENCE", "SMARANDACHE CONSECUTIVE SIEVE";

[141] Editors of <Mathematical Review of the book "Unsolved Problems related to Smarandache Function" by F.Smarandache, edited by R.Muller, 94m: 11005;

[142] Jean-Marie De Koninck, Quebec, review of the paper "A function in the number theory" by F.Smarandache, in <Mathematical Reviews>, 94m: 11007, p. 6940;

[143] Jean-Marie De Koninck, Quebec, review of the paper "Some linear equations involving a function in the number theory" of F.Smarandache, in <Mathematical Reviews>, 94m: 11008, p. 6940;
Annel Mercier, review of the paper "An infinity of unsolved problems concerning a function in the number theory" of F. Smarandache, in Mathematical Reviews, 94m: 11010, p. 6940;

Armel Mercier, review of the paper "Solving problems by using a function in the number theory" of F. Smarandache, Mathematical Reviews, 94m: 11011, p. 6941;

I.M. Radu, Bucharest, Letter to the Editor ("The Smarandache function"), in Mathematical Spectrum, UK, Vol. 27, No. 2, p. 43, 1994/5;

Paul Erdos, Hungarian Academy of Sciences, Letter to the Editor ("The Smarandache function inter alia"), in Mathematical Spectrum, Vol. 27, No. 2, pp. 43-4, 1994/5;

Dr. C. Dumitrescu, "Funcția Smarandache", in Foia Matematică, Chișinău, Moldova, No. 3, p. 43, 1995;

D.W. Sharpe, A. Stuparu, Problem 1, in Foia Matematică, Chișinău, Moldova, No. 3, p. 43, 1995;

Pedro Melendez, Problem 2, in Foia Matematică, Chișinău, Moldova, No. 3, p. 43, 1995;

Ken Tauscher, Problem 3, in Foia Matematică, Chișinău, Moldova, No. 3, p. 43, 1995;

Thomas Yau, Problem 4, in Foia Matematică, Chișinău, Moldova, No. 3, p. 43, 1995;

Lohon O., Buz, Maria, University of Craiova Library, Letter No. 499, July 07, 1995;

Growney JoAnne, Bloomsburg University, PA, "The most Humanistic Mathematician: Florentin Smarandache"
and Larry Seagull, "Poem in Arithmetic Space", in the Humanistic Mathematics Network, Harvey Mudd College, Claremont, CA, October 1995, # 12, p. 38 and p. 38-40 respectively;

[157] Seagull Larry, Glendale Community College, CA, August 1995, Anul III, No. 34, pp. 20-1;

[158] Moore Carol (Library Specialist), Wurrburger Marilyn (Head of Special Collections), Abstract of "The Florentin Smarandache papers" special collection, Call #SM SC SM-15, at Arizona State university, Tempe, AZ 85287-1006, Box 871006, Tel. (602) 965-6515, E-mail: iclmc@asuvm.intre.asu.edu, USA;

[169] Burton Emil, <Tudor Arghezi> College, Craiova, Letter of May 18, 1995;

[171] Sakharova V., <Referativnyi Zhurnal>, Moscow, Russia, Letter to R. Muller, July 20, 1995, No. 64-645/11;

[172] Dumitrescu C., Seleacu V., editors, "Some notions and questions in the number theory", Erhus Univ. Press, Glendale, Arizona, 1994;

[173] Erdos Paul, Hungarian Academy of Sciences, Budapest, Letter to T. Yan, June 18, 1995;

[174] Lungu Ai., Bonn, Germany, Letter of April 04, 1995;

[189] L. Seagull, "An important formula to calculate the number of primes less than x", <Smarandache Function Journal>, Vol. 5-6, No. 1, p. 72, June 1995;

[190] Tomikawa Hisaya, Magalog Project Group, Tokyo, Japan, abstract of the <Smarandache Notions> journal, August 1995;

[193] Sloane N.J.A., AT&T Bell Labs, Murray Hill, New Jersey, USA, njas@research.att.com, E-mails to R. Muller, February - August 1995;

[195] Ecker Michael W., editor of <Recreational & Educational Computing>, Clarks Summit, PA, E-mail of 22 - SEP - 1995;

[196] Ecker Michael W., Editor of <Recreational & Educational Computing>, Clarks Summit, PA, Two E-mails of 26 - SEP - 1995;

[200] Mudge Michael Richard, "A paradoxal mathematician, his function, paradoxist geometry, and class of paradoxes", manuscript, October 7, 1995;

[201] Mudge Michael Richard, "A paradoxal mathematician, his function, paradoxist geometry, and class of paradoxes", manuscript, October 7, 1995;

[209] Ashbacher Charles, Letter to R.Muller, October 26, 1995;

[211] Sandor Jozsef, Forteni Harghita, "On certain inequalities involving the Smarandache function", unpublished article;

[214] 'First International Conference on Smarandache Type Notions in Number Theory', August 21-24, 1997,

organizers: C.Dumitrescu & V.Seleacu, Dep. of Math., Univ. of Craiova, Romania

[224] Ibstedt Henry, "Base Solution (The Smarandache Function)", Broby, Sweden, November 30, 1995, manuscript;

[225] Faure H., Centre de Mathematique et d'Informatique, Universite de Provence, Marseille, France, Letter to C. Dumitrescu, September 19, 1995;

[228] Rodriguez J., Sonora, Mexico, Problem 5, <Foia Matematică>, Chișinău, Column of <Problems with the Smarandache Function> edited by V. Suceveanu, No. 4, p. 37, 1995;

[229] Melendez P., Belo Horizonte, Brazil, Problem 6, <Foia Matematică>, Chișinău, Column of <Problems with the Smarandache Function> edited by V. Suceveanu, No. 4, p. 37, 1995;
[230] Yau t., Prima Community College, Tucson, Ar, Problem 7, <Foaie Matematică>, Chișinău, Column of <Problems with the Smarandache Function> edited by V. Suceveanu, No. 4, p. 37, 1995;

[231] Seagull L., Glendale Community College, USA, Problem 9, <Foaie Matematică>, Chișinău, Column of <Problems with the Smarandache Function> edited by V. Suceveanu, No. 6, p. 40, 1995;

[233] Crasvu Dumițru, "Florentin Smarandache sau încăpățănaarea unui exilat", in <Vatra>, Tg. Mureș, Anul XXV, Nr. 25, p. 92, October 1995;

[235] Kashihara Kenichiro, Tokyo, Japonia, E-mail to R. Muller, December 1995 - January 1996;

[236] Strazzabosco Barbara, secretary to Prof. B. Wegner, editor, <Zentralblatt fur Mathematik>, Berlin, Letter to R. Muller, October 13, 1995;

111
THE FUNCTION THAT YOU BEAR ITS NAME!

This quotation is from a Letter of September 24, 1993, by Constantin M. Popa, an essayist of the Paradoxist Literary Movement [a movement stating that <the sense has a non-sense and, reciprocally, the non-sense has a sense too>], referring to the <Smarandache> Function!

It's a comic sentence, somehow opposite to the Swiss-French mathematician Jacques Sturm (1803-55)'s lectures at l'Ecole Polytechnique, where, teaching students about the <Sturm> Theorem, Jacques said:

"Le théorème dont j'ai l'honneur de porter le nom" (the theorem that I am honored of to bear my name), i.e.: let \(p(x)\) be a real polynomial, \(p_n = p\), and each \(p_i = -r_i\), where \(r_i\) are the successive remainders computed by Euclidean Algorithm for the highest common factor of \(p\) and \(p'\) (this is called the Sturm Sequence);

if \(p\) is non-zero at the end points of an interval, then the number of roots in that interval, counting multiplicity, is the difference between the number of sign changes of the Sturm Sequence at the two end points.

Maybe it was accidentally that just this of my 40 math papers focused the attention of numbertheorists, a paper written when I was a high school student in 1978, "A function in the number theory":

\[S(n) \text{ is defined as the smallest integer such that } S(n)! \text{ is divisible by } n. \]

Some open problems and conjectures are related to it. For examples:
1. The equation \(S(n) = S(n + 1)\) has no solution.
2. The function verifies the Fibonacci relationship

\[S(n) + S(n + 1) = S(n + 2) \]

for infinitely many positive integers \(n\).

{Some progress has been got, verifying by computer programs these previous assertions for \(n\) up to 100,000; but it seems to be still hard to find an analytic method for proving them.}

I attached some reference works published by various journals about "the function that I bear its name", and I'll be glad to hear from you.

[For Professor Pauul Hartung and his students, the Number Theory Class, Department of Mathematics ans Computer Science, Bloomsburg University, PA; November 13th, 1995, time: 4:00-5:00 p.m.]
Abstract. In this paper we extended the Smarandache function from the set N^* of positive integers to the set Q of rationals.

Using the inversion formula this function is also regarded as a generating function.

We make in evidence a procedure to construct (numerical) function starting from a given function in two particular cases. Also connections between the Smarandache function and Euler's totient function as with Riemann's zeta function are established.

1. Introduction

The Smarandache function [13] is a numerical function $S : N^* \to N^*$ defined by

$S(n) = \min\{m \mid m! \text{ is divisible by } n\}.$

From the definition it results that if

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k},$$

(1)

is the decomposition of n into primes then

$$S(n) = \max S(p_i^{e_i})$$

(2)

and moreover, if $[n_1, n_2]$ is the smallest common multiple of n_1 and n_2 then

$$S([n_1, n_2]) = \max\{S(n_1), S(n_2)\}$$

(3)

The Smarandache function characterizes the prime in the sense that a positive integer $p \geq 4$ is prime if and only if it is a fixed point of S.

From Legendre's formula:

$$n! = \prod_p \left[\sum_{k=1}^{[\frac{n}{p^k}]} \right]$$

(4)

it results [2] that if $a_n(p) = \frac{p^n - 1}{p - 1}$ and $b_n(p) = p^n$ then considering the standard numerical scale

$$[p] : b_1(p), b_2(p), \ldots, b_n(p), \ldots$$

and the generalized scale

\[[p] : \omega_0(p), \omega_1(p), \ldots, \omega_r(p), \ldots \]

we have

\[S(p^k) = p^{(\omega_0)_0} \]

(5)

that is \(S(p^k) \) is calculated multiplying by \(p \) the number obtained writing the exponent \(\alpha \) in the generalized scale \([p]\) and "reading" it in the standard scale \((p)\).

Let us observe that the calculus in the generalized scale \([p]\) is essentially different from the calculus in the usual scale \((p)\), because the usual relationship \(\alpha_{a+1}(p) = p\alpha_a(p) \) is modified in \(\alpha_{a+1}(p) = \omega_a(p) + 1 \) (for more details see [2]).

In the following let us note \(S_p(\alpha) = S(p^\alpha) \). In [3] it is proved that

\[S_p(\alpha) = (p-1)\alpha + \sigma_\alpha(\alpha) \]

(6)

where \(\sigma_\alpha(\alpha) \) is the sum of the digits of \(\alpha \) written in the scale \([p]\), and also that

\[S_p(\alpha) = \frac{(p-1)^2}{p}(E_p(\alpha) + \alpha) + \frac{p-1}{p}\sigma_\alpha(\alpha) + \sigma_\beta(\alpha) \]

(7)

where \(\sigma_\alpha(\alpha) \) is the sum of the digits of \(\alpha \) written in the standard scale \((p)\) and \(E_p(\alpha) \) is the exponent of \(p \) in the decomposition into primes of \(\alpha \). From (4) it results that \(E_p(\alpha) = \sum_{\text{prime } p} \left\lfloor \frac{\alpha}{p} \right\rfloor \)

where \([h] \) is the integral part of \(h \). It is also said [11] that

\[E_p(\alpha) = \frac{\alpha - \sigma_\alpha(\alpha)}{p} \]

(8)

We can observe that this equality may be written as

\[E_p(\alpha) = \left(\left\lfloor \frac{\alpha}{p} \right\rfloor \right) \]

that is the exponent of \(p \) in the decomposition into primes of \(\alpha \) is obtained writing the integral part of \(\alpha/p \) in the base \((p)\) and reading in the scale \([p]\).

Finally we note that in [1] it is proved that

\[S_p(\alpha) = p \left(\alpha - \left\lfloor \frac{\alpha}{p} \right\rfloor + \left\lfloor \frac{\sigma_\beta(\alpha)}{p} \right\rfloor \right) \]

(9)

From the definition of \(S \) it results that \(S_p(\alpha) = \eta \left(\left\lfloor \frac{\alpha}{p} \right\rfloor \right) = \alpha - \alpha_p(\alpha) \) (\(\alpha_p \) is the remainder of \(\alpha \) with respect to the modulus \(m \)) and also that

\[E_p(S_p(\alpha)) \geq \alpha; \ E_p(S_p(\alpha) - 1) < \alpha \]

(10)
\[
\frac{S_p(a) - \sigma_0(S_p(a))}{p-1} \geq \alpha; \quad \frac{S_p(a) - 1 - \sigma_0(S_p(a) - 1)}{p-1} < \alpha.
\]

Using (6) we obtain that \(S_p(a)\) is the unique solution of the system

\[
\sigma_0(x) \leq \sigma_0(a) \leq \sigma_0(x - 1) + 1
\]

(11)

2. Connections with classical numerical functions

It is said that Riemann's zeta function is

\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.
\]

We may establish a connection between the function \(S_p\) and Riemann's function as follows:

Proposition 2.1. If \(n = \prod_{i=1}^{\infty} p_i^{\nu_i}\) is the decomposition into primes of the positive integer \(n\) then

\[
\frac{\zeta(s-1)}{\zeta(s)} = \sum_{a=1}^{\infty} \frac{\varphi(n)}{n^s}.
\]

Proof. We first establish a connection with Euler's totient function \(\varphi\). Let us observe that, for \(a \geq 2, p^{\nu-1} = (p-1)\nu-1(p) + 1\), so \(\sigma_0(p^{\nu-1}) = p\). Then by means of (6) it results (for \(a \geq 2\)) that

\[
S_p(p^{\nu-1}) = (p-1)p^{\nu-1} + \sigma_0(p^{\nu-1}) = \varphi(p^\nu) + p
\]

Using the well known relation between \(\varphi\) and \(\zeta\) given by

\[
\frac{\zeta(s-1)}{\zeta(s)} = \sum_{a=1}^{\infty} \frac{\varphi(n)}{n^s},
\]

and (12) it results the required relation.

Let us remark also that, if \(n\) is given by (1), then

\[
\varphi(n) = \prod_{i=1}^{\infty} \varphi(p_i^{\nu_i}) = \prod_{i=1}^{\infty} (S_p(p_i^{\nu_i-1}) - p_i)
\]

and

\[
S(n) = \max(\varphi(p^{\nu+1}) + p_i)
\]

115
Now it is said that \(1 + \psi(p_i) + \ldots + \psi(p_i^{a_i}) = p_i^{a_i} \) and then
\[
\sum_{k=1}^{a_i-1} S_{p_i}(p_i^k) - (a_i - 1)p_i = p_i^{a_i}.
\]
Consequently we may write
\[S(n) = \max(S \sum_{k=0}^{a_i-1} S_{p_i}(p_i^k) - (a_i - 1)p_i)\]
To establish a connection with Mangolt's function let us note \(\Lambda = \min, V = \max, \leq \) the greatest common divisor and \(\leq \) the smallest common multiple.
We shall write also \(n_1 \leq n_2 = (n_1, n_2) \) and \(n_1 \leq n_2 = [n_1, n_2] \).

The Smarandache function \(S \) may be regarded as function from the lattice \(\mathcal{L}_d = (N^*, \wedge, V) \) into lattice \(\mathcal{L} = (N^*, \Lambda, V) \) so that:
\[S(\vee n_i) = \bigvee_{i \in \mathbb{N}} S(n_i). \tag{12}\]
Of course \(S \) is also order preserving in the sense that \(n_1 \leq n_2 \rightarrow S(n_1) < S(n_2) \).

It is said \cite{10} that if \((V, \Lambda, V)\) is a finite lattice, \(V = \{x_1, x_2, \ldots, x_n\} \) with the induced order \(\leq \), then for every function \(f : V \rightarrow N \) the associated generating function is defined by
\[F(x) = \sum_{y \in V} f(y) \tag{13}\]
Mangolt's function \(\Lambda \) is
\[\Lambda(n) = \begin{cases} \ln p & \text{if } n = p^i \\ 0 & \text{otherwise} \end{cases} \]
The generating function of \(\Lambda \) in the lattice \(\mathcal{L}_d \) is
\[F^d(n) = \sum_{k \leq n} \Lambda(k) = \ln n \tag{14}\]
The last equality follows from the fact that
\[k \leq n \iff k \backslash n = k \iff k \mid n (k \text{ divides } n) \]
The generating function of \(\Lambda \) in the lattice \(\mathcal{L} \) is the function \(\Psi \)
\[F(n) = \sum_{k \leq n} \Lambda(k) = \Psi(n) = \ln[1, 2, \ldots, n] \tag{15}\]
Then we have the diagram from below.

We observe that the definition of S is in a closed connection with the equalities (1.1) and (2.2) in this diagram. If we note the Mangolt's function by f then the relations

$$[1, 2, \ldots, n] = e^{f(n)} = e^{f(1)}e^{f(2)} \ldots e^{f(n)} = e^{\Psi(n)}$$

$$n! = e^{F(n)} = e^{F(1)}e^{F(2)} \ldots e^{F(n)}$$

together with the definition of S suggest us to consider numerical functions of the from:

$$s(n) = \min\{m/n \leq d [1, 2, \ldots, m]\}$$

(10)

where will be detailed in section 5.
3. The Smarandache function as generating function

Let V be a partial order set. A function $f : V \to \mathbb{N}$ may be obtained from its generating function F, defined as in (15), by the inversion formula

$$f(x) = \sum_{z \in V} F(z) \mu(x, z)$$

(17)

where μ is the Mönch function on V, that is $\mu : V \times V \to \mathbb{N}$ satisfies:

$$\begin{align*}
\mu(x, y) &= 0 \quad \text{if } x \nless y \\
\mu(x, x) &= 1 \\
\sum_{z \leq x} \mu(x, z) &= 0 \text{ if } x < z
\end{align*}$$

It is said [10] that if $V = \{1, 2, \ldots, n\}$ then for (V, \leq) we have $\mu(x, y) = \mu \left(\frac{y}{x} \right)$, where $\mu(k)$ is the numerical Mönch function $\mu(1) = 1, \mu(k) = (-1)^i$ if $k = p_1 p_2 \ldots p_i$ and $\mu(k) = 0$ if k is divisible by the square of an integer $d > 1$.

If f is the Smarandache function it results

$$F_f(n) = \sum_{d|n} S(n).$$

Until now it is not known a closed formula for F_f, but in [8] it is proved that

(i) $F_f(n) = n$ if and only if n is prime, $n = 9, n = 16$ or $n = 24$.

(ii) $F_f(n) > n$ if and only if $n \in \{8, 12, 18, 20\}$ or $n = 2p$ with p a prime (hence it results $F_f(n) \leq n + 4$ for every positive integer n) and in [3] it is showed that

(iii) $F_f(p_1 p_2 \ldots p_i) = \sum_{i=1}^{i} 2^{i-1} p_i$.

In this section we shall regard the Smarandache function as a generating function that is using the inversion formula we shall construct the function s so that

$$s(n) = \sum_{d|n} \mu(d) S \left(\frac{n}{d} \right).$$

(18)

If n is given by (1) it results that

$$s(n) = \sum_{p_1 p_2 \ldots p_i} (-1)^i S \left(\frac{n}{p_1 p_2 \ldots p_i} \right).$$

Let us consider $S(n) = \max S(p^n) = S(p_1^{n_1})$. We distinguish the following cases:
(a) if \(S(p_i^{n_i}) \geq S(p_j^{n_j}) \) for all \(i \neq i_0 \) then we observe that the divisors \(d \) for which \(\mu(d) = 0 \) are of the form \(d = 1 \) or \(d = p_i p_j \ldots p_k \). A divisor of the last form may contain \(p_i \) or not, so using (2) it results

\[
s(n) = \sum_{i} S(p_i^{n_i})(1-C_{i-1}^1+\ldots+(-1)^{i-1}C_{i-1}^{i-1})+S(p_m^{n_m-1})(-1+C_{m-1}^1+\ldots+(-1)^{m-1}C_{m-1}^{m-1})
\]

that is \(s(n) = 0 \) if \(t \geq 2 \) or \(S(p_i^{n_i}) \) and \(s(n) = p_i \) otherwise.

(b) if there exists \(j_0 \) so that \(S(p_j^{n_j-1}) < S(p_j^{n_j}) \) and

\[
S(p_j^{n_j-1}) \geq S(p_j^{n_j}) \quad \text{for} \quad i \neq i_0, j_0
\]

we also suppose that \(S(p_i^{n_i}) = \max\{S(p_i^{n_i})/S(p_i^{n_i-1}) < S(p_i^{n_i})\} \).

Then

\[
s(n) = S(p_j^{n_j})(1-C_{j-1}^1+\ldots+(-1)^{j-1}C_{j-1}^{j-1})+\]

\[
+ S(p_j^{n_j-1})(-1+C_{j-1}^1+\ldots+(-1)^{j-1}C_{j-1}^{j-1})+\]

\[
+ S(p_j^{n_j})(1-C_{j-1}^1+\ldots+(-1)^{j-1}C_{j-1}^{j-1})
\]

so \(s(n) = 0 \) if \(t \geq 3 \) or \(S(p_i^{n_i-1}) = S(p_i^{n_i}) \) and \(s(n) = -p_i \) otherwise.

