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Abstract Decision support systems enable users to quickly assess data, but they
require significant resources to develop and are often relevant to limited domains.
This chapter identifies the implicit assumptions that require contextual analysis for
decision support systems to be effective for providing a relevant threat assessment.
The impacts of the design and user assumptions are related to intelligence errors
and intelligence failures that come from a misrepresentation of context. The intent
of this chapter is twofold. The first is to enable system users to characterize trust
using the decision support system by establishing the context of the decision. The
second is to show technology designers how their design decisions impact system
integration and usability. We organize the contextual information for threat analysis
by categorizing six assumptions: (1) specific problem, (2) acquirable data, (3) use of
context, (4) reproducible analysis, (5) actionable intelligence, and (6) quantifiable
decision making. The chapter concludes with a quantitative example of context
assessment for threat analysis.

Keywords High-level information fusion � Situation assessment � Threat assess-
ment � Context � Timeliness � Uncertainty � Unknowns

5.1 Introduction

A threat is an assessment that an individual or group has the potential to cause harm
to specific entity or entities. Threat assessment has three parameters: intent,
capacity, and knowledge or intent, capability, or opportunity [1]. During the Cold
War, sovereign nations engaged other sovereign nations using military-specific
vehicles operating in collaborative groups. The battle groups were centrally
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coordinated and positioned away from civilian activities to maximize their
maneuverability [2].

The Cold War military performed directed data collection, which means that
they maintained custody of the information throughout the stovepiped exploitation
chain. Enemy intent and capacity were based upon knowledge of the leaders,
military strength and readiness, and doctrine. For example, the Cold War threats
were so well understood that the required information and analyst tasks determined
the design for imaging sensors [3, 4]. Figure 5.1 identifies that design relationship
including ground sampling distance (GSD) and field of view (FOV) for the National
Imagery Interpretability Rating Scale (NIIRS).

In addition to the traditional Cold War threats, threats to sovereign nations also
include: organized crime, narcotics trafficking, terrorism, information warfare, and
weapons of mass destructions (WMD) [6]. Non-national actors pose different
threats in the following manner: (1) there is no identifiable battlefront;
(2) non-national actors keep and garrison few if any pieces of heavy military
hardware, rocket launchers, tanks, etc., which both reduces their physical signature
and minimizes their liabilities; (3) they maintain no persistent doctrine; (4) their
numbers and actions form only a small fraction of a percentage of the resident
population; and (5) they dictate attacks in the political, financial, cyber, and cultural
domains in addition to the geospatial, when their opportunity for success is greatest
[7–9].

One example of a terrorist event is the bombing during the 2013 Boston
Marathon. The bomber’s intent was to destabilize the public trust. The bomber’s
capacity was a small amount of funds and two individuals. The bomber’s technical
knowledge was in home-made explosives and the operational knowledge of the
crowd movement during the marathon to maximize their impact.

The remainder of this chapter is laid in the following manner. Threats to
sovereign nations are defined. The common elements of those threats and their
impacts on decision supports systems are identified. The assumption used by

Fig. 5.1 Image quality parameters versus tasks: courtesy of David Cannon [5]
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decision support system developers are made explicit. Finally, an example of how
the developer assumptions can be quantified using evidence theory is performed.

5.2 Defining Threats

5.2.1 Threat Assessment

To identify the threat’s intent, capacity, and knowledge, analysts seek information
from four basic knowledge types (Table 5.1): entity knowledge provides the static
who or what, where, and when information; the activity or transaction knowledge
provides dynamic components for how; association knowledge provides with whom
and link method information; and finally context knowledge provides why infor-
mation. Using these information types, the analyst seeks to answer the following:

• Is the threat credible?
• Who are the individuals or groups composing the threat?
• What is the impact and likelihood of threat against individuals, entities, and

locations?
• How has the threat evolved since the previous assessment?

Table 5.1 Diversity of knowledge types

Information
level

Description Example questions Metadata

Entity Static target,
noun: person,
car, building,
website, idea

Determine type of target,
location, and time: where,
what, and when?

Name, work, ownership,
membership, address,
area extent, topic, and
content

Activity/Event Entity
performing
action

Tracking entity, routes,
estimating traffic patterns,
transactions, volume,
changes: where’s it
going, is it moving with
the rest of traffic, how
many file downloads?

Traffic volume, direction,
diversity, mode, domain
type (financial, physical,
social media),
coordinated activities,
criminal acts, and daily
commute

Association Functional
relationship
among entities

Network, membership,
purpose: who are the
friends of the entity, what
is the purpose for their
association?

Interpersonal (family,
friends, employer), social
interactions (people,
places), topic, purpose,
accessibility, cost, and
transaction type

Context Conditions
under which
entity interacts
within its
environment

Determine
activity/event/transaction
purpose along with
tactics, techniques, and
procedures: why?

Culture, geography, cost,
politics, subject, history,
religion, social
interaction, availability,
and access
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Information from one knowledge type can be used to cue another (Fig. 5.2).
Evidence is data or rules about individuals or other entities, activities/transactions,
associations, and context used to characterize a threat. Evidence accumulation is
conceptualized as building a legal case rather than the Cold War target prosecution
[10]. Evidence can take the form of direct or circumstantial. Direct evidence links a
signature (entity, activity, association) to known actor(s) or entities; i.e., labeled
data. Circumstantial evidence requires an inference to link information to an entity.

Activity and entity information can be nested to describe transactions and events.
Transactions are linked activities, where information or materials are passed. Events
are related activities occurring over a given domain and time [11].

Information from the four knowledge types is now being exploited by corpo-
rations and private citizens. Intelligence can be sold to advertisers; used for boot-
strapping on other types of attacks, business espionage, and generation of
high-quality predictions of future activities [12]. The majority of these data are
provided willingly and unconsciously by the public [13].

5.2.2 Threat Assessments Should Have Unique System
Requirements

Intelligence questions can be broken into three basic categories: assessment, dis-
covery, and prediction [14]. Though the focus of this chapter is threat assessment,
many of the concepts are applicable to discovery and prediction. To perform threat
assessment, evidence accumulation must be structured to track activities of indi-
viduals independent of collection mechanism [15]. Individuals may be cooperative,
such as member of online social networks that provide a wide range of personal
information; noncooperative individuals limit their public footprint; and uncoop-
erative individuals actively seek to defeat attempts of their signature being
collected.

Fig. 5.2 Knowledge types for evidence in the human environment
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Jonas [16] suggested the following traits that a decision support system should
possess.

• Sequence neutral processing: knowledge is extracted as it becomes available
and assessed as evidence immediately. Note: the system must be cognizant that
data may arrive out of order from when it was collected.

– The decision and confidence may change with time as additional confirming
and rejecting evidence are reported.

