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Abstract— Scope of this paper is to investigate the
performances of different identity declaration fusion algorithms in
terms of probability of correct classification, supposing that the
information for combination of the inferences from the different
classifier is affected by measurement errors. In particular, these
information have been assumed to be provided in the form of
confusion matrices. Six identity fusion algorithms from literature
with different complexity have been included in the comparison:
heuristic methods such as voting and Borda Count, Bayes’ and
Dempster-Shafer’s methods and the Proportional Redistribution
Rule n° 1 in the Dempster-Shafer’s framework.
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L INTRODUCTION

In a multi-sensor system the target classification performance
can be improved by suitably combining the inferences
generated by the autonomous classifiers of the single sensors
(identity declaration fusion [1]). For this purpose it is desirable
to use the available information about the classification
performances of the single sensors. The confusion matrix,
whose elements correspond to the likelihood of the different
involved classes, is a compact and detailed way of
representing the classification performance, from which the
Probability of correct classification (Pcc) and the probability
relative to the various misclassification errors can be derived.
In particular the elements of the confusion matrix can be used
to maximize the a-posterior Pcc according to Bayes’ theory. In
this case, if the numerical values of the confusion matrix were
errorless, the performance of the identity fusion would be
optimal. However, in practice, these values are estimated and
affected by errors. In these conditions, the Bayes’ rule does
not always produce best results. In particular, in presence of
strong-conflicting inferences and estimation errors, the
application of Bayes’ rule can be not effective. It can be better
to apply simpler combination rules as some heuristic methods
that are more robust to errors.

Dempster-Shafer’s theory has been presented as a
generalization of Bayes’ theory in [2]. A recent work has
disputed this claim, limiting its correctness to the case of
uniform a-prior probabilities [3]. The problem of the
Dempster-Shafer rule (and of Bayes’ rule) in presence of
conflicting inferences has been pointed out by the well-known
Zadeh’s paradox [4]. In this paper the performances of

fusion algorithms using estimations of confusion
matrices. Printed with authors' permission.

different algorithms that use estimated confusion matrices
affected by errors to combine the inferences from the single
classifiers are investigated. In particular the heuristic methods
based on voting and on ranking (Borda count) are compared
with the methods using Bayes’ and Dempster-Shafer’s rules.
Moreover the effectiveness of the redistribution of the
conflicting masses preserving the Dempster-Shafer
framework, like Proportional Redistribution Rules (PCR) is
evaluated.

The paper is organized as follows:

e in section II the identity fusion algorithms considered
in this paper are briefly described;

e in section III, four simple but representative identity
fusion problems are introduced as study cases and the
corresponding results using different mean values of
the estimation errors of the confusion matrices are
reported and commented;

e section IV gives the conclusions.

II.  IDENTITY FUSION ALGORITHMS

The algorithms for the identity fusion considered in this paper
are:

e Majority Voting (MV),
e Weighted Voting (WV),
e Borda count,

e Bayes’ rule,

e Dempster-Shafer’s (D-S) rule with the following basic
belief mass assignment: “q-least commitment”,

e Proportional Redistribution Rule n°l (PCR1) with the
following Dbasic belief mass assignment: “q-least
commitment”.

A brief description of the fusion algorithms follows.

Majority voting [5] is the simplest method for the
combination of inferences: each inferred class corresponds to a
single vote and the selected class after fusion is the most voted
class: all the inferences matter the same. In the modified
weighted version, the different votes are weighted by the
estimated Pcc of the voter/classifier.

Voting methods use only the top choice of each classifier,
but secondary choices often contain near misses that should not
be overlooked. The Borda count [5] is a method in which
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classes are ranked in order of preference; it gives each class a
certain number of points corresponding to the position in which
it is ranked by each classifier. The class with the highest
scoring is then selected after fusion.

Bayes® theorem [1,4] links the degree of belief in a
proposition before and after accounting for evidence (a-priori
and a-posteriori probabilities). The a-posteriori probability of a
combination of two or more evidences is obtained by the
multiplication of the likelihoods of the single evidences (the
independence of the evidences is assumed).

Dempster—Shafer theory [1,4 and 5] allows to specify a
degree of ignorance instead of being forced to supply
probabilities that add to unity. In this formalism a degree of
belief (also referred to as a Basic Belief Mass - BBM) is used
rather than a Bayesian probability distribution. BBM values are
assigned to sets of possibilities (union of one or more classes)
rather than to a single class, probability is instead represented
by intervals that are lower-bounded by the value “belief” (or
“support”) and upper-bounded by the value “plausibility”.
BBM values from different sources can be combined with
Dempster-Shafer's rule of combination, assuming independent
belief sources. There are more than one possible assignment for
transforming probabilities into BBMs [7,8 and 9]. The “q-least
commitment” basic belief mass assignment (that corresponds
to the maximum compatible degree of ignorance) has been
considered in this paper to transform the CM (Confusion
Matrix) likelihoods and the a-priori probabilities into BBM
values.