Consequently, to obtain \(s(n) \) we construct as above a maximal sequence \(i_1, i_2, \ldots, i_k \), so that \(S(n) = S(p_{i_1}^{n_1}), S(p_{i_2}^{n_2}) \ldots, S(p_{i_k}^{n_k}) < S(p_{i_k}^{n_k}) \) and it results that \(s(n) = 0 \) if \(t \geq k+1 \) or \(S(p_{i_k}^{n_k}) = S(p_{i_k}^{n_k-1}) \) and \(s(n) = (-1)^{k+1} \) otherwise.

Let us observe that

\[
S(t^\alpha) = S(t^\alpha-1) \Leftrightarrow (p-1)\alpha + \sigma_\alpha(a) = (p-1)(\alpha-1) + \sigma_\alpha(a-1) \Leftrightarrow \sigma_\alpha(a-1) - \sigma_\alpha(a) = p-1.
\]

Otherwise we have \(\sigma_\alpha(a) - \sigma_\alpha(a-1) = -1 \). So we may write

\[
s(n) = \left\{ \begin{array}{ll}
0 & \text{if } t \geq k+1 \text{ or } \sigma_\alpha(a_1-1) - \sigma_\alpha(a_1) = p-1 \\
(-1)^{k+1}p_k & \text{otherwise}
\end{array} \right.
\]

Application. It is said [10] that \((V , \Lambda , V)\) is a finite lattice, with the induced order \(\leq \) and for the function \(f : V \to N \) we consider the generating function \(F \) defined as in (15) then if \(g_{ij} = F(x_i, x_j) \) it results det\(g_{ij} = f(x_1) \cdot f(x_2) \cdots f(x_n) \). In [10] it is shown also that this assertion may be generalized for partial ordered set by defining

\[
g_{ij} = \sum_{x \leq x_i \atop x \leq x_j} f(x).
\]
Using these results, if we denote by \((i, j)\) the greatest common divisor of \(i\) and \(j\), and
\[\Delta(r) = \det(S((i, j)))\] for \(i, j = 1, r\) then \(\Delta(r) = a(1) \cdot a(2) \cdot \ldots \cdot a(r)\). That is for a sufficient large \(r\) we have \(\Delta(r) = 0\) (in fact for \(r \geq 8\)). Moreover, for every \(n\) there exists a sufficient large \(r\) so that \(\Delta(n, r) = \det(S(n + i, n + j)) = 0\), for \(i, j = 1, r\) because \(\Delta(n, r) = \prod_{m}|S(n + 1)|\).

4. The extension of \(S\) to the rational numbers

To obtain this extension we shall define first a dual function of the Smarandache function. In [4] and [6] a duality principle is used to obtain, starting from a given lattice on the unit interval, other lattices on the same set. The results are used to propose a definition of bitopological spaces and to introduce a new point of view for studying the fuzzy sets. In [5] the method to obtain new lattices on the unit interval is generalised for an arbitrary lattice.

In the following we adopt a method from [5] to construct all the functions tied in a certain sense by duality to the Smarandache function.

Let us observe that if we note \(R_d(n) = \{m/n \leq d \cdot m!\}\), \(L_d(n) = \{m/m! \leq d \cdot n\}\), \(R(n) = \{m/n \leq m!\}\), \(L(n) = \{m/m! \leq n\}\) then we may say that the function \(S\) is defined by the triplet \((\Lambda, \epsilon, R_d)\), because \(S(n) = \Lambda(m/m! \in R_d(n))\). Now we may investigate all the functions defined by means of a triplet \((a, b, c)\), where \(a\) is one of the symbols \(\vee, \Lambda, \Lambda, \vee\), \(b\) is one of the symbols \(\epsilon\) and \(\delta\), and \(c\) is one of the sets \(R_d(n), L_d(n), R(n), L(n)\) defined above.

Not all of these functions are non-trivial. As we have already seen the triplet \((\Lambda, \epsilon, R_d)\) defined the function \(S\) is defined by \((\Lambda, \epsilon, R_d)\), but the triplet \((\Lambda, \epsilon, L_d)\) defines the function \(S_d(n) = \Lambda(m/m! \leq d \cdot n)\), which is identically one.

Many of the functions obtained by this method are step functions. For instance let \(S_3\) be the function defined by \((\Lambda, \epsilon, R)\). We have \(S_3(n) = \Lambda(m/n \leq m!\) so \(S_3(n) = m\) if only if \(n \in \{(m - 1)! + 1, m!\}\). Let us focus the attention on the function defined by \((\Lambda, \epsilon, L_d)\)

\[S_d(4) = \sqrt{\{m/m! \leq d \cdot n\}}\] (19)

where there is, in a certain sense, the dual of Smarandache function.

Proposition 4.1. The function \(S_4\) satisfies

\[S_d(n_1 \vee n_2) = S_d(n_1) \vee S_d(n_2)\] (20)

so is a morphism from \((\mathbb{N}^*, \vee_d)\) to \((\mathbb{N}^*, \vee)\)
Proof. Let us denote by \(p_1, p_2, \ldots, p_i, \ldots \) the sequence of the prime numbers and let
\[
n_1 = \prod p_i^{a_i}, \quad n_2 = \prod p_i^{b_i}.
\]
The \(n_1 \wedge n_2 = \prod p_i^{\min(a_i, b_i)} \). If \(S_4(n_1 \wedge n_2) = m \), \(S_4(n_1) = m_1 \), for \(i = 1, 2 \) and we suppose \(m_1 \leq m_2 \) then the right hand in (22) is \(m_1 \wedge m_2 = m \). By the definition \(S_4 \) we have \(E_{pi}(m) \leq \min(a_i, b_i) \) for \(i \geq 1 \) and there exists \(j \) so that \(E_{pj}(m+1) > \min(a_i, b_i) \). Then \(a_\ell > E_{pi}(m) \) and \(b_\ell > E_{pi}(m) \) for all \(i \geq 1 \). We also wave \(E_{pi}(m_1) \leq \alpha_\ell \) for \(r = 1, 2 \). In addition there exist \(h \) and \(k \) so that \(E_{pi}(m+1) > \alpha_k, \alpha_k(m+1) > \alpha_k \).

Then \(\min(a_\ell, b_\ell) \geq \min(E_{pi}(m_1), E_{pi}(m_2)) = E_{pi}(m_1) \), because \(m_1 \leq m_2 \), so \(m - 1 \leq m \). If we assume \(m_1 < m \) it results that \(m! \leq n_1 \), so it exists \(h \) that \(E_{pi}(m) > \alpha_k \) and we have the contradiction \(E_{pi}(m) > \min\{a_\ell, b_\ell\} \). Of course \(S_4(2n + 1) = 1 \) and
\[
S_4(n) > 1 \text{ if and only if } n \text{ is even. (21)}
\]

Proposition 4.2. Let \(p_1, p_2, \ldots, p_i, \ldots \) be the sequence of all consecutive primes and
\[
n = p_1^{q_1} \cdot p_2^{q_2} \cdots p_i^{q_i} \cdot q_{i+1}^{r_i} \cdots q_k^{r_k}
\]
the decomposition of \(n \in \mathbb{N}_+ \) into primes such that the first part of the decomposition contains the (eventually) consecutive primes, and let
\[
i_i = \begin{cases}
S(p_i^{q_i}) - 1 & \text{if } E_{pi}(S(p_i^{q_i})) > \alpha_i \\
S(p_i^{q_i}) + q_i - 1 & \text{if } E_{pi}(S(p_i^{q_i})) = \alpha_i
\end{cases}
\]
then \(S_i(n) = \min\{i_1, i_2, \ldots, i_4, p_{i+1} - 1\} \).

Proof. If \(E_{pi}(S(p_i^{q_i})) > \alpha_i \), then from the definition of the function \(S \) results that \(S(p_i^{q_i}) - 1 \) is the greatest positive integer \(m \) much than \(E_{pi}(m) \leq \alpha_i \). Also if \(E_{pi}(S(p_i^{q_i})) = \alpha_i \), then \(S(p_i^{q_i}) + q_i - 1 \) is the greatest integer \(m \) with the property that \(E_{pi}(m) = \alpha_i \).

It results that \(\min\{i_1, i_2, \ldots, i_k, p_{k+1} - 1\} \) is the greatest integer \(m \) much that \(E_{p_{k+1}}(m! \leq \alpha_i) \), for \(i = 1, 2, \ldots, k \).

Proposition 4.3. The function \(S_4 \) satisfies
\[
S_4((n_1 + n_2)) \wedge S_4([n_1, n_2]) = S_4(n_1) \wedge S_4(n_2)
\]
for all positive integers \(n_1 \) and \(n_2 \).
Proof. The equality results using (22) from the fact that \((n_1 + n_2, [n_1, n_2]) = (n_1, n_2)\).

We point out now some morphism properties of the functions defined by a triplet \((a, b, c)\) as above.

Proposition 4.4. (i) The functions \(S_5 : N^* \to N^*, S_5(n) = \vee \{m/m! \leq_d n\}\) satisfies

\[
S_5(n_1 \wedge n_2) = S_5(n_1) \wedge S_5(n_2) = S_5(n_2) \wedge S_5(n_1)
\]

(ii) The function \(S_6 : N^* \to N^*, S_6(n) = \vee \{m/m! \leq_u n\}\) satisfies

\[
S_6(n_1 \vee n_2) = S_6(n_1) \vee S_6(n_2)
\]

(iii) The function \(S_7 : N^* \to N^*, S_7(n) = \vee \{m/m! \leq_d n\}\) satisfies

\[
S_7(n_1 \wedge n_2) = S_7(n_1) \wedge S_7(n_2); S_7(n_1 \vee n_2) = S_7(n_1) \vee S_7(n_2).
\]

Proof. (i) Let \(A = \{a_i/a_i! \leq_d n_1\}, B = \{b_i/b_i! \leq_u n_2\}\) and \(C = \{a_i/a_i! \leq_d n_1 \vee n_2\}\). Then we have \(A \subseteq B \subseteq C\). Indeed, let \(A = \{a_1, a_2, \ldots, a_h\}, B = \{b_1, b_2, \ldots, b_i\}\) so that \(a_i < a_{i+1}\) and \(b_j < b_{j+1}\). Then if \(a_i \leq b_j\), it results that \(a_i \leq b_{j+1}\) for \(i = 1, \ldots, h\), so \(a_{h+1} \leq b_i \leq b_{i+1}\). That minds \(A \subseteq B\). Analogously, if \(b_i \leq a_k\) it results \(B \subseteq A\). Of course we have \(C = A \cup B\) so if \(A \subseteq B\) it results

\[
S_5(n_1 \wedge n_2) = \bigvee_{d \mid d} c_k = \bigvee_{d \mid d} a_i = S_5(n_1) = \min\{S_5(n_1), S_5(n_2)\} = S_5(n_1) \wedge S_5(n_2)
\]

From (25) it results that \(S_5\) is order preserving in \(L_d\) (but not in \(L_u\), because \(m! \leq m! + 1\) but \(S_5(m! + 1) = 1\), because \(m! + 1\) is odd).

(ii) Let us observe that \(S_6(n) = \bigvee \{m/m! \in I, m \leq n\}\) if \(m = \bigvee \{m/m! \in I, m \leq n\}\).

Then \(n \leq_d (a + 1)! \) and \(a + 1 = \bigwedge \{m/m! \leq_u m\}\), so \(S_6(n) = \bigwedge \{m/m! \leq_u m\}\).

Then we have \(S_6(n_1 \vee n_2) = \bigwedge \{m/m! \leq_u (n_1 \vee n_2)\}\), so \(S_6(n_1 \vee n_2) = \bigwedge \{m/m! \leq_u (n_1 \vee n_2)\}\) and

\[
S_6(n_1) \vee S_6(n_2) = \bigwedge \{m/m! \leq_u n_1\} \vee \bigwedge \{m/m! \leq_u n_2\} = \bigwedge \{m/m! \leq_u n_1 \vee n_2\} - \bigwedge \{m/m! \leq_u n_1\} \vee \bigwedge \{m/m! \leq_u n_2\} - \bigwedge \{m/m! \leq_u n_1 \wedge n_2\},
\]

(iii) The relations (27) result from the fact that \(S_7(n) = \bigvee \{1, 2, \ldots, m\}\) if and only if \(n \in [m!, (m! + 1)! - 1]\).

Now we may extend the Smarandache function to the rational numbers. Every positive rational number \(a\) possesses a unique prime decomposition of the form

\[
a = \prod_p p^{\sigma_p}
\]

(26)
with integer exponents \(\alpha_p \), of which only finitely many are nonzero. Multiplication of rational numbers is reduced to addition of their integer exponent systems. As a consequence of this reduction questions concerning divisibility of rational numbers are reduced to questions concerning ordering of the corresponding exponent systems. That is if \(b = \prod_p p^{\beta_p} \) then \(b \) divides \(a \) if and only if \(\beta_p \leq \alpha_p \) for all \(p \). The greatest common divisors \(d \) and the least common multiple \(e \) are given by

\[
d = (a, b, \ldots) = \prod_p p^\min(\alpha_p, \beta_p - \ldots), \quad e = [a, b, \ldots] = \prod_p p^\max(\alpha_p, \beta_p - \ldots)
\]

Furthermore, the least common multiple of nonzero numbers (multiplicatively bounded above) is reduced by the rule

\[
[a, b, \ldots] = \frac{1}{(1/a, 1/b, \ldots)}
\]

to the greatest common divisor of their reciprocals (multiplicatively bounded below).

Of course we may write every positive rational \(a \) under the form \(a = n/n_2 \), with \(n \) and \(n_2 \) positive integers.

Definition 4.5. The extension \(S : Q^*_+ \rightarrow Q^*_+ \) of the Smarandache function is defined by

\[
S\left(\frac{m}{n} \right) = \frac{S(n)}{S(n_m)}
\]

A consequence of this definition is that if \(n_1 \) and \(n_2 \) are positive integers then

\[
S\left(\frac{1}{n_1} \lor \frac{1}{n_2} \right) = S\left(\frac{1}{n_1} \right) \lor S\left(\frac{1}{n_2} \right)
\]

Indeed

\[
S\left(\frac{1}{n_1} \lor \frac{1}{n_2} \right) = S\left(\frac{1}{n_1 \lor n_2} \right) = \frac{1}{S(n_1 \lor n_2)} = \frac{1}{S(n_1) \lor S(n_2)} = \frac{1}{S(n_1)} \lor \frac{1}{S(n_2)} = S\left(\frac{1}{n_1} \right) \lor S\left(\frac{1}{n_2} \right)
\]

and we can immediately deduce that

\[
S\left(\frac{n}{n_1} \lor \frac{m}{n_m} \right) = (S(n) \lor S(m)) \cdot \left(S\left(\frac{1}{n_1} \right) \lor S\left(\frac{1}{n_m} \right) \right)
\]
It results that function \(\tilde{S} \) defined by \(\tilde{S}(a) = \frac{1}{S\left(\frac{1}{a}\right)} \) satisfies
\[
\tilde{S}(n_1 \wedge n_2) = \tilde{S}(n_1) \wedge \tilde{S}(n_2)
\]
and
\[
\tilde{S}\left(\frac{n_1}{m_1} \wedge \frac{n_2}{m_2}\right) = \left(\tilde{S}\left(\frac{n_1}{m_1}\right) \wedge \tilde{S}\left(\frac{n_2}{m_2}\right)\right)
\]
for every positive integers \(n_1 \) and \(n_2 \). Moreover, it results that

\[
\tilde{S}\left(\frac{n_1}{m_1} \wedge \frac{n_2}{m_2}\right) = \left(\tilde{S}\left(\frac{n_1}{m_1}\right) \wedge \tilde{S}\left(\frac{n_2}{m_2}\right)\right)
\]
and of course the restriction of \(\tilde{S} \) to the positive integers is \(S_4 \). The extension of \(\tilde{S} \) to all the rationals is given by \(\tilde{S}(-a) = S(a) \).

5. Numerical functions inspired from the definition of the Smarandache function

We shall use now the equality (21) and the relation (18) to consider numerical functions as the Smarandache function.

We may say that \(m! \) is the product of all positive "smaller" than \(m \) in the lattice \(\mathcal{L} \).

Analogously the product \(p_m \) of all the divisors of \(m \) is the product of all the elements "smaller" than \(m \) in the lattice \(\mathcal{L} \). So we may consider functions of the form

\[
\Theta(n) = \bigwedge\{m | n \geq m \}.
\]

It is said that if \(m = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_r^{a_r} \) then the product of all the divisors of \(m \) is \(p(m) = \sqrt{m^{\tau(m)}} \) where \(\tau(m) = (x_1 + 1)(x_2 + 1) \ldots (x_r + 1) \) is the number of all the divisors of \(m \).

If \(n \) is given as in (1) then \(n \geq p(m) \) if and only if
\[
\begin{align*}
g_1 &= x_1(x_1 + 1)(x_2 + 1) \ldots (x_r + 1) - 2a_1 \geq 0 \\
g_2 &= x_2(x_2 + 1)(x_2 + 1) \ldots (x_r + 1) - 2a_2 \geq 0 \\
g_r &= x_r(x_r + 1)(x_r + 1) \ldots (x_r + 1) - 2a_r \geq 0
\end{align*}
\]
so \(\Theta(n) \) may be obtained solving the problem of non linear programming

\[
\text{(min)} f = p_1^{a_1} \cdot p_2^{a_2} \ldots \cdot p_r^{a_r}
\]
under the restrictions (37).

The solutions of this problem may be obtained applying the algorithm SUMT (Sequential Unconstrained Minimization Techniques) due to Fiacco and McCormick [7].

Examples

1. For \(n = 3^4 \cdot 5^2 \) (37) and (38) become \(\min f(x) = x_1^3 \cdot 5^{x_2} \) with \(x_1(x_1 + 1)(x_2 + 1 \geq 8), x_2(x_1 + 1)(x_2 + 1) \geq 24 \). Considering the function \(U(x, n) = f(x) - r \sum_{i=1}^n \ln g_i(x) \), and the system

\[
\sigma U / \sigma x_1 = 0, \quad \sigma U / \sigma x_2 = 0
\]

in [7] it is showed that if the solution \(x_1(r), x_2(r) \) can't be explained from the system we can make \(r \rightarrow 0 \). Then the system becomes \(x_1(x_1 + 1)(x_2 + 1) = 8, x_2(x_1 + 1)(x_2 + 1) = 24 \) with the (real) solution \(x_1 = 1, x_2 = 3 \).

So we have \(\min \{ x_1^3 \cdot 5^{x_2} \leq \rho(n) \} = m_0 = 3 \cdot 5^3 \).

Indeed \(\rho(m_0) = m_0^{\lceil m_0/2 \rceil} = m_0^3 = 3 \cdot 5^3 = n \).

2. For \(n = 3^2 \cdot 5^2 \cdot 7^2 \) (39) it results for \(x_2 \) the equation \(2x_2^2 + 9x_2 + 7x_2 - 98 = 0 \), with the real solution \(x_2 \in (2,3) \). It results \(x_1 \in (4/6,5/7) \). Considering \(x_1 = 1 \), we observe that for \(x_2 = 2 \) the pair \((x_1, x_2) \) is not an admissible solution of the problem, but \(x_2 = 3 \) give \((3^2 \cdot 5^2) = 3^4 \cdot 5^5 \).

3. Generally for \(n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \), from the system (39) it results the equation

\[
\alpha_1 x_1^2 + (\alpha_1 + \alpha_2) x_2^2 + \alpha_2 x_1 - 2\alpha_2^2 = 0
\]

with solutions given by Cartan's formula.

Of course, using "the method of the triplets", as for the Smarandache function, many other functions may be associated to \(\Theta \).

For the function \(\nu \) given by (18) it is also possible to generate a class of function by means of such triplets.

In the sequel we'll focus the attention on the analogous of the Smarandache function and on his dual in this case.

Proposition 5.1. If \(n \) has the decomposition into primes given by (1) then

(i) \(\nu(n) = \max \{ \sum_{p | n} p^{\alpha_p} \} \)

(ii) \(\nu(n_1 \lor n_2) = \nu(n_1) \lor \nu(n_2) \)
Proof.

(i) Let $\max p_i^s = p_s^s$. Then $p_i^s \leq p_s^s$ for all $i \neq s$, so $p_i^s \leq d [1, 2, \ldots, p_s^s]$. But $(p_s^s, p_i^s) = 1$ for $i \neq s$ and then $n \leq d [1, 2, \ldots, p_s^s]$.

Now if for some $m < p_s^s$ we have $n \leq d [1, 2, \ldots, m]$, it results the contradiction $p_s^s \leq d [1, 2, \ldots, m]$.

(ii) If $n_1 = \prod p_i^{\alpha_i}$, $n_2 = \prod p_i^{\beta_i}$ then $n_1 \lor n_2 = \prod p_i^{\max(\alpha_i, \beta_i)}$ so

$$\nu(n_1 \lor n_2) = \max p_i^{\max(\alpha_i, \beta_i)} = \max(\max p_i^{\alpha_i}, \max p_i^{\beta_i})$$.

