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Abstract: This chapter presents several classes of fusion problems which cannot

be directly approached by the classical mathematical theory of evidence, also known

as Dempster-Shafer Theory (DST), either because Shafer’s model for the frame of

discernment is impossible to obtain, or just because Dempster’s rule of combination

fails to provide coherent results (or no result at all). We present and discuss the

potentiality of the DSmT combined with its classical (or hybrid) rule of combination

to attack these infinite classes of fusion problems.

5.1 Introduction

I
n this chapter we focus our attention on the limits of the validity of Dempster’s rule of combination

in Dempster-Shafer theory (DST) [5]. We provide several infinite classes of fusion problems where

Dempster rule of combination fails to provide coherent results and we show how these problems can be

attacked directly by the DSmT presented in previous chapters. DST and DSmT are based on a different

approach for modelling the frame Θ of the problem (Shafer’s model versus free-DSm, or hybrid-DSm

model), on the choice of the space (classical power set 2Θ versus hyper-power set DΘ) on which will
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106 CHAPTER 5. COUNTER-EXAMPLES TO DEMPSTER’S RULE OF COMBINATION

be defined the basic belief assignment functions mi(.) to be combined, and on the fusion rules to apply

(Dempster rule versus DSm rule or hybrid DSm rule of combination).

5.2 First infinite class of counter examples

The first infinite class of counter examples for Dempster’s rule of combination consists trivially in all cases

for which Dempster’s rule becomes mathematically not defined, i.e. one has 0/0, because of full conflicting

sources. The first sub-class presented in subsection 5.2.1 corresponds to Bayesian belief functions. The

subsection 5.2.2 will present counter-examples for more general conflicting sources of evidence.

5.2.1 Counter-examples for Bayesian sources

The following examples are devoted only to Bayesian sources, i.e. sources for which the focal elements of

belief functions coincide only with some singletons θi of Θ.

5.2.1.1 Example with Θ = {θ1, θ2}

Let’s consider the frame of discernment Θ = {θ1, θ2}, two independent experts, and the basic belief

masses:

m1(θ1) = 1 m1(θ2) = 0

m2(θ1) = 0 m2(θ2) = 1

We represent these belief assignments by the mass matrix

M =




1 0

0 1





• Dempster’s rule can not be applied because one formally gets m(θ1) = 0/0 and m(θ2) = 0/0 as

well, i.e. undefined.

• The DSm rule works here because one obtains m(θ1) = m(θ2) = 0 and m(θ1 ∩ θ2) = 1 (the total

paradox, which it really is! if one accepts the free-DSm model). If one adopts Shafer’s model and

applies the hybrid DSm rule, then one gets mh(θ1 ∪ θ2) = 1 which makes sense in this case. The

index h denotes here the mass obtained with the hybrid DSm rule to avoid confusion with result

obtained with the DSm classic rule.

5.2.1.2 Example with Θ = {θ1, θ2, θ3, θ4}

Let’s consider the frame of discernment Θ = {θ1, θ2, θ3, θ4}, two independent experts, and the mass

matrix 


0.6 0 0.4 0

0 0.2 0 0.8
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• Again, Dempster’s rule can not be applied because: ∀1 ≤ j ≤ 4, one gets m(θj) = 0/0 (undefined!).

• But the DSm rule works because one obtains: m(θ1) = m(θ2) = m(θ3) = m(θ4) = 0, and m(θ1 ∩
θ2) = 0.12, m(θ1 ∩ θ4) = 0.48, m(θ2 ∩ θ3) = 0.08, m(θ3 ∩ θ4) = 0.32 (partial paradoxes/conflicts).

• Suppose now one finds out that all intersections are empty (Shafer’s model), then one applies

the hybrid DSm rule and one gets (index h stands here for hybrid rule): mh(θ1 ∪ θ2) = 0.12,

mh(θ1 ∪ θ4) = 0.48, mh(θ2 ∪ θ3) = 0.08 and mh(θ3 ∪ θ4) = 0.32.

5.2.1.3 Another example with Θ = {θ1, θ2, θ3, θ4}

Let’s consider the frame of discernment Θ = {θ1, θ2, θ3, θ4}, three independent experts, and the mass

matrix 






0.6 0 0.4 0

0 0.2 0 0.8

0 0.3 0 0.7








• Again, Dempster’s rule can not be applied because: ∀1 ≤ j ≤ 4, one gets m(θj) = 0/0 (undefined!).

• But the DSm rule works because one obtains: m(θ1) = m(θ2) = m(θ3) = m(θ4) = 0, and

m(θ1 ∩ θ2) = 0.6 · 0.2 · 0.3 = 0.036

m(θ1 ∩ θ4) = 0.6 · 0.8 · 0.7 = 0.336

m(θ2 ∩ θ3) = 0.4 · 0.2 · 0.3 = 0.024

m(θ3 ∩ θ4) = 0.4 · 0.8 · 0.7 = 0.224

m(θ1 ∩ θ2 ∩ θ4) = 0.6 · 0.2 · 0.7 + 0.6 · 0.3 · 0.8 = 0.228

m(θ2 ∩ θ3 ∩ θ4) = 0.2 · 0.4 · 0.7 + 0.3 · 0.4 · 0.8 = 0.152

(partial paradoxes/conflicts) and the others equal zero. If we add all these masses, we get the sum

equals to 1.