Proportional Redistribution Rules (PCR) is a family of
fusion rules for the combination of uncertain information
allowing to deal with highly conflicting sources. The PCR rules
can be used as alternatives to the Dempster-Shafer's
combination rule. Six PCR rules (PCRI-PCR6) have been
defined [10,11 and 12]: from PCR1 up to PCR6 one increases
in one hand the complexity of the rules, but in other hand one
improves the accuracy of the redistribution of conflicting
masses. The basic common principle of PCR rules is to
redistribute the conflicting mass proportionally with some
functions depending on the sum of the masses assigned by the
single inferences. PCR1 is the least accurate combination rule
of the PCR family, but it is the simplest to implement and it has
been considered in this paper. PCR2-6 implementations are
significantly more complex because the conflicting mass is
redistributed only to the non-empty set that are involved in the
conflict (extra computer memory is needed to keep track of the
conflicting hypotheses and extra computation load is needed
for combining them). A particular interesting action point for
further investigation would be testing the most efficient PCR
rule (PCR6) [12].

A.  Combination rules

In this section, the rules of Bayes, Dempster-Shafer and
PCR1 for the combination of two classifiers are briefly
recalled. For further details and the generalization of the rules
with more than two classifiers, see references [1], [4], [10] and
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[11]. Voting and Borda count combinations are not considered
here because they consists simply in the sums of respectively
the votes and the ranks.

Let consider a set Q of possible exhaustive and mutually
exclusive classes C, , with N being the cardinality of this set:

(D

Let suppose that the independent classifiers 1 and 2 infer
respectively the classes C;and C;; the a-posterior probability

Q:{CIJCZJ"'JCN}

P,(C, /AN B) of inferring the class C, resulting from Bayes’
rule of combination is:

R(C/c)-plc,/c, ) Rc)

Zji:Pl(cf/Ch)'PZ(Cj/Ch)'Po(Ch)

2

PIZ(Ck/Ciij):

where:

Py() is the a-prior probabilities (without any

information obtained by previous classifications) of
the considered class;

rlc,/c,), P(C,/C,) are the probabilities that
classifiers 1 and 2 infer the class C, assuming that
the true class is C, (likelihoods).

Let consider the power set 2 of Q as the set whose
elements are all the possible subsets of Q :

22={F,:F, cQ}={0.C\,C;,-,Cy.C, N Cyye o, Cry_y N Cyro, Q)

A3)
where @ is the empty set. The cardinality of 2 is 27 .

Let suppose that the independent classifiers 1 and 2 assign
respectively BBMs () and m, (") to the elements included

in the power set 2°; the combination BBM my,(F, ) of F,
resulting from Dempster-Shafer’s rule of combination is:

) )

m (F)m F,
mlz(Fk)= e {_mZ( 5
i,jl F,=F,NF; c

where m, is the global conflicting mass, defined as follow

> m(E, ) m(7,)

p.q/ FynF,=0

m.

)

In the case of the PCRI1 rule the combination BBM
my, (F,) of F, is instead:
_)+ my (Fy ) +my(F,)
2'\

(05 ()

-m,

le(Fk ) =
ij! F;OF;=F;#0

(6)
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III. STUDY CASES

Four simple but representative study cases (three different
classifiers for a three classes problem) have been investigated,
as follows:

e complementary confusion matrices,

e supplementary confusion matrices,

e complementary conflicting confusion matrices,

e supplementary conflicting confusion matrices.

By complementary CMs it has been meant that the single
classifiers show a complementary expertise in the recognition
of the different classes. By supplementary CMs the different
classifiers show similar behaviors. By conflicting CMs a
possible overestimation of the performance of the single
classifiers can make harder an effective combination of the
contradictory inferences from different classifiers when they
occur. A quantitative definition of complementary and
supplementary CM can be found in [13].

In the following sub-sections, the estimated confusion
matrices that have been selected for the four study cases are
reported. The columns of the matrices represent the true
classes, while the rows correspond to the inferred classes, so
the element (k,h) of a matrix is an estimation of the probability
of declaring k™ class when the true class is the h™ one:

M, (k,h)=P(D=k/T =h) (7)

The a-prior probabilities of the different classes are
assumed equal. A block diagram of the fusion system is shown
in fig. 1.