The function $\nu = \nu$ is defined by means of the triplet $(\nu, \nu_1, \mathbb{R}[d])$ where $\mathbb{R}[d] = (m/n \leq d [1, 2, \ldots, m])$. His dual, in the sense of above section, is the function defined by the triplet $(\nu, \nu_1, \mathbb{L}[d])$. Let us note ν_4 this function:

$$\nu(n) = \sqrt{\{m \in [1, 2, \ldots, m] \leq n\}}$$

That is $\nu(n)$ is the greatest natural number with the property that all $m \leq \nu(n)$ divide n.

Let us observe that necessary and sufficient condition to have $\nu_4(n) > 1$ is to exist $m > 1$ so that every prime $p \leq m$ divides n. From the definition of ν_4 it also results that $\nu_4(n) = m$ if and only if n is divisible by every $i \leq n$ and not by $m + 1$.

Proposition 5.2. The function ν_4 satisfies

$$\nu_4(n_1 \lor n_2) = \nu_4(n_1) \land \nu_4(n_2)$$

Proof. Let us note $n = n_1 \land n_2$, $\nu_4(n_i) = m_i$ for $i = 1, 2$. If $m_1 = m_1 \land m_2$ then we prove that $m = m_1$. From the definition of ν_4 it results

$$\nu_4(n_i) = m_i \rightarrow [\forall i \leq m_i \rightarrow n \text{ is divisible by } i \text{ but not by } m + 1]$$

If $m < m_1$ then $m + 1 \leq m_1 \leq m$ so $m + 1$ divides n_1 and n_2, That is $m + 1$ divides n.

If $m > m_1$ then $m_1 + 1 \leq m_1$, so $m_1 + 1$ divides n. But n divides n_1, so $m_1 + 1$ divides n_1.

If $t_5 = \max(\{ij \leq n \text{ divides } n\})$ then $\nu_4(n)$ may be obtained solving the integer linear programming problem

$$\begin{align*}
\text{(max)} f &= \sum_{i=1}^{m} x_i \ln p_i \\
x_i &\leq \alpha_i \text{ for } i = 1, t_5
\end{align*}$$

(37)
$$\sum_{i=1}^{\infty} x_i \ln p_i \leq \ln p_{n+1}.$$

If \(f_o \) is the maximal value of \(f \) for above problem, then \(\nu_4(n) = e^4 \).

For instance \(\nu_4(2^3 \cdot 3^2 \cdot 5 \cdot 11) = 6 \).

Of course, the function \(\nu \) may be extended to the rational numbers in the same way as Smarandache function.

References

[8] P. Gronas. The Solution of the diophantine equation \(\sigma_7(n) = n \), Smarandache Function J., V. 4-5 No. 1 (1994), 14-16.

FUNCȚII ARITMETICE

Este bine cunoscută importanța funcțiilor aritmetice în teoria nimerelor, importanță datorată pe de-o parte bogăției rezultatelor ce se obțin cu ajutorul acestor funcții, și pe de altă parte frumuseții acestor rezultate.

Este într-adevăr nu numai util, dar și frumos să știm că dacă II(x) este numărul numerelor prime mai mici sau egale cu x, atunci II(x) este asimptotic egal cu x ln x sau că dacă se cunosc funcția sumatoare \(F(n) = \sum f(d) \) pentru funcția numerică \(f \), atunci \(f \) se poate exprima cu ajutorul funcției \(F \) prin formulă de inversiune

\[
f(x) = \sum \mu(d)F(n/d).
\]

În cele ce urmează vom prezenta o funcție numerică definită recent [19] ale cărei proprietăți sunt doar puțin cunoscute până acum.

Această funcție \(f : \mathbb{Z}^* \to N \) este caracterizată de proprietățile:

(i) \(\forall n \in \mathbb{Z}^* \), \(\eta(n) = M \cdot n \) (multiplu de \(n \));

(ii) \(\eta(n) \) este cel mai mic număr natural cu proprietatea (i).

Lema 1 Pentru orice \(k, p \in \mathbb{N}^*, p \neq 1 \), numărul \(k \) se poate scrie în mod unic sub forma:

\[
k = t_1a_1(p) + t_2a_2(p) + \ldots + t_la_l(p)
\]

unde \(a_i(p) = \frac{(p^n - 1)}{(p - 1)} \), pentru \(i = 1, \ldots, l \), \(n_i > n_2 > \ldots > n_l > 0 \) și \(t_i \in [1, p - 1] \cap N \) pentru \(j = 1, \ldots, l - 1 \), iar \(t_l \in (1, p) \cap N \).

Demonstrația este evidentă, fiind vorba de scrierea numărului \(k \) în baza generalizată:

\[
p|a_1(p), a_2(p), \ldots, a_l(p), \ldots
\]

Pentru fiecare număr prim \(p \in \mathbb{N}^* \) putem defini acum o funcție:

\[
\eta_p : \mathbb{N}^* \to \mathbb{N}
\]

având proprietățile:

\[
(\eta_1) \quad \eta_p(a - n(p)) = p^n;
\]

\[
(\eta_2) \quad \eta_p(t_1a_1(p) + t_2a_2(p) + \ldots + t_la_l(p)) = t_1\eta_p(a_1(p)) + t_2\eta_p(a_2(p)) + \ldots + t_l\eta_p(a_l(p)).
\]

Într-adevăr, utilizând lema precedentă orice număr \(k \in \mathbb{N}^* \) poate fi scris sub forma (1) și atunci putem defini:

\[
\eta_p(k) = t_1p^n + t_2p^{n_2} + \ldots + t_lp^{n_l}.
\]
Teorema 1 Fiecare funcție \(\eta_p \), cu \(p > 0 \) număr prim, are proprietățile:

(iii) \(\forall k \in \mathbb{N}^* (\eta_p(k))! = M \cdot p^k \);
(iv) \(\eta_p(k) \) este cel mai mic număr natural având proprietatea (iii).

Demonstrație. Se știe că exponentul \(\epsilon_p \), la care apare \(p \) în descompunerea în factori a lui \(n! \)
este dat de formula lui Legendre:

\[
\epsilon_p = \sum \left\lfloor \frac{n}{p^k} \right\rfloor
\]

Prin urmare exponentul la care apare \(p \) în descompunerea în factori a lui \((\eta_p(k))! \) este:

\[
\epsilon_{p, \eta_p(k)} = \sum \left\lfloor \frac{1 + \frac{1}{p} + \cdots + \frac{1}{p^{k-1}}}{p^k} \right\rfloor
\]

Deci:

\[
\epsilon_{p, \eta_p(k)} = k;
\]
și teorema este demonstrată.

Funcția \(\eta : \mathbb{Z} \rightarrow \mathbb{N} \) se poate construi cu ajutorul funcțiilor \(\eta_p \) în felul următor:

(a) \(\eta(\pm 1) = 0 \);
(b) pentru orice \(n = \epsilon p_1^{a_1} \cdot p_2^{a_2} \cdots p_l^{a_l} \), cu \(\epsilon = \pm 1 \) și \(p_i \) numere prime

distincte, iar \(a_i \geq 1 \) definim:

\[
\eta(n) = \max \{ \eta_p(a_i) \}.
\]

Teorema 2 Funcția \(\eta \) definită prin condițiile (a) și (b) are proprietățile (i) și (ii).

Demonstrație. (i) este evident[, deoarece \(\eta(n)! = \max(\eta_p(a_i)) \), deci \(\eta(n)! \) este divizibil

cu \(n \). Proprietatea (ii) rezultă din (iv). Să observăm că funcțiile \(\eta_p \) sunt crescătoare, nu sunt

injective, dar considerând \(\eta_p : \mathbb{N}^* \rightarrow \{p^k/k = 1, 2, \ldots \} \) se verifică surjectivitatea. Funcția \(\eta \) nu

este nici ea injectivă, dar \(\eta : Z^* \rightarrow \mathbb{N} \setminus \{1\} \) este surjectivă.

Consecință. Fie \(n \geq 4 \). Atunci \(n \) este număr prim dacă și numai dacă \(\eta(n) = n \).

Demonstrație. Dacă \(n = p \) este număr prim, cu \(p \geq 5 \), atunci \(\eta(n) = \eta_p(1) = p \).

Fie acum \(\eta(n) = n \). Dar \(\eta(n) = \max \eta_p(p_i) \), deci \(n = p \).

130
APLICAȚII

1. Care este cel mai mic număr natural \(n \) cu proprietatea: \(n! = M(2^{31}, 3^{27}, 7^{13}) \)?

Soluție.

Pentru a calcula \(\eta(31) \) scriem numărul \(a_1 = 31 \) în baza generalizată \([2]\), unde:

\[\{2\} : 1, 3, 7, 15, 31, 63, \ldots \]

Pentru a calcula \(\eta(27) \) considerăm baza generalizată \([3]\):

\[\{3\} : 1, 4, 13, 40, \ldots \] și deducem \(27 = 2 \times 13 + 1 = 2a_3(3) + a_1(3), \) deci \(\eta_3(27) = 2 \times 3^2 + 1 \times 3^1 = 57. \)

Analog obținem \(\eta(13) = 84. \) Deoarece \(\eta(\pm 2^{31} \times 3^{27} \times 7^{13}) = \max(32, 57, 84) = 84. \) Prin urmare \(84! \) este divizibil cu \(\pm 2^{31} \times 3^{27} \times 7^{13} \) și este cel mai mic număr natural cu această proprietate.

2. Care sunt numerele ale căror factoriale se termină în 1000 de zereouri?

Soluție: Dacă \(n = 10^{1000} \) atunci \(\eta(n)! = M10^{1000} \) și este cel mai mic număr natural cu această proprietate.

Asemenea:

\(\eta(10^{1000}) = \eta(2^{1000} \times 5^{1000}) = \max(\eta(1000), \eta_2(1000)) = \eta_2(1000), \) iar cum:

\[\{5\} = 1, 6, 31, 156, 781, \ldots \]

deducem \(1000 = 1 + a_5(5) + 1 + a_5(5) + 2a_5(5) + a_5(5), \) deci \(\eta_5(1000) = 1 \times 5^3 + 1 \times 5^2 + 1 \times 5 = 4005. \)

Așadar numărul 4005 este cel mai mic număr natural al cărui factorial se termină cu 1000 de zereouri. Factorialul numerelor 4006, 4007, 4008 și 4009 se termină și el cu o mie de zereouri, dar 4010! = 4009! - 4010 are 1001 zereouri.

În legătură cu funcția \(\eta \) am alcătuit [20] o listă de probleme nerezolvate. Iată câteva dintre acestea:

(1) Să se găsească formule pentru exprimarea lui \(\eta(n). \)

În [1] și [2] se dau astfel de formule. În fond, din cele prezentate mai sus putem spune că dacă \(n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_i^{a_i}, \) atunci \(\eta(n) = \max(\eta(p_1^{a_1}), \eta(p_2^{a_2}), \ldots, \eta(p_i^{a_i})), \) adică \(\eta(n) = \max(\eta(p_1^{a_1}), \eta(p_2^{a_2}), \eta(p_i^{a_i})), \) deci \(\eta(p_i^{a_i}) \) se obține înmulțind numărul \(p_i \) cu numărul obținut scriind exponentul \(a_i \) în baza generalizată \(\{p_i\} \) și "citind" rezultatul în baza standard \(\{p\} : 1, p, p^2, \ldots, p^n, \ldots \)

(2) Există exprimări asimptotice pentru \(\eta(n)? \)

(3) Pentru un număr întreg fixat \(m, \) în ce condiții \(\eta(n) \) divide diferența \(n-m? \) (in particular pentru \(m = 1). \)

Desigur, pentru \(m = 0 \) avem soluțiile \(n = k! \) sau \(n \) este un număr liber de pătrate.

(4) Este \(\eta \) o funcție algebrică? Mai general, să spunem că \(g \) este o \(f \)-funcție, \(f \) nenulă, dacă \(f(x; g(x)) = 0 \) pentru orice \(x \) și \(f \in R[x, y]. \) Este \(\eta \) o \(f \)-funcție?
(5) Fie A o mulțime de numere naturale nenule consecutive. Să se determine max card A pentru care η este monotonă pe A. Se poate observa că avem max card $A \geq 5$ deoarece pentru $A = \{1, 2, 3, 4, 5\}$ valoriile lui η sunt respectiv $0, 2, 3, 4, 5$.

(6) Un număr se spune că este număr α-algebric de grad n dacă el este rădăcina polinomului:
$$P_\alpha(x) = \eta(n) \cdot x^n + \eta(n-1) \cdot x^{n-1} + \ldots + \eta(1) \cdot x.$$ Pentru ce fel de numere n există numere algebrice de ordinul n care să fie numere întregi?

(7) Sunt numerele $P_n = \eta(n)/n$ uniform distribuite în intervalul $(0, 1)$? Răspunsul este negativ și a fost demonstrat de Gh. Ashbacher.

(8) Este numărul $0, 0234537465114 \ldots$, format prin concatenarea valorilor lui $\eta(n)$, un număr irațional? Răspunsul este afirmativ și a fost demonstrat de Gh. Ashbacher.

(9) Se pot reprezenta numerele întregi n sub forma:
$$n = \pm \eta(a_1)^{a_1} \pm \eta(a_2)^{a_2} \pm \ldots \pm \eta(a_k)^{a_k},$$ unde întregii a_1, a_2, \ldots, a_k și semnele sunt convenabil alese?
Dar sub forma:
$$n = \pm a_1^{a_1(a)} \pm \ldots \pm a_k^{a_k(a)}?$$ Sau sub forma:
$$n = \pm a_1^{a_1(a)} \pm a_2^{a_2(a)} \pm \ldots \pm a_k^{a_k(a)}?$$

(10) Găsiți o formă generală a expresiilor în fracții continue a lui $\eta(n)/n$, pentru $n \geq 2$.

(11) Există întregii m, n, p, q cu $m \neq n$ sau $p \neq q$ pentru care:
$$\eta(m) \cdot \eta(m + 1) + \ldots + \eta(m + p) = \eta(n) \cdot \eta(n + 1) + \ldots + \eta(n + q)?$$

(12) Există întregii m, n, p, k sau $m \neq n$ și $p > 0$ astfel incât:
$$\frac{\eta(m)^2 + \eta(m + 1)^2 + \ldots + \eta(m + p)^2}{\eta(n)^2 + \eta(n + 1)^2 + \ldots + \eta(n + p)^2} = k?$$

(13) Câte numere prime au forma $\eta(n) \cdot \eta(n + 1) \ldots \eta(n + k)$ pentru o valoare fixată a lui k? Se observă că $\eta(2) \cdot \eta(3) = 23$ și $\eta(3) \cdot \eta(6) = 53$ sunt prime.

(14) Există două numere distincte k și n pentru care:
$$\log_{\eta(a)} \eta(n)$$ este număr întreg?

(15) Este numărul:
$$\lim_{n \to \infty} \left(1 + \sum_{k=1}^{n} \frac{1}{\eta(k)} \right)$$ număr finit? Răspunsul este negativ [9].
(16) Verifică dacă o condiție de tip Lipschitz?
Răspunsul este negativ și apare în lucrarea lui Gh. Ashbacher.

(17) Există o formulă de recurvență pentru sirul an = η(n)?
Un alt grup de probleme erezolvate este următorul:
Există numere naturale nonprime a1, a2, ..., an, în relația P astfel încât η(a1), η(a2), ..., η(an) să fie în relația R? Căiți cei mai mărc cu această proprietate (unde P și R reprezintă una din următoarele categorii de numere):
(i) numere abundențe: a ∈ N este abundențe dacă σ(a) > 2a,
(ii) numere aproape perfecte: a este aproape perfect dacă σ(a) = 2a – 1;
(iii) numere amicale: a și b sunt amicale dacă σ(a) = σ(b) = a + b;
(iv) numere Bell: S_n = \sum_{k=1}^{n} S(n, k), unde S(n, k) sunt numerele Stirling de categoria a doua,
\[S(0, 0) = 1, \text{ iar } S(n, k) \text{ se deduc din } x^n = \sum_{k=1}^{n} S(n, k) \cdot x^k, \text{ pentru } 1 \leq k \leq n; \]
(v) numerele Cullen: C_n = n \cdot 2^n + 1, n ≥ 0;
(vi) numerele Fermat: F_n = 2^{2^n} + 1;
(vii) numerele Fibonaccii: f_1 = f_0 = 1, f_{n+2} = f_{n+1} + f_n;
(viii) numerele armonice: a este armonic dacă media aritmetică a divizorilor lui a este număr întreg;
(ix) numerele Mersenne: M_p = 2^p – 1;
(x) numerele Neperiene: \exp(\ln p) = \ln p, unde \exp(x) și \ln(x) reprezintă funcțiile exponențiale și logaritme.
Desigur, se pot formula probleme interesante conținând funcția η, probleme în legătură cu funcții numerice sau categorii speciale de numere (prințul care sunt și cele enumerate mai sus).

Rezolvarea acestor probleme va oferi legătură încă neîncutită, dintre funcția η și celelalte categorii de funcții numerice.

Demersul spre această legătură poate fi făcut de exemplu și cu ajutorul ecuațiilor (i) η(m * n + x) = A, unde A poate fi: C_m^n,
- \[Θ(x) = \sum_{p \leq x} \ln p, \text{ unde } Θ \text{ este funcția de } \text{Euler}; \]
- \[Ψ(x) = \sum_{p \mid x} \Lambda(n), \text{ unde } \Lambda \text{ este valoarea lui } p \text{ dacă } n \text{ este o potență întreagă a numărului prim } p \text{ și este zero în caz contrar}; \]
- S(n, k) sau S(m, n),
133
II. Acest document prezintă o formulare matematică și o bibliografie referitoare la Smarandache functions, una nouă function în teoria numerelor. Acesta este folosit în mai multe combinații, precum:

- $\pi(x)$ (numărul numerelor prime ce nu depășesc pe x) și desigur lista posibilităților pentru A poate continua.
- $\eta(n)$ (numărul divizorilor pozitivi ai lui n),
- $\Gamma(x)$ (funcția lui Euler de spătă întâi),
 \[
 \Gamma(x) = \int_{0}^{x} \frac{t^{x-1}}{e^t} \, dt
 \]
- $\beta(x, y)$ (funcția lui Euler de spătă a doua, $\beta(x, y) = \Gamma(x)\Gamma(y)\Gamma(x+y)$),
- $\mu(x)$ (funcția lui Möbius).

Există multe posibilități de alege pe B. Rămâne de descoperit cele într-adevăr interesante, care dau legătura lui η cu noțiuni devenite clasice în teoria numerelor.

Bibliografie

Vom construi următoarele funcții (pe care le numim prime):

\[P_1 : \mathbb{N} \rightarrow \{0,1\}, \]

\[P_1(n) = \begin{cases}
0, & \text{dacă } n \text{ este prim;} \\
1, & \text{în caz contrar.}
\end{cases} \]

De exemplu:

\[P_1(0) = P_1(1) = P_1(4) = P_1(6) = \ldots = 1; P_1(2) = P_1(3) = P_1(5) = \ldots = 0. \]

Analog:

\[P_2 : \mathbb{N}^2 \rightarrow \{0,1\}, \]

\[P_2(m,n) = \begin{cases}
0, & \text{dacă } m \text{ și } n \text{ sunt amândouă prime;} \\
1, & \text{în caz contrar.}
\end{cases} \]

Și în general:

\[P_k : \mathbb{N}^k \rightarrow \{0,1\}, \]

\[P_k(n_1, n_2, \ldots, n_k) = \begin{cases}
0, & \text{dacă } m \text{ și } n \text{ sunt toate prime;} \\
1, & \text{în caz contrar.}
\end{cases} \]

Functiile coprime se definesc similar, doar că se impune o condiție mai slabă: în acolada de mai sus \(n_1, n_2, \ldots, n_k \) sunt prime între ele.
ASUPRA UNOR CONJECTURI ȘI PROBLEME NEREZOLVATE
REFERITOARE LA O FUNȚIE ÎN TEORIA NUMERELOR

1. Introducere

Am construit [19] o funcție \(\eta \) care asociază fiecărui întreg nenul \(n \) cel mai mic întreg pozitiv \(m \) astfel încât \(m! \) este multiplu de \(n \).

De aici rezultă că dacă \(n \) are descompunerea în factori primi:

\[
 n = \epsilon \cdot p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_k^{a_k},
\]

cu \(p_i \) numere distincte, \(a_i \in \mathbb{N}^* \) și \(\epsilon = \pm 1 \) atunci:

\[
 \eta(n) = \max_{1 \leq i \leq k} \eta(p_i^{a_i});
\]

și \(\eta(\pm 1) = 0 \).

Pentru calculul lui \(\eta(p_i^{a_i}) \) observăm că dacă:

\[
 \alpha_k(p) = \frac{p^k - 1}{p - 1}, \quad k = 1, 2, \ldots;
\]

atunci din formula lui Legendre:

\[
 n! = \prod_{k=1}^{n} \alpha_k(p);
\]

rezultă \(\eta(p^{a_i}) = p^k \).