• Raw data must be processed only once [17], because access,
collection-evaluation, and transmission of data generate a tremendous compu-
tational, storage and network burden due to the 5V (volume, velocity, veracity,
variety, and value) issues.

• Relationship aware: links among individuals to either known or discovered
individuals become part of the entity meta-data.

• Extensible: system must be able to accept new data sources and attributes
• Knowledge-based thesaurus: support functions exist to handle noise when

comparing queries to databases.

– Cultural issues such as transliteration of names or moving from the formal to
the informal.

– Imprecision such as a georeference being a relative position rather than an
absolute location; i.e., over there versus a specific latitude and longitude
[18].

– Text, rhetoric, and grammar change often and the change rate is even faster
in social media than more formal communications such as broadcast news.

• Real-time: changes must be processed on the fly with decisions happening in an
actionable timeline; i.e., online learning.

– Perpetual analytics: no latency in alert generation.

• Scalable: able to expand based upon number of records, users, or sources.

5.3 Assumptions for Decision Support Systems

The remainder of this chapter describes the assumptions for threat assessment
decision support system. Figure 5.3 is an engineering functional block diagram for a
generic information exploitation system. For a given problem statement, there are
assumptions included in the threat assessment. These assumptions are organized
into the Data Fusion Information Group (DFIG) model levels (L1 … L5) of
information fusion. Together, the assumptions along the processing chain are
included in the generated information that accompanies a threat decision. However,
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there must be a reality vector that translates the decision into the required infor-
mation. The ops tempo determines the amount of context that can be accurately
relayed in the assumptions that accompany a decision. At each functional block, the
common assumptions made by users or technology developers are made explicit
[19]. Within each section, the assumption is further resolved.

Each assumption in Fig. 5.3 contributes to intelligence errors and intelligence
failures [20]. Intelligence failure is the systemic organizational surprise resulting
from incorrect, missing, discarded, or inadequate hypotheses. Intelligence errors are
factual inaccuracies in analysis resulting from poor or missing data. Though this
chapter focuses on threats to governments [21], the concepts are applicable for
understanding threats within social networks [22], by criminals [23], and to
financial systems [24].

Assumption 1 The Problem is Specific

Assumption 1: The Problem Statement is Specific
The problem statement in specific assumes that the decision support system’s
output relates to the problem statement [25], which is noted in Fig. 5.3 as the
reality vector. The problem statement assumption asks fundamental ques-
tions: Can the threat be described as a question or hypothesis? Is the decision
relevant the question?

Assumption 1.1 Can the Threat be described as a Question or a Hypothesis?
The first part is to understand the type of question being asked. Asking the right
question relates directly to context. For current insurgent warfare [2], nations face

Fig. 5.3 Assumptions within the human environment
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threats from a number of groups each with different outcome intent, capacity, and
knowledge as shown in Fig. 5.4. This uncertainty in the enemy probably led Donald
Rumsfeld [26] to state the following:

• There are known knowns; there are things we know that we know.
• There are known unknowns; that is to say there are things that, we now know

we don’t know.
• But there are also unknown unknowns—there are things we do not know we

don’t know.

Treverton [27] described this taxonomy as puzzles, mysteries, and complexities.
Figure 5.4 highlights the ability to translate unknowns into knows. The first case,
and obvious to information fusion is a data-driven approach in which the perceived
unknowns are mapped to perceived knowns (whether reality has been satisfied). For
example, collections can verify that the perceived unknown is still unknown. The
second case is a knowledge-driven in which the unknown reality is moved to a
known reality. To make things known, context-driven approaches match the
unknown perceived unknowns into reality through evidence analysis.

The next part of the question is to understand blindspots. Originally, analysts
assumed that threat networks consisted of a central hierarchical authority. Analysts
would then look for evidence of a kingpin and assess their capacity to do harm,
which is similar to the Federal Bureau of Investigation (FBI) combating organized
crime in the 1950s and 1960s [23, 28]. Although this paradigm might have been
prevalent prior to the 9/11 attacks [29], Al Qaeda and its confederates moved away
from that model shortly afterward [2]. Current threat networks are transient based
upon opportunity and mutual interests [30].

Fig. 5.4 Context-driven threat assessment
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There is no clear solution for how to ask the right question or even that having
the right information guarantees success. For example, given a chess board arran-
ged in the normal starting position, no single opening move exists for the white
player that guarantees a win even though (s)he has perfect situational awareness.
The strategy to chess is to play the game until a small number of alternatives exist
before taking finishing action. The same strategy is essential for assessing and
countering threats (Fig. 5.5) [31].

Assumption 1.2 Is the Decision a Relevant Question?
Analytical workflows commonly focus on specific data modalities, exploitation
techniques. The reliance on existing processing chains has a number of causes. The
first cause is mechanical; sensor data have known workflows. Their output products
have known and quantifiable performance metrics. The second cause is organiza-
tional inertia; adopting new business processes takes strong leadership for change
and involves risk. The third cause is the lack of resources [32]: the number and skill
set for analysts are very focused among a relatively small cadre [33]. The fourth
cause is changing any element in the exploitation chain requires training and a
learning timeline which is a large investment of time, money, and most likely a
near-term reduction in performance. The fifth cause is that though a new or different
knowledge source may contain sufficient information content, its technological
readiness could be insufficient for operational usage.

To test the problem statement, all evidence must be structured to either confirm it
or reject it. Therefore, individuals who generate problem statements must also
understand the structure of the output. The downstream cost is the burden of
transforming the data prior to analysis.

Currently, evidence accumulation is a manual, cognitive process. However,
analysts spend much of their time locating data sources than assessing information.
Government and industry have problems federating disparate data repositories and
resolving entities across those systems. Other issues facing the analysts are that
their customer bases and product diversity are increasing. Another unfortunate
circumstance for the current generation of analysts is that the timelines have

Fig. 5.5 Strategy for
attacking loose confederation
networks
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shortened and they rarely have the time to perform their after action reviews
(AARs) to assess system performance and usability.

Johnston [20] produced a series of tools and techniques to address the issues
stated by Rumsfeld, which include questioning the foundation assumptions, looking
for precursor actions, alternative analysis, etc. For example, black-hatting friendly
capabilities which includes a hacker who violates computer security for little reason
beyond mischievous or satisfaction behavior. Other researchers are rediscovering
that the critical actors that enhance threat capacity are those individuals and entities
with unique skills and capabilities that arrives just-in-time, i.e., the strength of weak
ties [34].

Assumption 2 Context Data can be Acquired

Assumption 2: Context Data can be Acquired to Fill Knowledge Gaps
The assumption that data can be acquired to fill knowledge gaps is a holdover
from the directed collections of the Cold War. The purpose for data collection
is to improve decision confidence above some threshold. Many data streams
are continually generating information, so the context is dynamic. So, data
collection is less important than continually trolling known databases for new
content or determining the location of relevant data sources. Data acquisition
assumes a number of issues: data collection is unbiased, target signatures are
constant, data quality can be determined, and all the information is collected
[35].

