Andrew Schumann¹

¹Department of Algebra & Department of Philosophy and Science Methodology, Belorussian State University, Karl Marx 31, Minsk, Belarus

DSm models and Non-Archimedean Reasoning

Published in: Florentin Smarandache & Jean Dezert (Editors) **Advances and Applications of DSmT for Information Fusion** (Collected works), Vol. II American Research Press, Rehoboth, 2006 ISBN: 1-59973-000-6 Chapter VII, pp. 183 - 204 **Abstract:** The Dezert-Smarandache theory of plausible and paradoxical reasoning is based on the premise that some elements θ_i of a frame Θ have a non-empty intersection. These elements are called exhaustive. In number theory, this property is observed only in non-Archimedean number systems, for example, in the ring \mathbf{Z}_p of p-adic integers, in the field * \mathbf{Q} of hyperrational numbers, in the field * \mathbf{R} of hyperreal numbers, etc. In this chapter, I show that non-Archimedean structures are infinite DSm models in that each positive exhaustive element is greater (or less) than each positive exclusive element. Then I consider three principal versions of the non-Archimedean logic: p-adic valued logic $\mathfrak{M}_{\mathbf{Z}_p}$, hyperrational valued logic $\mathfrak{M}_{*\mathbf{Q}}$, hyperreal valued logic $\mathfrak{M}_{*\mathbf{R}}$, and their applications to plausible reasoning. These logics are constructed for the first time.

7.1 Introduction

The development of fuzzy logic and fuzziness was motivated in large measure by the need for a conceptual framework which can address the issue of uncertainty and lexical imprecision. Recall that fuzzy logic was introduced by Lofti Zadeh in 1965 (see [20]) to represent data and information possessing nonstatistical uncertainties. Florentin Smarandache had generalized fuzzy logic and introduced two new concepts (see [16], [18], [17]):

- 1. neutrosophy as study of neutralities;
- 2. neutrosophic logic and neutrosophic probability as a mathematical model of uncertainty, vagueness, ambiguity, imprecision, undefined, unknown, incompleteness, inconsistency, redundancy, contradiction, etc.

Neutrosophy is a new branch of philosophy, which studies the nature of neutralities, as well as their logical applications. This branch represents a version of paradoxism studies. The essence of paradoxism studies is that there is a neutrality for any two extremes. For example, denote by A an idea (or proposition, event, concept), by Anti-A the opposite to A. Then there exists a neutrality Neut-A and this means that something is neither A nor Anti-A. It is readily seen that the paradoxical reasoning can be modeled if some elements θ_i of a frame Θ are not exclusive, but exhaustive, i. e., here θ_i have a non-empty intersection. A mathematical model that has such a property is called the Dezert-Smarandache model (DSm model). A theory of plausible and paradoxical reasoning that studies DSm models is called the Dezert-Smarandache theory (DSmT). It is totally different from those of all existing approaches managing uncertainties and fuzziness. In this chapter, I consider plausible reasoning on the base of particular case of infinite DSm models, namely, on the base of non-Archimedean structures.

Let us remember that Archimedes' axiom is the formula of infinite length that has one of two following notations:

• for any ε that belongs to the interval [0, 1], we have

$$(\varepsilon > 0) \supset [(\varepsilon \ge 1) \lor (\varepsilon + \varepsilon \ge 1) \lor (\varepsilon + \varepsilon + \varepsilon \ge 1) \lor \dots], \tag{7.1}$$

• for any positive integer ε , we have

$$[(1 \ge \varepsilon) \lor (1+1 \ge \varepsilon) \lor (1+1+1 \ge \varepsilon) \lor \dots].$$

$$(7.2)$$

Formulas (7.1) and (7.2) are valid in the field \mathbf{Q} of rational numbers and as well as in the field \mathbf{R} of real numbers. In the ring \mathbf{Z} of integers, only formula (7.2) has a nontrivial sense, because \mathbf{Z} doesn't contain numbers of the open interval (0, 1).

Also, Archimedes' axiom affirms the existence of an integer multiple of the smaller of two numbers which exceeds the greater: for any positive real or rational number ε , there exists a positive integer n such that $\varepsilon \geq \frac{1}{n}$ or $n \cdot \varepsilon \geq 1$.

The negation of Archimedes' axiom has one of two following forms:

• there exists ε that belongs to the interval [0,1] such that

$$(\varepsilon > 0) \land [(\varepsilon < 1) \land (\varepsilon + \varepsilon < 1) \land (\varepsilon + \varepsilon + \varepsilon < 1) \land \dots],$$
(7.3)

• there exists a positive integer ε such that

$$[(1 < \varepsilon) \land (1 + 1 < \varepsilon) \land (1 + 1 + 1 < \varepsilon) \land \ldots].$$
(7.4)

Let us show that (7.3) is the negation of (7.1). Indeed,

$$\neg \forall \varepsilon \left[(\varepsilon > 0) \supset \left[(\varepsilon \ge 1) \lor (\varepsilon + \varepsilon \ge 1) \lor (\varepsilon + \varepsilon + \varepsilon \ge 1) \lor \ldots \right] \right] \equiv \\ \exists \varepsilon \neg \neg \left[(\varepsilon > 0) \land \neg \left[(\varepsilon \ge 1) \lor (\varepsilon + \varepsilon \ge 1) \lor (\varepsilon + \varepsilon + \varepsilon \ge 1) \lor \ldots \right] \right] \equiv \\ \exists \varepsilon (\varepsilon > 0) \land \left[\neg (\varepsilon \ge 1) \land \neg (\varepsilon + \varepsilon \ge 1) \land \neg (\varepsilon + \varepsilon + \varepsilon \ge 1) \land \ldots \right] \right] \equiv \\ \exists \varepsilon (\varepsilon > 0) \land \left[(\varepsilon < 1) \land (\varepsilon + \varepsilon < 1) \land (\varepsilon + \varepsilon + \varepsilon < 1) \land \ldots \right] \right] =$$

It is obvious that formula (7.3) says that there exist *infinitely small numbers* (or *infinites-imals*), i. e., numbers that are smaller than all real or rational numbers of the open interval (0,1). In other words, ε is said to be an infinitesimal if and only if, for all positive integers n, we have $|\varepsilon| < \frac{1}{n}$. Further, formula (7.4) says that there exist *infinitely large integers* that are greater than all positive integers. Infinitesimals and infinitely large integers are called *nonstan-dard numbers* or *actual infinities*.