Mai general, considerând baza generalizată:

\[
 [p] : \alpha_1(p), \alpha_2(p), \ldots;
\]

și scriind exponentul \(a \) în această bază:

\[
 a_{[p]} = t_1 \cdot a_{1}(p) + \ldots + t_l \cdot a_{l}(p);
\]

cu \(t_1 > t_2 > \ldots > t_l > 0 \) și \(t_i \in [1, p - 1] \) pentru \(j = 0, 1, \ldots, l - 1 \) și \(t_l \in [1, p] \), în [19] am arătat că:

\[
 \eta(p^a) = \sum_{m=1}^{a} t_m \eta(m); \quad (1)
\]

138
2. Proprietăți ale funcției η

Din felul în care a fost definită rezultă imediat că funcția η este pară: $\eta(-n) = \eta(n)$. De asemenea pentru orice $n \in \mathbb{N}^*$ avem:

$$\frac{-1}{(n-1)!} \leq \frac{\eta(n)}{n} \leq 1;$$

Raportul $\frac{\eta(n)}{n}$ este maxim dacă și numai dacă n este prim sau $n = 4$ și are valoare minimă dacă și numai dacă $n = 6$. Evident η nu este o funcție periodică.

Pentru orice număr prim p funcția $\eta_p : \mathbb{N} \to \mathbb{N}, \eta_p(n) = \eta(p^n)$ este crescătoare, noninjection, dar considerând $\eta_p : \mathbb{N} \to \mathbb{P} = \{p^k | k = 1, 2, \ldots \}$ este verificată surjectivitatea.

Funcția η este în general crescătoare pe \mathbb{N}^*, în sensul că:

$$\forall n \in \mathbb{N}^* \exists m_0 \in \mathbb{N}^* \forall m \geq m_0 \eta(m) \geq n.$$

Prin urmare funcția este în general decrescătoare pe \mathbb{Z} adică:

$$\forall n \in \mathbb{Z}^* \exists m_0 \in \mathbb{Z}^* \forall m \leq m_0 \eta(m) \leq n.$$

De asemenea nu este injectivă, dar considerând: $\eta : \mathbb{Z} \to \mathbb{N}\setminus\{1\}$ este verificată surjectivitatea.

Definiția 1. (P. Erdős și J.L. Selfridge)

Numărul n se numește barieră pentru funcția numerică f dacă pentru orice $m < n$ avem $m + f(m) \leq n$.

Se observă că pentru orice $\varepsilon \in [0, 1]$ funcția f definită prin $f(m) = \varepsilon \cdot \eta(m)$ nu are o infinitate de bariere dea oarece există $m_0 \in \mathbb{N}$ astfel incât pentru orice $n \geq m_0$ avem:

$$\eta(n) \geq \frac{2}{\varepsilon} \text{ dacă } n + \varepsilon \cdot \eta(n) \geq n.$$

Seria $\sum_{n=2}^{\infty} \frac{1}{\eta(n)}$ este divergentă dea oarece $\frac{1}{\eta(n)} \geq \frac{1}{n}$.

Avem de asemenea:

$$\eta\left(\frac{2^m}{k-2}\right) = 2 + \frac{2^m}{k-2} \text{ } \forall k \geq 2\text{ avem } \eta(2^m) = 2 + 2^m.$$

Într-adevăr, pentru $m = \frac{2^m}{k-2}$ avem $\eta(2^m) = 2 + 2^m$.

139
3. Formule de calcul pentru $\eta(n)$

În [2] se arată că formula (1) poate fi scrisă sub formă:

$$\eta(p^n) = p(a_0(p))$$ \hspace{1cm} (2)

adică pentru a calcula pe $\eta(p^n)$ scriem exponentul a în baza generalizată $[p]$ și "citim" în baza standard (p):

$$(p) : 1, p, p^2, \ldots, p^n, \ldots$$

Să observăm că "citirea" în baza (p) presupune uneori calcule cu cifra p, care nu este cifră în această bază, dar poate apare ca cifră în baza $[p]$. Vom exemplifica utilizarea formulei (2) pentru calculul lui $\eta(3^{89})$. Parcurgem următoarele etape:

(i) scriem exponentul $a = 89$ în baza 3:

$$(3) : 1, 4, 13, 40, 121, \ldots$$

obținem $3^{57} = 2021$;

(ii) "citim" numărul 2021 în baza $(3) : 1, 3, 9, 27, \ldots$. Avem $2021_{(3)} = 183_{(10)}$, deci $\eta(3^{89}) = 183$, ceea ce înseamnă că cel mai mic număr natural al cărui factorial este divisible cu 3^{89} este 189.

Însă: $\sum_{i=1}^{183} \left\lfloor \frac{183}{3^i} \right\rfloor = 89$.

Facem observația că în baza generalizată $[p]$ tehnica de lucru este esențial diferită de tehnica de lucru din baza standard (p); aceasta datorită faptului că șirul $b_n(p) = p^n$, care determină baza (p), satisfacă relația de recurență:

$$b_{n+1}(p) = p \cdot bn(p);$$

În timp ce șirul $a_n(p) = (p^n - 1)/(p - 1)$ cu ajutorul căruia se generază baza (p) satisfacă relația de recurență:

$$a_{n+1}(p) = p \cdot a_n(p) + 1.$$ \hspace{1cm} (3)

Datorită relației (3) pentru a face adunarea în baza (p) procedăm astfel: începem adunând cifrele de ordinul zecilor și nu al unităților (cifrele corespunzătoare coloanei $a_1(p)$). Dacă adunând aceste cifre obținem numărul $pa_1(p)$, vom utiliza o unitate din clasa unităților (coefiicientul lui $a_1(p)$ pentru a obține $pa_1(p) + 1 = a_2(p)$). Continuând adunarea pe coloana "zecilor" dacă obținem din nou $pa_2(p)$, vom utiliza o nouă unitate din clasa unităților, etc. De exemplu pentru:

$m_{91} = 441, m_{92} = 412 și r_{90}$ avem

140
\[m + n + r = 442 + 412 + 44 = 998 \]

Începem adunarea cu coloana zecilor:

\[4 \cdot a_2(5) + a_2(5) + 4 \cdot a_2(5) = 5 \cdot a_2(5) + 4 \cdot a_2(5); \]

și utilizând o unitate din coloana unităților obținem:

\[a_2(5) + 4 \cdot a_2(5), \text{ deci } b = 4. \]

Continuând obținem:

\[4 \cdot a_2(5) + 4 \cdot a_2(5) + a_3(5) = 5 \cdot a_2(5) + 4 \cdot a_2(5); \]

și utilizând o nouă unitate:

\[a_3(5) + 4 \cdot a_2(5), \text{ deci } c = 4 \text{ și } d = 1. \]

În stâng, adunând unitățile rămase:

\[4 \cdot a_1(5) + 2 \cdot a_1(5) = 5 \cdot a_1(5) + a_1(5) = 5 \cdot a_1(5) + 1 = a_1(5), \]

rezultă că trebuie modificat și \(a = 0. \) Deci \(m + n + r = 1450. \)

Aplicarea formulei (2) la calculul valorilor lui \(\eta \) pentru toate numerelor între \(N_1 = 31000000 \)
și \(N_2 = 31001000, \) pe un PC 386 a dus la obținerea unui timp de lucru de mai mult de 16 minute, din care cea mai mare parte a fost utilizată pentru descompunerea numerelor în factori primi.

Algoritmul a fost următorul:

1. Descompunerea numerelor \(n \) în factori primi \(n = \prod p_i^{a_i}; \)
2. Pentru \(n \) fixat, determinarea valorii \(\max p_i \cdot a_i; \)
3. \(\nu_0 = \eta(p_1^{a_1}) \), pentru \(i \) determinat la 2;
4. Deoarece \(\eta(p_1^{a_1}) \leq p_1 \cdot a_1 \), ignorăm factorii pentru care \(p_1 \cdot a_1 \leq \nu_0; \)
5. Calculăm \(\eta(p_1^{a_1}) \) pentru \(p_1 \cdot a_1 > \nu_0 \) și determinăm cea mai mare dintre aceste valori, care va fi \(\eta(n). \) Pentru punctele 2 - 5 din program au trebuit mai puțin de 3 secunde.

Pentru a obține alte formule de calcul pentru funcția \(\eta \) (de fapt pentru \(\eta(p^k) \)) să considerăm exponentul a scris în cele două baze:

141
\[a(p) = \sum_{i=0}^{n} c_i \cdot p^i \quad \text{și} \quad a(p) = \sum_{j=1}^{v} k_j \cdot \frac{p^j - 1}{p - 1}. \]

Obținem:

\[(p - 1) \cdot a\] \[\sum_{j=1}^{v} k_j \cdot p^j = \sum_{j=1}^{v} k_j \cdot \frac{p^j - 1}{p - 1},\]

deci notând:

\[\sigma(a) = \sum_{i=0}^{n} c_i \cdot \text{suma cifrelor lui } a \text{ scris în baza } (p); \]

\[\sigma_p(a) = \sum_{j=1}^{v} k_j \cdot \text{suma cifrelor lui } a \text{ scris în baza } (p); \]

și înțelegînd faptul că \(\sum_{j=1}^{v} k_j \cdot p^j = p(a_p(a), (p) \text{ obținem:} \]

\[\eta(p^i) = (p - 1) \cdot a + \sigma_p(a). \] \hspace{1cm} (4)

înțelegînd faptul că \(a \text{ scris în baza } (p); \)

\[p \cdot a(p) = \sum_{i=0}^{n} c_i \cdot (p^{i+1} - 1) + \sum_{i=0}^{n} c_i, \text{ sau:} \]

\[\frac{p}{p - 1} \cdot a = \sum_{i=0}^{n} c_i \cdot a_{i+1}(p) + \frac{1}{p - 1} \cdot \sigma(a), \]

prim urmăre:

\[a = \frac{p - 1}{p} \cdot \sigma(a) + \frac{1}{p} \cdot \sigma(a), \]

înlocuind această valoare a lui \(a \) în (4), se obține:

\[\eta(p^i) = \frac{(p - 1)^2}{p} \cdot \sigma(a) + \frac{p - 1}{p} \cdot \sigma(a) + \sigma_p(a). \]

Notând cu \(E_{n,a} \) exponentul lui \(p \) în expresia lui \(n \),

\[E_{n,a} = \sum_{i=0}^{n} \left[\frac{a}{p} \right], \]

se știe [18] că \(E_{n,a} = (n - \sigma(a))/((p - 1)), \) deci exprimînd pe \(\sigma(a) \) din (6), se deduce:

\[E_{n,a} = (a_p(a), (p) - a. \]

O altă formulă pentru \(E_{n,a} \) se poate obține astfel:

\[a = C_n \cdot p^n + C_{n-1} \cdot p^{n-1} + \ldots + C_1 \cdot p + C_0 \text{ deci:} \]

\[E_{n,a} = \frac{a}{p^n} + \frac{a}{p^{n-1}} + \ldots + \frac{a}{p} = C_n + (C_n p + C_{n-1}) + \ldots + (C_{n-1} p^{n} + C_{n-2} p^{n-2} + \ldots + C_1) = \]

\[= C_n a_n(p) + C_{n-1} a_{n-1}(p) + \ldots + C_1 a_1. \]

142
Cu alte cuvinte dacă \(a_{(p)} = \frac{C_a \cdot C_{a+1} \cdot \ldots \cdot C_b \cdot C_b}{a} \) atunci:

\[
E_{a,p} = (a - C_b)_{(p)} \equiv \left[\left(\begin{array}{c} a \\ p \end{array} \right) \right]_{(p)}.
\]

Din (7) și (8) se obține:

\[
\eta(p^a) = \frac{(p-1)^2}{p} \cdot (E_{a,p} + a) + \frac{b-1}{p} \cdot \sigma_{(p)}(a) + \sigma_{p}(a);
\]

iar din (2) și (7) se deduce:

\[
p \cdot \sigma_{(p)}(a) + (p-1) \cdot \sigma_{(p)}(a) = p^a \cdot \sigma_{(p)}(a) - (p-1)^2 \cdot (a_{(p)})_{(p)}.
\]

4. FUNCȚIA SUMATOARE \(F \)

Se știe că oricărei funcții numerice \(f \) i se poate atașa funcția sumatoare \(F \) definită prin:

\[
F(n) = \sum_{d\mid n} f(d);
\]

și că \(f \) se poate exprima cu ajutorul lui \(F \) prin formula de inversie:

\[
f(n) = \sum_{i=1}^{n} \mu(i) \cdot F(n), \tag{9}
\]

unde \(\mu \) este funcția lui Môbius \((\mu(1) = 1, \mu(k) = (-1)^k \) dacă numărul \(k \) este produsul \(a \) numere prime diferite și \(\mu(i) = 0 \) dacă \(i \) este divizibil cu un pătrat).

Pentru \(\eta \) avem:

\[
F(n) = F_{\eta}(n) = \sum_{d\mid n} \eta(d) \quad \text{și}
\]

\[
F(p^a) = \eta(1) + \eta(p) + \ldots + \eta(p^a).
\]

Din (4) deducem \(\eta(p^a) = (p-1) \cdot j + \sigma_{p}(j) \) deci:

\[
F(p^a) = \sum_{j=0}^{a} \eta(p^j) = (p-1) \cdot j + \sum_{j=1}^{a} \sigma_{p}(j) = (p-1) \cdot \frac{a \cdot (a + 1)}{2} + \sum_{j=1}^{a} \sigma_{p}(j).
\]

În consecință:

\[
F(p^a) = (p-1) \cdot \frac{a \cdot (a + 1)}{2} + \sum_{j=1}^{a} \sigma_{p}(j) \tag{10}
\]

Să considerăm acum:

\[
n = p_1 \cdot p_2 \cdot \ldots \cdot p_t
\]

143
cu $p_1 < p_2 < \ldots < p_t$ numere prime nu neapărat consecutive

Desigur $\eta(n) = p_1$ și din:

\[F(1) = \eta(1) = 0; \]
\[F(p_1) = \eta(1) + \eta(p_1) = p_1; \]
\[F(p_1 \cdot p_2) = p_1 + 2p_2 = F(p_1) + 2p_2; \]
\[F(p_1 \cdot p_2 \cdot p_3) = p_1 + 2p_2 + 2^2 p_3 = F(p_1 \cdot p_2) + 2^2 p_3; \]

rezultă prin inducție:

\[F(p_1 \cdot p_2 \cdot \ldots \cdot p_t) = F(p_1 \cdot p_2 \cdot \ldots \cdot p_{t-1}) + 2^{t-1} p_t; \]

adică:

\[F(p_1 \cdot p_2 \cdot \ldots \cdot p_t) = \sum_{i=1}^{t} 2^{t-i} p_i. \]

Egalitatea (9) devine:

\[p_t = \eta(n) = \sum_{l=0}^{\infty} \mu(u) \cdot F(u) = F(n) - \sum_{l} F \left(\frac{n}{p_l} \right) + \sum_{l \neq 2} F \left(\frac{n}{p_l \cdot p_2} \right) + \ldots + (-1)^{t-1} \cdot \sum_{l=1}^{t} F(p_l); \]

și deoarece $F(p_t) = p_t$, obținem:

\[F \left(\frac{n}{p_t} \right) = F(p_1 \cdot p_2 \cdot \ldots \cdot p_{t-1} \cdot p_{t+1} \cdot \ldots \cdot p_t) = \sum_{l=1}^{t} 2^{l-1} \cdot p_l + \sum_{l=t+1}^t 2^{l-1} \cdot p_l = \]

\[= F(p_1 \cdot p_2 \cdot \ldots \cdot p_{t-1}) + 2^{t-1} \cdot F(p_{t+1} \cdot p_{t+2} \cdot \ldots \cdot p_t). \]

În mod analog avem

\[F \left(\frac{n}{p_t p_j} \right) = F(p_1 \cdot p_2 \ldots \cdot p_{t-1} + 2^{t-1} \cdot F(p_{t+1} \cdot p_{t+2} \ldots \cdot p_j). \]

Notând $N_{ij} = p_i \cdot \ldots \cdot p_j$, obținem atunci:

\[\sum_{t=1}^{t-1} p_i = -F(n) + \sum_{l} F(N_{i+1} + 2^{i+1} \cdot F(N_{i+1})) = \sum_{l=0}^{t} F(N_{i+1}) + 2^{i-1} \cdot F(N_{i+1} \cdot j) + 2^{i-1} \cdot F(N_{i+1}) + \ldots \]

144
Generalizări ale funcțiilor η

Fie X o mulțime nevidă, r o relație de echivalență pe X pentru care notăm cu X_r mulțimea cât și (I, \leq) o mulțime total ordonată. Dacă $g : X \to I$ este o funcție injectivă oarecare, atunci funcția $f : X \to I, f(x) = g(x)$ se spune că este o funcție de standardizare. În acest caz despre relația X_r se spune că este $(r, (I, \leq), f)$ standardizată.

Dacă r_1 și r_2 sunt două relații de echivalență pe X se știe că relația $r = r_1 \land r_2$ unde:

$x r y \leftrightarrow x r_1 y \land x r_2 y$

este o relație de echivalență.

Despre funcțiile $f_i : X \to I, i = 1, 2$ se spune că au aceeași monotonicitate dacă pentru orice $x, y \in X$ avem:

$f_i(x) \leq f_i(y) / f_i(x) \leq f_i(y)$

pentru orice $i, j = 1, 2$.

În [3] se demonstrează următoarea teorema:

Dacă funcțiile de standardizare $f_i : X \to I$ corespunzătoare relațiilor de echivalență $r_i, i = 1, 2$ sunt de aceeași monotonicitate atunci funcția $f = \max f_i$ este funcția de standardizare corespunzătoare relației $r = r_1 \land r_2$ și are aceeași monotonicitate cu funcțiile f_i. Un alt element preliminar considerăril către generalizări ale funcției η prezentate în [3] este definiția următoare.

Dacă T și \bot sunt lezi binare pe X respectiv I, spunem despre funcția de standardizare $f : X \to I$ că este \sum composibilă dacă tripletul $(f(x), f(y), f(x \bot y))$ satisfacă condiția \sum. În acest caz se mai spune că funcția f este standardizată structura (X, T) pe structura (I, \leq, \bot).

De exemplu funcția η determină următoarele standardizări:

(a) funcția η standardizează \sum_1 structura (N^*, \cdot) pe structura $(N^*, \leq, +)$ prin:

$\sum_1 : \eta(a \cdot b) \leq \eta(a) + \eta(b)$;

(b) funcția η standardizează \sum_2 aceleași structuri, considerând:

$\sum_2 : \max(\eta(a), \eta(b)) \leq \eta(a \cdot b) \leq \eta(a) \cdot \eta(b)$.

Funcția Smarandache $\eta : N^* \to N$ a fost definită în [16] cu ajutorul următoarelor funcții η_i: 145
Pentru orice număr prim p fie \(\eta_p : \mathbb{N}^* \rightarrow \mathbb{N}^* \) astfel

(i) \(\eta_p(n) ! \) este divizibil cu \(p^i \);

(ii) \(\eta_p(n) \) este cel mai mic întreg pozitiv cu proprietatea (i).

Pentru fiecare \(n \in \mathbb{N}^* \) să considerăm și relațiile \(r_n \subseteq \mathbb{N}^* \times \mathbb{N}^* \) definite prin condițiile:

1. Dacă \(n \) este de forma \(n = p^i \) cu \(p = 1 \) sau \(p \) număr prim și \(\beta \in \mathbb{N}^* \) vom spune că \(\alpha \) este in relația \(r_\alpha \), cu \(\beta \) dacă și numai dacă \(\min \{ k/k! = M_p^\beta \} \);

2. Dacă \(n = p_1^\alpha_1 \times p_2^\alpha_2 \times \ldots \times p_k^\alpha_k \) atunci \(r_n = r_1^{\alpha_1} \wedge r_2^{\alpha_2} \wedge \ldots \wedge r_k^{\alpha_k} \).

Definiția 2. Pentru orice \(n \in \mathbb{N}^* \) funcția Smarandache de primul tip este funcția \(\eta_n : \mathbb{N}^* \rightarrow \mathbb{N}^* \) definită astfel:

1. Dacă \(n = p^i \), cu \(p = 1 \) sau \(p \) număr prim și \(\alpha \) fiind cel mai mic întreg pozitiv pentru care \(k! = M_p^\alpha \);

2. Dacă \(n = p_1^\alpha_1 \times p_2^\alpha_2 \times \ldots \times p_k^\alpha_k \) atunci \(\eta_n = \max_{j=1,3} \eta_j^j(a) \).

Se observă că:

a) Funcțiile \(\eta_n \) sunt funcții de standardizare, corespunzătoare relațiilor \(r_n \) și pentru \(n = 1 \) avem \(X_\alpha = \mathbb{N}^* \);

b) Dacă \(n = p \) atunci \(\eta_n \) este funcția \(\eta_p \) definită în [16];

c) Funcțiile \(\eta_n \) sunt crescătoare, deci sunt de aceeași monotonicitate, în sensul dat mai sus.

Teorema 1. Funcțiile \(\eta_n, \) standardizează structura \((\mathbb{N}^*, +) \) pe structura \((\mathbb{N}^*, \leq, +) \) prin:

\[\sum_1 \max \{ \eta_n(a), \eta_n(b) \} \leq \eta_n(a) + \eta_n(b) \text{ pentru orice } a, b \in \mathbb{N}^* \] deoarece \(\sum_2 \max \{ \eta_n(a), \eta_n(b) \} \leq \eta_n(a + b) \leq \eta_n(a) + \eta_n(b) \text{ pentru orice } a, b \in \mathbb{N}^* \).

Demonstrația este dată în [8].

Definiția 3. Funcțiile Smarandache de al doilea tip sunt funcțiile \(\eta^k : \mathbb{N}^* \rightarrow \mathbb{N}^* \) definite prin \(\eta^k(n) = \eta^k(k) \) pentru orice \(k \in \mathbb{N}^* \), unde \(\eta_n \) sunt funcțiile Smarandache de primul tip.

