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Abstract 

Full type-2 fuzzy techniques provide a more adequate representation of expert 

knowledge. However, such techniques also require additional computational efforts, 

so we should only use them if we expect a reasonable improvement in the result of 

the corresponding data processing. It is therefore important to come up with a 

practically useful criterion for deciding when we should stay with interval-valued 

fuzzy and when we should use full type-2 fuzzy techniques. Such a criterion is 

proposed in this paper. We also analyze how many experts we need to ask to come 

up with a reasonable description of expert uncertainty.
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1 Formulation of the Problem 

Need for fuzzy logic. In many application areas, we have expert knowledge 

formulated by using imprecise (“fuzzy”) words from natural language, such 

as “small”, “weak”, etc. To use this knowledge in automated systems, it is 

necessary to reformulate it in precise computer-understandable terms. The 
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need for such a reformulation was one of the motivations behind fuzzy logic 

(see, e.g., [3], [11], [15]). Fuzzy logic uses the fact that in a computer, 

“absolutely true” is usually represented as 1, and “absolutely false” is 

represented as 0. Thus, to describe expert’s intermediate degrees of 

confidence, it makes sense to use real numbers intermediate between 0 and 1. 

In this case, to represent an imprecise word like “small”, we describe, for 

each real number x, the degree ( ) [0,1]small x   to which the expert considers 

this value to be small. The corresponding function from the set of possible 

value to the interval [0, 1] is known as a membership function. 

Need to go beyond [0, 1]-valued fuzzy logic. In most practical problems, we 

have several experts, and while their imprecise rules may coincide, their 

understanding of the meaning of the corresponding words may be slightly 

different. As a result, when we ask different experts, we get, in general, 

different membership functions corresponding to the same term – i.e., for 

each possible value  x , we get, in general, different degrees ( )x (describing 

the expert’s opinion to what extent this value x satisfies the given property). 

To adequately represent expert knowledge, it is desirable to capture this 

difference, i.e., to go beyond the original [0, 1]-valued fuzzy logic – which was 

oriented towards capturing the opinion of a single expert. 

Interval-valued fuzzy techniques. If for the same property P  and for same 

value x , two different degrees of confidence, e.g., 0.6 and 0.8, are both 

possible – according to two experts – then it makes sense to assume that for 

other experts, intermediate viewpoints will also be possible. In other words, 

if two real numbers from the interval [0, 1] are possible degrees, then all 

intermediate numbers should also be possible degrees. In this case, for each 

property P  and for each value x , the set of all possible degree that x

satisfies the property P  is an interval. This interval can be denoted by

[ ( ), ( )]x x  . 

Interval-valued fuzzy techniques have indeed been successfully used in many 

applications; see, e.g., [7], [8], [10]. 

General type-2 fuzzy techniques. The interval-valued techniques do not 

fully capture the uncertainty of the experts’ opinion: these techniques just 

describe the interval, but they do not take into account that some values from 

this interval are shared by many experts, while other values are “outliers”, 

opinions of a few unorthodox experts. To capture this difference, a 

reasonable idea is to describe, for each value   from the corresponding 

interval   [ , ]  , a degree to which this value is common. 



59 

Critical Review. Volume XI, 2015 

Vladik Kreinovich and Chrysostomos D. Stylios 

When Should We Switch from Interval-Valued Fuzzy to Full Type-2 Fuzzy (e.g., Gaussian)? 

In other words, for each possible value x  of the original quantity, instead of 

single numerical degree ( )x , we now have a fuzzy set (membership function) 

describing this degree. Such situation in which, for every possible value x of 

the original quantity, the experts’ degree of confidence that x  satisfies the 

given property P  is itself a fuzzy number is known as type-2 fuzzy set. 

Of course, each interval-valued fuzzy set is a trivial particular case of the 

general type-2 fuzzy set, corresponding to the case when the degree is 1 

inside the interval [ , ]  and 0 outside this interval. 

The most commonly used non-trivial type-2 fuzzy sets are the Gaussian ones, 

in which, for each x, the corresponding membership function of the set of all 

possible values   is Gaussian:
2

2

( )
( ) exp

2

od
 




 
  

 
 for some values  0

and  . Such Gaussian-valued fuzzy sets are also used in applications [7], [8]. 

Comment. In addition to empirical success, there are also theoretical reasons 

why namely Gaussian membership functions are successfully used; see, e.g., 

[4]. 

Formulation of the problem. 

 On the one hand, the transition from interval-valued to general type-2

fuzzy sets leads to a more adequate representation of the experts’

knowledge. From this viewpoint, it may sound as if it is always

beneficial to use general type-2 fuzzy sets.

 However, on the other hand, this transition requires that we store and

process additional information about the secondary membership

functions. So, we should only perform this switch if we expect a

reasonable advantage.