The field that satisfies all properties of \mathbf{R} without Archimedes' axiom is called the field of *hyperreal numbers* and it is denoted by * \mathbf{R} . The field that satisfies all properties of \mathbf{Q} without Archimedes' axiom is called the field of hyperrational numbers and it is denoted by * \mathbf{Q} . By definition of field, if $\varepsilon \in \mathbf{R}$ (respectively $\varepsilon \in \mathbf{Q}$), then $1/\varepsilon \in \mathbf{R}$ (respectively $1/\varepsilon \in \mathbf{Q}$). Therefore * \mathbf{R} and * \mathbf{Q} contain simultaneously infinitesimals and infinitely large integers: for an infinitesimal ε , we have $N = \frac{1}{\varepsilon}$, where N is an infinitely large integer.

The ring that satisfies all properties of \mathbf{Z} without Archimedes' axiom is called the ring of hyperintegers and it is denoted by $*\mathbf{Z}$. This ring includes infinitely large integers. Notice that there exists a version of $*\mathbf{Z}$ that is called the ring of *p*-adic integers and is denoted by \mathbf{Z}_p .

I shall show in this chapter that nonstandard numbers (actual infinities) are exhaustive elements (see section 7.3). This means that their intersection isn't empty with some other elements. Therefore non-Archimedean structures of the form $*\mathbf{S}$ (where we obtain $*\mathbf{S}$ on the base of the set \mathbf{S} of exclusive elements) are particular case of the DSm model. These structures satisfy the properties:

- 1. all members of **S** are exclusive and $\mathbf{S} \subset {}^*\mathbf{S}$,
- 2. all members of $*S \setminus S$ are exhaustive,
- 3. if a member a is exhaustive, then there exists a exclusive member b such that $a \cap b \neq \emptyset$,
- 4. there exist exhaustive members a, b such that $a \cap b \neq \emptyset$,
- 5. each positive exhaustive member is greater (or less) than each positive exclusive member.

I shall consider three principal versions of the logic on non-Archimedean structures: hyperrational valued logic $\mathfrak{M}_{*\mathbf{Q}}$, hyperreal valued logic $\mathfrak{M}_{*\mathbf{R}}$, *p*-adic valued logic $\mathfrak{M}_{\mathbf{Z}_p}$, and their applications to plausible and fuzzy reasoning.

7.2 Standard many-valued logics

Let us remember that a *first-order logical language* \mathcal{L} consists of the following symbols:

- 1. Variables:
 - (i) Free variables: $a_0, a_1, a_2, \ldots, a_j, \ldots (j \in \omega)$
 - (*ii*) Bound variables: $x_0, x_1, x_2, \ldots, x_j, \ldots$ $(j \in \omega)$

2. Constants:

(i) Function symbols of arity $i \ (i \in \omega)$: $F_0^i, F_1^i, F_2^i, \ldots, F_j^i, \ldots \ (j \in \omega)$. Nullary function symbols are called constants.

- (*ii*) Predicate symbols of arity $i \ (i \in \omega)$: $P_0^i, P_1^i, P_2^i, \dots, P_j^i, \dots \ (j \in \omega)$.
- 3. Logical symbols:

(i) Propositional connectives of arity $n_j : \square_0^{n_0}, \square_1^{n_1}, \dots, \square_r^{n_r}$, which are built by superposition of negation \neg and implication \supset .

- (*ii*) Quantifiers: $Q_0, Q_1, ..., Q_q$.
- 4. Auxiliary symbols: (,), and , (comma).

Terms are inductively defined as follows:

- 1. Every individual constant is a term.
- 2. Every free variable (and every bound variable) is a term.
- 3. If F^n is a function symbol of arity n, and t_1, \ldots, t_n are terms, then $F^n(t_1, \ldots, t_n)$ is a term.

Formulas are inductively defined as follows:

- 1. If P^n is a predicate symbol of arity n, and t_1, \ldots, t_n are terms, then $P^n(t_1, \ldots, t_n)$ is a formula. It is called atomic or an atom. It has no outermost logical symbol.
- 2. If $\varphi_1, \varphi_2, \ldots, \varphi_n$ are formulas and \Box^n is a propositional connective of arity n, then $\Box^n(\varphi_1, \varphi_2, \ldots, \varphi_n)$ is a formula with outermost logical symbol \Box^n .
- 3. If φ is a formula not containing the bound variable x, a is a free variable and Q is a quantifier, then $Qx\varphi(x)$, where $\varphi(x)$ is obtained from φ by replacing a by x at every occurrence of a in φ , is a formula. Its outermost logical symbol is Q.

A formula is called *open* if it contains free variables, and *closed* otherwise. A formula without quantifiers is called *quantifier-free*. We denote the set of formulas of a language \mathcal{L} by L. We will write $\varphi(x)$ for a formula possibly containing the bound variable x, and $\varphi(a)$ respectively $\varphi(t)$ for the formula obtained from φ by replacing every occurrence of the variable x by the free variable a respectively the term t. Hence, we shall need meta-variables for the symbols of a language \mathcal{L} . As a notational convention we use letters $\varphi, \phi, \psi, \ldots$ to denote formulas.