Observăm că pentru \(k = 1 \) funcția \(\eta^k \) este funcția \(\eta \) definită în [17], cu modificarea \(\eta(1) = 1 \).

Întrădevăr, pentru \(n > 1 \) avem:

\[\eta^1(n) = \eta_n(1) = \max_j \eta_j(1) = \max_j \eta_j(i) = \eta(n). \]
Theorem 2. Funcțiile Smarandache de al doilea tip Σ_3 standardizează structura (N^*, \leq, t) prin
$$\Sigma_3 : \max(\eta^*(a), \eta^*(b)) \leq \eta^*(a \ast b) \leq \eta^*(a) + \eta^*(b)$$ pentru orice $a, b \in N^*$. Σ_3 standardizează (N^*, \ast) prin $\Sigma_3^*: \max(\eta^*(a), \eta^*(b)) \leq \eta^*(a \ast b) \leq \eta^*(a) \ast \eta^*(b)$ pentru orice $a, b \in N^*$.

Pentru a defini funcțiile Smarandache de al treilea tip să considerăm siriurile:

(a) $1 = a_1, a_2, \ldots, a_n, \ldots$

(b) $1 = b_1, b_2, \ldots, b_n, \ldots$

stânsfăcând relația de recurență $a_{n+1} = a_n \ast a_1$ și respectiv $b_{n+1} = b_n \ast b_1$.

Desigur există șiruri astfel de șiruri deoarece putem alege orice valoare arbitrară pentru a_2 și apoi să determinăm ceilalți termeni cu ajutorul relației de recurență. Cu ajutorul șirurilor (a) și (b) definim funcția $f^*_n : N^* \rightarrow N^*$ prin
$$f^*_n(n) = \eta_n(b_n),$$ unde η_n este funcția Smarandache de primul tip. Se observă că:

(a) Dacă $a_n = 1$ și $b_n = 1$ pentru orice $n \in N^*$ atunci $f^*_n = \eta_1$;
(b) Dacă $a_n = n$ și $b_n = 1$ pentru orice $n \in N^*$ atunci $f^*_n = \eta^*_n$.

Definiția 4. Funcțiile Smarandache de al treilea tip sunt funcțiile $\eta^*_n = f^*_n$ în cazul în care șirurile (a) și (b) sunt diferite de cele de la (a) și (b).

Theorem 3. Funcțiile f^*_n realizează standardizarea Σ_3 între structurile (N^*, \ast) și (N^*, \leq, \ast) prin
$$\Sigma_3 : \max(f^*_n(k), f^*_n(n)) \leq f^*_n(k \ast n) \leq f^*_n(k) + f^*_n(n).$$

Demonstrația acestei teoreme este deasemenea dată în [3]. De aici rezultă că funcțiile Smarandache de al treilea tip satisfaie:
$$\Sigma_3 : \max(\eta^*_n(k), \eta^*_n(n)) \leq \eta^*_n(k \cdot n) \leq \eta^*_n(k) + \eta^*_n(n).$$

Exemplu: Considerând șirurile (a) și (b) date prin $a_n = b_n = n$, pentru orice $n \in N^*$, funcția Smarandache de al treilea tip corespunzătoare este $\eta^*_n : N^* \rightarrow N^*, \eta^*_n(n) = \eta_n(n)$ și Σ_3 devine:
$$\max(\eta_n(k), \eta_n(n)) \leq \eta_n(k \cdot n) \leq n\eta_n(k) + k\eta_n(n)$$
pentru orice \(k, n \in \mathbb{N}^* \).

Această relație este echivalentă cu relația următoare, scrisă cu ajutorul funcției \(\eta \):
\[
\max(\eta(k^4), \eta(n^4)) \leq \eta((kn)^4) \leq n\eta(k^4) + k\eta(n^4).
\]

5. Probleme rezolvate și probleme nerezolvate referitoare la funcția \(\eta \)

1. Să se investigheze șirurile \(a, a+1, a+2, \ldots, a+x \) pentru care valorile lui \(\eta \) sunt crescătoare (descrescătoare). Raspunsul la această problemă au dat J. Duncan [7] și Grănas [11]. Acesta arată că există șiruri crescătoare \(u_1 < u_2 < \ldots < u_r \) de lungime oricât de mare pentru care valorile funcției \(\eta \) sunt descrescătoare.

Referitor la următoarele trei probleme nu cunoaștem publicarea vreunui rezultat.

2. Găsiți cel mai mic număr natural \(k \) astfel că pentru orice \(n \) mai mic sau egal cu \(n_0 \) cel puțin unul dintre numerele: \(\eta(n), \eta(n+1), \ldots, \eta(n+k-1) \)

 (A) un anumit perferat;
 (B) un divizor al lui \(k^n \).

 Ce se întâmplă pentru \(k \) și \(n_0 \) tindând la infinit?

3. Construiți numere prime având forma \(\eta(n)\eta(n+1)\ldots\eta(n+k) \) unde \(k \) este un număr între \(\eta(n) \) și \(\eta(n+k) \) și \(n \) este un număr între \(\eta(n) \) și \(\eta(n+k) \).

4. Investigați posibilitatea construirii unui \(A \)-șir al cărui număr asociat \(\eta(a_1), \eta(a_2), \ldots, \eta(a_n) \)

 este de asemenea un \(A \)-șir.

 Notând \(D_n(x) = [\eta(x+1) - \eta(x)] \) și \(D^{k+1}_n(x) = |D_k^n(x+1) - D_k^n(x)| \) pentru \(k \in \mathbb{N}^* \),

 unde \(D_0^n(x) = D_n(x) \) articolul lui M.Mudge reia următoarea problemă.

5. Investigați conjectura \(D_k^n(x) \) care are valoarea unu sau zero pentru orice \(k \geq 2 \).
J. Duncan [8] verifică conjectura pentru toate numerele naturale până la 32000. În același articol se arată că raportul între numărul de 1-uri și numărul zerourilor este aproximativ egal cu 1 pentru valori mari ale lui k. De asemenea se arată că pentru $k > 100$ și până la 32000 raportul $D_k(x)/D_{k-1}(x)$ este aproximativ egal cu -2.

T. Yau [24] pune următoarea problemă: pentru ce triplet de numere consecutive $n, n+1, n+2$ funcția η verifică egalitatea de tip Fibonacci, adică $\eta(n) + \eta(n+1) = \eta(n+2)$. El observă că în primele 1200 de numere naturale există două soluții și are $n = 11$ și $n = 121$, dar nu găsește o soluție generală.

P. Gronas [10] dă răspuns următoarei întrebări: "Există o funcție de numere pentru care $\sigma(n) = n^-$ unde $\sigma(n) = \sum_{d \mid n} \eta(d)$. El arată că singurele soluții ale acestei ecuații sunt $n \in \{8, 12, 18, 20, 2p\}$ unde p este număr prim.

M. Costewitz [15] abordează pentru prima oară problema găsirii cardinalului mulțimii $M_n = \{z/\eta(x) = z\}$. În [25] se arată că dacă descompunerea lui n în factori primi este $n = p_1^{n_1} p_2^{n_2} \ldots p_k^{n_k}$ cu $p_1 < p_2 < \ldots < p_k$ și notăm $c_i = \sum(n/p_i^i)$ iar $n_0 = p_1^{n_1} p_2^{n_2} \ldots p_k^{n_k}$ și $p_i^{n_i-1} p_{i+1}^{n_{i+1}-1} \ldots p_k^{n_k}$, atunci $\text{card } M_n = (\sigma(n_0) - \sigma(n_0)\sigma(Q))$ unde $\sigma(n)$ este suma divizorilor lui n, iar $Q = \prod q_i^j$ numerele q_1, q_2, \ldots, q_j fiind toate numerele prime mai mici decât n și care nu sunt divizori ai lui n. Exponentul f_s este $f_s = \sum \frac{n}{T \cdot Q_i}$.

Bibliografie

K-Divisibility and K-Strong Divisibility Sequences

A sequence of rational integers \(g \) is called a divisibility sequence if and only if

\[n|m \Rightarrow g(n)|g(m) \]

for all positive integers \(n, m \). [See [3] and [4]]

Also, \(g \) is called a strong divisibility sequence if and only if

\[(g(n), g(m)) = 1 \]

for all positive integers \(n, m \). [See [1], [2], [3], [4] and [5]]

Of course, it is easy to show that the results of the Smarandache function \(S(n) \) is neither a divisibility or a strong divisibility sequence because \(4|20 \) but \(S(4) = 4 \) does not divide \(5 = S(20) \), and \((S(4), S(20)) = (4, 5) = 1 \neq 4 = S(4) = S((4, 20)) \).

a) However, is there an infinite subsequence of integers \(M = \{m_1, m_2, \ldots \} \) such that \(S \) is a divisibility sequence on \(M \)?

b) If \(P = \{p_1, p_2, \ldots \} \) is the set of prime numbers, the \(S \) is not a strong divisibility sequence on \(P \), because for \(i \neq j \) we have

\[(S(p_1), S(p_2)) = (p_1, p_2) = 1 \neq 0 = S(1) = S((p_1, p_2)) \]

And the same question can be asked about \(P \) as was asked in part (a).

We introduce the following two notions, which are generalizations of a "divisibility sequence" and "strong divisibility sequence" respectively.

1) A \(k \)-divisibility sequence, where \(k \geq 1 \) is an integer, is defined in the following way:

For \(n|m \Rightarrow g(n)|g(m) \Rightarrow g(g(n))|g(g(m)) \Rightarrow \ldots \Rightarrow g(\ldots (g(n)) \ldots) | g(\ldots (g(m)) \ldots) \) for all \(x \) times \(m \) times

positive integers \(n, m \).

For example, \(g(n) = n! \) is a \(k \)-divisibility sequence.

Also: any constant sequence is a \(k \)-divisibility sequence.

2) A \(k \)-strong divisibility sequence, where \(k \geq 1 \) is an integer, is defined in the following way:

If \((g(n_1), g(n_2), \ldots, g(n_k)) = g((n_1, n_2, \ldots, n_k)) \) for all positive integers \(n_1, n_2, \ldots, n_k \).

For example, \(g(n) = 2n \) is a \(k \)-strong divisibility sequence, because \((2n_1, 2n_2, \ldots, 2n_k) = 2 \ast (n_1, n_2, \ldots, n_k) = g((n_1, n_2, \ldots, n_k)) \).
Remarks: If \(g \) is a divisibility sequence and we apply its definition \(k \)-times, we get that \(g \) is a \(k \)-divisibility sequence for any \(k \geq 1 \). The converse is also true. If \(g \) is \(k \)-strong divisibility sequence, \(k \geq 2 \), then \(g \) is a strong divisibility sequence. This can be seen by taking the definition of a \(k \)-strong divisibility sequence and replacing \(n \) by \(n_1 \) and all \(n_1, \ldots, n_k \) by \(m \) to obtain \((g(n), g(m), \ldots, g(m)) = g((n, m, \ldots, m)) \) or \((g(n), g(m)) = g((n, m)) \).

The converse is also true, as

\[
(n_1, n_2, \ldots, n_k) = ((n_1, n_2), n_3, \ldots, n_k).
\]

Therefore, we found that:

a) The divisibility sequence notion is equivalent to a \(k \)-divisibility sequence, or a generalization of a notion is equivalent to itself.

Is there any paradox or dilemma?

b) The strong divisibility sequence is equivalent to the \(k \)-strong divisibility sequence notion.

As before, a generalization of a notion is equivalent to itself.

Again, is there any paradox or dilemma?

References

Conjecture (General Fermat Numbers)

Let a, b be integers ≥ 2 and k an integer such that $(a, c) = 1$.
One construct the function $P(k) = a^k + c$, where $k \in \{0, 1, 2, \ldots\}$.
Then:

a) For any given triplet (a, b, c) there is at least a k_0 such that $P(k_0)$ is prime.
b) There are no (a, b, c) triplets such that $P(k)$ is prime for all $k \geq 0$.
c) Is it possible to find a triplet (a, b, c) such that $P(k)$ is prime for infinitely many k's?
ASUPRA UNEI METODE A LUI W. SIERPINSKI DE REZOLVARE IN NUMERE
INTREGI A ECUATIILOR LINIARE

In nota umezea se fac cateva remarci privind metoda expusa de Sierpinski in [1], remarci ce au ca scop simplificarea si extinderea acestei metode (vezi [2]).

Fie o ecuatie lineară \(a_1x_1 + \ldots + a_nx_n = b \) avand coeficientii numeri intregi.

a) In cazul in care un coeficient \(a_{\ell} \) este negativ W.S. inlocuieste necunoscuta \(x_{\ell} \) cu \(-x_{\ell}\) pentru ca toti coeficientii sa fie pozitivi.

Consideram ca aceasta inlocuire nu este necesara, deoarece in rezolvare nu intampanam dificultati cauzate de coeficientii negativi, si apoi se marea inutil numarul variabilelor - fie ele si auxiliare; (chiar in [1], in momentul cand se compar coefficientii ar putea fi considerati in valoare absoluta).

b) Daca doi din coeficientii \(a_1, \ldots, a_r \) sunt egali, de exemplu \(a_1 = a_2 \), W.S. punea \(x_1 + x_2 = x \), in care ideea de a micorsa numarul necunoscutelor, consideram ca aceasta pas poate fi extins, si amintim daca \(a_1 = \pm a_2 = \ldots \pm a_r \), putem lua \(x_1 + \ldots + x_n = z \) numele fiind corespunzatoare coeficientilor, (substitutie care nu lasa sa se intresmaresca [1] p. 94); putem extinde chiar mai mult, daca spre exemplu coeficientii \(a_1, a_1, \ldots, a_r \), au un divizor pozitiv comun \(d \neq 1 \), deci \(a_i = d\alpha_i, i = 1, \ldots, r \), atunci se noteaza \(a_1x_1 + \ldots + a_rx_r = x \) si reducerea numarului de necunoscute este mai masivă; de fiecare data ecuatia nou obtainita are mai puține necunoscute, si este echivalentă cu prima; justificarea rămâne aceeași ca în [1].

c) Apoi W.S. alege cel mai mare coeficient (toți restenți), \(a_1 \), de exemplu, și prin împărțirea întreagă la un altul, \(a_2 \) să zicem se obține \(a_1 = a_2 \cdot p + a_3, p \in N \), înlocuindu-se \(x_1 = px_1 + x_2, x_2 = x_1, x_1 = a_2 \) deducând astfel la reducerea coeficientului cel mai mare; consideram că nu este în mod lător să se efectueze această operație având drept coeficient pe cel mai mare (în modul), ci să se alege acei coeficienți \(a_i \) și \(a_j \), pentru care împărțirea întreagă să aibă forma \(a_i = pa_j \), \(\alpha \in \mathbb{Z} \), \(\alpha \not\equiv 0 \) sau, daca nu e posibil, în așa fel ca restul să fie cât mai mic in modul, nenul (vezi [2], capitolul "Another whole number algorithm to solve linear equations (using congruency)" p. 16-21) deoarece se caută să se obtaină un număr cât mai mic de pași coeficientul ±1 pentru cei puțin une din necunoscute (este posibil să se obțină acest coeficient în cazul în care ecuația admite soluții întregi - vezi [2], p. 19, Lemma 5); iar în alte cazuri se alege chiar cel mai mic (1) coeficient in modul (din aceleași considerente - vezi [2], capitolul "A whole number algorithm to solve linear equations" p. 11-15), alteori un coeficient intermediar între aceste extreme; (vezi [2] p. 14, Note); această operație este mai importantă,
decat a) si b) si ar fi deci indicat sa se execute prima-aplicarea ei facand apoi inutila folosirea celorlalte.

Ca exemplu vom prelua aceeasi ecuatie din [1] p. 95, pe care o vom rezolva in conformitate cu cele expuse aici 6x + 10y = 7x = 11. **Solutia I.** 7 = 6(-1) - 1 si 6(x - z) - x + 10y = 11, deci am obtinut din primul pas coeficientul -1. Notand x - z = t E Z, atunci x = 6t + 10y - 11 de unde x = t + z = 7t + 10y - 11, iar y este arbitrar in Z. **Solutia II.** 6(x + 2y - z) - 2y - z = 11 si tot din primul pas am obtinut coeficientul -1. Punand x + 2y - z = u E Z obtinem 6u - 2y - z = 11 si astfel z = 6u - 2y - 11. Rezulta x = u - 2y + z = 7u - 4y - 11 cu y E Z arbitrar. Observam ca cele doua solutii sunt diferite ca expresie intre ele ii diferite de cea data de W. Sierpinski in [1], p. 95, dar toate trei sunt echivalente ca solutii generale pentru ecuatie dată (vezi [3], sau [2] p. 4-10).

Bibliografie

["Gamma", Brașov, Anul VIII, Nr. 1, Octombrie 1985, pp. 7-8.]
IN LEGATURA CU O PROBLEMĂ DE LA CONCURSUL DE MATEMATICĂ, FĂZA LOCALĂ, RĂMNICUL VALCEA

Se prezintă în această notă o extindere a unei probleme dată la Olimpiada de matematică, faza locală, la Râmbicul Vâlcea, clasa a VI-a, 1980.

Fie a_1, \ldots, a_{2n+1} numere întregi și b_1, \ldots, b_{2n+1} aceleași numere în alta ordine. Să se arate că expresia: $E = (a_1 \pm b_1) \cdot (a_2 \pm b_2) \cdot \ldots \cdot (a_{2n+1} \pm b_{2n+1}),$ unde semnele $+$ sau $-$ sint luate arbitrar în fiecare paranteză, este un număr par.

Soluție:

Presupunem că expresia E este un număr impar. Atunci rezultă că fiecare paranteză este un număr impar, deci în fiecare paranteză avem un număr par și unul impar.

Avem astfel $2n + 1$ numere pare. (1)

Dacă într-o paranteză există, să zicem, un $a_i,$ număr par, atunci există o altă paranteză în care un $b_j,$ este număr par.

Astfel pentru fiecare $a_i =$număr par dintr-o paranteză, există un b_j număr par și ar trebui să avem în total, în expresia $E,$ un număr par de numere pare. Dar aceasta contrazice (1), contradicție care demonstrează problema.

Observația 1. Demonstrația ar fi decurs într-un mod analog dacă ne-am referit la numărul de numere impare din expresie. O propunem cititorului.

Observația 2. Pentru $n = 3$ se obține problema dată la olimpiadă, problema de care am amintit în partea anterioră a notei.

[*Cadet 32/mathematică*, Craiova, Anul IV, Nr. 4, pp. 44-5, Reprografia Universității din Craiova]
NUMEROLOGY (I)
or
Properties of the Numbers

1) Reverse sequence:
1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 10987654321, 1110987654321, ...

2) Multiplicative sequence:
2, 3, 6, 12, 18, 24, 36, 48, 54, ...

General definition: if \(m_1, m_2 \) are the first two terms of the sequence, then \(m_k \) for \(k \geq 3 \) is the smallest number equal to the product of two previous distinct terms.

All terms of rank \(k \geq 3 \) are divisible by \(m_1 \) and \(m_2 \).

In our case the first two terms are 2, respectively 3.

3) Wrong numbers:
(A number \(n = a_1 a_2 \ldots a_k \), of at least two digits, with the following property:
the sequence \(a_1, a_2, \ldots, a_k, b_{k+1}, b_{k+2}, \ldots \) (where \(b_{k+i} \) is the product of the previous \(k \) terms,
for any \(i \geq 1 \) contains \(n \) as its term.)

The author conjectures that there is no wrong number (!)

Therefore, this sequence is empty.

4) Impotent numbers:
2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 41, 43, 47, 49, 53, 59, 61, ...

(A number \(n \) those proper divisors product is less than \(n \).)

Remark: this sequence is \(\{p, p' \} \), where \(p \) is a positive prime).

5) Random sieve:
1, 5, 6, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 53, 59, ...

General definition:
- choose a positive number \(u_1 \) at random;
- delete all multiples of all its divisors, except this number;
- choose another number \(u_2 \) greater than \(u_1 \) among those remaining;
- delete all multiples of all its divisors, except this second number;
... so on.

The remaining numbers are all coprime two by two.
The sequence obtained $u_k, k \geq 1$, is less dense than the prime number sequence, but it tends to the prime number sequence as k tends to infinite. That’s why this sequence may be important.

In our case, $u_1 = 6, u_2 = 19, u_3 = 35, \ldots$.

6) Cubic base:
$0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111, 112, 113, 114, 115, 116, 117, 120, 121, 122, 123, \ldots$
(Each number n written in the cubic base.)

(One defines over the set of natural numbers the following infinite base: for $k \geq 1 s_k = k^3$.)

We prove that every positive integer A may be uniquely written in the cubic base as:
$A = (a_\infty \ldots a_1 a_0)_{(3)} = \sum_{i=0}^{\infty} a_i 3^i$, with $0 \leq a_1 \leq 7, 0 \leq a_2 \leq 3, 0 \leq a_3 \leq 2$ and $0 \leq a_i \leq 1$ for $i \geq 4$, and of course $a_\infty = 1$, in the following way:
- if $c_\infty \leq A < c_\infty + 1$, then $A = c_\infty + r_1$;
- if $c_\infty \leq r_1 < c_\infty + 1$, then $r_1 = c_\infty + r_2, m < n$;
and so on until one obtains a rest $r_j = 0$.