• Suppose now one finds out that all intersections are empty (Shafer’s model), then one applies the

hybrid DSm rule and one gets: mh(θ1 ∪ θ2) = 0.036, mh(θ1 ∪ θ4) = 0.336, mh(θ2 ∪ θ3) = 0.024,

mh(θ3 ∪ θ4) = 0.224, mh(θ1 ∪ θ2 ∪ θ4) = 0.228, mh(θ2 ∪ θ3 ∪ θ4) = 0.152.

5.2.1.4 More general

Let’s consider the frame of discernment Θ = {θ1, θ2, . . . , θn}, with n ≥ 2, and k experts, for k ≥ 2. Let

M = [aij ], 1 ≤ i ≤ k, 1 ≤ j ≤ n, be the mass matrix with k rows and n columns. If each column of the

mass matrix contains at least a zero, then Dempster’s rule can not be applied because one obtains for
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all 1 ≤ j ≤ n, m(θj) = 0/0 which is undefined! The degree of conflict is 1. However, one can use the

classical DSm rule and one obtains: for all 1 ≤ j ≤ n, m(θj) = 0, and also partial paradoxes/conflicts:

∀1 ≤ vs ≤ n, 1 ≤ s ≤ w, and 2 ≤ w ≤ k, m(θv1 ∩ θv2 ∩ . . . ∩ θvw
) =

∑
(a1t1) · (a2t2) · . . . · (aktk ), where

the set T = {t1, t2, . . . , tk} is equal to the set V = {v1, v2, . . . , vw} but the order may be different and

the elements in the set T could be repeated; we mean from set V one obtains set T if one repeats some

elements of V ; therefore: summation
∑

is done upon all possible combinations of elements from columns

v1, v2, . . . , vw such that at least one element one takes from each of these columns v1, v2, . . . , vw and also

such that from each row one takes one element only; the product (a1t1) · (a2t2) · . . . · (aktk ) contains one

element only from each row 1, 2, . . . , k respectively, and one or more elements from each of the columns

v1, v2, . . . , vw respectively.

5.2.2 Counter-examples for more general sources

We present in this section two numerical examples involving general (i.e. non Bayesian) sources where

Dempster’s rule cannot be applied.

5.2.2.1 Example with Θ = {θ1, θ2, θ3, θ4}

Let’s consider Θ = {θ1, θ2, θ3, θ4}, two independent experts, and the mass matrix:

θ1 θ2 θ3 θ4 θ1 ∪ θ2
m1(.) 0.4 0.5 0 0 0.1

m2(.) 0 0 0.3 0.7 0

Dempster’s rule cannot apply here because one gets 0/0 for all m(θi), 1 ≤ i ≤ 4, but the DSm rules

(classical or hybrid) work.

Using the DSm classical rule: m(θ1 ∩ θ3) = 0.12, m(θ1 ∩ θ4) = 0.28, m(θ2 ∩ θ3) = 0.15, m(θ2 ∩ θ4) = 0.35,

m(θ3 ∩ (θ1 ∪ θ2)) = 0.03, m(θ4 ∩ (θ1 ∪ θ2)) = 0.07.

Suppose now one finds out that one has a Shafer model; then one uses the hybrid DSm rule (denoted

here with index h): mh(θ1 ∪ θ3) = 0.12, mh(θ1 ∪ θ4) = 0.28, mh(θ2 ∪ θ3) = 0.15, mh(θ2 ∪ θ4) = 0.35,

mh(θ3 ∪ θ1 ∪ θ2) = 0.03, mh(θ4 ∪ θ1 ∪ θ2) = 0.07.

5.2.2.2 Another example with Θ = {θ1, θ2, θ3, θ4}

Let’s consider Θ = {θ1, θ2, θ3, θ4}, three independent experts, and the mass matrix:
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θ1 θ2 θ3 θ4 θ1 ∪ θ2 θ3 ∪ θ4
m1(.) 0.4 0.5 0 0 0.1 0

m2(.) 0 0 0.3 0.6 0 0.1

m3(.) 0.8 0 0 0 0.2 0

Dempster’s rule cannot apply here because one gets 0/0 for all m(θi), 1 ≤ i ≤ 4, but the DSm rules

(classical or hybrid) work.

Using the DSm classical rule, one gets:

m(θ1) = m(θ2) = m(θ3) = m(θ4) = 0 m(θ1 ∪ θ2) = m(θ3 ∪ θ4) = 0

m(θ1 ∩ θ3) = 0.096 m(θ1 ∩ θ3 ∩ (θ1 ∪ θ2)) = m(θ1 ∩ θ3) = 0.024

m(θ1 ∩ θ4) = 0.192 m(θ1 ∩ θ4 ∩ (θ1 ∪ θ2)) = m(θ1 ∩ θ4) = 0.048

m(θ1 ∩ (θ3 ∪ θ4)) = 0.032 m(θ1 ∩ (θ3 ∪ θ4) ∩ (θ1 ∪ θ2)) = m(θ1 ∩ (θ3 ∪ θ4)) = 0.008