A matrix, or matrix logic, \mathfrak{M} for a language \mathcal{L} is given by:

- 1. a non-empty set of truth values V of cardinality |V| = m,
- 2. a subset $D \subseteq V$ of designated truth values,
- 3. an algebra with domain V of appropriate type: for every *n*-place connective \Box of \mathcal{L} there is an associated truth function $f: V^n \mapsto V$, and
- 4. for every quantifier Q, an associated truth function $Q: \wp(V) \setminus \emptyset \mapsto V$

Notice that a truth function for quantifiers is a mapping from non-empty sets of truth values to truth values: for a non-empty set $M \subseteq V$, a quantified formula $Qx\varphi(x)$ takes the truth value $\widetilde{Q}(M)$ if, for every truth value $v \in V$, it holds that $v \in M$ iff there is a domain element d such that the truth value of φ in this point d is v (all relative to some interpretation). The set M is called the distribution of φ . For example, suppose that there are only the universal quantifier \forall and the existential quantifier \exists in \mathcal{L} . Further, we have the set of truth values $V = \{\top, \bot\}$, where \bot is false and \top is true, i. e., the set of designated truth values $D = \{\top\}$. Then we define the truth functions for the quantifiers \forall and \exists as follows:

- 1. $\widetilde{\forall}(\{\top\}) = \top$
- 2. $\widetilde{\forall}(\{\top, \bot\}) = \widetilde{\forall}(\{\bot\}) = \bot$
- 3. $\widetilde{\exists}(\{\bot\}) = \bot$
- 4. $\widetilde{\exists}(\{\top,\bot\}) = \widetilde{\exists}(\{\top\}) = \top$

Also, a matrix logic ${\mathfrak M}$ for a language ${\mathcal L}$ is an algebraic system denoted

$$\mathfrak{M} = \langle V, f_0, f_1, \dots, f_r, \widetilde{\mathbf{Q}}_0, \widetilde{\mathbf{Q}}_1, \dots, \widetilde{\mathbf{Q}}_q, D \rangle$$

where

- 1. V is a non-empty set of truth values for well-formed formulas of \mathcal{L} ,
- 2. f_0, f_1, \ldots, f_r are a set of matrix operations defined on the set V and assigned to corresponding propositional connectives $\Box_0^{n_0}, \Box_1^{n_1}, \ldots, \Box_r^{n_r}$ of \mathcal{L} ,
- 3. $\widetilde{Q}_0, \widetilde{Q}_1, \ldots, \widetilde{Q}_q$ are a set of matrix operations defined on the set V and assigned to corresponding quantifiers Q_0, Q_1, \ldots, Q_q of \mathcal{L} ,
- 4. D is a set of designated truth values such that $D \subseteq V$.

Now consider (n + 1)-valued Lukasiewicz's matrix logic \mathfrak{M}_{n+1} defined as the ordered system $\langle V_{n+1}, \neg, \supset, \lor, \land, \widetilde{\exists}, \widetilde{\forall}, \{n\} \rangle$ for any $n \ge 2, n \in \mathbb{N}$, where

- 1. $V_{n+1} = \{0, 1, \dots, n\},\$
- 2. for all $x \in V_{n+1}$, $\neg x = n x$,
- 3. for all $x, y \in V_{n+1}, x \supset y = \min(n, n x + y),$
- 4. for all $x, y \in V_{n+1}, x \lor y = (x \supset y) \supset y = \max(x, y),$
- 5. for all $x, y \in V_{n+1}, x \wedge y = \neg(\neg x \vee \neg y) = \min(x, y),$
- 6. for a subset $M \subseteq V_{n+1}$, $\widetilde{\exists}(M) = \max(M)$, where $\max(M)$ is a maximal element of M,
- 7. for a subset $M \subseteq V_{n+1}$, $\widetilde{\forall}(M) = \min(M)$, where $\min(M)$ is a minimal element of M,
- 8. $\{n\}$ is the set of designated truth values.

The truth value $0 \in V_{n+1}$ is false, the truth value $n \in V_{n+1}$ is true, and other truth values $x \in V_{n+1}$ are neutral.

The ordered system $\langle V_{\mathbf{Q}}, \neg, \supset, \lor, \land, \widetilde{\exists}, \widetilde{\forall}, \{1\} \rangle$ is called *rational valued Lukasiewicz's matrix* logic $\mathfrak{M}_{\mathbf{Q}}$, where

- 1. $V_{\mathbf{Q}} = \{x \colon x \in \mathbf{Q}\} \cap [0, 1],\$
- 2. for all $x \in V_{\mathbf{Q}}, \neg x = 1 x$,
- 3. for all $x, y \in V_{\mathbf{Q}}, x \supset y = \min(1, 1 x + y),$
- 4. for all $x, y \in V_{\mathbf{Q}}, x \lor y = (x \supset y) \supset y = \max(x, y),$
- 5. for all $x, y \in V_{\mathbf{Q}}, x \wedge y = \neg(\neg x \vee \neg y) = \min(x, y),$
- 6. for a subset $M \subseteq V_{\mathbf{Q}}$, $\widetilde{\exists}(M) = \max(M)$, where $\max(M)$ is a maximal element of M,
- 7. for a subset $M \subseteq V_{\mathbf{Q}}, \, \widetilde{\forall}(M) = \min(M)$, where $\min(M)$ is a minimal element of M,
- 8. {1} is the set of designated truth values.

The truth value $0 \in V_{\mathbf{Q}}$ is false, the truth value $1 \in V_{\mathbf{Q}}$ is true, and other truth values $x \in V_{\mathbf{Q}}$ are neutral.

Real valued Lukasiewicz's matrix logic $\mathfrak{M}_{\mathbf{R}}$ is the ordered system $\langle V_{\mathbf{R}}, \neg, \supset, \lor, \land, \widetilde{\exists}, \widetilde{\forall}, \{1\} \rangle$, where

- 1. $V_{\mathbf{R}} = \{x \colon x \in \mathbf{R}\} \cap [0, 1],$
- 2. for all $x \in V_{\mathbf{R}}$, $\neg x = 1 x$,
- 3. for all $x, y \in V_{\mathbf{R}}, x \supset y = \min(1, 1 x + y),$
- 4. for all $x, y \in V_{\mathbf{R}}, x \lor y = (x \supset y) \supset y = \max(x, y),$
- 5. for all $x, y \in V_{\mathbf{R}}, x \wedge y = \neg(\neg x \vee \neg y) = \min(x, y),$
- 6. for a subset $M \subseteq V_{\mathbf{R}}$, $\widetilde{\exists}(M) = \max(M)$, where $\max(M)$ is a maximal element of M,
- 7. for a subset $M \subseteq V_{\mathbf{R}}, \, \widetilde{\forall}(M) = \min(M)$, where $\min(M)$ is a minimal element of M,
- 8. $\{1\}$ is the set of designated truth values.