Therefore, any number may be written as a sum of cubes (1 not counted as cube - being obvious) + e, where $e = 0, 1, \ldots$, or 7.
If we denote by $c(A)$ the superior square part of A (i.e., the largest cube less than or equal to A), then A is written in the cube base as:
$A = c(A) + (A - c(A)) + c(A - c(A) - c(A - c(A))) + \ldots$.

This base may be important for partitions with cubes.

7) Anti-symmetric sequence:
$11, 121, 123123, 12341234, 1234512345, 123456123456, 12345671234567, 1234567812345678, 123456789123456789, 1234567891012345678910, 12345678910111234567891011, 12345678910111234567891011, 12345678910111234567891011, \ldots$

8-16) Recurrence type sequences:

A. 1, 2, 3, 5, 26, 29, 677, 680, 701, 842, 845, 866, 1517, 458330, 458333, 458334, \ldots

(ss2(n) is the smallest number, strictly greater than the previous one, which is the squares sum of two previous distinct terms of the sequence;

in our particular case the first two terms are 1 and 2.)
Recurrence definition: 1) The number $a \leq b$ belong to $SS2$;
2) If b, c belong to $SS2$, then $b^2 + c^2$ belong to $SS2$ too;
3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belongs to $SS2$.
The sequence (set) $SS2$ is increasingly ordered.

[Rule 1) may be changed by: the given numbers a_1, a_2, \ldots, a_k, where $k \geq 2$, belongs to SS2.]

B. 1, 1, 2, 4, 5, 6, 16, 17, 18, 20, 21, 22, 25, 26, 27, 29, 30, 31, 36, 37, 38, 40, 41, 42, 43, 45, 46, ...

$(ss2(n))$ is the smallest number, strictly greater than the previous one (for $n \geq 3$), which is the squares sum of one or more previous distinct terms of the sequence;
in our particular case the first term is 1.)

Recurrence definition:
1) The number a belongs to $SS1$;
2) If b_1, b_2, \ldots, b_k belongs to $SS1$, where $k \geq 1$, then $b_1^2 + b_2^2 + \ldots + b_k^2$ belongs to $SS1$ too;
3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong to $SS1$.
The sequence (set) $SS1$ is increasingly ordered.

[Rule 1) may be changed by: the given numbers a_1, a_2, \ldots, a_k, where $k \geq 1$, belong to SS1.]

C. 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 21, ...

$(ns2(n))$ is the smallest number, strictly greater than the previous one, which is NOT the squares sum of two previous distinct terms of the sequence;
in our particular case the first two terms are 1 and 2.)

Recurrence definition:
1) The numbers $a \leq b$ belong to $NSS2$;
2) If b, c belong to $NSS2$, then $b^2 + c^2$ DOES NOT belong to $NSS2$; any other numbers belong to $NSS2$;
3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong to $NSS2$.
The sequence (set) $NSS2$ is increasingly ordered.
D. 1, 2, 3, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 47, ...

\(\text{NSS}_2(n) \) is the smallest number, strictly greater than the previous one, which is NOT the squares sum of the one or more previous distinct terms of the sequence; in our particular case the first term is 1.

Recurrence definition:
1) The number \(a \) belongs to \(\text{NSS}_1 \);
2) If \(b_1, b_2, \ldots, b_k \) belongs to \(\text{NSS}_1 \), where \(k \geq 1 \), then \(b_1^2 + b_2^2 + \ldots + b_k^2 \) DO NOT belong to \(\text{NSS}_1 \); any other numbers belong to \(\text{NSS}_1 \);
3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong to \(\text{NSS}_1 \).

The sequence (set) \(\text{NSS}_1 \) is increasingly ordered.

E. 1, 2, 9, 730, 737, 389017001, 389017008, 389017729, ...

\(\text{CS}_2(n) \) is the smallest number, strictly greater than the previous one, which is the cubes sum of two previous distinct terms of the sequence; in our particular case the first two terms are 1 and 2.

Recurrence definition:
1) The numbers \(a \leq b \) belong to \(\text{CS}_2 \);
2) If \(c, d \) belong to \(\text{CS}_2 \), then \(c^3 + d^3 \) belongs to \(\text{CS}_2 \) too;
3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong to \(\text{CS}_2 \).

The sequence (set) \(\text{CS}_2 \) is increasingly ordered.

F. 1, 1, 2, 8, 9, 10, 512, 513, 514, 520, 521, 522, 729, 730, 731, 737, 738, 739, 1241, ...

\(\text{CS}_1(n) \) is the smallest number, strictly greater than the previous one (for \(n \geq 3 \)), which is the cubes sum of one or more previous distinct terms of the sequence; in our particular case the first term is 1.

Recurrence definition:
1) The numbers \(a \leq b \) belong to \(\text{CS}_1 \);
2) If \(b_1, b_2, \ldots, b_k \) belong to CS1, where \(k \geq 1 \), then \(b_1^3 + b_2^3 + \ldots + b_k^3 \) belong to CS1 too.

3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong to CS1.

The sequence (set) CS1 is increasingly ordered.

(Rule 1) may be changed by: the given numbers \(a_1, a_2, \ldots, a_k \), where \(k \geq 2 \), belong to CS1.

G. 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, ...

(\(ncs1(n) \) is the smallest number, strictly greater than the previous one, which is NOT the cubes sum of two previous distinct terms of the sequence; in our particular case the first term is 1 and 2.)

Recurrence definition:

1) The numbers \(a \leq b \) belong to NCS1;
2) If \(c, d \) belong to NCS1, then \(c^3 + d^3 \) DOES NOT belong to NCS1; any other numbers do belong to NCS1;
3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong to NCS1.

The sequence (set) NCS1 is increasingly ordered.

(Rule 1) may be changed by: the given numbers \(a_1, a_2, \ldots, a_k \), where \(k \geq 2 \), belong to NCS1.

H. 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 37, 38, 39, ...

(\(ncs2(n) \) is the smallest number, strictly greater than the previous one, which is NOT the cubes sum of the one or more previous distinct terms of the sequence; in our particular case the first term is 1.)

Recurrence definition:

1) The number \(a \) belongs to NCS1;
2) If \(b_1, b_2, \ldots, b_k \) belong to NCS1, where \(k \geq 1 \), then \(b_1^2 + b_2^2 + \ldots + b_k^2 \) DO NOT belong to NCS1; any other numbers belong to NCS1;
3) Only numbers, obtained by rules 1) and/or 2) applied a finite number of times, belong to NCS1.
The sequence (set) NCS1 is increasingly ordered.

(Rule 1) may change by: the given numbers a_1, a_2, \ldots, a_k, where $k \geq 1$, belong to NCS1.

I. General-recurrence type sequence:

General recurrence definition:

Let $k \geq j$ be natural numbers, a_1, a_2, \ldots, a_k given elements, and R a j-relationship (relation among j elements).

Then:

1) The elements a_1, a_2, \ldots, a_k belong to SGR.
2) If m_1, m_2, \ldots, m_j belong to SGR, then $R(m_1, m_2, \ldots, m_j)$ belongs to SGR too.
3) Only elements, obtained by rules 1) and/or 2) applied a finite number of times, belong to SGR.

The sequence (set) SGR is increasingly ordered.

Method of construction of the general recurrence sequence:

- Level 1: the given elements a_1, a_2, \ldots, a_k belong to SGR;
- Level 2: apply the relationship R for all combinations of j elements among a_1, a_2, \ldots, a_k; the results belong to SGR too;
- Order all elements of Level 1 and 2 together;

- Level $i + 1$:

If b_1, b_2, \ldots, b_s are all elements of levels $1, 2, \ldots, i - 1$, and c_1, c_2, \ldots, c_t are all elements of level i, then apply the relationship R for all combinations of j elements among $b_1, b_2, \ldots, b_s, c_1, c_2, \ldots, c_t$ such that at least one element is from the level i; the results belong to SGR too;

Order all elements of levels i and $i + 1$ together;

and so on...

17)-19) Partition type sequences:

A. $1, 1, 1, 2, 2, 2, 3, 3, 4, 4, \ldots$

(How many times is n written as sum of non-null squares, disregarding the terms order; for example:

$9 = \Gamma^2 + \Gamma^2$
$= \Gamma^2 + \Gamma^2 + \Gamma^2 + \Gamma^2 + \Gamma^2 + 2^2$
$= \Gamma^2 + 2^2 + 2^2$
$= 3 \cdot 2$.
therefore \(n_s(9) = 4 \).

B. \(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, \ldots \)

(How many times is \(n \) written as a sum of non-null cubes, disregarding the terms order:
for example:
\[
9 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 2^3
= 1^3 + 2^3,
\]
therefore \(n_c(9) = 2 \).)

C. General-partition type sequence:
Let \(f \) be an arithmetic function, and \(R \) a relation among numbers.

(How many times can \(n \) be written under the form:
\[
n = R(f(n_1), f(n_2), \ldots, f(n_k))
\]
for some \(k \) and \(n_1, n_2, \ldots, n_k \) such that
\[
n_1 + n_2 + \ldots + n_k = n?
\]
then m_k, for $i \geq k + 1$, is the smallest number not equal to the product of k previous distinct terms.

24) Non-arithmetic progression:
1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41, 64, ...

General definition: if m_1, m_2, are the first two terms of the sequence, then m_k, for $k \geq 3$, is the smallest number such that no 3-term arithmetic progression is in the sequence.

in our case the first two terms are 1, respectively 2.

Generalization: same initial conditions, but no i-term arithmetic progression in the sequence (for a given $i \geq 3$).

25) Prime product sequence:
2, 7, 31, 211, 30031, 510511, 9699691, 223092871, 6469693231, 200560490131, 742078134811, 304250263527211, ...

$P_n = 1 + p_1 p_2 \ldots p_n$, where p_n is the k-th prime.

Question: How many of them are prime?

26) Square product sequence:
2, 5, 37, 14401, 5184001, 254016001, 518401, 131681944001, 1316819440001, 1593350922240001, ...

$S_n = 1 + s_1 s_2 \ldots s_n$, where s_n is the k-th square number.

Question: How many of them are prime?

27) Cubic product sequence:
2, 9, 217, 1728001, 373248001, 12024064001, 55548320768001, 1593350922240001, ...

$C_n = 1 + c_1 c_2 \ldots c_n$, where c_n is the k-th cubic number.

Question: How many of them are prime?

28) Factorial product sequence:
2, 3, 289, 15728001, 2488320001, 326240640001, 555483207680001, ...

$F_n = 1 + f_1 f_2 \ldots f_n$, where f_n is the k-th factorial number.

Question: How many of them are prime?

29) U-product sequence {generalization}:
Let $u_n, n \geq 1$, be a positive integer sequence. Then we define a U-sequence as follows:
$U_n = 1 + u_1 u_2 \ldots u_n$

30) Non-geometric progression:
1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 53, ...

165
General definition: if \(m_1, m_2 \), are the first two terms of the sequence, then \(m_k \), for \(k \geq 3 \), is the smallest number such that no 3-term geometric progression is in the sequence.

In our case the first two terms are 1, respectively 2.

31) Unary sequence:

\[u(n) = \Pi \ldots \Pi \pi_n \text{ digits of } "1", \text{ where } \pi_n \text{ is the } n\text{-th prime}. \]

The old question: are there an infinite number of primes belonging to the sequence?

32) No prime digit sequence:

\(1, 4, 6, 8, 9, 10, 1, 1, 14, 1, 16, 1, 18, 19, 0, 1, 4, 6, 8, 9, 0, 1, 4, 6, 8, 9, 40, 41, 42, 4, 44, 46, 48, 49, 0, \ldots \)

(Take out all prime digits of \(n \).)

33) No square digit sequence:

\[2, 3, 5, 7, 8, 2, 3, 5, 6, 7, 8, 2, 2, 2, 23, 2, 25, 2, 27, 28, 2, 3, 3, 32, 33, 3, 35, 36, 37, 38, 3, 2, 3, 5, 6, 7, 8, 5, 5, 52, 52, 5, 55, 56, 57, 58, 5, 6, 6, 62, \ldots \]

(Take out all square digits of \(n \).)

34) Concatenated prime sequence:

\(2, 23, 235, 2357, 235711, 235711317, 23571131719, 2357113171923, \ldots \)

Conjecture: there are infinitely many primes among these numbers!

35) Concatenated odd sequence:

\(1, 13, 135, 1357, 13579, 13579113, 1357911315, 135791131517, \ldots \)

Conjecture: there are infinitely many primes among these numbers!

36) Concatenated even sequence:

\(2, 24, 246, 2468, 246810, 24681012, 2468101214, \ldots \)

Conjecture: none of them is a perfect power!

37) Concatenated \(S \)-sequence (generalization):

Let \(s_1, s_2, s_3, \ldots, s_n, \ldots \) be an infinite sequence (noted by \(S \)).

Then:

\[s_1, s_1s_2, s_1s_2s_3, s_1s_2s_3s_4, \ldots \]

is called the Concatenated \(S \)-sequence.

Question:

a) How many terms of the Concatenated \(S \)-sequence belong to the initial \(S \)-sequence?
b) Or, how many terms of the Concatenated S-sequence verify the relation of other given sequences?

The first three cases are particular.

Look now at some other examples, when S is the sequence of squares, cubes, Fibonacci respectively (and one can go so on):

Concatenated Square sequence:
1, 14, 149, 14916, 149162536, 14916253649, 1491625364964, ...
How many of them are perfect squares?

Concatenated Cubic sequence:
1, 18, 1827, 182764, 182764125, 182764125216, 1827641252166343, ...
How many of them are perfect cubes?

Concatenated Fibonacci sequence:
1, 11, 112, 1123, 11235, 112358, 11235813, 1123581321, 112358132134, ...
Does any of these numbers is a Fibonacci number?

References

[1] F. Smarandache, "Properties of Numbers", University of Craiova Archives, 1975; [see also Arizona State University Special Collections, Tempe, Arizona, USA].

38) The Smallest Power Function:
$SP(n)$ is the smallest number m such that m^m is divisible by n.
The following sequence $SP(n)$ is generated:
1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 20, 41, 42, ...
Remark:
If p is prime, then $SP(p) = p$.
If r is square free, then $SP(r) = r$.
If $n = (p_1^{s_1}) \cdot \ldots \cdot (p_k^{s_k})$ and all $s_i \leq p_i$, then $SP(n) = n$.
If $n = p^r$, where p is prime, then:
\[p, \text{ if } 1 \leq s \leq p; \]
\[p^2, \text{ if } p + 1 \leq s \leq 2p^2; \]
\[SP(n) = p^3, \text{ if } 2p^2 + 1 \leq s \leq 3p^2; \]
\[p^t, \text{ if } (t - 1)p^t(t - 1) + 1 \leq s \leq tp^t. \]

Generally, if \(n = (p_1 \cdot s_1) \cdots (p_k \cdot s_k) \), with all \(p_i \) prime, then:
\[SP(n) = (p_1 \cdot t_1) \cdots (p_k \cdot t_k), \text{ where } t_i = u_i \text{ if } (u_i - 1)p^t - (u_i - 1)+ \leq s_i \leq u_i p^t - u_i \text{ for } 1 \leq i \leq k. \]

39) A 3n-digital subsequence:
13, 26, 39, 412, 515, 618, 721, 824, 927, 1030, 1133, 1236, ...
(numbers that can be partitioned into two groups such that the second is three times bigger than the first)

40) A 4n-digital subsequence:
14, 28, 312, 416, 520, 624, 728, 832, 936, 1040, 1144, 1248, ...
(numbers that can be partitioned into two groups such that the second is four times bigger than the first)

41) A 5n-digital subsequence:
15, 210, 315, 420, 525, 630, 735, 840, 945, 1050, 1155, 1260, ...
(numbers that can be partitioned into two groups such that the second is five times bigger than the first)

42) A second function (numbers):
1, 2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 12, 5, 26, 9, 14, 29, 30, 31, 8, 33, ...

\(S2(n) \) is the smallest integer \(m \) such that \(m^2 \) is divisible by \(n \)

43) A third function (numbers):
1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, ...

\(S3(n) \) is the smallest integer \(m \) such that \(m^2 \) is divisible by \(n \)
NUMERALOGY (II)

or

Properties of Numbers

1) Factorial base:
0, 1, 10, 11, 20, 21, 100, 101, 110, 111, 120, 121, 200, 201, 210, 220, 221, 300, 301, 310, 311, 320, 321, 1000, 1001, 1010, 1011, 1020, 1021, 1100, 1101, 1110, 1111, 1120, 1121, 1200, ...

(Each number \(n \) written in the factorial base.)

We define over the set of natural numbers the following infinite base: for \(k \geq 1 \) \(f_k = k! \)

It is proved that every positive integer \(A \) may be uniquely written in the factorial base as:

\[
A = \left(a_{l-1} \ldots a_2 a_1 \right)_{(F)} = \sum_{i=1}^{l} a_i f_i, \text{ with all } a_i = 0, 1, \ldots i \text{ for } i \geq 1.
\]

in the following way:

- if \(f_m \leq A < f_{m+1} \) then \(A = f_m + r_m \);
- if \(f_m = r_1 < f_{m+1} \) then \(r_1 = f_m + r_m, m < n; \)
- and so on until one obtains a rest \(r_j = 0. \)

What's very interesting: \(a_1 = 0 \) or \(1; a_2 = 0, 1, \) or \(2; a_3 = 0, 1, 2 \) or \(3; \) and so on...

If we note by \(f(A) \) the superior factorial part of \(A \) (i.e. the largest factorial less than or equal to \(A \)), then \(A \) is written in the factorial base as:

\[
A = f(A) + f(A - f(A)) + f(A - f(A) - f(A - f(A))) + \ldots.
\]

Rules of addition and substraction in factorial base:

for each digit \(a_i \) we add and substract in base \(i + 1 \), for \(i \geq 1. \)

For example, addition:

<table>
<thead>
<tr>
<th>base</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

because: \(0 + 1 = 1 \) (in base 2);
\(1 + 2 = 10 \) (in base 3); therefore we write 0 and keep 1;
\(2 + 2 + 1 = 11 \) (in base 4).

Now substraction:
because: 1 - 0 = 1 (in base 2);
0 - 2 = ? it's not possible (in base 3), go to the next left unit, which is 0 again (in base 4), go again to the next left unit, which is 1 (in base 5), therefore 1001 -> 0401 -> 0331 and then 0331 - 330 = 11.

Find some rules for multiplication and division.
In a general case:
if we want to design a base such that any number
$A = (a_n...a_2a_1)_b$ with all $a_i = 0, 1, ... , t_i$ for $i \geq 1$, where all $t_i \geq 1$, then:
this base should be
$$b_1 = 1, b_{i+1} = (t_i + 1) \cdot b_i \text{ for } i \geq 1.$$
2) More general-sequence sieve:
For $i = 1, 2, 3, ...$, let $u_i > 1$, be a strictly increasing positive integer sequence, and $v_i < u_i$ another positive integer sequence. Then:
From the natural numbers set:
- keep the v_1-th number among 1, 2, 3, ... , $u_1 - 1$, and delete every u_1-th numbers;
- keep the v_2-th number among the next $u_2 - 1$ remaining numbers, and delete every u_2-th numbers;
... and so on, for step $k (k \geq 1)$:
- keep the v_k-th number among the next $u_k - 1$ remaining numbers, and delete every u_k-th numbers;
...
Problem: study the relationship between sequences $u_i, v_i, i = 1, 2, 3, ...$, and the remaining sequence resulted from the more general sieve.
u_i and v_i previously defined, are called sieve generators.
3) Mobile periodicals (I):

This sequence has the form

\[1, 111, 11011, 1111, 110111, 1110011, 110111, 1111, 110111, 1110011, 11000011, \ldots \]
4) Mobile periodicals (II):

This sequence has the form
\[
\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
5 & 7 & 9 & 17 & 2 & & & & \\
\end{array}
\]
5) Infinite numbers (I):

```

```

173
6) Infinite numbers (II):

... 111111111111111111111111111111121111111111111111111111111111111111 .. .
... 111111111111111111111111111111222111111111111111111111111111111111 .. .
... 111111111111111111111111111112232211111111111111111111111111111111 .. .
... 111111111111111111111111111111222111111111111111111111111111111111 .. .
... 111111111111111111111111111111121111111111111111111111111111111111 .. .
... 111111111111111111111111111111222111111111111111111111111111111111 .. .
... 111111111111111111111111111112232211111111111111111111111111111111 .. .
... 111111111111111111111111111122343221111111111111111111111111111111 .. .
... 111111111111111111111111111223454322111111111111111111111111111111 .. .
... 111111111111111111111111112234565432211111111111111111111111111111 .. .
... 111111111111111111111111111223456765432211111111111111111111111111 .. .
... 111111111111111111111111111122345654322111111111111111111111111111 .. .
... 111111111111111111111111111112234322111111111111111111111111111111 .. .
... 111111111111111111111111111112222211111111111111111111111111111111 .. .
... 111111111111111111111111111111222111111111111111111111111111111111 .. .
... 111111111111111111111111111111121111111111111111111111111111111111 .. .
... 111111111111111111111111111111222111111111111111111111111111111111 .. .
... 111111111111111111111111111112232211111111111111111111111111111111 .. .
... 111111111111111111111111111122343221111111111111111111111111111111 .. .
... 111111111111111111111111111223454322111111111111111111111111111111 .. .
... 111111111111111111111111112234565432211111111111111111111111111111 .. .
... 111111111111111111111111122345676543221111111111111111111111111111 .. .
... 111111111111111111111111112234565432211111111111111111111111111111 .. .
... 111111111111111111111111111223454322111111111111111111111111111111 .. .
... 111111111111111111111111111122222211111111111111111111111111111111 .. .
... 111111111111111111111111111111222111111111111111111111111111111111 .. .
... 111111111111111111111111111111121111111111111111111111111111111111 .. .
7) Car:

8) Finite lattice:

9) Infinite lattice:

Remark: of course, it's interesting to "design" a large variety of numerical <object sequences> in the same way. Their numbers may be finite if the picture's background is zeroed, or infinite if the picture's background is not zeroed - as for the previous examples.