Assumption 2.1 Data Collection is Unbiased
Nondirected data sources have diverse origins and their chain of custody is
incomplete. The provenance links may also contain a level of uncertainty, which
reduces the trustworthiness of the source [36, 37]. Although the total amount of data
is large, the amount of data available as evidence may be sparse for a specific
problem set, location, or entity.

Assumption 2.2 Target Signatures are Constant
Target signatures are the information types (entity, activity, association, or context)
that describe an individual within a domain (geospatial, financial, cyber, etc.). The
assumption has two basic components. First, an individual’s or entity’s interactions
with their environment are invariant over time and space. Second, observed activity
has a known and constant meaning. Interpreting activities is difficult because they
vary with:

• External stressors: such as the arrest of a threat network member, will cause a
change in the Tactics, Techniques, and Procedures (TTPs) of the group, ala
Maslow’s hierarchy. Yet, the network itself may remain intact [38].

• Not all threat activities are anomalies; and not all anomalies are threats.
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• Cultural difference within a population: Eagle [39] showed that the indi-
vidual’s use of communication is a function of their anthropological attributes as
well as network strength and stability.

• Type and size of network: Members of a threat network are also members of
the general population [40]. The majority of the threat individual’s actions are
benign. Therefore, even knowing that an individual is part of a threat network,
determining which of their actions contributes to a threat is difficult.

• Anonymity: Threat actors in the cyber domain may usurp authorized user’s
identity [41]. Identity theft is commonplace in financial transactions even with
tokens and passwords, i.e., credit cards and online banking [42].

Sakharova [24] documented the change in Al Qaeda’s financial transactions
since 9/11. Originally, the group was highly centralized using commercial banking
institutions, money laundering techniques, and countries with lax laws and poor
banking oversight. As western countries cracked down on their legitimate banking
operations, the group changed tactics to holding and transferring money in fixed
commodities such as gold. Alternatively, these groups used the more traditional
Islamic money transfer method of Hawala, which is comparable to Western Union
transfers using trusted, usually unaffiliated, individuals without formal
record-keeping.

To mitigate the effect of changing target signatures, analysts attempt identify
individuals across all domains in which they operate. The tracking process is called
certainty of presence. Certainty of presence has the added benefit to discover when
a signature for a particular entity is no longer valid in a given domain. Though
membership within modern threat networks are based on mutual gains, individuals
generally interact among those who they trust and have deep ties [43, 44].

Assumption 2.3 Data Quality is Measureable
Data quality deals with the accuracy and precision of each data source [45]. For
many directed sensors, the inherent data quality can be computed by convolving
target, sensor, and environmental parameters [46] (Fig. 5.6). However, nondirected
and nonsensor data have aspects of human interactions that include missing attri-
butes, incorrect or vague inputs, and even ill-defined attribute classes. Incorrect or
incomplete data could be due to human input errors, such as day/month/year
variations or even leading zeros. Depending upon the context, incorrect information
could be an indicator of hostile activity; i.e., deliberate malfeasance.

Human interactions make digital data, cyber in particular, suspect as evidence
because: (1) Altering digital records is easy and the chain of custody is difficult to
confirm; (2) Forensic data review may not yield information about file manipula-
tion; (3) Lack of standards for the collection, verification, exploitation, and pre-
serving digital evidence; (4) The 5Vs make the organization, scanning, and sifting
functions by investigators difficult for determining the responsible party for the
digital attack; and (5) Assigning the information to a unique individual is difficult to
prove [21].
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Assumption 2.4 All Knowledge is Collected
This assumption assumes that analysts have access to all the directed and nondi-
rectional data collection and that those data contain all threat information. In reality,
however, users only know the volume of data they can access and are most likely
unable to estimate the amount of missing information. The assumption is that the
available information can fully describe the threat. The cost of false alarms can be
computed and related to intelligence errors. However, the cost of missing evidence
cannot be computed and most likely to lead to surprise—intelligence failures.

Assumption 3 Context Data can be Fused

Assumption 3: Data can be Fused
The fundamental goal for data fusion is to develop discrete decision on a
threat assessment. Fusing disparate data can add error as to whether the
observations relate to a common entity, activity, or association [47]. As the
amount of evidence increases, these uncertainties are expected to resolve.
Two fundamental assumptions associated with data fusion are: the data fusion
strategy is fixed and knowledge can be abstracted to different resolutions,
which require context (or for that matter the right context) to change fusion
strategies to produce the correct fidelity.

Assumption 3.1 The Data Fusion Strategy is Fixed
This discussion parallels the relevance of the decision process from Assumption 1.
Since the combination of intent, capacity, and knowledge is unique for each threat,
there is no expectation that that a specific data type can be collected [48–50].
Information Fusion is the interaction of sensor, user, and mission [51] for situation
and threat assessment [52]. Challenges for information fusion [53] include the
design of systems to identify and semantically classify threats as information

Fig. 5.6 Operating quality
conditions affecting data
quality
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exploitation as information management [54]. The integration should be based upon
the constraints of the data streams (Fig. 5.7). Many constraints exist for data level
integration that require the individual sources to be aligned in space and time,
classically called data fusion. Usually, only image data are layered in this fashion.
More commonly, attribute/feature integration is performed where the data are only
constrained by time or space. However, for threat information there must be rele-
vant features that come from threat concepts for a given threat event identification.

Data fusion errors include the duplication of information across fields, fields
incorrectly populated, and extensive use of unstructured data. Time stamps con-
tribute to misregistration by either poor definition of the clock or incorrect values.
To mitigate these issues, background processes are required to test for duplication
and trustworthiness, which is often described as metadata triage. Information triage
assesses the individual data streams for information content.

Assumption 3.2 Knowledge can be abstracted from Other Resolutions
This assumption states that data of differing resolutions can be combined without a
loss of information content. Anomaly detection is often performed by observing
deviations from the norm [55]. If data are generalized to coarser resolution, then the
observed differences between an anomaly and the normal will be smoothed: pos-
sibly below a detection threshold. If the data are assigned to higher than collected
rates, uncertainty creeps into the relationship among entities, activities, or events.

Assumption 4 Context Decisions are Reproducible

Assumption 4: Context Decisions are Reproducible
Decisions are reproducible assumes that the decision making process is robust
and auditable [56]. The assumptions built into the earlier functional blocks

Fig. 5.7 Data structures for knowledge types
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are expressed during decision making. Each piece of evidence’s impact on the
decision is assessed as it arrives. At decision time, the decision confidence is
quantified. The assumptions made about the decision process are: threat
assessment is pattern recognition, the operational context is understood, and
human decision making is a good model for a computational engine.