It is therefore desirable to come up with a criterion for deciding when we 

should switch from interval-valued fuzzy to general type-2 fuzzy. The main 

objective of this paper is to come up with such a criterion. 

Comment. A similar problem occurs in describing measurement uncertainty: 

we can simply store and use the interval of possible values of measurement 

error, or we may want to supplement this interval withe the information 

about the probability of different values within this interval – i.e., with a 

probability distribution. Here also, we face a similar problem of deciding 

when it is beneficial to switch from a simpler interval description to a more 

complex (but more adequate) probabilistic description. A possible solution to 

this problem – based on information theory – is presented in [1]. 
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2 Analysis of the Problem 

One more reason why Gaussian membership functions provide a good 

description of the expert diversity. There are many different factors that 

influence the expert’s degree of confidence. The actual degree produced by 

an individual expert is a result of the joint effect of all these factors. 

Such situations, when a quantity is influenced by many different factors, are 

ubiquitous. There is a known result – the Central Limit Theorem (see, e.g., 

[13]) – that helps to describe such situations, by proving that; under 

reasonable assumptions the probability distribution of the joint effect of 

many independent factors is close to Gaussian. This is a well-known fact 

explaining the ubiquity of bell-shaped Gaussian (normal) distributions: they 

describe the distribution of people by height, by weight, by IQ, they describe 

the distribution of different animals and plants, they describe the 

measurement errors, etc. 

It is therefore reasonable to assume that when we consider many experts 

providing their degrees of confidence, the resulting probability distribution 

of these degrees is also close to Gaussian (= normal), with some mean 0  and 

standard deviation  . 

For normally distributed expert estimates, what is the corresponding 

interval? Let us assume that for the same statement, different expert degrees 

of confidence are normally distributed with mean 0  and standard deviation

 . Let N denote the number of experts whose opinions we ask, and let 

1,..., N  are degrees indicated by these experts. 

If we use an interval approach, then, as the interval-valued degree of 

confidence[ , ]  , we take the interval formed by these degrees i , i.e., the 

interval[min ,max ]i i
i i
  . 

On average, when we have a sample of N random values, then one of the ways 

to approximate the original distribution is to build a histogram, i.e., sort the 

observed values i  in increasing order into a sequence  

(1) (2) ( )... N     (1) 

and then take a distribution that has each of the values ( )i  with the same 

probability 
1

N
. It is known that in the limit N  , this histogram 

distribution converges to the actual distribution (i.e., becomes closer and 

closer as N increases). 
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Thus, as a good approximation to the smallest possible value (1) min i
i

  , it is 

reasonable to take the value   for which the probability 
1

Pr ( )ob
N

  

Similarly, as a good approximation to the largest possible value ( ) maxN i
i

  , 

we can take the value   for which
1

Pr ( )ob
N

   , i.e., for which 

1
Pr ( ) 1ob

N
    (2) 

For a normal distribution with mean 0  and standard deviation , the 

corresponding values   and   can be obtained as follows (see, e.g., [13]): 

0 ( ) ;k N     0 ( )k N     (3) 

where 

1 2
( ) 2 1

def

k N erf
N

  
   

 
 (4) 

and the error function erf  erf(x) is defined as 

2

( ) exp
2

xdef

x

t
erf x dt



 
  

 
 (5) 

So, when is interval representation better? The value ( )k N  increases with 

N  and tends to   when N  increases. Thus, when the number of experts N is 

large, the lower endpoint of the interval 

0 0[ , ] [ ( ) , ( ) ]k N k N             (6) 

becomes negative, while its upper bound becomes larger than 1. Since the 

values i  are always located within the interval [0, 1], in this case, the 

interval-valued  description of uncertainty is useless: the smallest value is 0 

(or close to 0), the largest value is 1 (or close to 1). In such situations, we 

cannot use the interval-valued approach, so we need to use a more 

computationally complex Gaussian approach. 

On the other hand, if we have 

00 ( )k N       and 
0 ( ) 1k N         (7) 

then, once we know the bounds   and   , we can uniquely reconstruct both 

parameters  0  and   as follows: 
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0
2

 



 ; 

2 ( )k N

 



 (8)

In this case, if we use the interval-valued approach, we do not lose any 

information in comparison with the Gaussian-based approach. Since the 

interval-valued approach is computationally easier than the Gaussian-based 

approach, it therefore makes sense to use the interval-based approach. 

But are these expert estimates meaningful at all? What if the experts do 

not real have any knowledge and their degrees are all over the map? In this 

case, processing these ignorance-based degrees does not make any sense. 

How can we detect such a situation? 