10) Multiplication:

Another way to multiply two integer numbers, A and B:
- let \(k \) be an integer \(\geq 2 \);
- write \(A \) and \(B \) on two different vertical columns: \(c(A) \), respectively \(c(B) \);
- multiply \(A \) by \(k \) and write the product \(A_i \) on the column \(c(A) \):

175
- divide \(B \) by \(k \), and write the integer part of the quotient \(B_1 \) on the column \(c(B) \);
- and so on with the new numbers \(A \) and \(B_1 \), until we get a \(B_i < k \) on the column \(c(B) \);

Then:
- write another column \(c(r) \), on the right side of \(c(B) \), such that:
 - for each number of column \(c(B) \), which may be a multiple of \(k \) plus the rest \(r \) (where \(r = 0, 1, 2, \ldots, k - 1 \)), the corresponding number on \(c(r) \) will be \(r \);
- multiply each number of column \(A \) by its corresponding \(r \) of \(c(r) \), and put the new products on another column \(c(P) \) on the right side of \(c(r) \);
- finally add all numbers of column \(c(P) \).

\[A \times B = \text{the sum of all numbers of } c(P). \]

Remark that any multiplication of integer numbers can be done only by multiplication with \(2, 3, \ldots, k \), division by \(k \), and additions.

This is a generalization of Russian multiplication (where \(k = 2 \)).

This multiplication is useful when \(k \) is very small, the best values being for \(k = 2 \) (Russian multiplication - known since Egyptian time), or \(k = 3 \). If \(k \) is greater than or equal to \(\min\{10, B\} \), this multiplication is trivial (the obvious multiplication).

Example 1. (if we choose \(k = 3 \)):

\[
\begin{array}{c|c|c|c}
\times_3 & /3 & c(r) & c(P) \\
\hline
73 & 97 & 1 & 73 \\
219 & 92 & 2 & 438 \\
657 & 10 & 1 & 657 \\
1971 & 3 & 0 & 0 \\
5913 & 1 & 1 & 5913 \\
\hline
\end{array}
\]

therefore: \(73 \times 97 = 7081 \).

Remark that any multiplication of integer numbers can be done only by multiplication with \(2, 3, \ldots, k \), division by \(3 \), and additions.

Example 2. (if we choose \(k = 4 \)):

\[
\begin{array}{c|c|c|c}
\times_4 & /4 & c(r) & c(P) \\
\hline
73 & 97 & 1 & 73 \\
292 & 39 & 2 & 788 \\
657 & 10 & 1 & 657 \\
1971 & 3 & 0 & 0 \\
5913 & 1 & 1 & 5913 \\
\hline
\end{array}
\]

therefore: \(73 \times 97 = 7081 \).

Remark that any multiplication of integer numbers can be done only by multiplication with \(2, 3, \ldots, k \), divisions by \(3 \), and additions.
therefore: $73 \times 97 = 7081$.

Remark that any multiplication of integer numbers can be done only by multiplication with 2, 3, 4, divisions by 4, and additions.

Example 3. (if we choose $k = 5$):

$73 \times 97 = ?$

<table>
<thead>
<tr>
<th>x_5</th>
<th>/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c(A)$</td>
<td>$c(B)$</td>
</tr>
<tr>
<td>73</td>
<td>97</td>
</tr>
<tr>
<td>365</td>
<td>19</td>
</tr>
<tr>
<td>1835</td>
<td>3</td>
</tr>
</tbody>
</table>

therefore: $73 \times 97 = 7081$.

Remark that any multiplication of integer numbers can be done only by multiplication with 2, 3, 4, 5, divisions by 5, and additions.

This multiplication becomes less useful when k increases.

Look at another example (4), what happens when $k = 10$:

Example 4. $73 \times 97 = ?$

<table>
<thead>
<tr>
<th>x_0</th>
<th>/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c(A)$</td>
<td>$c(B)$</td>
</tr>
<tr>
<td>73</td>
<td>97</td>
</tr>
<tr>
<td>730</td>
<td>9</td>
</tr>
</tbody>
</table>

therefore: $73 \times 97 = 7081$.
therefore: $73 \times 97 = 7081$.

Remark that any multiplication of integer numbers can be done only by multiplication with
2, 3, \ldots, 10, divisions by 10, and additions - hence we obtain just the obvious multiplication!
11) Division by $k \cdot n$:

Another way to divide an integer numbers A by $k \cdot n$, where k, n are integers ≥ 2:
- write A and $k \cdot n$ on two different vertical columns: $c(A)$, respectively $c(k \cdot n)$;
- divide A by k, and write the integer quotient A_1 on the column $c(A)$;
- divide $k \cdot n$ by k, and write the quotient $q_1 = k \cdot (n - 1)$ on the column $c(k \cdot n)$;
... and so on with the new numbers A_1 and q_1, until we get $q_n = 1 (= k \cdot 0)$ on the column $c(k \cdot n)$;

Then:
- write another column $c(r)$, on the left side of $c(A)$, such that:
 - for each number of column $c(A)$, which may be multiple of k plus the rest r (where
 $r = 0, 1, 2, \ldots, k - 1$), the corresponding number on $c(r)$ will be r;
 - write another column $c(P)$, on the left side of $c(r)$, in the following way: the element on
 line i (except the last line which is 0) will be $k \cdot (i - 1)$;
 - multiply each number of column $c(P)$ by its corresponding r of $c(r)$, and put the new
 products on another column $c(R)$ on the left side of $c(P)$;
- finally add all numbers of column $c(R)$ to get the final rest R, while the final quotient will
 be stated in front of $c(k \cdot n)$'s 1.

Therefore:
$A/(k \cdot n) = A_n$ and rest R_n.

Remark that any division of an integer number by $k \cdot n$ can done only by divisions to k,
calculations of powers of k, multiplications with $1, 2, \ldots, k - 1$, additions.

This division is useful when k is small, the best values being when k is an one-digit number,
and n large. If k is very big and n very small, this division becomes useless.
Example 1. \(\frac{1357}{(2 \cdot 7)} = ? \)

<table>
<thead>
<tr>
<th>(c(R))</th>
<th>(c(P))</th>
<th>(c(r))</th>
<th>(c(A))</th>
<th>(c(2 \cdot 7))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2'0</td>
<td>1</td>
<td>2'7</td>
<td>line_1</td>
</tr>
<tr>
<td>0</td>
<td>2'1</td>
<td>0</td>
<td>2'6</td>
<td>line_2</td>
</tr>
<tr>
<td>4</td>
<td>2'2</td>
<td>1</td>
<td>2'5</td>
<td>line_3</td>
</tr>
<tr>
<td>8</td>
<td>2'3</td>
<td>1</td>
<td>2'4</td>
<td>line_4</td>
</tr>
<tr>
<td>0</td>
<td>2'4</td>
<td>0</td>
<td>2'3</td>
<td>line_5</td>
</tr>
<tr>
<td>0</td>
<td>2'5</td>
<td>0</td>
<td>2'2</td>
<td>line_6</td>
</tr>
<tr>
<td>64</td>
<td>2'6</td>
<td>1</td>
<td>2'1</td>
<td>line_7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Therefore: \(\frac{1357}{(2 \cdot 7)} = 10 \) and rest 77.

Remark that the division of an integer number by any power of 2 can be done only by divisions to 2, calculations of power of 2, multiplications and additions.

Example 2. \(\frac{19495}{(3 \cdot 8)} = ? \)

<table>
<thead>
<tr>
<th>(c(R))</th>
<th>(c(P))</th>
<th>(c(r))</th>
<th>(c(A))</th>
<th>(c(3 \cdot 8))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3'0</td>
<td>1</td>
<td>3'8</td>
<td>line_1</td>
</tr>
<tr>
<td>0</td>
<td>3'1</td>
<td>0</td>
<td>3'7</td>
<td>line_2</td>
</tr>
<tr>
<td>0</td>
<td>3'2</td>
<td>0</td>
<td>3'6</td>
<td>line_3</td>
</tr>
<tr>
<td>8</td>
<td>3'3</td>
<td>2</td>
<td>3'5</td>
<td>line_4</td>
</tr>
<tr>
<td>0</td>
<td>3'4</td>
<td>0</td>
<td>3'4</td>
<td>line_5</td>
</tr>
<tr>
<td>16</td>
<td>3'5</td>
<td>2</td>
<td>3'3</td>
<td>line_6</td>
</tr>
<tr>
<td>1458</td>
<td>3'6</td>
<td>2</td>
<td>3'2</td>
<td>line_7</td>
</tr>
<tr>
<td>4974</td>
<td>3'7</td>
<td>0</td>
<td>3'1</td>
<td>line_8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Therefore: \(\frac{19495}{(3 \cdot 8)} = 2 \) and rest 6373.

Remark that the division of an integer number by any power of 3 can be done only by divisions to 3, calculations of power of 3, multiplications and additions.
References

"The Florentin Smarandache papers" special collection, Arizona State University, Tempe, AZ 85287.

12) Almost prime of first kind:

$a_i \geq 2$, and for \(n \geq 1 \), \(an+1 \) is the smallest number that is not divisible by any of the previous terms of the sequence \(a_1, a_2, \ldots, a_n \).

Example for \(a_1 = 10 \):

10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 41, 43, 47, 49, 53, 57, 61, 67, 71, 73, ...

If one starts by \(a_1 = 2 \), it obtains the complete prime sequence and only it.

If one starts by \(a_2 > 2 \), it obtains after a rank \(r \), where \(ar = p(1)p(2) \) with \(p(x) \) the strictly superior prime part of \(x \), i.e. the largest prime strictly less than \(x \), the prime sequence:

- between \(a_1 \) and \(ar \), the sequence contains all prime numbers of this interval and some composite numbers;
- from \(ar+1 \) and up, the sequence contains all prime numbers greater than \(ar \) and no composite numbers.

13) Almost primes of second kind:

\(a_i \geq 2 \), and for \(n \geq 1 \), \(an+1 \) is the smallest number that is coprime with all of the previous terms of the sequence \(a_1, a_2, \ldots, a_n \).

This second kind sequence merges faster to prime numbers than the first kind sequence.

Example for \(a_1 = 10 \):

10, 11, 13, 17, 19, 21, 23, 29, 31, 37, 41, 43, 47, 53, 57, 61, 67, 71, 73, ...

If one starts by \(a_1 = 2 \), it obtains the complete prime sequence and only it.

If one starts by \(a_2 > 2 \), it obtains after a rank \(r \), where \(ar = p_1p_2 \) with \(p_1 \) and \(p_2 \) prime number strictly less than and not dividing \(a_1 \), the prime sequence:

- between \(a_1 \) and \(ar \), the sequence contains all prime numbers of this interval and some composite numbers;
- from \(ar+1 \) and up, the sequence contains all prime numbers greater than \(ar \) and no composite numbers.
1) Odd Sequence:
1, 13, 133, 1337, 13379, 1337911, 13379113, 1337911315, 133791131517, ...
How many of them are primes?

2) Even Sequence:
1, 24, 246, 2468, 246810, 24681012, 2468101214, 246810121416, ...
Conjecture: No number in this sequence is an even power.

3) Prime Sequence:
2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, ...
How many of them are primes?
Conjecture: A finite number.

4) S-sequence:
General definition: Let $S = \{s_1, s_2, s_3, \ldots, s_n, \ldots \}$ be an infinite sequence of integers.
Then the corresponding S-sequence is $\{s_1, s_1s_2, \ldots, s_1s_2 \ldots s_n, \ldots \}$ where the numbers are concatenated together.

Question 1: How many terms of the S-sequence are found in the original set S?
Question 2: How many terms of the S-sequence satisfy the properties of other given sequence?

For example, the odd sequence above is built from the set $S = \{1, 3, 5, 7, 9, \ldots \}$ and every element of the S-sequence is found in S. The even sequence is built from the set $S = \{2, 4, 6, 8, 10, \ldots \}$ and every element of the corresponding S-sequence is also in S. However, the question is much harder for the prime sequence.

Study the case when S is the Fibonacci numbers $\{1, 1, 2, 3, 5, 8, 13, 21, \ldots \}$. The corresponding F-sequence is then $\{1, 11, 112, 1123, 11235, 112358, 11235813, \ldots \}$. In particular, how many primes are in the F-sequence?

5) Uniform sequences:
General definition: Let $n \neq 0$ be an integer and d_1, d_2, \ldots, d_r distinct digits in base $B > r$.
Then, multiples of n, written using only the complete set of digits d_1, d_2, \ldots, d_r in base B,
increasingly ordered, is called the uniform sequence.

Some particular examples involve one digit only.

a) Multiples of 7 written in base 10 using only the digit 1.
\[
1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, \ldots
\]

b) Multiples of 7 written in base 10 using only digit 2.
\[
2222, 22222222, 222222222222, 222222222222222222222222222222222222, \ldots
\]

c) Multiples of 79365 written in base 10 using only the digit 5.
\[
5, 55, 555, 5555, 55555, 555555, 5555555, 55555555, 555555555, \ldots
\]

In many cases, the uniform sequence is empty.

d) It is possible to create multiples of 79365 in base 10 using only the digit 6.

Remark: If there exists at least one such multiple of \(n \) written with the digits \(d_1, d_2, \ldots, d_r \) in base \(B \), then there exists an infinite number of multiples of \(n \). If \(m \) is the initial multiple, then they all have the form, \(m, mm, mmm, \ldots \).

With a computer program it is easy to select all multiples of a given number written with a set of digits, up to a maximum number of digits.

Exercise: Find the general term expression for multiples of 7 using only the digits \(\{1, 3, 5\} \) in base 10.

6) Operation Sequence:

General definition: Let \(E \) be an ordered set of elements, \(E = \{e_1, e_2, \ldots\} \) and \(\Theta \) a set of binary operations well-defined on \(E \). Then,
\[
a_1 \in \{e_1, e_2, \ldots\}
\]

\[
a_{n+1} = \min\{\theta_1, \theta_2, \ldots, \theta_r, e_{n+1}\} > a_n, \text{ for } n \geq 1.
\]

where all \(\theta_i \) are operations belonging to \(\Theta \).

Some examples:

a) When \(E \) is the set of natural numbers and \(\Theta = (+, *, /) \), the four standard arithmetic operations.

Then
\[
a_1 = 1
\]
\[
a_{n+1} = \min\{1, \theta_1, \ldots, \theta_r(n+1)\} > a_n, \text{ for } n \geq 1.
\]

182
Questions:

a) Given N as the set of numbers and $\Theta = \{+,-,\times,\div\}$ as the set of operations, is there a general formula for the sequence?

b) If the finite sequence is defined with the finite set of numbers \{1, 2, 3, ..., 99\} and the set of operations the same as above, where

$$a_1 = 1$$

$$a_{n+1} = \min\{16, 28, 29, 99\} > a_n, \text{ for } n \geq 1.$$

The same questions as in (a).

c) Let N be the set of numbers and $\Theta = \{+,-,\times,\div, \sqrt[y]{x}\}$, where x^y is x to the power y and $\sqrt[y]{x}$ is the y-th root of x. Define the sequence by

$$a_1 = 1$$

$$a_{n+1} = \min\{16, 28, 29, 99\} > a_n, \text{ for } n \geq 1.$$

The same questions can be asked, although they are harder and perhaps more interesting.

d) Using the same set of operations, the algebraic operation finite sequence can be defined:

$$a_1 = 1$$

$$a_{n+1} = \min\{16, 28, 29, 99\} > a_n, \text{ for } n \geq 1.$$

And pose the same questions as in (b).

More generally, the binary operations can be replaced by k_i-ary operations, where all k_i are integers.

$$a_1 \in \{c_1, c_2, \ldots\}$$

$$a_{n+1} = \min\{16, 28, 29, 99\} > a_n, \text{ for } n \geq 1.$$

Where each θ_i is a k_i-ary relation and $k_1 + (k_2 - 1) + \ldots + (k_n - 1) = n + 1$. Note that the last element of the k_i relation is the first element of the k_{i+1} relation.

Remark: The questions are much easier when $\Theta = \{+,-\}$. Study the operation type sequences in this easier case.

e) Operators sequences at random:
Same definition and questions as the previous sequences, except that the minimum condition is removed.

\[a_{n+1} = \{e_1, e_2, \ldots, e_{n+1}\} > a_n, \text{ for } n \geq 1. \]

Therefore, \(a_{n+1}\) will be chosen at random, with the only restriction being that it be greater than \(a_n\).

Study these sequences using a computer program with a random number generator to choose \(a_{n+1}\).

References

[1] F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975. [Also see the Arizona State University Special Collections, Tempe, Arizona, USA].

P-Q Relationships and Sequences

Let \(A = \{a_n\}, n \geq 1\) be a sequence of numbers and \(q, p\) integers \(\geq 1\). We say that the terms \(a_{k+1}, a_{k+2}, \ldots, a_{k+p}, a_{k+p+1}, a_{k+p+2}, \ldots, a_{k+p+q}\) satisfy a \(p-q\)-relation if

\[a_{k+1} \circ a_{k+2} \circ \ldots \circ a_{k+p} = a_{k+p+1} \circ a_{k+p+2} \circ \ldots \circ a_{k+p+q} \]

where \(\circ\) may be any arithmetic operation, although it is generally a binary relation on \(A\). If this relationship is satisfied for any \(k \geq 1\), then \(\{a_n\}, n \geq 1\) is said to be a \(p-q\)-sequence.

For operations such as addition, where \(\circ = +\), the sequence is called a \(p-q\)-additive sequence.

As a specific case, we can easily see that the Fibonacci/Lucas sequence \(a_n + a_{n+1} = a_{n+2}\), for \(n \geq 1\), is a \(3-1\)-additive sequence.

Definition. Given any integer \(n \geq 1\), the value of the Smarandache function \(S(n)\) is the smallest integer \(m\) such that \(n\) divides \(m!\).

If we consider the sequence of numbers that are the values of the Smarandache function for the integers \(n \geq 1\),

\[1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, \ldots \]

they can be incorporated into questions involving the \(p-q\)-relationships.
a) How many ordered quadruples are there of the form \((S(n), S(n+1), S(n+2), S(n+3))\) such that \(S(n+1) + S(n+2) = S(n+3) + S(n+4)\) which is a \(2-2\) additive relationship?

The three quadruples
\[
S(6) + S(7) = S(8) + S(9), \quad 3 + 7 = 4 + 6;
S(7) + S(8) = S(9) + S(10), \quad 7 + 4 = 6 + 5;
\]
are known. Are there any others? At this time, these are the only known solutions.

b) How many quadruples satisfy the \(2-2\) subtrac relationship \(S(n+1) - S(n+2) = S(n+3) - S(n+4)\)?

The three quadruples
\[
S(1) - S(2) = S(3) - S(4), \quad 1 - 2 = 3 - 4;
S(2) - S(3) = S(4) - S(5), \quad 2 - 3 = 4 - 5;
S(49) - S(50) = S(51) - S(52), \quad 14 - 10 = 17 - 13
\]
are known. Are there any others?

c) How many 6-tuples satisfy the \(2-3\) additive relationship \(S(n+1) + S(n+2) + S(n+3) = S(n+4) + S(n+5) + S(n+6)\)?

The only known solution is
\[
S(5) + S(6) + S(7) = S(8) + S(9) + S(10), \quad 5 + 3 + 7 = 4 + 6 + 5.
\]

Charles Ashbacher has a computer program that calculates the values of the Smarandacbe function. Therefore, he may be able to find additional solutions to these problems.

More general, if \(f_p\) is a \(p\)-ary relation and \(g_q\) a \(q\)-ary relation, both defined on the set \(\{a_1, a_2, a_3, \ldots\}\), then \(a_1, a_2, a_3, \ldots, a_p, a_{p+1}, \ldots, a_q\) satisfies a \(f_p - g_q\) relationship if
\[
f(a_1, a_2, \ldots, a_p) = g(a_{p+1}, a_{p+2}, \ldots, a_q).
\]

If this relationship holds for all terms of the sequence, then \(\{a_n\}, n \geq 1\) is called a \(f_p - g_q\) sequence.

Study some \(f_p - g_q\) relationship for well-known sequences, such as the perfect numbers, Ulam numbers, abundant numbers, Catalan numbers and Cullen numbers. For example, a \(2-2\) additive, subtractive or multiplicative relationship.
If \(f_p \) is a \(p \)-ary relationship on \(\{a_1, a_2, a_3, \ldots \} \) and \(f_p(a_1, a_2, \ldots, a_p) = f(a_1, a_2, \ldots, a_p) \)
for all \(a_1, a_n \) where \(k = 1, 2, 3, \ldots, p \) and for all \(p \geq 1 \), the \(\{a_n\} \) \(n \geq 1 \) is called a perfect \(f \)-sequence.