The performances of the six algorithms in correspondence
of the identity fusion of six inferences (two independent
inferences for each classifier) have been considered. The
performances of the different algorithms have been computed
with 1000 Monte Carlo trials, each generating independent
samples of the true confusion matrices and a-prior
probabilities.

The results of the Monte Carlo trials are represented by the
curves corresponding to Empirical Cumulative Distribution
Function (ECDF) versus the Pcc. The x-axis values of Pcc have
been computed exactly, that is the contribution of all the
possible permutations of the single sensor inferences has been
considered.
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A. Complementary confusion matrices

The following confusion matrices corresponding to three
different classifiers have been considered:

0.90 0.30
M, ={0.10 0.40
0 030
[0.40 0.30
030 0.40
1030 030
(040 0
0.30 0.90
1030 0.10

0.30
0.30
0.40
0.10]
0
0.90 |
0.30]
0.30
0.40 |

®)

The performance is dependent on the true target class (class
1,2 or 3):

e the first classifier identifies correctly targets
belonging to class 1 (on average it makes only one
mistake in ten of its inferences), while it almost
randomly infers in correspondence of targets

belonging to class 2 or class 3,

the second classifier identifies correctly targets
belonging to class 3 (on average it makes only one
mistake in ten of its inferences), while it almost
randomly infers in correspondence of targets
belonging to class 1 or class 2,

the third classifier identifies correctly targets
belonging to class 2 (on average it makes only one
mistake in ten of its inferences), while it almost
randomly infers in correspondence of targets
belonging to class 1 or class 2.

The performances of the six different algorithms are
reported in the fig. 2 and 3 in correspondence of an estimation
of the confusion matrix by using respectively 30 and 10
independent samples for each class. The performances of the
single classifiers correspond to the dotted curves (indicated as
Cl, C2 and C3 in the legends of the figures). Bayes’ rule,
Dempster-Shafer’s rule, Borda count and PCR1 give similar
results, the performance of PCR1 is barely the best. The voting
algorithms present significantly worse performance.
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B.  Supplementary confusion matrices

The following confusion matrices corresponding to three
different classifiers have been considered:

0.70 0.10 0.20
M, =020 0.70 0.10
0.10 020 0.70
[0.80 0.10 0.10]
M, =010 0.80 0.10 9)
10.10 0.10 0.80 |
[0.60 0.20 0.20]
M, =020 0.60 0.20
1020 020 0.60 |

In the second example, three classifiers with supplementary
confusion matrices have been selected. A single classifier can
recognize all the three classes with the same accuracy, but the
accuracy differs from classifier to classifier:

e the first classifier has an estimated probability of
correct classification equal to 70%,

e the second classifier has an estimated probability
of correct classification equal to 80%,

e the third classifier has an estimated probability of
correct classification equal to 60%.

The performances of the six different algorithms are
reported in the fig. 4 and 5 in correspondence of an estimation
of the confusion matrix by using respectively 30 and 10
independent samples for each class. The performances of the
single classifiers correspond to the dotted curves (indicated as
C1, C2 and C3 in the legends of the figures). All the algorithms
give comparable performance. PCR1 and Bayes’ rule
performance are exactly the same and they are slightly better
than the others, weighted voting performs better than Borda
count and majority voting.

C. Complementary conflicting confusion matrices

The following confusion matrices corresponding to three
different classifiers have been considered:

1.00  0.00 0.00
M, =|0.00 0.60 0.40
0.00 0.40 0.60
[0.60 0.00 0.40]
M, =[0.00 1.00 0.00 (10)
10.40 0.00 0.60 |
[0.60 0.40 0.00]
M, =[0.40 0.60 0.00
10.00 0.00 1.00 |
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In this third example, the three classifiers can be affected by
conflicting inferences. As consequence, the application of
Bayes’ rule to fusion leads to severe performance degradation
with respect to heuristic methods. The problem arises from an
overestimation of the performance of the single classifiers.

The performances of the six different algorithms are
reported in the fig. 6 and 7 in correspondence of an estimation
of the confusion matrix by using respectively 30 and 10
independent samples for each class. The performances of the
single classifiers correspond to the dotted curves (indicated as
Cl1, C2 and C3 in the legends of the figures). PCR1 gives the
best result that is slight better than Borda count. Majority and
weighted voting have coincident performance that are
significantly worse than the one of PCR1. The performance of
Bayes’ rule and Dempster-Shafer rule are perfectly coincident
and worse than all the others because of the presence of
conflicting inferences.