The truth value $0 \in V_{\mathbf{R}}$ is false, the truth value $1 \in V_{\mathbf{R}}$ is true, and other truth values $x \in V_{\mathbf{R}}$ are neutral.

Notice that the elements of truth value sets V_{n+1} , $V_{\mathbf{Q}}$, and $V_{\mathbf{R}}$ are exclusive: for any members x, y we have $x \cap y = \emptyset$. Therefore Lukasiewicz's logics are based on the premise of existence *Shafer's model*. In other words, these logics are built on the families of exclusive elements (see [15], [14]).

However, for a wide class of fusion problems, "the intrinsic nature of hypotheses can be only vague and imprecise in such a way that precise refinement is just impossible to obtain in reality so that the exclusive elements θ_i cannot be properly identified and precisely separated" (see [19]). This means that if some elements θ_i of a frame Θ have non-empty intersection, then sources of evidence don't provide their beliefs with the same absolute interpretation of elements of the same frame Θ and the conflict between sources arises not only because of the possible unreliability of sources, but also because of possible different and relative interpretation of Θ (see [3], [4]).

7.3 Many-valued logics on DSm models

Definition 1. A many-valued logic is said to be a many-valued logic on DSm model if some elements of its set V of truth values are not exclusive, but exhaustive.

Recall that a DSm model (*Dezert-Smarandache model*) is formed as a hyper-power set. Let $\Theta = \{\theta_1, \ldots, \theta_n\}$ be a finite set (called frame) of *n* exhaustive elements. The hyper-power set D^{Θ} is defined as the set of all composite propositions built from elements of Θ with \cap and \cup operators such that:

- 1. $\emptyset, \theta_1, \ldots, \theta_n \in D^{\Theta};$
- 2. if $A, B \in D^{\Theta}$, then $A \cap B \in D^{\Theta}$ and $A \cup B \in D^{\Theta}$;
- 3. no other elements belong to D^{Θ} , except those obtained by using rules 1 or 2.

The cardinality of D^{Θ} is majored by 2^{2^n} when the cardinality of Θ equals n, i. e. $|\Theta| = n$. Since for any given finite set Θ , $|D^{\Theta}| \ge |2^{\Theta}|$, we call D^{Θ} the hyper-power set of Θ . Also, D^{Θ} constitutes what is called the *DSm model* $\mathcal{M}^f(\Theta)$. However elements θ_i can be truly exclusive. In such case, the hyper-power set D^{Θ} reduces naturally to the classical power set 2^{Θ} and this constitutes the most restricted hybrid DSm model, denoted by $\mathcal{M}^0(\Theta)$, coinciding with Shafer's model. As an example, suppose that $\Theta = \{\theta_1, \theta_2\}$ with $D^{\Theta} = \{\emptyset, \theta_1 \cap \theta_2, \theta_1, \theta_2, \theta_1 \cup \theta_2\}$, where θ_1 and θ_2 are truly exclusive (i. e., Shafer's model \mathcal{M}^0 holds), then because $\theta_1 \cap \theta_2 =_{\mathcal{M}^0} \emptyset$, one gets $D^{\Theta} = \{\emptyset, \theta_1 \cap \theta_2 =_{\mathcal{M}^0} \emptyset, \theta_1, \theta_2, \theta_1 \cup \theta_2\} = \{\emptyset, \theta_1, \theta_2, \theta_1 \cup \theta_2\} = 2^{\Theta}$.

Now let us show that every non-Archimedean structure is an infinite DSm model, but no vice versa. The most easy way of setting non-Archimedean structures was proposed by Abraham Robinson in [13]. Consider a set Θ consisting only of exclusive members. Let I be any infinite index set. Then we can construct an indexed family Θ^{I} , i. e., we can obtain the set of all functions: $f: I \mapsto \Theta$ such that $f(\alpha) \in \Theta$ for any $\alpha \in I$.

A filter \mathcal{F} on the index set I is a family of sets $\mathcal{F} \subset \wp(I)$ for which:

1.
$$A \in \mathcal{F}, A \subset B \Rightarrow B \in \mathcal{F};$$

2. $A_1, \dots, A_n \in \mathcal{F} \Rightarrow \bigcap_{k=1}^n A_k \in \mathcal{F};$
3. $\emptyset \notin \mathcal{F}.$

The set of all complements for finite subsets of I is a filter and it is called a *Frechet filter*. A maximal filter (ultrafilter) that contains a Frechet filter is called a *Frechet ultrafilter* and it is denoted by \mathcal{U} .

Let \mathcal{U} be a Frechet ultrafilter on I. Define a new relation \backsim on the set Θ^{I} by

$$f \backsim g \equiv \{ \alpha \in I \colon f(\alpha) = g(\alpha) \} \in \mathcal{U}.$$
(7.5)

It is easily be proved that the relation \sim is an equivalence. Notice that formula (7.5) means that f and g are equivalent iff f and g are equal on an infinite index subset. For each $f \in \Theta^I$ let [f] denote the equivalence class of f under \sim . The *ultrapower* Θ^I/\mathcal{U} is then defined to be the set of all equivalence classes [f] as f ranges over Θ^I :

$$\Theta^I / \mathcal{U} \triangleq \{ [f] \colon f \in \Theta^I \}.$$

Also, Robinson has proved that each non-empty set Θ has an ultrapower with respect to a Frechet ultrafilter \mathcal{U} . This ultrapower Θ^{I}/\mathcal{U} is said to be a *proper nonstandard extension* of Θ and it is denoted by $^{*}\Theta$.

Proposition 1. Let X be a non-empty set. A nonstandard extension of X consists of a mapping that assigns a set *A to each $A \subseteq X^m$ for all $m \ge 0$, such that *X is non-empty and the following conditions are satisfied for all $m, n \ge 0$:

- 1. The mapping preserves Boolean operations on subsets of X^m : if $A \subseteq X^m$, then $^*A \subseteq (^*X)^m$; if $A, B \subseteq X^m$, then $^*(A \cap B) = (^*A \cap ^*B), ^*(A \cup B) = (^*A \cup ^*B)$, and $^*(A \setminus B) = (^*A) \setminus (^*B)$.
- 2. The mapping preserves Cartesian products: if $A \subseteq X^m$ and $B \subseteq X^n$, then $^*(A \times B) = ^*A \times ^*B$, where $A \times B \subseteq X^{m+n}$.