m(θ2 ∩ θ3 ∩ θ1) = 0.120 m(θ2 ∩ θ3 ∩ (θ1 ∪ θ2)) = m(θ2 ∩ θ3) = 0.030

m(θ2 ∩ θ4 ∩ θ1) = 0.240 m(θ2 ∩ θ4 ∩ (θ1 ∪ θ2)) = m(θ2 ∩ θ4) = 0.060

m(θ2 ∩ (θ3 ∪ θ4) ∩ θ1) = m((θ1 ∩ θ2) ∩ (θ3 ∪ θ4)) = 0.040 m(θ2 ∩ (θ3 ∪ θ4) ∩ (θ1 ∪ θ2)) = m(θ2 ∩ (θ3 ∪ θ4)) = 0.010

m((θ1 ∪ θ2) ∩ θ3 ∩ θ1) = m(θ1 ∩ θ3) = 0.024 m((θ1 ∪ θ2) ∩ θ3) = 0.006

m((θ1 ∪ θ2) ∩ θ4 ∩ θ1) = m(θ1 ∩ θ4) = 0.048 m((θ1 ∪ θ2) ∩ θ4) = 0.012

m((θ1 ∪ θ2) ∩ (θ3 ∪ θ4) ∩ θ1) = m(θ1 ∩ (θ3 ∪ θ4)) = 0.008 m((θ1 ∪ θ2) ∩ (θ3 ∪ θ4)) = 0.002

After cumulating, one finally gets with DSm classic rule:

m(θ1 ∩ θ3) = 0.096 + 0.024 + 0.024 = 0.144 m(θ1 ∩ θ4) = 0.192 + 0.048 + 0.048 = 0.288

m(θ2 ∩ θ3) = 0.030 m(θ2 ∩ θ4) = 0.060

m(θ1 ∩ θ2 ∩ θ3) = 0.120 m(θ1 ∩ θ2 ∩ θ4) = 0.240

m((θ1 ∪ θ2) ∩ θ3) = 0.006 m((θ1 ∪ θ2) ∩ θ4) = 0.012

m(θ1 ∩ (θ3 ∪ θ4)) = 0.032 + 0.008 + 0.008 = 0.048 m(θ1 ∩ θ2 ∩ (θ3 ∪ θ4)) = 0.040

m(θ2 ∩ (θ3 ∪ θ4)) = 0.010 m((θ1 ∪ θ2) ∩ (θ3 ∪ θ4)) = 0.002

Suppose now, one finds out that all intersections are empty. Using the hybrid DSm rule one gets:

mh(θ1 ∪ θ3) = 0.144 mh(θ1 ∪ θ4) = 0.288

mh(θ2 ∪ θ3) = 0.030 mh(θ2 ∪ θ4) = 0.060

mh(θ1 ∪ θ2 ∪ θ3) = 0.120 + 0.006 = 0.126 mh(θ1 ∪ θ2 ∪ θ4) = 0.240 + 0.012 = 0.252

mh(θ1 ∪ θ3 ∪ θ4) = 0.048 mh(θ2 ∪ θ3 ∪ θ4) = 0.010

mh(θ1 ∪ θ2 ∪ θ3 ∪ θ4) = 0.040 + 0.002 = 0.042
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5.2.2.3 More general

Let’s consider the frame of discernment Θ = {θ1, θ2, . . . , θn}, with n ≥ 2, and k experts, for k ≥ 2, and

the mass matrix M with k rows and n+ u columns, where u ≥ 1, corresponding to θ1, θ2, . . . , θn, and u

uncertainties θi1 ∪ . . . ∪ θis , . . . , θj1 ∪ . . . ∪ θjt respectively.

If the following conditions occur:

• each column contains at least one zero;

• all uncertainties are different from the total ignorance θ1∪ . . .∪θn (i.e., they are partial ignorances);

• the partial uncertainties are disjoint two by two;

• for each non-null uncertainty column cj , n + 1 ≤ j ≤ n + u, of the form say θp1 ∪ . . . ∪ θpw
, there

exists a row such that all its elements on columns p1, . . . , pw, and cj are zero.

then Dempster’s rule of combination cannot apply for such infinite class of fusion problems because one

gets 0/0 for all m(θi), 1 ≤ i ≤ n. The DSm rules (classical or hybrid) work for such infinite class of

examples.

5.3 Second infinite class of counter examples

This second class of counter-examples generalizes the famous Zadeh example given in [7, 8].

5.3.1 Zadeh’s example

Two doctors examine a patient and agree that it suffers from either meningitis (M), contusion (C) or

brain tumor (T). Thus Θ = {M,C, T }. Assume that the doctors agree in their low expectation of a

tumor, but disagree in likely cause and provide the following diagnosis

m1(M) = 0.99 m1(T ) = 0.01 and m2(C) = 0.99 m2(T ) = 0.01

If we combine the two basic belief functions using Dempster’s rule of combination, one gets the unexpected

final conclusion

m(T ) =
0.0001

1− 0.0099− 0.0099− 0.9801
= 1

which means that the patient suffers with certainty from brain tumor !!!. This unexpected result arises

from the fact that the two bodies of evidence (doctors) agree that the patient most likely does not

suffer from tumor but are in almost full contradiction for the other causes of the disease. This very sim-

ple but interesting example shows the limitations of the practical use of the DST for automated reasoning.
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This example has been examined in literature by several authors to explain the anomaly of the result

of Dempster’s rule of combination in such case. Due to the high degree of conflict arising in such extreme

case, willingly pointed out by Zadeh to show the weakness of this rule, it is often argued that in such case

the result of Dempster’s rule must not be taken directly without checking the level of the conflict between

sources of evidence. This is trivially true but there is no theoretical way to decide beforehand if one can

trust or not the result of such rule of combination, especially in complex systems involving many sources

and many hypotheses. This is one of its major drawback. The issue consists generally in choosing rather

somewhat arbitrarily or heuristically some threshold value on the degree of conflict between sources to

accept or reject the result of the fusion [9]. Such approach can’t be solidly justified from theoretical anal-

ysis. Assuming such threshold is set to a given value, say 0.70 for instance, is it acceptable to reject the

fusion result if the conflict appears to be 0.7001 and accept it when the conflict becomes 0.6999? What

to do when the decision about the fusion result is rejected and one has no assessment on the reliability

of the sources or when the sources have the same reliability/confidence but an important decision has to

be taken anyway? There is no theoretical solid justification which can reasonably support such kind of

approaches commonly used in practice up to now.