D. Supplementary conflicting confusion matrices

The following confusion matrices corresponding to three
different classifiers have been considered:

1.00 0.00 0.00
M, =M,=M;={0.00 100 0.00 (11)
0.00 0.00 1.00

In the forth example, three classifiers with identity
confusion matrices as estimations have been selected:
according to these estimations the single classifier is never
wrong. If the classifiers disagree on the inferred class, the
Bayes’ rule of fusion leads to severe performance degradation
with respect to heuristic methods.

The performances of the six different algorithms are
reported in the fig. 8 and 9 in correspondence of an estimation
of the confusion matrix by using respectively 30 and 10
independent samples for each class. The performance of the
single classifiers correspond to the dotted curves (indicated as
C1, C2 and C3 in the legends of the figures). The performances
of the voting algorithms, Borda count and PCR1 are perfectly
coincident and near to 100%. The performances of Bayes’ rule
and Dempster-Shafer rule are perfectly coincident and much
worse than all the others because of the presence of conflicting
inferences, even much worse than the performance of the
single classifiers.

E.  Summary results

In table I the average (over the 1000 Monte Carlo trials)
Pcc is reported for all the investigated study cases. It has been
reported also an intermediate case where 60 samples (20
samples per class) for the estimation of each confusion matrix
have been considered. It can be noted than PCR1 always brings
the highest Pcc of all the six considered combination rules.
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IV. CONCLUSIONS

Simulation results show that in the considered study cases,
the algorithm using the PCRI1 rule of combination brings the
best performance of all the six considered alternatives and
definitely overcomes Bayes’ and D-S’s rules in the cases where
the probability of conflicts between the inferences is high. This
performance difference increases with the decrease of the
number of samples used for the estimation of the confusion
matrices. This behavior is a consequence of the poor
performance of the latter two combination methods in presence
of conflicting inferences from the different classifier, as
claimed by the Zadeh’s paradox. In two investigated study

Dempster-Shafer rules perform even worse than heuristic
approaches.

In the cases where the conflict is less likely probable the
performance of the PCR1 is comparable with the ones of
Bayes’ and D-S’s rules (the same or slightly better).

The implementation of PCRI1 slightly increases the
computational complexity of D-S’s rule. Future work may be
addressed to the comparison of the performance resulting by
the application of more complex PCR rules to the inferences of
classifiers whose accuracies are represented by conflicting
confusion matrices.

cases with conflicting confusion matrices Bayes’

(1

and
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Target
Sensor1 Sensor2 Sensor3
signal signal signal
from target from target from target
Classifier 1 Classifier2 Classifier3
identity identity identity
declarations declarations declarations
P Identity
B E—— .
Fusion
identity fusion

Fig. 1. Block diagram of the fusion system.
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TABLE L SUMMARY RESULTS (N IS THE TOTAL NUMBER OF SAMPLES).

PROBABILITY OF CORRECT CLASSIFICATION (mean value, %)

Study MAJORITY WEIGHTED BORDA BAYES DEMPSTER PCR1
cases VOTING VOTING COUNT SHAFER
N=30 | N=60 | N=90 | N=30 | N=60 | N=90 | N=30 | N=60 | N=90 | N=30 | N=60 | N=90 | N=30 | N=60 | N=90 | N=30 | N=60 | N=90
Compl. 67.8 | 724 | 73.9 | 67.8 | 724 | 73.9 | 739 | 789 | 80.7 | 73.1 | 793 | 81.6 | 73.0 | 79.4 | 81.6 | 74.8 | 80.5 | 82.4
CMs
Supp. 823 | 869 | 884 | 839 | 884 | 89.9 | 82.7 | 87.4 | 88.8 | 843 | 88.9 | 904 | 84.0 | 88.7 | 90.2 | 84.3 | 88.9 | 90.4
CMs
Compl. 87.7 1 929 | 948 | 87.7 | 929 [ 948 | 945 | 98.1 | 99.0 | 70.7 | 81.5 | 86.5 | 70.7 | 81.5 | 86.5 | 94.8 | 98.3 | 99.2
confl.
CMs
Supp. 98.8 | 99.8 1 99.9 | 98.8 | 99.8 [ 99.9 | 98.8 |1 99.8 | 99.9 | 62.5 | 755 | 81.8 | 62.5 | 75.5 | 81.8 | 98.8 [ 99.8 | 99.9
confl.
CMs
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