In the cases when experts have no meaningful knowledge, their degrees are 

simply uniformly distributed on the interval [0, 1]. In this case, the variance is 

equal to 2 1

12
  , in which case 0.3  . So, we can conclude that if the 

empirical standard deviation is greater than or equal to 0.3 , then we should 

simply ignore the experts’ degrees – since the experts’ opinions disagree too 

much to be useful. 

Thus, we arrive at the following recommendation. 

3 Recommendation: When to Use Interval-Valued Approach  

and When to Use Gaussian Approach 

What is given. For each property and for each possible value x , we have N

experts that provide us with their degrees of confidence 1,..., N   that this 

value x  satisfies the given imprecise property (e.g., that this value x  is small). 

Resulting algorithm. First, we use the standard formulas to estimate the 

mean 0  and standard deviation   of the expert’s degrees i : 

1
0

... N

N

 


 
 (9) 

2

0

1

1
( )

1

N

i

iN
  



  


 (10) 

If 0.3  , then we conclude that the experts’ opinion disagree too much to be 

useful. 

If   0.3  , then, based on the number of experts N , we estimate k(N) as 
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1 2
( ) 2 1k N erf

N

  
   

 
 (11) 

Based on this value k(N), we compute the values 

0 ( )k N       and 
0 ( )k N       (12) 

Then: 

 if  0   and 1  , we use interval-valued approach, with interval-

valued degree  [ , ]   ;

 otherwise, if  0   or  1  , we use a Gaussian approach, with the

type-2 Gaussian degree of confidence

2

2

( )
( ) exp

2

od
 




 
  

 
 (13) 

4 Auxiliary Question: How Many Experts We Should Ask? 

How many experts we should ask? For a general random variable, the 

larger the sample is the more accurate the estimates are. For example, if we 

perform measurements, then we can decrease the random component of the 

measurement error if we repeat the measurement many times and take the 

average of the measurement results. This fact follows from the Large 

Numbers Theorem, according to which, when the sample size increases, the 

sample average tends to the mean of the corresponding random variable. 

This makes sense if we deal with measurements of physical quantities, where 

more and more accurate description of this quantity makes perfect sense – 

and is desirable. For degree, however, the situation is different. A person can 

only provide his or her degree of confidence only with a low accuracy: e.g., an 

expert may distinguish between marks 6 and 7 on a scale from 0 to 10, but, 

when describing their degree of confidence, experts cannot meaningfully 

distinguish between, e.g., values 61 and 62 on a scale from 0 to 100. 

Comment. Issues related to decision making in fuzzy context are handled, e.g., 

in [2], [5], [6]. 

Our idea. Psychologists have found out that we usually divide each quantity 

into 7 plus minus 2 categories – this is the largest number of categories 

whose meaning we can immediately grasp; see, e.g., [9], [12] (see also [14]). 

For some people, this “magical number” is 7 + 2 = 9, for some it is 7 - 2 = 5. 

This rule is in good accordance with the fact that in fuzzy logic, to describe 
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the expert’s opinion on each quantity, we usually use 7 2  different 

categories (such as “small”, “medium”, etc.). 

Since on the interval [0, 1], we can only have 7 2  meaningfully different 

degrees of confidence, the accuracy of these degrees ranges is, at best, 1/9. 

When we estimate the mean 0  based on N  values, the accuracy is of order 

N

  . It does not make sense to bring this accuracy below 1/9, so it makes 

sense to limit the number of experts N  to a value for which 1

9N


 , i.e., to the 

value 2(9 )N   . 

Resulting recommendation. To estimate how many experts we need to ask, 

we ask a small number n of experts, and, based on their degrees i , estimate  

  as 

2

1

1
( )

1

n

i av

in
  



  


  (14) 

where 
1

1 n

av i

in
 



  . 

Then, we estimate the number N of experts to ask as 2(9 )N   . 

Comment. Of course, if N n , this means that we do not have to ask any more 

experts, whatever information we have from n  experts is enough. 

Examples. If all experts perfectly agree with each other, i.e., if  i j   for all 

i  and j , then  0   and 0N  . In this case, there is no need to ask any more 

experts. 

Similarly, if all experts more or less agree with each other and 0.1  , then

1N  , meaning also that there is no need to ask more experts. 

If 0.2  , then 3.61N  , meaning that we should ask at least 4 experts to get 

a good estimate. For 0.3  , we get 7.29N  , meaning that we need to ask at 

least 7 experts. 

This is about as bad as we can get: as we have mentioned, even when the 

expert’s degrees are all over the map, i.e., uniformly distributed on the 

interval [0, 1], then the variance is equal to 2 1

12
  , in which case 0.3  , 

and we get 2 2 81
9 6.75

12
N     , meaning that we need to ask at most 7 

experts. 
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5 Conclusion 

In all cases, we need to ask at most seven experts to get a meaningful 

estimate (and sometimes, when the experts agree with each other, a smaller 

number of experts is sufficient). 
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