The two major explanations of this problem found in literature are mainly based, either on the fact

that problem arises from the closed-world assumption of Shafer’s model Θ and it is suggested to work

rather with an open-world model, and/or the fact that sources of evidence are not reliable. These ex-

planations although being admissible are not necessarily the only correct (sufficient) explanations. Note

that the open-world assumption can always be easily relaxed advantageously by introducing a new hy-

pothesis, say θ0 in the initial frame Θ = {θ1, . . . , θn} in order to close it. θ0 will then represent all

possible alternatives (although remaining unknown) of initial hypotheses θ1,. . . θn. This idea has been

already proposed by Yager in [6] through his hedging solution. Upon our analysis, it is not necessary to

adopt/follow the open-world model neither to admit the assumption about the reliability of the sources

to find a justification in this counter-intuitive result. Actually, both sources can have the same reliability

and Shafer’s model can be accepted for the combination of the two reports by using another rule of

combination. This is exactly the purpose of the hybrid DSm rule of combination. Of course when one

has some prior information on the reliability of sources, one has to take them into account properly by

some discounting methods. The discounting techniques can also apply in the DSmT framework and there

is no incompatibility to mix both (i.e. discounting techniques with DSm rules of combinations) when

necessary (when there is strong reason to justify doing it, i.e. when one has prior reliable information

on reliability of the sources). The discounting techniques must never been used as an artificial ad-hoc

mechanism to update Dempster’s result once problem has arisen. We strongly disagree with the idea that

all problems with Dempster’s rule can be solved beforehand by discounting techniques. This can help
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obviously to improve the assessment of belief function to be combined when used properly and fairly, but

this does not fundamentally solve the inherent problem of Dempster’s rule itself when conflict remains

high.

The problem comes from the fact that both sources provide essentially their belief with respect only to

their own limited knowledge and experience. It is also possible in some cases, that sources of information

even don’t have the same interpretation of concepts included in the frame of the problem. Such kind of

situation frequently appears for example in debates on TV, on radio or in most of the meetings where

important decision/approval have to be drawn and when the sources don’t share the same opinion. This

is what happens daily in real life and one has to deal with such conflicting situations anyway. In other

words, the sources do not speak about the same events or even they do, they there is a possibility that

they do not share the same interpretation of the events. This has already been pointed out by Dubois

and Prade in [3] (p. 256). In Zadeh’s controversy example, it is possible that the first doctor is expert

mainly in meningitis and in brain tumor while the second doctor is expert mainly in cerebral contusion

and in brain tumor. Because of their limited knowledges and experiences, both doctors can also have

also the same reliability. If they have been asked to give their reports only on Θ = {M,C, T } (but not

on an extended frame), their reports have to be taken with same weight and the combination has to be

done anyway when one has no solid reason to reject one report with respect to the other one; the result

of the Demsper’s rule still remains very questionable. No rational brain surgeon would take the decision

for a brain intervention (i.e. a risky tumor ablation) based on Dempster’s rule result, neither the family

of the patient. Therefore upon our analysis, the two previous explanations given in literature (although

being possible and admissible in some cases) are not necessary and sufficient to explain the source of

the anomaly. Several alternatives to Dempster’s rule to circumvent this anomaly have been proposed

in literature mainly through the works of R. Yager [6], D. Dubois and H. Prade [2] already reported in

chapter 1 or by Daniel in [1]. The DSmT offers just a new issue for solving also such controversy example

as it will be shown. In summary, some extreme caution on the degree of conflict of the sources must

always be taken before taking a final decision based on Dempster’s rule of combination, especially when

vital wagers are involved.

If we now adopt the free-DSm model, i.e. we replace the initial Shafer model by accepting the

possibility of non null intersections between hypotheses M , C and T and by working directly on hyper-

power set DΘ then one gets directly and easily the following result with the classical DSm rule of

combination:

m(M ∩ C) = 0.9801 m(M ∩ T ) = 0.0099 m(C ∩ T ) = 0.0099 m(T ) = 0.0001
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which makes sense when working with such a new model. Obviously same result can be obtained (the

proof is left here to the reader) when working with Dempster’s rule based on the following refined frame

Θref defined with basic belief functions on power set 2Θref :

Θref = {θ1 = M ∩ C ∩ T, θ2 = M ∩ C ∩ T̄ , θ3 = M ∩ C̄ ∩ T, θ4 = M̄ ∩ C ∩ T,

θ5 = M ∩ C̄ ∩ T̄ , θ6 = M̄ ∩ C ∩ T̄ , θ7 = M̄ ∩ C̄ ∩ T }

where T̄ ,C̄ and M̄ denote respectively the complement of T , C and M .