Assumption 4.1 Threat Assessment is Pattern Recognition
The conventional pattern recognition paradigm contains assumptions that are vio-
lated by evidence accumulation [57].

• Threats fall within specific classes, are known a priori, exclusive, and exhaustive
• Data are not perishable
• Knowledge classes are generated offline
• Target signature variation is fully understood
• Performance degrades predictably with signal aberrations

The reality is that evidence accumulation for threat assessment does not adhere
to any of the above assumptions, because no two threats are the same. Human
activities are not independent, but interactive. Therefore, supervised classifiers that
map input attributes to output classes are not relevant.

The current threat assessment philosophy is to use anomaly detection. Anomaly
detection requires a mechanism to continually sample the environment and measure
normal conditions. Currently researchers use graph theory to map individuals
within threat networks, and then infer the impact and likelihood [58]. The cost is
that graph analysis is not computationally scalable.

Machine decisions require the system to determine both an upper and lower
evidence threshold, which can be conceptualized as a hypothesis test. The upper
threshold is to accept the threat hypothesis and alert the user to take action. The
lower threshold is to reject the hypothesis and alert telling the user that no threat
exists. Irvine and Israel [59] used Wald [60] sequential evidence to provide evi-
dence bases using this strategy.

Assumption 4.2 Operational Context is Understood
Context is fundamental to decision making [61]. Context is the environment for
interpreting activities [62]. Prior to the Boston Marathon Bombing, the bomber’s
activities were consistent with those of the crowd. Even if the authorities were able
to review the imagery and social media available of the bombers, they had no basis
to interpret the bomber’s activities as anomalies or threats. After the explosions, the
context changed as the suspects began to flee Boston when their identities were
discovered.
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Assumption 4.3 Human Decision Making is a model for Computational
Decision Engine
Humans perform evidence accumulation similar to the model in Fig. 5.5 [63] and
have specific thresholds for recognition and understanding from which decisions
are rendered, i.e., the Eureka moment [9, 32, 64–66]. Other uniquely human issues
also contribute to failure are:

• Stereotyping based upon consistency, experience, training, or cultural and
organizational norms

• Not rejecting hypotheses that do no longer fit the situation; not questioning data
completeness

• Evidence evaluation

– Greater faith placed in evidence that the analyst collected or experienced
– Absence of evidence = Evidence of absence
– Inability to incorporate levels of confidence into decision making

Several research studies have refuted this assumption by relating decision per-
formance to include reduced timelines, criticality of decision, visibility of decision
maker, experience, etc. [20, 67–69]. This class of problems are often called
time-critical decision making. Time-critical decisions in humans are often charac-
terized by the following:

• Decreased emphasis on identifying and tracking alternatives
• Exaggerated influence on negative data
• Pieces of available evidence are often missed or not accounted for during the

decision process
• Tendency toward automated decisions; faster than actually required
• Mistakes tend to grow dramatically even for low-complexity situations
• Increased time allocated to the wrong step in the decision process

Analysts operating in a time-critical decision making environment will be
affected by their personality towards risk; i.e., being risk-averse, risk-neutral, or risk
prone. Also, the decision maker’s presence in the environment is a factor along with
their ability to evaluate the situation. However, the research shows that decision
making within a stressed environment can be improved through training. The
training should contain four elements: increasing the individual’s knowledge base,
develop policies and procedure so the individual has a cognitive look up table,
perform tasks in simulated stressful environments, and provide cognitive tools for
handling stress. The goal is to change the decision maker’s process from cognitive
to automatic [70].
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Assumption 5 Context Decisions are Actionable

Assumption 5: Decisions are Actionable
Actionable decisions require trust in the decision process, unambiguous
interpretation of the decision, and time to act. Actionable decision is no
guarantee of a correct or optimal decision.

Assumption 5.1 Decision Engines are Trusted
Trust is a uniquely human concept. Cyber and financial systems have been using
trust to describe authentication. Measures exist for data quality [71]. However, trust
for computational decision engines, trust relates to human confidence in the results.
Trust can be developed by providing decision lineage, where lineage is the audit
trail for the decision’s entire processing chain. Threat assessment also looks for
agreement across disparate points of view (political, business, civil, secular, etc.).
No automated measure has been discovered for this chapter.

User trust issues then are confidence (correct detection), security (impacts),
integrity (what you know), dependability (timely), reliable (accurate), controlla-
bility, familiar (practice and training), and consistent (reliable).

Assumption 5.2 Decisions are Rendered Unambiguously
This assumption is the relationship between the rendered evidence and decision
confidence. Cognitive interpretation of graphical information is a function of
contrast among elements, graphical complexity, and human experience [72, 73].
Graph representations require simplifications to demonstrate relationships [74],
which may mask other interactions [75, 76]. Ideally rendered decisions will also
characterize the decision to the closest alternative, relationship to the evidence
threshold, and that the context is correctly classified.

Assumption 5.3 Decisions are Timely
Under ideal conditions, computational decisions are rendered instantly. However,
computational decisions have the same issues as humans with respect to finite
timelines [77]. The concept is called time-sensitive computing (Fig. 5.8). Many
computational applications fall into this realm of conditional performance profiles
that allow meta-data to control processing time based upon time allocation or input
quality [78]. So, the algorithms operate until either the performance threshold or the
available time has been met.

Assumption 6 Context Errors can be fully Quantified

Assumption 6: Error can be fully quantified
Identifying error sources assumes that the system can be decomposed into its
functions and their components. Then, the combination of the component
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metrics can be combined to match the system level performance measures
(Fig. 5.4—Error arrow). Error analysis does not provide any information for
decision relevance [79].

The problems with this assumption are that: (1) Components are often tested
using their local or domain specific metrics and translation to a global measures are
either impractical or have no cognitive basis; (2) Metrics often relate to the per-
formance of an algorithm, called producer’s performance rather than the amount of
evidence a user must review to make a decision, called users performance; and
(3) Component-level errors are incorrectly assumed to be uncorrelated.

While the error analysis leads to incorrect threat analysis, we can assume that the
threat analysis is pessimistic (e.g., lower bound). It is not that threat should not be
determined, but rather that the results (with the many assumptions) should error on
the side of caution. Measures of effectiveness [80] require that the many sources of
uncertainty be account for in the process. Currently, the International Society of
Information Evaluation and Testing of Uncertainty Reasoning Working Group
(ETURWG) [81] is investigating these issues for both context analysis and future
interoperable standards [82].

5.4 Context-Based Threat Example

The following example shows how the earlier assumptions are accounted for
quantitatively. In the example, Bayes Rule is used for data fusion and Dempster’s
Rule is used for evidence accumulation. We seek to address the assumptions:
(6) quantifiable, (5) actionable, (4) reproducible, (3) use of context data, (2) ac-
quirable, and (1) specific for which we use evidence theory through Proportional
Conflict Redistribution (PCR).