If not all \(p \)-plets \((a_1, a_2, \ldots, a_p) \) and \((a_2, a_3, \ldots, a_{p+1}) \) satisfy the \(f_p \) relation or the relation is not satisfied for all \(p \geq 1 \), then \(\{a_n\} \), \(n \geq 1 \) is called a partial perfect \(f \)-sequence. For example, the sequence \(1, 1, 0, -2, 1, 1, 3, -4, -2, -1, 1, 3, 0, 2, \ldots \) is a partial perfect additive-sequence. This sequence has the property that \(\sum_{i=1}^{p} a_i = \sum_{j=p+1}^{p+2} a_j \) for all \(p \geq 1 \).

It is constructed in the following way:

\[
\begin{align*}
a_1 &= a_2, \\
a_{2p+1} &= a_{p+1} - 1, \\
a_{2p+2} &= a_{p+1} + 1 \\
&\text{for all } p \geq 1.
\end{align*}
\]

a) Can you, the reader, find a general expression of \(a_n \) (as a function of \(n \))? Is it periodic, convergent or bounded?

b) Develop other perfect or partial perfect \(f \)-sequences. Think about multiplicative sequences of this type.

References

[2] Smarandache F., "Properties of the Numbers", 1975, University of Craiova, Archives; (See also Arizona State University Special Collections, Tempe, AZ, USA.)

Digital Subsequences

Let \(\{a_n\} \) \(n \geq 1 \) be a sequence defined by a property (or a relationship involving its terms) \(P \). We then screen this sequence, selecting only the terms whose digits also satisfy the property or relationship.
1) The new sequence is then called a P-digital subsequence.

Examples:

a) Square-digital subsequence:

Given the sequence of perfect squares $0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, \ldots$ only those terms whose digits are all perfect squares \{0, 1, 4, 9\} are chosen. The first few terms are 0, 1, 4, 9, 49, 100, 144, 400, 441.

Disregarding squares of the form $N000 \ldots 0$, where N is also a perfect square, how many numbers belong to this subsequence?

b) Given the sequence of perfect cubes, $0, 1, 8, 27, 64, 125, \ldots$ only those terms whose digits are all perfect cubes \{0, 1, 8\} are chosen. The first few terms are 0, 1, 8, 1000, 8000.

Disregarding cubes of the form $N00 \ldots 0$, where N is also a perfect cube, how many numbers belong to this subsequence?

c) Prime-digital subsequence:

Given the sequence of prime numbers, 2, 3, 5, 7, 11, 13, 17, 19, 23, \ldots Only those primes where all digits are prime numbers are chosen. The first few terms are 2, 3, 5, 7, 23, 29, \ldots

Conjecture: This subsequence is infinite.

In the same vein, elements of a sequence can be chosen if groups of digits, except the complete number, satisfy a property (or relationship) P. The subsequence is then called a P-partial-digital subsequence.

Examples:

a) Squares-partial-digital subsequence:

49, 100, 144, 169, 361, 400, 441, \ldots

In other words, perfect squares whose digits can be partitioned into two or more groups that are perfect squares.

For example 169 can be partitioned into 16 and 9.

Disregarding square numbers of the form $N00 \ldots 0$, where N is also a perfect square, how many numbers belong to this sequence?

b) Cube-partial-digital subsequence:

1000, 8000, 10648, 27000, \ldots

i.e. all perfect cubes where the digits can be partitioned into two or more groups that are perfect cubes. For example 10648 can be partitioned into 1, 0, 64 and 8.
Disregarding cube numbers of the form \(N00\ldots0\), where \(N\) is also a perfect cube, how many numbers belong to this sequence?

c) Prime-partial-digital subsequence:
23, 37, 53, 73, 113, 137, 173, 193, 197, ...
i.e. all prime numbers where the digits can be partitioned into two or more groups of digits that are prime numbers. For example, 113 can be partitioned into 11 and 3.

Conjecture: This subset of the prime numbers is infinite.

d) Lucas-partial-digital subsequence:

Definition. A number is a Lucas number of sequence \(L(0) = 2, L(1) = 1\) and \(L(n + 2) = L(n + 1) + L(n)\) for \(n \geq 1\).

The first few elements of this sequence are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199,

A number is an element of the Lucas-partial-digital subsequence if it is a Lucas number and the digits can be partitioned into three groups such that the third group, moving left to right, is the sum of the first two groups. For example, 123 satisfies all these properties.

Is 123 the only Lucas number that satisfies the properties of this partition?

Study some \(P\)-partial-digital subsequences using the sequences of numbers.

i) Fibonacci numbers. A search was conducted looking for Fibonacci numbers that satisfy the properties of such a partition, but none were found. Are there any such numbers?

ii) Smith numbers, Eulerian numbers, Bernoulli numbers, Mock theta numbers and Snam-dache type sequences are other candidate sequences.

Remark: Some sequences may not be partitionable in this manner.

If a sequence \(\{a_n\}, n \geq 1\) is defined by \(a_n = f(n)\), a function of \(n\), then an \(f\)-digital sequence is obtained by screening the sequence and selecting only those numbers that can be partitioned into two groups of digits \(g_1\) and \(g_2\) such that \(g_2 = f(g_1)\).

Examples:

a) If \(a_n = 2n, n \geq 1\), then the even-digital subsequence is 12, 24, 36, 48, 510, 612, 716, 816, 918, 1020,

where 714 can be partitioned into 7 and 14 in that order and

b) Lucky-digital subsequence:

Definition: Given the set of natural numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
First strike out every even numbers, leaving 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, Then strike out
every third in the remaining list, every fourth number in what remains after that, every fifth number remaining after that and so on. The set of numbers that remains after this infinite sequence is performed are the Lucky numbers.

1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, ...

A number is said to be a member of the lucky-digital subsequence if the digits can be partitioned into two number mn in that order such that \(L_m = n \).

37 and 49 are both elements of this sequence. How many others are there?

Study this type of sequence for other well-known sequences.

References

[1] F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975. [See also the Arizona State Special Collections, Tempe, AZ., USA].

Magic Squares

For \(n \geq 2 \), let \(A \) be set of \(n^2 \) elements and \(I \) an \(n \)-ary relation defined on \(A \). As a generalization of the XVIth-XVIIth century magic squares, we present the magic square of order \(n \). This is square array of elements of \(A \) arranged so that \(I \) applied to all rows and columns yields the same result.

If \(A \) is an arithmetic progression and \(I \) addition, then many such magic squares are known. The following appeared in Durer’s 1514 engraving, "Melancholia"

\[
\begin{array}{cccc}
16 & 3 & 2 & 13 \\
5 & 10 & 11 & 8 \\
9 & 6 & 7 & 12 \\
4 & 15 & 14 & 1 \\
\end{array}
\]

Questions:

1) Can you find magic square of order at least three or four where \(A \) is a set of prime numbers and \(I \) is addition?
2) Same question when \(A \) is a set of square, cube or other spacial numbers such as the Fibonacci, Lucas, triangular or Smarandache quotients. Given any \(m \), the Smarandache Quotient \(q(m) \) is the smallest number \(k \) such that \(mk \) is a factorial.

A similar definition for the magic cube of order \(n \), where the elements of \(A \) are arranged in the form of a cube of length \(n \).

3) Study questions similar to those above for the cube. An interesting law may be

\[
I(a_1, a_2, \ldots, a_n) = a_1 + a_2 - a_3 + a_4 - a_5 \ldots
\]

References

[1] F. Smarandache, "Properties of the Numbers", University of Craiova Archives, 1975. [See also the Arizona State Special Collections, Tempe, AZ., USA].

Prime Conjecture

Any odd number can be expressed as a sum of two primes minus a third prime, not including the trivial solution \(p = p + q - q \).

For example,

\[
\begin{align*}
1 &= 3 + 5 - 7 = 5 + 7 - 11 = 7 + 11 - 17 = 11 + 13 - 23 = \\
3 &= 5 + 11 - 13 = 7 + 19 - 23 + 23 - 37 = \\
5 &= 3 + 13 - 11 = \\
7 &= 11 + 13 - 17 = \\
9 &= 5 + 7 - 3 = \\
11 &= 7 + 17 - 13 = \\
\end{align*}
\]

a) Is this conjecture equivalent to Goldbach's conjecture? The conjecture is that any odd prime \(\geq 9 \) can be expressed as a sum of three primes. This was solved by Vinogradov in 1937 for any odd number greater than \(3^{13} \).

b) The number of times each odd number can be expressed as a sum of two primes minus a third prime are called prime conjecture numbers. None of them is known!

c) Write a computer program to check this conjecture for as many positive numbers as possible.
There are infinitely many numbers that cannot be expressed as the absolute difference between a cube and a square. These are called bad numbers!

For example, F. Smarandache has conjectured [1] that 5, 6, 7, 10, 13 and 14 are bad numbers. However, 1, 2, 3, 4, 8, 9, 11, 12, and 15 are not as

\[a = |x^3 - y^2|, \]

for \(x \) and \(y \) integers; \(a \) is bad numbers if there is no solution.

a) Write a computer program to determine as many bad numbers as possible. Find an ordered array of \(a \)'s such that \(a = |x^3 - y^2| \), for \(x \) and \(y \) integers \(\geq 1 \).

References

[1] F. Smarandache, "Properties of the Numbers," University of Craiova Archives, 1975. [See also the Arizona State Special Collections, Tempe, AZ., USA].
SOME PERIODICAL SEQUENCES

1) Let N be a positive integer with not all digits the same, and N' its digital reverse. Then, let $N_1 = \text{abs}(N - N')$, and N'' its digital reverse. Again, let $N_2 = \text{abs}(N_1 - N''_1), N''_2$ its digital reverse, and so on.

After a finite number of steps one finds an N which is equal to a previous N_i, therefore the sequence is periodical [because if N has, say, n digits, all other integers following it will have n digits or less, hence their number is limited, and one applies the Dirichlet’s box principle].

For examples:

a) If one starts with $N = 27$, then $N' = 72$;
\[\text{abs}(27 - 72) = 45;\]
\[\text{its reverse is 54};\]
\[\text{abs}(45 - 54) = 09, \ldots;\]
thus one gets: 27, 45, 09, 81, 63, 27, 45, ...;

the Length of the Period $LP = 5$ numbers (27, 45, 09, 81, 63), and Length of the Sequence till the first repetition occurs $LS = 5$ numbers either.

b) If one starts with 52, then one gets:
\[52, 27, 45, 09, 81, 63, 27, 45, \ldots;\]
then $LP = 5$ numbers, while $LS = 6$.

c) If one starts with 42, then one gets:
\[42, 18, 63, 27, 45, 09, 81, 63, 27, \ldots;\]
then $LP = 5$ numbers, while $LS = 7$.

For the sequences of integers of two digits, it seems like: $LP = 5$ numbers (27, 45, 09, 81, 63); or circular permutation of them); and $5 \leq LS \leq 7$.

Question 1: To find the Length of the Period (with its corresponding numbers), and the Length of the Sequence till the first repetition occurs for the integers of three digits, and integers of four digits. (It’s easier to write a computer program in these cases to check the LP and LS.)

An example for three digits: 321, 198, 693, 297, 495, 099, 891, 693, ...;
(similar to the previous period, just inserting 9 in the middle of each number).

Generalization for the sequences of numbers of n digits.

2) Let N be a positive integer, and N' its digital reverse. For a given positive integer C,
let $N_1 = \text{abs}(N' - C)$ and N_1' its digital reverse. Again, let $N_2 = \text{abs}(N_1 - C)$. N_2' its digital reverse, and so on.

After a finite number of steps one finds an N_j which is equal to a previous N_i, therefore the sequence is periodical [same proof].

For example:

If $N = 52$, and $c = 1$, then one gets:

$52, 24, 41, 13, 30, 02, 19, 90, 08, 79, 96, 68, 57, 74, 46, 63, 35, 52, \ldots$;

thus $LP = 18, LS = 18$.

Question 2: To find the Length of the Period (with its corresponding numbers), and the Length of the Sequence till the first repetition occurs (with a given non-null c) for integers of two digits, and the integers of three digits.

(It's easier to write a computer program in these cases to check the LP and LS.)

Generalization for sequences of numbers of n digits.

3) Let N be a positive integer with n digits $a_1a_2 \ldots a_n$, and c a given integer > 1.

Multiply each digit a_i of N by c, and replace a_i with the last digit of the product $a_i \times c$, say it is b_i. Note $N_1 = b_1b_2 \ldots b_n$, do the same procedure for N_2, and so on.

After a finite number of steps one finds an N_j which is equal to a previous N_i, therefore the sequence is periodical [same proof].

For example:

If $N = 68$ and $c = 7$:

$68, 26, 42, 84, 68, \ldots$;

thus $LP = 4, LS = 4$.

Question 3: To find the Length of the Period (with its corresponding numbers), and the Length of the Sequence till the first repetition occurs (with a given c) for integers of two digits, and the integers of three digits.

(It's easier to write a computer program in these cases to check the LP and LS.)

Generalization for sequences of numbers of n digits.

4.1) Generalized periodical sequence:

Let N be a positive integer with n digits $a_1a_2 \ldots a_n$. If f is a function defined on the set of
integers with \(n \) digits or less, and the values of \(f \) are also in the same set, then: there exist two natural numbers \(i < j \) such that

\[f(f(\ldots f(s) \ldots)) = f(f(f(\ldots f(s) \ldots))), \]

where \(f \) occurs \(i \) times in the left side, and \(j \) times in the right side of the previous equality.

Particularizing \(f \), one obtains many periodical sequences.

Say: If \(N \) has two digits \(a_{1}a_{2} \), then: add'em (if the sum is greater than 10, add the resulted digits again), and substruct'em (take the absolute value) - they will be the first, and second digit respectively of \(N_{1} \). And same procedure for \(N_{1} \).

Example: 75, 32, 51, 64, 12, 31, 42, 62, 84, 34, 71, 86, 52, 73, 14, 53, 82, 16, 75, ...

4.2) More General:

Let \(S \) be a finite set, and \(f : S \to S \) a function. Then: for any element \(s \) belonging to \(S \), there exist two natural numbers \(i < j \) such that

\[f(f(\ldots f(s) \ldots)) = f(f(f(\ldots f(s) \ldots))), \]

where \(f \) occurs \(i \) times in the left side, and \(j \) times in the right side of the previous equality.
SEQUENCES OF SUB-SEQUENCES

For all of the following sequences:

a) Crescendo Sub-sequences:
1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, ...

b) Descrescendo Sub-sequences:
1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, ...

c) Crescendo Pyramidal Sub-sequences:
1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, ...

d) Descrescendo Pyramidal Sub-sequences:
1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, ...

e) Crescendo Symmetric Sub-sequences:
1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, ...

f) Descrescendo Symmetric Sub-sequences:
1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, ...

g) Permutation Sub-sequences:
1, 2, 1, 3, 4, 2, 1, 3, 5, 6, 4, 2, 1, 3, 5, 7, 8, 6, 4, 2, 1, 3, 5, 7, 9, 10, 8, 6, 4, 2, ...

find a formula for the general term of the sequence.

Solutions:

For purposes of notation in all problems, let a(n) denote the n-th term in the complete sequence and b(n) the n-th subsequence. Therefore, a(n) will be a number and b(n) a sub-sequence.

a) Clearly, b(n) contains n terms. Using a well-known summation formula, at the end of b(n) there would be a total of \(\frac{n(n + 1)}{2} \) terms. Therefore, since the last number of b(n) is n, \(a((n(n+1)/2) - i) = n - i \) for \(n \geq 1 \) and \(0 \leq i \leq n - 1 \).

b) With modifications for decreasing rather than increasing, the proof is essentially the same. The final formula is \(a((n(n+1)/2) - i) = 1 + i \) for \(n \geq 1 \) and \(0 \leq i \leq n - 1 \).

c) Clearly, b(n) has 2n - 1 terms. Using the well-known formula of summation 1 + 3 + 5 +
\[... + (2n - 1) = n^2, \text{ the last term of } b(n) \text{ is } n, \text{ so counting back } n - 1 \text{ positions,} \]
\[\text{they increase in value by one each step until } n \text{ is reached.} \]
\[a(n^2 - i) = 1 + i, \text{ for } 0 \leq i \leq n - 1. \]

After the maximum value at \(n - 1 \) position back from \(n^2 \), the values decreases by one. So at the \(n \)-th position back, the value is \(n - 1 \), at the \((n - 1)\)-st position back the value is \(n - 2 \) and so forth.
\[a(n^2 - n - i) = n - i - 1 \text{ for } 0 \leq i \leq n - 2. \]

d) Using similar reasoning \(a(n^3) = n \) for \(n \geq 1 \) and
\[a(n^3 - i) = n - i, \text{ for } 0 \leq i \leq n - 1 \]
\[a(n^3 - n - i) = 2 + i, \text{ for } 0 \leq i \leq n - 2. \]

e) Clearly, \(b(n) \) contains \(2n \) terms. Applying another well-known summation formula \(2 + 4 + 6 + \ldots + 2n = n(n + 1), \) for \(n \geq 1 \). Therefore, \(a(n(n + 1)) = 1. \) Counting backwards \(n - 1 \) positions, each term decreases by 1 up to a maximum of \(n. \)
\[a((n(n + 1)) - (n - i)) = 1 + i, \text{ for } 0 \leq i \leq n - 1. \]

The value \(n \) positions down is also \(n \) and then the terms decrease by one back down to one.
\[a((n(n + 1)) - n - i) = n - i, \text{ for } 0 \leq i \leq n - 1. \]
f) The number of terms in \(b(n) \) is the same as that for (e). The only difference is that now the direction of increase/decrease is reversed.
\[a((n(n + 1)) - i) = n - i, \text{ for } 0 \leq i \leq n - 1. \]
\[a((n(n + 1)) - n - i) = 1 + i, \text{ for } 0 \leq i \leq n - 1. \]
g) Given the following circular permutation on the first \(n \) integers.
\[
\varphi = \begin{pmatrix}
1 & 2 & 3 & 4 & \ldots & n-2 & n-1 & n \\
1 & 3 & 5 & 7 & \ldots & 6 & 4 & 2
\end{pmatrix}
\]
Once again, \(b(n) \) has \(2n \) terms. Therefore, \(a(n(n + 1)) = 2 \). Counting backwards \(n - 1 \) positions, each term is two larger than the successor:

\[
a((n(n + 1)) - i) = 2 + 2i, \text{ for } 0 \leq i \leq n - 1.
\]

The next position down is one less than the previous and after that, each term is again two less the successor.

\[
a((n(n + 1)) - n - i) = 2n - 1 - 2i, \text{ for } 0 \leq i \leq n - 1.
\]

As a single formula using the permutation

\[
a((n(n + 1)) - i) = \varphi_i(2n - i), \text{ for } 0 \leq i \leq 2n - 1.
\]

References

[1] F. Smarandache, "Numerical Sequences", University of Craiova, 1975; [See Arizona State University, Special Collection, Tempe, AZ, USA].
Aflați, de la A la B, denumirea unei științe fundamentale, iar pe orizontal noțiuni din această știință, înlocuind cifrele prin litere.

A

\[
\begin{array}{cccc}
4 & 5 & 3 & 8 \\
9 & 7 & 8 & 2 \\
1 & 3 & 9 & 1 \\
4 & 1 & 2 & 4 \\
4 & 6 & 9 & 2 \\
5 & 7 & 1 & 4 \\
3 & 5 & 10 & 4 \\
16 & 4 & 13 & 4 \\
\end{array}
\]

B

\[
\begin{array}{cccc}
1 & 4 & 3 & 8 \\
2 & 1 & 2 & 3 \\
3 & 5 & 1 & 4 \\
4 & 3 & 1 & 2 \\
4 & 1 & 3 & 3 \\
3 & 5 & 4 & 2 \\
1 & 6 & 4 & 13 \\
2 & 3 & 14 & 2 \\
\end{array}
\]

Soluție:

A

\[
\begin{array}{cccc}
F & E & R & T.
\end{array}
\]

B

\[
\begin{array}{cccc}
S & U & P & R.
\end{array}
\]

198
Înlocuind cifrele prin litere obține, de la A la B, denumirea unei ramuri matematice, iar orizontal noțiuni din această ramură.

A

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 0 & 1 & 2 \\
3 & 4 & 5 & 6 \\
7 & 8 & 9 & 0 \\
\end{array}
\]

B

Soluție:

A

\[
\begin{array}{cccc}
T & U & N & G \\
G & H & T & I \\
F & E & R & A \\
C & O & N & S \\
M & E & T & G & E & N & T \\
H & U & N & G & T & Y \\
A & P & O & T & E & M & A & A \\
S & E & M & I & D & R & E & A & P & A & A \\
M & E & D & I & A & N & A \\
T & R & I & E & D & R & U \\
\end{array}
\]

B
The Lucky Mathematics!

If, by a wrong calculation (method, algorithm, operation, etc.) one arrives to the right answer, that is called a Lucky Calculation (Method, Algorithm, Operation, etc.)!

The wrong calculation (method, algorithm, operation, etc.) should be funny (somehow similar to a correct one, producing confusion and sympathy)!

Can somebody find a Lucky Integration or Differentiation?
FLORENTIN SMARANDACHE

COLLECTED PAPERS
(Vol. II)

Sămumat pentru tipar 12.XII.97. Formatul 60×84. 1/16.
Comanda 274, Preț contractual.

Secția poligrafia operat
a U.S.M. 2009. Chișinău
str. Mateevici, 60.