This proposition is proved in [5].

Recall that each element of $^{*}\Theta$ is an equivalence class [f] as $f: I \mapsto \Theta$. There exist two groups of members of $^{*}\Theta$ (see Fig. 7.1):

- 1. functions that are constant, e. g., $f(\alpha) = m \in \Theta$ for infinite index subset $\{\alpha \in I\}$. A constant function [f = m] is denoted by *m,
- 2. functions that aren't constant.

The set of all constant functions of $^{*}\Theta$ is called *standard set* and it is denoted by $^{\sigma}\Theta$. The members of $^{\sigma}\Theta$ are called *standard*. It is readily seen that $^{\sigma}\Theta$ and Θ are isomorphic: $^{\sigma}\Theta \simeq \Theta$.

The following proposition can be easily proved:

Proposition 2. For any set Θ such that $|\Theta| \ge 2$, there exists a proper nonstandard extension $^{*}\Theta$ for which $^{*}\Theta \setminus ^{\sigma}\Theta \neq \emptyset$.

Figure 7.1: The members of $*\Theta$: constant and non-constant functions.

Proof. Let $I_1 = \{\alpha_1, \alpha_2, \dots, \alpha_n, \dots\} \subset I$ be an infinite set and let \mathcal{U} be a Frechet ultrafilter. Suppose that $\Theta_1 = \{m_1, \dots, m_n\}$ such that $|\Theta_1| \ge 1$ is the subset of Θ and there is a mapping:

$$f(\alpha) = \begin{cases} m_k & \text{if } \alpha = \alpha_k; \\ m_0 \in \Theta & \text{if } \alpha \in I \setminus I_1 \end{cases}$$

and $f(\alpha) \neq m_k$ if $\alpha = \alpha_k \mod (n+1), k = 1, \dots, n$ and $\alpha \neq \alpha_k$.

Show that $[f] \in {}^{*}\Theta \setminus {}^{\sigma}\Theta$. The proof is by reductio ad absurdum. Suppose there is $m \in \Theta$ such that $m \in [f(\alpha)]$. Consider the set:

$$I_2 = \{ \alpha \in I \colon f(\alpha) = m \} = \begin{cases} \{\alpha_k\} & \text{if } m = m_k, \ k = 1, \dots, n; \\ I \setminus I_1 & \text{if } m = m_0. \\ \emptyset & \text{if } m \notin \{m_0, m_1, \dots, m_n\}. \end{cases}$$

In any case $I_2 \notin \mathcal{U}$, because $\{\alpha_k\} \notin \mathcal{U}, \emptyset \notin \mathcal{U}, I \setminus I_1 \notin \mathcal{U}$. Thus, $[f] \in {}^*\Theta \setminus {}^{\sigma}\Theta$.

The standard members of ${}^*\Theta$ are exclusive, because their intersections are empty. Indeed, the members of Θ were exclusive, therefore the members of ${}^{\sigma}\Theta$ are exclusive too. However the members of ${}^*\Theta \setminus {}^{\sigma}\Theta$ are exhaustive. By definition, if a member $a \in {}^*\Theta$ is nonstandard, then there exists a standard member $b \in {}^*\Theta$ such that $a \cap b \neq \emptyset$ (for example, see the proof of proposition 2). We can also prove that there exist exhaustive members $a \in {}^*\Theta$, $b \in {}^*\Theta$ such that $a \cap b \neq \emptyset$.

Proposition 3. There exist two inconstant functions f_1, f_2 such that the intersection of f_1, f_2 isn't empty.

Proof. Let $f_1: I \mapsto \Theta$ and $f_2: I \mapsto \Theta$. Suppose that $[f_i \neq n], \forall n \in \Theta, i = 1, 2, i. e., f_1, f_2$ aren't constant. By proposition 2, these functions are nonstandard members of $*\Theta$. Further consider an indexed family $F(\alpha)$ for all $\alpha \in I$ such that $\{\alpha \in I: f_i(\alpha) \in F(\alpha)\} \in \mathcal{U} \equiv [f_i] \in B$ as i = 1, 2.

Consequently it is possible that, for some $\alpha_j \in I$, $f_1(\alpha_j) \cap f_2(\alpha_j) = n_j$ and $n_j \in F(\alpha_j)$. \Box

Thus, non-Archimedean structures are infinite DSm-models, because these contain exhaustive members. In next sections, we shall consider the following non-Archimedean structures:

- 1. the nonstandard extension $^{*}\mathbf{Q}$ (called the field of hyperrational numbers),
- 2. the nonstandard extension $^{*}\mathbf{R}$ (called the field of hyperreal numbers),
- 3. the nonstandard extension \mathbf{Z}_p (called the ring of *p*-adic integers) that we obtain as follows. Let the set **N** of natural numbers be the index set and let $\Theta = \{0, \ldots, p-1\}$. Then the nonstandard extension $\Theta^{\mathbf{N}} \setminus \mathcal{U} = \mathbf{Z}_p$.

Further, we shall set the following logics on non-Archimedean structures: hyperrational valued logic $\mathfrak{M}_{*\mathbf{Q}}$, hyperreal valued logic $\mathfrak{M}_{*\mathbf{R}}$, *p*-adic valued logic $\mathfrak{M}_{\mathbf{Z}_p}$. Note that these many-valued logics are the particular cases of logics on DSm models.