Recently, [83] has shown that Dempster’s rule is consistent with probability
calculus and Bayesian reasoning if and only if the prior P(X) is uniform. However,
when the P(X) is not uniform, then Dempster’s rule gives a different result. Yen

Fig. 5.8 Data structures for knowledge types time versus decision quality for computational
strategies (adapted from [78])
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[84] developed methods to account for nonuniform priors. Others have also tried to
compare Bayes and evidential reasoning (ER) methods [85]. Assuming that we
have multiple measurements Z = {Z1, Z2, …, ZN} for cyber detection D being
monitored, Bayesian and ER methods are developed next.

5.4.1 Relating Bayes to Evidential Reasoning

Using the derivation by Dezert [83], assuming conditional independence, one has
the Bayes method:

P XjZ1\Z2ð Þ ¼ P XjZ1ð ÞP XjZ2ð Þ=P Xð ÞPN
i¼1 P XijZ1ð ÞP XijZ2ð Þ=P Xið Þ ð5:1Þ

With no information from Z1 or Z2, then P(X | Z1, Z2) = P(X). Without Z2, then P
(X | Z1, Z2) = P(X | Z1) and without Z1, then P(X | Z1, Z2) = P(X | Z2). Using Dezert’s
formulation, then the denominator can be expressed as a normalization coefficient:

m12 £ð Þ ¼ 1�
X

Xi;XjjXi\Xj

P XijZ1ð ÞP XijZ2ð Þ ð5:2Þ

Using this relation, then the total probability mass of the conflicting information
is

P XjZ1\Z2ð Þ ¼ 1
1� m12 £ð Þ � P XjZ1ð ÞP XjZ2ð Þ ð5:3Þ

which corresponds to Dempster’s rule of combination using Bayesian belief masses
with uniform priors. When the prior’s are not uniform, then Dempster’s rule is not
consistent with Bayes’ Rule. For example, let m0 (X) = P(X), m1 (X) = P(X | Z1), and
m2 (X) = P(X | Z2), then

m Xð Þ ¼ m0 Xð Þ m1 Xð Þ m2 Xð Þ
1� m012 £ð Þ ¼ P Xð Þ P XjZ1ð Þ P XjZ2ð ÞPN

i¼1 P Xið ÞP XijZ1ð Þ P XijZ2ð Þ ð5:4Þ

Thus, methods are needed to deal with nonuniform priors and appropriately
redistribute the conflicting masses.
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5.4.2 Proportional Conflict Redistribution

Recent advances in DS methods include Dezert-Smarandache Theory (DSmT).
DSmT is an extension to the Dempster–Shafer method of ER which has been
detailed in numerous papers and texts [86]. In [87] are introduced the methods for
reasoning and presented the hyper power-set notation for DSmT [88]. Recent
applications include the DSmT Proportional Conflict Redistribution rule 5 (PCR5)
applied to target tracking [89].

The key contributions of DSmT are the redistributions of masses such that no
refinement of the frame Θ is possible unless a series of constraints are known. For
example, Shafer’s model [90] is the most constrained DSm hybrid model in DSmT.
Since Shafer’s model, authors have continued to refine the method to more pre-
cisely address the combination of conflicting beliefs [91] and generalization of the
combination rules [92, 93]. An adaptive combination rule [94] and rules for
quantitative and qualitative combinations [95] have been proposed. Recent exam-
ples for sensor applications include electronic support measures, [96], physiological
monitoring sensors [97], and seismic-acoustic sensing [98].

Here we use the Proportional Conflict Redistribution rule no. 5 (PCR5). We
replace Smets’ rule [99] by the more effective PCR5 to cyber detection probabil-
ities. All details, justifications with examples on PCRn fusion rules and DSm
transformations can be found in the DSmT compiled texts [86]. A comparison of
the methods is shown in Fig. 5.9.

Fig. 5.9 Comparison of Bayesian, Dempster–Shafer, and PCR5 fusion theories
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In the DSmT framework, the PCR5 is used generally to combine the basic belief
assignment (BBAs). PCR5 transfers the conflicting mass only to the elements
involved in the conflict and proportionally to their individual masses, so that the
specificity of the information is entirely preserved in this fusion process. Let m1(.)
and m2(.) be two independent BBAs, then the PCR5 rule is defined as follows (see
[86] for full justification and examples): mPCR5(∅) = 0 and 8X 2 2Θ\{∅}, where ∅
is the null set and 2Θ is the power set:

mPCR5 Xð Þ ¼
X

X1;X2 2 2H

X1\X2 ¼ X

m1 X1ð Þþm2 X2ð Þ

þ
X

X2 2 2H

X2\X ¼ £

m1 X1ð Þ2m2 X2ð Þ
m1 X1ð Þþm2 X2ð Þ þ

m1 X1ð Þm2 X2ð Þ2
m1 X1ð Þþm2 X2ð Þ

" # ð5:5Þ

where \ is the interesting and all denominators in the equation above are different
from zero. If a denominator is zero, that fraction is discarded. Additional properties
and extensions of PCR5 for combining qualitative BBAs can be found in [86] with
examples and results. All propositions/sets are in a canonical form.

5.4.3 Threat Assessment from Context

In this example, we assume that policies of threat analysis are accepted and that the
trust assessment of must determine whether the dynamic data is trustworthy,
threatening, or under attack (Assumption 6—quantifiable). The application system
collects raw measurements on the data situation, such as Boston Bomber activities as
an attack, (Assumption 2—acquirable). Situation awareness is needed to determine
the importance of the information for societal safety (Assumption 1—specific). With
a prior knowledge, data exploitation can be used to determine the situation
(Assumption 3—use of context data). The collection and processing should be
consistent for decision making (Assumption 4—reproducible) over the data acqui-
sition timeline. Finally, the focus of the example is to increase the timeliness of the
machine fusion result for human decision making (Assumption 5—actionable).

Conventional information fusion processing would include Bayesian analysis to
determine the state of the attack. However, here we use the PCR5 rule which
distributes the conflicting information over the partial states. Figure 5.10 shows the
results for a societal status undergoing changes in the social order such as events
indicating an attack and the different methods (Bayes, DS, and PCR5) to access the
threat. An important result is the timeliness of the change in situation state as
depicted. In the example, there is an initial shock of information that lasts for a brief
time (time 20–27 s) while the situation is being assessed (threat or no threat);
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followed by another repeated event (time 40–50 s). As shown the change in state is
not recorded by Bayes, but the PCR5 denotes the change. After the initial attacks,
the threat state is revealed (time 70–100 s) from which a Bayesian method starts to
indicate a change in the threat state.