The equality of both results (i.e. by the classical DSm rule based on the free-DSm model and by

Dempster’s rule based on the refined frame) is just normal since the normalization factor 1− k of Demp-

ster’s rule in this case reduces to 1 because of the new choice of the new model. Based on this remark,

one could then try to argue that DSmT (together with its DSm classical rule for free-DSm model) is

superfluous. Such claim is obviously wrong for the two following reasons: it is unecessary to work with

a bigger space (keeping in mind that |DΘ| < |2Θref |) to get the result (the DSm rule offers just a direct

and more convenient issue to get the result), but also because in some fusion problems involving vague/-

continuous concepts, the refinement is just impossible to obtain and we are unfortunately forced to deal

with ambiguous concepts/hypotheses (see [4] for details and justification).

If one has no doubt on the reliability of both Doctors (or no way to assess it) and if one is absolutely

sure that the true origin of the suffering of the patient lies only in the frame Θ = {M,C, T } and we

consider these origins as truly exclusive, then one has to work with the initial frame of discernment

Θ satisfying Shafer’s model. As previously shown, Dempster’s rule fails to provide a reasonable and

acceptable conclusion in such high conflicting case. However, this case can be easily handled by the

hybrid DSm rule of combination. The hybrid DSm rule applies now because Shafer’s model is nothing

but a particular hybrid model including all exclusivity constraints between hypotheses of the frame Θ

(see chapter 4 for details). One then gets with the hybrid DSm rule for this simple case (more general

and complex examples have been already presented in chapter 4), after the proper mass transfer of all

sources of the conflicts:

m(M ∪ C) = 0.9801 m(M ∪ T ) = 0.0099 m(C ∪ T ) = 0.0099 m(T ) = 0.0001

This result is not surprising and makes perfectly sense with common intuition actually since it provides

a coherent and reasonable solution to the problem. It shows clearly that a brain intervention for ablation

of an hypothetical tumor is not recommended, but preferentially a better examination of the patient

focused on Meningitis or Contusion as possible source of the suffering. The consequence of the results of

Dempster’s rule and the hybrid DSm rule is therefore totally different.
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5.3.2 Generalization with Θ = {θ1, θ2, θ3}

Let’s consider 0 < ε1, ε2 < 1 be two very tiny positive numbers (close to zero), the frame of discernment

be Θ = {θ1, θ2, θ3}, have two experts (independent sources of evidence s1 and s2) giving the belief masses

m1(θ1) = 1− ε1 m1(θ2) = 0 m1(θ3) = ε1

m2(θ1) = 0 m2(θ2) = 1− ε2 m2(θ3) = ε2

From now on, we prefer to use matrices to describe the masses, i.e.



1− ε1 0 ε1

0 1− ε2 ε2





• Using Dempster’s rule of combination, one gets

m(θ3) =
(ε1ε2)

(1 − ε1) · 0 + 0 · (1 − ε2) + ε1ε2
= 1

which is absurd (or at least counter-intuitive). Note that whatever positive values for ε1, ε2 are,

Dempster’s rule of combination provides always the same result (one) which is abnormal. The only

acceptable and correct result obtained by Dempster’s rule is really obtained only in the trivial case

when ε1 = ε2 = 1, i.e. when both sources agree in θ3 with certainty which is obvious.

• Using the DSm rule of combination based on free-DSm model, one gets m(θ3) = ε1ε2, m(θ1 ∩ θ2) =

(1 − ε1)(1 − ε2), m(θ1 ∩ θ3) = (1 − ε1)ε2, m(θ2 ∩ θ3) = (1 − ε2)ε1 and the others are zero which

appears more reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combination, one gets m(θ3) = ε1ε2,

m(θ1 ∪ θ2) = (1 − ε1)(1 − ε2), m(θ1 ∪ θ3) = (1 − ε1)ε2, m(θ2 ∪ θ3) = (1 − ε2)ε1 and the others are

zero.

Note that in the special case when ε1 = ε2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2 and m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yields m(θ3) = 1 while the hybrid DSm rule based on the same

Shafer’s model yields now m(θ3) = 1/4, m(θ1 ∪ θ2) = 1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is

normal.

5.3.3 Generalization with Θ = {θ1, θ2, θ3, θ4}

Let’s consider 0 < ε1, ε2, ε3 < 1 be three very tiny positive numbers, the frame of discernment be

Θ = {θ1, θ2, θ3, θ4}, have two experts giving the mass matrix




1− ε1 − ε2 0 ε1 ε2

0 1− ε3 0 ε3
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Again using Dempster’s rule of combination, one gets m(θ4) = 1 which is absurd while using the DSm rule

of combination based on free-DSm model, one gets m(θ4) = ε2ε3 which is reliable. Using the DSm classical

rule: m(θ1∩θ2) = (1−ε1−ε2)(1−ε3), m(θ1∩θ4) = (1−ε1−ε3)ε3, m(θ3∩θ2) = ε1(1−ε3),m(θ3∩θ4) = ε1ε3,

m(θ4) = ε2ε3. Suppose one finds out that all intersections are empty, then one applies the hybrid DSm

rule: mh(θ1 ∪ θ2) = (1 − ε1 − ε2)(1 − ε3), mh(θ1 ∪ θ4) = (1 − ε1 − ε3)ε3, mh(θ3 ∪ θ2) = ε1(1 − ε3),

mh(θ3 ∪ θ4) = ε1ε3, mh(θ4) = ε2ε3.