7.4 Hyper-valued Reasoning

7.4.1 Hyper-valued matrix logics

Assume that ${}^{*}\mathbf{Q}_{[0,1]} = \mathbf{Q}_{[0,1]}^{\mathbf{N}} / \mathcal{U}$ is a nonstandard extension of the subset $\mathbf{Q}_{[0,1]} = \mathbf{Q} \cap [0,1]$ of rational numbers and ${}^{\sigma}\mathbf{Q}_{[0,1]} \subset {}^{*}\mathbf{Q}_{[0,1]}$ is the subset of standard members. We can extend the usual order structure on $\mathbf{Q}_{[0,1]}$ to a partial order structure on ${}^{*}\mathbf{Q}_{[0,1]}$:

1. for rational numbers $x, y \in \mathbf{Q}_{[0,1]}$ we have $x \leq y$ in $\mathbf{Q}_{[0,1]}$ iff $[f] \leq [g]$ in $*\mathbf{Q}_{[0,1]}$, where $\{\alpha \in \mathbf{N} \colon f(\alpha) = x\} \in \mathcal{U}$ and $\{\alpha \in \mathbf{N} \colon g(\alpha) = y\} \in \mathcal{U}$,

i. e., f and g are constant functions such that [f] = *x and [g] = *y,

each positive rational number *x ∈ ^σ**Q**_[0,1] is greater than any number [f] ∈ ***Q**_[0,1]\^σ**Q**_[0,1],
 e., *x > [f] for any positive x ∈ **Q**_[0,1] and [f] ∈ ***Q**_[0,1], where [f] isn't constant function.

These conditions have the following informal sense:

- 1. The sets ${}^{\sigma}\mathbf{Q}_{[0,1]}$ and $\mathbf{Q}_{[0,1]}$ have isomorphic order structure.
- 2. The set ${}^{*}\mathbf{Q}_{[0,1]}$ contains actual infinities that are less than any positive rational number of ${}^{\sigma}\mathbf{Q}_{[0,1]}$.

Define this partial order structure on $^{*}\mathbf{Q}_{[0,1]}$ as follows:

 $\mathcal{O}_{*\mathbf{Q}}$ 1. For any hyperrational numbers $[f], [g] \in {}^{*}\mathbf{Q}_{[0,1]}$, we set $[f] \leq [g]$ if

$$\{\alpha \in \mathbf{N} \colon f(\alpha) \le g(\alpha)\} \in \mathcal{U}.$$

2. For any hyperrational numbers $[f], [g] \in {}^*\mathbf{Q}_{[0,1]}$, we set [f] < [g] if

$$\{\alpha \in \mathbf{N} \colon f(\alpha) \le g(\alpha)\} \in \mathcal{U}$$

and $[f] \neq [g]$, i. e., $\{\alpha \in \mathbf{N} \colon f(\alpha) \neq g(\alpha)\} \in \mathcal{U}$.

3. For any hyperrational numbers $[f], [g] \in {}^*\mathbf{Q}_{[0,1]}$, we set [f] = [g] if $f \in [g]$.

This ordering relation is not linear, but partial, because there exist elements $[f], [g] \in {}^*\mathbf{Q}_{[0,1]}$, which are incompatible.

Introduce two operations max, min in the partial order structure \mathcal{O}_{*Q} :

- 1. for all hyperrational numbers $[f], [g] \in {}^*\mathbf{Q}_{[0,1]}, \min([f], [g]) = [f]$ if and only if $[f] \leq [g]$ under condition $\mathcal{O}_{*\mathbf{Q}}$,
- 2. for all hyperrational numbers $[f], [g] \in {}^*\mathbf{Q}_{[0,1]}, \max([f], [g]) = [g]$ if and only if $[f] \leq [g]$ under condition $\mathcal{O}_{*\mathbf{Q}}$,
- 3. for all hyperrational numbers $[f], [g] \in {}^*\mathbf{Q}_{[0,1]}, \min([f], [g]) = \max([f], [g]) = [f] = [g]$ if and only if [f] = [g] under condition $\mathcal{O}_{*\mathbf{Q}}$,
- 4. for all hyperrational numbers $[f], [g] \in {}^*\mathbf{Q}_{[0,1]}$, if [f], [g] are incompatible under condition $\mathcal{O}_{*\mathbf{Q}}$, then $\min([f], [g]) = [h]$ iff there exists $[h] \in {}^*\mathbf{Q}_{[0,1]}$ such that

$$\{\alpha \in \mathbf{N} \colon \min(f(\alpha), g(\alpha)) = h(\alpha)\} \in \mathcal{U}$$

5. for all hyperrational numbers $[f], [g] \in {}^*\mathbf{Q}_{[0,1]}$, if [f], [g] are incompatible under condition $\mathcal{O}_{*\mathbf{Q}}$, then $\max([f], [g]) = [h]$ iff there exists $[h] \in {}^*\mathbf{Q}_{[0,1]}$ such that

$$\{\alpha \in \mathbf{N} \colon \max(f(\alpha), g(\alpha)) = h(\alpha)\} \in \mathcal{U}.$$

Note there exist the maximal number $*1 \in *\mathbf{Q}_{[0,1]}$ and the minimal number $*0 \in *\mathbf{Q}_{[0,1]}$ under condition $\mathcal{O}_{*\mathbf{Q}}$. Therefore, for any $[f] \in *\mathbf{Q}_{[0,1]}$, we have: $\max(*1, [f]) = *1$, $\max(*0, [f]) = [f]$, $\min(*1, [f]) = [f]$ and $\min(*0, [f]) = *0$.

Now define hyperrational-valued matrix logic \mathfrak{M}_{*Q} :

Definition 2. The ordered system $\langle V_{*\mathbf{Q}}, \neg, \supset, \lor, \land, \widetilde{\exists}, \widetilde{\forall}, \{*1\} \rangle$ is called hyperrational valued matrix logic $\mathfrak{M}_{*\mathbf{Q}}$, where

- 1. $V_{*\mathbf{Q}} = {}^{*}\mathbf{Q}_{[0,1]}$ is the subset of hyperrational numbers,
- 2. for all $x \in V_{*Q}$, $\neg x = *1 x$,
- 3. for all $x, y \in V_*\mathbf{Q}, x \supset y = \min(*1, *1 x + y),$
- 4. for all $x, y \in V_*\mathbf{Q}$, $x \lor y = (x \supset y) \supset y = \max(x, y)$,
- 5. for all $x, y \in V_{*Q}$, $x \wedge y = \neg(\neg x \vee \neg y) = \min(x, y)$,
- 6. for a subset $M \subseteq V_{*Q}$, $\widetilde{\exists}(M) = \max(M)$, where $\max(M)$ is a maximal element of M,
- 7. for a subset $M \subseteq V_{*\mathbf{Q}}$, $\widetilde{\forall}(M) = \min(M)$, where $\min(M)$ is a minimal element of M,
- 8. $\{*1\}$ is the set of designated truth values.