Here it is important to note that context is used in the PCR5 as the knowledge of
the first event leads to a contextual change (that is not detected by using Bayes
Rule). Likewise, the possibility for a state change (unknown unknown) is deter-
mined from the conflicting data. The conflict used in the example is 20 % which is
an example where some intelligence agencies are reporting the facts (threat event),
while others are reporting differently since they cannot confirm the evidence. The
notional example is only shown to highlight the importance of context. Two cases
arise: (1) whether the data is directly accessible, hence conflict in reporting, and
(2) exhaustively modeling all contextual data to be precise is limited—leading to
some failures.

Trust is then determined with percent improvement in analysis for the state
change. Since the classification of attack versus no attack is not consistent, there is
some conflict in the processing of the measurement data going from an measure-
ments of attack and vice versa. The constant changing of measurements requires
acknowledgment of the change. The initial conflict in the reported evidence requires
the data conflict as measured from which the PCR5 method better characterizes the
information—leading to improved trust in the fusion result.

The improvement of PCR5 over Bayes is shown in Fig. 5.11 and compared with
the modest improvement from DS. The average performance improvement of PCR5
is 50 % and DS is 1 %, which is data, context, and application dependent. When
comparing the results, it can be seen that when a system goes from a normal to an
attack state, PCR5 responds quicker in analyzing the attack, resulting in main-
taining trust in the decision. Such issues of data reliability, statistical credibility, and
application survivability all contribute to the presentation of information to an
application-based user. While the analysis is based on behavioral situation
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awareness, it is important to leverage context, but also be aware when the con-
textual factors are not complete, hence conflict.

5.5 Discussion

The chapter explicitly identified the common assumptions incorporated into com-
putational decision engines. The assumptions at each functional block propagate
through the system and dramatically affect the utility of their output. In the case of
threat assessment, these assumptions could lead to intelligence failures. Context is
important, but not completely measureable in a timely method. By understanding
these assumptions, system users can mitigate these pitfalls by employing skepticism
and confirmation in the results. The notional example provided a method of a
change in the threat state that would aid in emergency response.

5.6 Conclusions

We outlined the analysis of threat assessment given the context of the situation.
Threat analysis needs were juxtaposed against the assumptions developers use to
make the computational decision support system tractable. We showed that the
long-term system goals have some very real near-term realities. We organized the
contextual information for threat analysis by categorizing six assumptions:
(1) specific problem, (2) acquirable data, (3) use of context, (4) reproducible
analysis, (5) actionable intelligence, and (6) quantifiable decision making. Together,
a notional example was presented to highlight the need for evidence theory (e.g.,
PCR) to deal with conflicting information in building a context assessment.
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We hope that we enlighten users of tools to question the accuracy and relevance
of the computer generated analysis. Likewise, we hope that developers better
understand the user’s needs of these tools in an operational environment. Context
for threat assessment must be discernible by both the machine and the user.

Acknowledgments This work is partly supported by the Air Force Office of Scientific Research
(AFOSR) under the Dynamic Data Driven Application Systems program and the Air Force
Research Lab.

References

1. A.N. Steinberg, Foundations of situation and threat assessment, Chap. 18, in Handbook of
Multisensor Data Fusion, ed. by M.E. Liggins et al. (CRC Press, London, 2009)

2. T.X. Hammes, The Sling and the Stone: On War in the 21st Century (Zenith Press, 2006)
3. J. Leachtenauer, National Imagery Interpretability Ratings Scales: Overview and Product

Description. American Society of Photogrammetry and Remote Sensing Annual Meetings,
pp. 262–271, 1996

4. J.M. Irvine, National imagery interpretability rating scales (NIIRS): overview and
methodology, in Proceedings of SPIE, vol. 3128 (1997)

5. J.M. Irvine, D. Cannon, J. Miller, J. Bartolucci, G. O’Brien, L. Gibson, C. Fenimore,
J. Roberts, I. Aviles, M. Brennan, A. Bozell, L. Simon, S.A. Israel, Methodology study for
development of a motion imagery quality metric, in Proceedings of SPIE, vol. 6209 (2006)

6. J.T. Picarelli, Transnational threat indications and warning: the utility of network analysis, in
AAAI Fall Symposium on Artificial Intelligence and Link Analysis Technical Report (1998)

7. D. Galula, Counterinsurgency Warfare: Theory and Practice (Praeger Security International,
Westport, 1964)

8. R. Trinquier, Modern Warfare: A Frenchy View of Counterinsurgency (Praeger Security
International, Westport, 1964)

9. R.K. Betts, Analysis, war, and decision: why intelligence failures are inevitable. World Polit.
31, 61–89 (1978)

10. D.L. Thomas, Proving constructive possession in Virginia: a change in the tradewinds.
Colonial Lawyer 18, 137–166 (1989)

11. S.A. Israel, Toward a common lexicon for exploiting activity data, in IEEE Applied Imagery
and Pattern Recognition Workshop: Computer Vision: Time for Change, pp. 6 pages (2012)

12. Y. Altshuler, N. Aharony, A. Pentland, Y. Elovici, M. Cebrian, Stealing reality: when
criminals become data scientists (or vice versa). IEEE Intell. Syst. 2–10 (2011)

13. C.R. Vincente, D. Freni, C. Bettini, C.S. Jensen, Location-related privacy in geo-social
networks. IEEE Internet Comput. 20–27 (2011)

14. R. Colbaugh, K. Glass, J. Gosler, Some intelligence analysis problems and their graph
formulations. Intell. Community Res. Dev. 315, 27 (2010)

15. A. Vinciarelli, Capturing order in social interactions. IEEE Signal Process. Mag. 133–152
(2009)

16. J. Jonas, Threat and fraud intelligence, Las Vegas style. IEEE Secur. Priv. 28–34 (2006)
17. A.E. Gattiker, F.H. Gebara, A. Gheith, H.P. Hofstee, D.A. Jamsek, J. Li, E. Speight, J.W. Shi,

G.C. Chen, P.W. Wong, Understanding system and architecture for big data. IBM, pp. 4 pages
(2012)

18. C.Y. Lin, L. Wu, Z. Wen, H. Tong, V. Griffiths-Fisher, L. Shi, Social network analysis in
enterprise. Proc. IEEE 100(9), 2759–2776 (2012)

19. M.J. Duggin, C.J. Robinove, Assumptions implicit in remote sensing data acquisition and
analysis. Int. J. Remote Sens. 11, 1669–1694 (1990)

120 S.A. Israel and E. Blasch



20. R. Johnston, Analytic Culture in the US Intelligence Community: An Ethnographic Study
(Center for Study of Intelligence, Central Intelligence Agency, Washington, 2005), pp. 173
pages

21. D. Chaikin, Network investigations of cyber attacks: the limits of digital evidence. Crime Law
Social Change 46, 239–256 (2006)