5.3.4 More general

Let’s consider 0 < ε1, . . . , εn < 1 be very tiny positive numbers, the frame of discernment be Θ =

{θ1, . . . , θn, θn+1}, have two experts giving the mass matrix




1− Sp1 0 ε1 0 ε2 . . . 0 εp

0 1− Snp+1 0 εp+1 0 . . . εn−1 εn





where 1 ≤ p ≤ n and Sp1 ,
∑p
i=1 εi and Snp+1 ,

∑n
i=p+1 εi. Again using Dempster’s rule of combination,

one gets m(θn+1) = 1 which is absurd while using the DSm rule of combination based on free-DSm model,

one gets m(θn+1) = εpεn which is reliable. This example is similar to the previous one, but generalized.

5.3.5 Even more general

Let’s consider 0 < ε1, . . . , εn < 1 be very tiny positive numbers (close to zero), the frame of discernment

be Θ = {θ1, . . . , θn, θn+1}, have k ≥ 2 experts giving the mass matrix of k rows and n+ 1 columns such

that:

• one column, say column j, is (εj1 , εj2 , . . . , εjk )′ (transposed vector), where 1 ≤ j ≤ n + 1 where

{εj1 , εj2 , . . . , εjk} is included in {ε1, ε2, . . . , εn};

• and each column (except column j) contains at least one element equals to zero.

Then Dempster’s rule of combination gives m(θj) = 1 which is absurd, while the classical DSm rule gives

m(θj) = εj1 · εj2 · . . . · εjk 6= 0 which is reliable.

Actually, we need to set restrictions only for εj1 , εj2 , . . . , and εjk to be very tiny positive numbers,

not for all ε1, ε2, . . . , εn (the others can be anything in the interval [0, 1) such that the sum of elements

on each row be equal 1).

5.4 Third infinite class of counter examples

This third class of counter-examples deals with belief functions committing a non null mass to some

uncertainties.
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5.4.1 Example with Θ = {θ1, θ2, θ3, θ4}

Let’s consider Θ = {θ1, θ2, θ3, θ4}, two independent experts, and the mass matrix:

θ1 θ2 θ3 θ4 θ3 ∪ θ4
m1(.) 0.99 0 0 0 0.01

m2(.) 0 0.98 0 0 0.02

If one applies Dempster’s rule, one gets

m(θ3 ∪ θ4) =
(0.01 · 0.02)

(0 + 0 + 0 + 0 + 0.01 · 0.02)
= 1

(total ignorance), which doesn’t bring any information to the fusion. This example looks similar to

Zadeh’s example, but is different because it is referring to uncertainty (not to contradictory) result.

Using the DSm classical rule: m(θ1 ∩θ2) = 0.9702, m(θ1∩ (θ3 ∪θ4)) = 0.0198, m(θ2 ∩ (θ3 ∪θ4)) = 0.0098,

m(θ3 ∪ θ4) = 0.0002. Suppose now one finds out that all intersections are empty (i.e. one adopts

Shafer’s model). Using the hybrid DSm rule one gets: mh(θ1 ∪ θ2) = 0.9702, mh(θ1 ∪ θ3 ∪ θ4) = 0.0198,

mh(θ2 ∪ θ3 ∪ θ4) = 0.0098, mh(θ3 ∪ θ4) = 0.0002.

5.4.2 Example with Θ = {θ1, θ2, θ3, θ4, θ5}

Let’s consider Θ = {θ1, θ2, θ3, θ4, , θ5}, three independent experts, and the mass matrix:

θ1 θ2 θ3 θ4 θ5 θ4 ∪ θ5
m1(.) 0.99 0 0 0 0 0.01

m2(.) 0 0.98 0.01 0 0 0.01

m3(.) 0.01 0.01 0.97 0 0 0.01

• If one applies Dempster’s rule, one gets

m(θ4 ∪ θ5) =
(0.01 · 0.01 · 0.01)

(0 + 0 + 0 + 0 + 0.01 · 0.01 · 0.01)
= 1

(total ignorance), which doesn’t bring any information to the fusion.

• Using the DSm classical rule one gets:

m(θ1 ∩ θ2) = 0.99 · 0.98 · 0.01 + 0.99 · 0.98 · 0.01 = 0.019404

m(θ1 ∩ θ3) = 0.99 · 0.01 · 0.01 + 0.99 · 0.01 · 0.97 = 0.009702

m(θ1 ∩ θ2 ∩ θ3) = 0.99 · 0.98 · 0.97 + 0.99 · 0.01 · 0.01 = 0.941193

m(θ1 ∩ θ3 ∩ (θ4 ∪ θ5)) = 0.99 · 0.01 · 0.01 + 0.99 · 0.01 · 0.97 + 0.01 · 0.01 · 0.01 = 0.009703

m(θ1 ∩ (θ4 ∪ θ5)) = 0.99 · 0.01 · 0.01 + 0.99 · 0.01 · 0.01 + 0.01 · 0.01 · 0.01 = 0.000199

m((θ4 ∪ θ5) ∩ θ2 ∩ θ1) = 0.01 · 0.98 · 0.01 + 0.99 · 0.01 · 0.01 + 0.99 · 0.98 · 0.01 = 0.009899
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m((θ4 ∪ θ5) ∩ θ2) = 0.01 · 0.98 · 0.01 + 0.01 · 0.98 · 0.01 + 0.01 · 0.01 · 0.01 = 0.000197

m((θ4 ∪ θ5) ∩ θ2 ∩ θ3) = 0.01 · 0.98 · 0.97 + 0.01 · 0.01 · 0.01 = 0.009507

m((θ4 ∪ θ5) ∩ θ3) = 0.01 · 0.01 · 0.97 + 0.01 · 0.01 · 0.01 + 0.01 · 0.01 · 0.97 = 0.000195

m(θ4 ∪ θ5) = 0.01 · 0.01 · 0.01 = 0.000001

The sum of all masses is 1.