The truth value $*0 \in V_{*\mathbf{Q}}$ is false, the truth value $*1 \in V_{*\mathbf{Q}}$ is true, and other truth values $x \in V_{*\mathbf{Q}}$ are neutral.

Let us consider a nonstandard extension ${}^*\mathbf{R}_{[0,1]} = \mathbf{R}_{[0,1]}^{\mathbf{N}}/\mathcal{U}$ for the subset $\mathbf{R}_{[0,1]} = \mathbf{R} \cap [0,1]$ of real numbers. Let ${}^{\sigma}\mathbf{R}_{[0,1]} \subset {}^*\mathbf{R}_{[0,1]}$ be the subset of standard members. We can extend the usual order structure on $\mathbf{R}_{[0,1]}$ to a partial order structure on ${}^*\mathbf{R}_{[0,1]}$:

- 1. for real numbers $x, y \in \mathbf{R}_{[0,1]}$ we have $x \leq y$ in $\mathbf{R}_{[0,1]}$ iff $[f] \leq [g]$ in $*\mathbf{R}_{[0,1]}$, where $\{\alpha \in \mathbf{N} \colon f(\alpha) = x\} \in \mathcal{U}$ and $\{\alpha \in \mathbf{N} \colon g(\alpha) = y\} \in \mathcal{U}$,
- 2. each positive real number $*x \in {}^{\sigma}\mathbf{R}_{[0,1]}$ is greater than any number $[f] \in {}^{*}\mathbf{R}_{[0,1]} \setminus {}^{\sigma}\mathbf{R}_{[0,1]}$,

As before, these conditions have the following informal sense:

- 1. The sets ${}^{\sigma}\mathbf{R}_{[0,1]}$ and $\mathbf{R}_{[0,1]}$ have isomorphic order structure.
- 2. The set ${}^{*}\mathbf{R}_{[0,1]}$ contains actual infinities that are less than any positive real number of ${}^{\sigma}\mathbf{R}_{[0,1]}$.

Define this partial order structure on $*\mathbf{R}_{[0,1]}$ as follows:

 $\mathcal{O}_{*\mathbf{R}}$ 1. For any hyperreal numbers $[f], [g] \in {}^{*}\mathbf{R}_{[0,1]}$, we set $[f] \leq [g]$ if

$$\{\alpha \in \mathbf{N} \colon f(\alpha) \le g(\alpha)\} \in \mathcal{U}$$

2. For any hyperreal numbers $[f], [g] \in {}^{*}\mathbf{R}_{[0,1]}$, we set [f] < [g] if

$$\{\alpha \in \mathbf{N} \colon f(\alpha) \le g(\alpha)\} \in \mathcal{U}$$

and $[f] \neq [g], i.e., \{\alpha \in \mathbf{N} \colon f(\alpha) \neq g(\alpha)\} \in \mathcal{U}.$

3. For any hyperreal numbers $[f], [g] \in {}^*\mathbf{R}_{[0,1]}$, we set [f] = [g] if $f \in [g]$.

Introduce two operations max, min in the partial order structure $\mathcal{O}_{*\mathbf{R}}$:

- 1. for all hyperreal numbers $[f], [g] \in {}^{*}\mathbf{R}_{[0,1]}, \min([f], [g]) = [f]$ if and only if $[f] \leq [g]$ under condition $\mathcal{O}_{*\mathbf{R}}$,
- 2. for all hyperreal numbers $[f], [g] \in {}^{*}\mathbf{R}_{[0,1]}, \max([f], [g]) = [g]$ if and only if $[f] \leq [g]$ under condition $\mathcal{O}_{*\mathbf{R}}$,
- 3. for all hyperreal numbers $[f], [g] \in {}^{*}\mathbf{R}_{[0,1]}, \min([f], [g]) = \max([f], [g]) = [f] = [g]$ if and only if [f] = [g] under condition $\mathcal{O}_{*\mathbf{R}}$,
- 4. for all hyperreal numbers $[f], [g] \in {}^{*}\mathbf{R}_{[0,1]}$, if [f], [g] are incompatible under condition $\mathcal{O}_{*\mathbf{R}}$, then $\min([f], [g]) = [h]$ iff there exists $[h] \in {}^{*}\mathbf{R}_{[0,1]}$ such that

$$\{\alpha \in \mathbf{N} \colon \min(f(\alpha), g(\alpha)) = h(\alpha)\} \in \mathcal{U}.$$

5. for all hyperreal numbers $[f], [g] \in {}^{*}\mathbf{R}_{[0,1]}$, if [f], [g] are incompatible under condition $\mathcal{O}_{*\mathbf{R}}$, then $\max([f], [g]) = [h]$ iff there exists $[h] \in {}^{*}\mathbf{R}_{[0,1]}$ such that

$$\{\alpha \in \mathbf{N} \colon \max(f(\alpha), g(\alpha)) = h(\alpha)\} \in \mathcal{U}$$

Note there exist the maximal number $*1 \in *\mathbf{R}_{[0,1]}$ and the minimal number $*0 \in *\mathbf{R}_{[0,1]}$ under condition $\mathcal{O}_{*\mathbf{R}}$.