22. S.A. Macskassy, F. Provost. A brief survey of machine learning methods for classification in
networked data and an application to suspicion scoring, in Workshop on Statistical Network
Analysis at the 23rd International Conference on Machine Learning (2006)

23. J.H. Ratcliffe, Intelligence-Led Policing (Willan Publishing, Cullompton, Devon, 2008)
24. I. Sakharova, Al Qaeda terrorist financing and technologies to track the finance network, in

IEEE Intelligence and Security Informatics (2011)
25. J. Nagl, Learning to Eat Soup with a Knife: Counterinsurgency Lessons from Malaya and

Vietnam (Praeger Publishers, Westport, 2002)
26. D. Rumsfeld, Known-knowns, in Defense.gov News Transcript: DoD News Briefing—

Secretary Rumsfeld and Gen. Myers (United States Department of Defense (defense.gov),
2002)

27. G.F. Treverton, Intelligence for an Age of Terror (Cambridge University Press, New York,
2009)

28. S. Ressler, Social network analysis as an approach to combat terrorism: past, present, and
future research. Homel. Secur. Affairs 2, 10 (2006)

29. V.E. Krebs, Mapping networks in terrorist cells. Connections 24, 43–52 (2002)
30. P. Klerks, The network paradigm applied to criminal organizations: theoretical nitpicking or a

relevant doctrine for investigators? Recent developments in the Netherlands. Connections 24,
53–65 (2001)

31. B. Bringmann, M. Berlingerio, F. Bonchi, A. Gionis, Learning and predicting the evolution of
social networks. IEEE Intell. Syst. 26–24 (2010)

32. R. Travers, The coming intelligence failure. Studies in Intelligence (CIA) 40, 35–43 (1997)
33. T.J. Burger, Inside the Nerve Center of America’s counterterrorist operations, in Time

Magazine (2004)
34. M.S. Granovetter, The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973)
35. M.K. Sparrow, The application of network analysis to criminal intelligence: an assessment of

the prospects. Soc. Networks 13, 251–274 (1991)
36. P. Buneman, S. Khanna, W.C. Tan, Data provenance: some basic issues. Found. Softw.

Technol. Theor. Comput. Sci. 87–93 (2000) Springer
37. E. Blasch, A. Jøsang, J. Dezert, P.C.G. Costa, K.B. Laskey, A.-L. Jousselme, URREF

self-confidence in information fusion trust, in International Conference on Information Fusion
(2014)

38. E.H. Powley, Reclaiming resilience and safety: resilience activation in the critical period of
crisis. Hum. Relat. 62, 1289–1326 (2009)

39. N. Eagle, Behavioral inference across cultures: using telephones as a cultural lens. IEEE Intell.
Syst. 62–64 (2008)

40. S. Milgram, The small-world problem. Psychol. Today 1, 61–67 (1967)
41. G. Lawton, Invasive software, who’s inside your computer. IEEE Comput. 35, 15–18 (2002)
42. S. Graham, The urban battlespace. Theor. Cult. Soc. 26, 278–288 (2009)
43. S. Saavedra, F. Reed-Tsochas, B. Uzzi, Asymmetric disassembly and robustness in declining

networks. Proc. Natl. Acad. Sci. 105, 16466–16471 (2008)
44. H. Sundaram, Y.R. Lin, M. DeChoudhruy, A. Kelliher, Understanding community dynamics

in online social networks. IEEE Sign. Proc. Mag. 33–40 (2012)
45. B. Kahler, E. Blasch, L. Goodwon, Operating condition modeling for ATR fusion assessment,

in Proceedings of SPIE, vol. 6571 (2007)
46. B. Kahler, E. Blasch, Sensor management fusion using operating conditions, in Proceedings of

IEEE National Aerospace Electronics Conference (NAECON) (2008)
47. S. Rassler, Data fusion: identification problems, validity, and multiple imputation.

Austrian J. Stat. 33, 153–171 (2004)

5 Context Assumptions for Threat Assessment Systems 121



48. I. Bloch, A. Hunter, Fusion: general concepts and characteristics. Int. J. Intell. Syst. 16, 1107–
1134 (2001)

49. D.L. Hall, Mathematical Techniques in Multisensor Data Fusion (Artech House) (1992)
50. J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. Waltz, F. White, Revisiting the JDL data

fusion model II, in International Conference on Information Fusion (2004)
51. E. Blasch, Sensor, User, mission (SUM) resource management and their interaction with level

2/3 fusion, in International Conference on Info Fusion (2006)
52. E. Blasch, E. Bosse, E. Lambert, High-Level Information Fusion Management and Systems

Design (Artech House, Norwood, MA, 2012)
53. E. Blasch, D.A. Lambert, P. Valin, M.M. Kokar, J. Llinas, S. Das, C.-Y. Chong,

E. Shahbazian, High level information fusion (HLIF) survey of models, issues, and grand
challenges. IEEE Aerosp. Electron. Syst. Mag. 27(9) (2012)

54. E. Blasch, A. Steinberg, S. Das, J. Llinas, C.-Y. Chong, O. Kessler, E. Waltz, F. White,
Revisiting the JDL model for information exploitation, in International Conference on Info
Fusion (2013)

55. C. Drummond, Replicability is not reproducibility: nor is it good science, in 26th ICML
Evaluating Methods for Machine Learning, pp. 4 pages (2009)

56. E. Blasch, C. Banas, M. Paul, B. Bussjager, G. Seetharaman, Pattern activity clustering and
evaluation (PACE), in Proceedings of SPIE, vol. 8402 (2012)

57. R.O. Duda, P.E. Hart, D.G. Stork, Patten Classification, 2nd edn. (Wiley, New York, 2001)
58. T.E. Senator, H.G. Goldberg, A. Memory, Distinguishing the unexplainable from the merely

unusual: adding explanations to outliers to discover and detect significant complex rare events,
in ODD ‘13 Proceedings of the ACM SIGKDD Workshop on Outlier Detection and
Description, pp. 40–45 (2013)

59. J.M. Irvine, S.A. Israel, A sequential procedure for individual identity verification using ECG.
EURASIP J. Adv. Signal Process. Recent Adv. Biometric Syst. A Signal Process. Perspect.
243215, 13 (2009)

60. A. Wald, Sequential Analysis (Dover, New York, 1994)
61. C.E. Callwell, Small Wars: Their Principles and Practice (University of Nebraska Press,

1906)
62. J.R. Hipp, A. Perrin, Nested loyalties: local networks’ effects on neighbourhood and

community cohesion. Urban Stud. 43, 2503–2523 (2006)
63. J.D. Lee, K.A. See, Trust in automation: designing for appropriate reliance. Hum. Factors 46,

50–80 (2004)
64. R. Parasuraman, V. Riley, Performance consequences of automation induced complancey. Int.