• Suppose now one finds out that all intersections are empty (Shafer’s model), then one uses the

hybrid DSm rule and one gets:

mh(θ1 ∪ θ2) = 0.019404 mh(θ1 ∪ θ3) = 0.009702

mh(θ1 ∪ θ2 ∪ θ3) = 0.941193 mh(θ1 ∪ θ3 ∪ θ4 ∪ θ5) = 0.009703

mh(θ1 ∪ θ4 ∪ θ5) = 0.000199 mh(θ4 ∪ θ5 ∪ θ2 ∪ θ1) = 0.009899

mh(θ4 ∪ θ5 ∪ θ2) = 0.000197 mh(θ4 ∪ θ5 ∪ θ2 ∪ θ3) = 0.009507

mh(θ4 ∪ θ5 ∪ θ3) = 0.000195 mh(θ4 ∪ θ5) = 0.000001

The sum of all masses is 1.

5.4.3 More general

Let Θ = {θ1, . . . , θn}, where n ≥ 2, k independent experts, k ≥ 2, and the mass matrix M of k rows and

n+ 1 columns, corresponding to θ1, θ2, . . . , θn, and one uncertainty (different from the total uncertainty

θ1 ∪ θ2 ∪ . . . ∪ θn) say θi1 ∪ . . . ∪ θis respectively. If the following conditions occur:

• each column contains at least one zero, except the last column (of uncertainties) which has only

non-null elements, 0 < ε1, ε2, . . . , εk < 1, very tiny numbers (close to zero);

• the columns corresponding to the elements θi1 ,. . . , θis are null (all their elements are equal to zero).

If one applies Dempster’s rule, one gets m(θi1 ∪ . . . ∪ θis) = 1 (total ignorance), which doesn’t bring any

information to the fusion.

5.4.4 Even more general

One can extend the previous case even more, considering to u uncertainty columns, u ≥ 1 as follows.

Let Θ = {θ1, . . . , θn}, where n ≥ 2, k independent experts, k ≥ 2, and the mass matrix M of k rows

and n+ u columns, corresponding to θ1, θ2, . . . , θn, and u uncertainty columns (different from the total

uncertainty θ1 ∪ θ2 ∪ . . . ∪ θn) respectively. If the following conditions occur:

• each column contains at least one zero, except one column among the last u uncertainty ones which

has only non-null elements 0 < ε1, ε2, . . . , εk < 1, very tiny numbers (close to zero);
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• the columns corresponding to all elements θi1 ,. . . , θis ,. . . , θr1 ,. . . , θrs
(of course, these elements

should not be all θ1, θ2,. . . , θn, but only a part of them) that occur in all uncertainties are null

(i.e., all their elements are equal to zero).

If one applies Dempster’s rule, one gets m(θi1 ∪ . . . ∪ θis) = 1 (total ignorance), which doesn’t bring any

information to the fusion.

5.5 Fourth infinite class of counter examples

This infinite class of counter-examples concerns Dempster’s rule of conditioning defined as [5] :

∀B ∈ 2Θ, m(B|A) =

∑

X,Y ∈2Θ,(X∩Y )=Bm(X)mA(Y )

1−∑X,Y ∈2Θ,(X∩Y )=∅m(X)mA(Y )

where m(.) is any proper basic belief function defined over 2Θ and mA(.) is a particular belief function

defined by choosing mA(A) = 1 for any A ∈ 2Θ with A 6= ∅.

5.5.1 Example with Θ = {θ1, . . . , θ6}

Let’s consider Θ = {θ1, . . . , θ6}, one expert and a certain body of evidence over θ2, with the mass matrix:

θ1 θ2 θ3 θ4 ∪ θ5 θ5 ∪ θ6
m1(.) 0.3 0 0.4 0.2 0.1

mθ2(.) 0 1 0 0 0

• Using Dempster’s rule of conditioning, one gets: m(.|θ2) = 0/0 for all the masses.

• Using the DSm classical rule, one gets:

m(θ1∩θ2|θ2) = 0.3 m(θ2∩θ3|θ2) = 0.4 m(θ2∩(θ4∪θ5)|θ2) = 0.2 m(θ2∩(θ5∪θ6)|θ2) = 0.1

• If now, one finds out that all intersections are empty (we adopt Shafer’s model), then using the

hybrid DSm rule, one gets:

mh(θ1∪θ2|θ2) = 0.3 mh(θ2∪θ3|θ2) = 0.4 mh(θ2∪θ4∪θ5|θ2) = 0.2 mh(θ2∪θ5∪θ6|θ2) = 0.1

5.5.2 Another example with Θ = {θ1, . . . , θ6}

Let’s change the previous counter-example and use now the following mass matrix:

θ1 θ2 θ3 θ4 ∪ θ5 θ5 ∪ θ6
m1(.) 1 0 0 0 0

mθ2(.) 0 1 0 0 0
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• Using Dempster’s rule of conditioning, one gets: m(.|θ2) = 0/0 for all the masses.