J. Aviat. Psychol. 3, 1–23 (1993)
65. E.J. Ploran, S.M.M. Nelson, K. Velanova, D.I. Donaldson, S.E. Petersen, M.E. Wheeler,

Evidence accumulation and the moment of recognition: dissociating decision processes using
fMRI. J. Neurosci. 27, 11912–11924 (2007)

66. D.M. Trujillo, Are intelligence failures inevitable? e-International Relations (2012)
67. S. Brown, M. Steyvers, E.J. Wagenmakers, Observing evidence accumulation during

multi-alternative decisions. J. Math. Psychol. 53, 453–462 (2009)
68. A. Neal, P.J. Kwantes, An evidence accumulation model for conflict detection performance in

a simulated air traffic control task. Hum. Factors 51, 164–180 (2009)
69. C.F. Chabris, D.I. Laibson, C.L. Morris, J.P. Schuldt, D. Taubinsky, The allocation of time in

decision-making. J. Eur. Econ. Assoc. 7, 628–637 (2009)
70. I. Cohen, Improving time-critical decision making in life threatening situations: observations

and insights. Decis. Anal. 5, 100–110 (2008)
71. E. Agichtein, C. Castillo, D. Donato, A. Gionis, G. Mishne, Finding high-quality content in

social media, in Web Search and Web Data Mining (ACM, Palo Alto, 2008)
72. A.M. MacEachren, Some Truth with Maps: A Primer on Symbolization and Design (American

Association of Geographer, 1994)
73. M. Monmonier, How to Lie with Maps, 2nd edn. (University of Chicago Press, 1996)

122 S.A. Israel and E. Blasch



74. R. Amar, J. Eagan, J. Stasko, Low-level components of analytic activity in information
visualization, in IEEE Symposium on Information Visualization, Minneapolis, pp. 111–117
(2005)

75. A. Perer, B. Shneiderman, Balancing systematic and flexible exploration of social networks.
IEEE Trans. Vis. Comput. Graphics 12, 693–700 (2006)

76. Z. Shen, K.L. Ma, T. Eliassi-Rad, Visual analysis of large heterogeneous social networks by
semantic and structural abstraction. IEEE Trans. Vis. Comput. Graphics 12, 1427–2439 (2006)

77. E. Blasch, Introduction to level 5 fusion: the role of the user, Chap. 19, in Handbook of
Multisensor Data Fusion, 2nd edn., ed by M.E. Liggins, D. Hall, J. Llinas (CRC Press, 2008)

78. S. Zilberstein, An anytime computation approach to information gathering, in AAAI Spring
Symposium Series on Information Gathering from Distributed, Heterogeneous Environments
(1995)

79. S.A. Israel, Performance metrics: how and when. Geocarto Int. 21, 23–32 (2006)
80. E. Blasch, P. Valin, E. Bossé, Measures of effectiveness for high-level fusion, in International

Conference on Info Fusion (2010)
81. P.C.G. Costa, K.B. Laskey, E. Blasch, A.-L. Jousselme, Towards unbiased evaluation of

uncertainty reasoning: the URREF ontology, in International Conference on Information
Fusion (2012)

82. E. Blasch, K.B. Laskey, A.-L. Joussselme, V. Dragos, P.C.G. Costa, J. Dezert, URREF
reliability versus credibility in information fusion (STANAG 2511), in International
Conference on Information Fusion (2013)

83. J. Dezert, Non-bayesian reasoning for information fusion—a Tribute to Lofti Zadeh. submitted
to J. Adv. Inf. Fusion (2012)

84. J. Yen, A reasoning model based on the extended Dempster Shafer theory, in National
Conference on Artificial Intelligence (1986)

85. E. Blasch, J. Dezert, B. Pannetier, Overview of Dempster-Shafer and belief function tracking
methods, in Proceedings of SPIE, vol. 8745 (2013)

86. J. Dezert, F. Smarandache, Advances and applications of DSmT for information fusion
(collected works), vols. 1–3 (American Research Press, 2009) http://www.gallup.unm.edu/
*smarandache/DSmT.htm

87. J. Dezert, Foundations for a new theory of plausible and paradoxical reasoning. Inf. Secur. Int.
J. 9 (ed. by Prof. Tzv. Semerdjiev)

88. J. Dezert, F. Smarandache, On the generation of hyper-powersets for the DSmT, in
International Conference on Info Fusion (2003)

89. E. Blasch, J. Dezert, B. Pannetier, Overview of dempster-shafer and belief function tracking
methods, in Proceedings SPIE, vol. 8745 (2013)

90. G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, NJ,
1976)

91. A. Josang, M. Daniel, Strategies for combining conflict dogmatic beliefs, in International
Conference on Information Fusion (2006)

92. F. Smaradache, J. Dezert, Information fusion based on new proportional conflict redistribution
rules, in International Conference on Information Fusion (2005)

93. M. Daniel, Generalization of the classic combination rules to DSm hyper-power sets. Inf.
Secur. Int. J. 20, 4–9 (2006)

94. M.C. Florea, J. Dezert, P. Valin, F. Smarandache, A.-L. Jousselme, Adaptive combination rule
and proportional conflict redistribution rule for information fusion, in COGIS ‘06 Conference
(2006)

95. A. Martin, C. Osswald, J. Dezert, F. Smarandache, General combination rules for qualitative
and quantitative beliefs. J. Adv. Inf. Fusion 3(2) (2008)

96. P. Djiknavorian, D. Grenier, P. Valin, Approximation in DSm theory for fusing ESM reports,
in International Workshop on Belief functions (2010)

97. Z.H. Lee, J.S. Choir, R. Elmasri, A static evidential network for context reasoning in
home-based care. IEEE Trans. Sys. Man Cyber-Part A Syst. Hum. 40(6), 1232–1243 (2010)

5 Context Assumptions for Threat Assessment Systems 123

http://www.gallup.unm.edu/%7esmarandache/DSmT.htm
http://www.gallup.unm.edu/%7esmarandache/DSmT.htm


98. E. Blasch, J. Dezert, P. Valin, DSMT applied to seismic and acoustic sensor fusion, in
Proceedings of IEEE National Aerospace Electronics Conference (NAECON) (2011)

99. P. Smets, Analyzing the combination of conflicting belief functions, in International
Conference on Information Fusion (2005)

124 S.A. Israel and E. Blasch


	5 Context Assumptions for Threat Assessment Systems
	Abstract
	5.1 Introduction
	5.2 Defining Threats
	5.2.1 Threat Assessment
	5.2.2 Threat Assessments Should Have Unique System Requirements

	5.3 Assumptions for Decision Support Systems
	5.4 Context-Based Threat Example
	5.4.1 Relating Bayes to Evidential Reasoning
	5.4.2 Proportional Conflict Redistribution
	5.4.3 Threat Assessment from Context

	5.5 Discussion
	5.6 Conclusions
	Acknowledgments
	References