• Using the DSm classical rule, one gets: m(θ1 ∩ θ2|θ2) = 1, and others 0.

• If now, one finds out that all intersections are empty (we adopt Shafer’s model), then using the

hybrid DSm rule, one gets: mh(θ1 ∪ θ2|θ2) = 1, and others 0.

5.5.3 Generalization

Let Θ = {θ1, θ2, . . . , θn}, where n ≥ 2, and two basic belief functions/masses m1(.) and m2(.) such that

there exist 1 ≤ (i 6= j) ≤ n, where m1(θi) = m2(θj) = 1, and 0 otherwise. Then Dempster’s rule of

conditioning can not be applied because one gets division by zero.

5.5.4 Example with Θ = {θ1, θ2, θ3, θ4} and ignorance

Let’s consider Θ = {θ1, θ2, θ1, θ2}, one expert and a certain ignorant body of evidence over θ3 ∪ θ4, with

the mass matrix:

θ1 θ2 θ3 ∪ θ4
m1(.) 0.3 0.7 0

mθ3∪θ4(.) 0 0 1

• Using Dempster’s rule of conditioning, one gets 0/0 for all masses m(.|θ3 ∪ θ4).

• Using the classical DSm rule, one gets: m(θ1∩(θ3∪θ4)|θ3∪θ4) = 0.3, m(θ2∩(θ3∪θ4)|θ3∪θ4) = 0.7

and others 0.

• If now one finds out that all intersections are empty (Shafer’s model), using the hybrid DSm rule,

one gets m(θ1 ∪ θ3 ∪ θ4|θ3 ∪ θ4) = 0.3, m(θ2 ∪ θ3 ∪ θ4|θ3 ∪ θ4) = 0.7 and others 0.

5.5.5 Generalization

Let Θ = {θ1, θ2, . . . , θn, θn+1, . . . , θn+m}, for n ≥ 2 and m ≥ 2. Let’s consider the mass m1(.), which is a

row of its values assigned for θ1, θ2, . . . , θn, and some unions among the elements θn+1, . . . , θn+m such

that all unions are disjoint with each other. If the second mass mA(.) is a conditional mass, where A

belongs to {θ1, θ2, . . . , θn} or unions among θn+1, . . . , θn+m, such that m1(A) = 0, then Dempster’s rule

of conditioning can not be applied because one gets division by zero, which is undefined. [We did not

consider any intersection of θi because Dempster’s rule of conditioning doesn’t accept paradoxes]. But

the DSm rule of conditioning does work here as well.
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5.5.6 Example with a paradoxical source

A counter-example with a paradox (intersection) over a non-refinable frame, where Dempster’s rule of

conditioning can not be applied because Dempster-Shafer theory does not accept paradoxist/conflicting

information between elementary elements θi of the frame Θ:

Let’s consider the frame of discernment Θ = {θ1, θ2}, one expert and a certain body of evidence over

θ2, with the mass matrix:

θ1 θ2 θ1 ∩ θ2 θ1 ∪ θ2
m1(.) 0.2 0.1 0.4 0.3

mθ2(.) 0 1 0 0

Using the DSm rule of conditioning, one gets

m(θ1|θ2) = 0 m(θ2|θ2) = 0.1 + 0.3 = 0.4 m(θ1 ∩ θ2|θ2) = 0.2 + 0.4 = 0.6 m(θ1 ∪ θ2|θ2) = 0

and the sum of fusion results is equal to 1.

Suppose now one finds out that all intersections are empty. Using the hybrid DSm rule when θ1∩θ2 =

∅, one has:

mh(θ1 ∩ θ2|θ2) = 0

mh(θ1|θ2) = m(θ1|θ2) + [m1(θ1)m2(θ1 ∩ θ2) +m2(θ1)m1(θ1 ∩ θ2)] = 0

mh(θ2|θ2) = m(θ2|θ2) + [m1(θ2)m2(θ1 ∩ θ2) +m2(θ2)m1(θ1 ∩ θ2)] = 0.4 + 0.1(0) + 1(0.4) = 0.8

mh(θ1 ∪ θ2|θ2) = m(θ1 ∪ θ2|θ2) + [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)]

+ [m1(θ1 ∩ θ2)m2(θ1 ∪ θ2) +m2(θ1 ∩ θ2)m1(θ1 ∪ θ2)] + [m1(θ1 ∩ θ2)m2(θ1 ∩ θ2)]

= 0 + [0.2(1) + 0(0.1)] + [0.4(0) + 0(0.3)] + [0.4(0)]

= 0.2 + [0] + [0] + [0] = 0.2

5.6 Conclusion

Several infinite classes of counter-examples to Dempster’s rule of combination have been presented in this

chapter for didactic purposes to show the limitations of this rule in the DST framework. These infinite

classes of fusion problems bring the necessity of generalizing the DST to a more flexible theory which

permits the combination of any kind of sources of information with any degree of conflict and working on

any frame with exclusive or non-exclusive elements. The DSmT with the hybrid DSm rule of combination

proposes a new issue to satisfy these requirements based on a new mathematical framework.
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