As before, define hyperreal valued matrix logic $\mathfrak{M}_{*\mathbf{R}}$:

Definition 3. The ordered system $\langle V_{*\mathbf{R}}, \neg, \supset, \lor, \land, \widetilde{\exists}, \widetilde{\forall}, \{*1\} \rangle$ is called hyperreal valued matrix logic $\mathfrak{M}_{*\mathbf{R}}$, where

- 1. $V_{*\mathbf{R}} = {}^{*}\mathbf{R}_{[0,1]}$ is the subset of hyperreal numbers,
- 2. for all $x \in V_{*\mathbf{R}}$, $\neg x = *1 x$,
- 3. for all $x, y \in V_{*\mathbf{R}}, x \supset y = \min(*1, *1 x + y),$
- 4. for all $x, y \in V_{*\mathbf{R}}$, $x \lor y = (x \supset y) \supset y = \max(x, y)$,
- 5. for all $x, y \in V_{*\mathbf{R}}$, $x \wedge y = \neg(\neg x \vee \neg y) = \min(x, y)$,
- 6. for a subset $M \subseteq V_{*\mathbf{R}}$, $\widetilde{\exists}(M) = \max(M)$, where $\max(M)$ is a maximal element of M,
- 7. for a subset $M \subseteq V_{*\mathbf{R}}$, $\widetilde{\forall}(M) = \min(M)$, where $\min(M)$ is a minimal element of M,
- 8. {*1} is the set of designated truth values.

The truth value $*0 \in V_{*\mathbf{R}}$ is false, the truth value $*1 \in V_{*\mathbf{R}}$ is true, and other truth values $x \in V_{*\mathbf{R}}$ are neutral.

7.4.2 Hyper-valued probability theory and hyper-valued fuzzy logic

Let X be an arbitrary set and let A be an algebra of subsets $A \subset X$, i. e.

- 1. union, intersection, and difference of two subsets of X also belong to \mathcal{A} ;
- 2. \emptyset, X belong to \mathcal{A} .

Recall that a *finitely additive probability measure* is a nonnegative set function $\mathbf{P}(\cdot)$ defined for sets $A \in \mathcal{A}$ that satisfies the following properties:

- 1. $\mathbf{P}(A) \ge 0$ for all $A \in \mathcal{A}$,
- 2. P(X) = 1 and $P(\emptyset) = 0$,
- 3. if $A \in \mathcal{A}$ and $B \in \mathcal{A}$ are disjoint, then $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$. In particular $\mathbf{P}(\neg A) = 1 \mathbf{P}(A)$ for all $A \in \mathcal{A}$.

The algebra \mathcal{A} is called a σ -algebra if it is assumed to be closed under countable union (or equivalently, countable intersection), i. e. if for every $n, A_n \in \mathcal{A}$ causes $A = \bigcup A_n \in \mathcal{A}$.

A set function $\mathbf{P}(\cdot)$ defined on a σ -algebra is called a *countable additive probability measure* (or a σ -additive probability measure) if in addition to satisfying equations of the definition of finitely additive probability measure, it satisfies the following countable additivity property: for any sequence of pairwise disjoint sets A_n , $\mathbf{P}(A) = \sum_n \mathbf{P}(A_n)$. The ordered system $(X, \mathcal{A}, \mathbf{P})$ is called a *probability space*. Now consider hyper-valued probabilities. Let I be an arbitrary set, let \mathcal{A} be an algebra of subsets $A \subset I$, and let \mathcal{U} be a Frechet ultrafilter on I. Set for $A \in \mathcal{A}$:

$$\mu_{\mathcal{U}}(A) = \begin{cases} 1, & A \in \mathcal{U}; \\ 0, & A \notin \mathcal{U}. \end{cases}$$

Hence, there is a mapping $\mu_{\mathcal{U}} \colon \mathcal{A} \mapsto \{0,1\}$ satisfying the following properties:

- 1. $\mu_{\mathcal{U}}(\emptyset) = 0, \ \mu_{\mathcal{U}}(I) = 1;$
- 2. if $\mu_{\mathcal{U}}(A_1) = \mu_{\mathcal{U}}(A_2) = 0$, then $\mu_{\mathcal{U}}(A_1 \cup A_2) = 0$;
- 3. if $A_1 \cap A_2 = \emptyset$, then $\mu_{\mathcal{U}}(A_1 \cup A_2) = \mu_{\mathcal{U}}(A_1) + \mu_{\mathcal{U}}(A_2)$.

This implies that $\mu_{\mathcal{U}}$ is a probability measure. Notice that $\mu_{\mathcal{U}}$ isn't σ -additive. As an example, if A is the set of even numbers and B is the set of odd numbers, then $A \in \mathcal{U}$ implies $B \notin \mathcal{U}$, because the filter \mathcal{U} is maximal. Thus, $\mu_{\mathcal{U}}(A) = 1$ and $\mu_{\mathcal{U}}(B) = 0$, although the cardinalities of A and B are equal.

Definition 4. The ordered system $(I, \mathcal{A}, \mu_{\mathcal{U}})$ is called a probability space.

Let's consider a mapping: $f: I \ni \alpha \mapsto f(\alpha) \in M$. Two mappings f, g are equivalent: $f \backsim g$ if $\mu_{\mathcal{U}}(\{\alpha \in I: f(\alpha) = g(\alpha)\}) = 1$. An equivalence class of f is called a probabilistic events and is denoted by [f]. The set *M is the set of all probabilistic events of M. This *M is a proper nonstandard extension defined above.

Under condition 1 of proposition 1, we can obtain a nonstandard extension of an algebra \mathcal{A} denoted by $^*\mathcal{A}$. Let *X be an arbitrary nonstandard extension. Then the nonstandard algebra $^*\mathcal{A}$ is an algebra of subsets $A \subset ^*X$ if the following conditions hold:

- 1. union, intersection, and difference of two subsets of *X also belong to $^*\mathcal{A}$;
- 2. $\emptyset, ^*X$ belong to $^*\mathcal{A}$.

Definition 5. A hyperrational (respectively hyperreal) valued finitely additive probability measure is a nonnegative set function $*\mathbf{P}: *\mathcal{A} \mapsto V_{*\mathbf{Q}}$ (respectively $*\mathbf{P}: *\mathcal{A} \mapsto V_{*\mathbf{R}}$) that satisfies the following properties:

- 1. $^{*}\mathbf{P}(A) \geq ^{*}0$ for all $A \in ^{*}\mathcal{A}$,
- 2. $*\mathbf{P}(*X) = *1 \text{ and } *\mathbf{P}(\emptyset) = *0,$
- 3. if $A \in {}^*\mathcal{A}$ and $B \in {}^*\mathcal{A}$ are disjoint, then ${}^*\mathbf{P}(A \cup B) = {}^*\mathbf{P}(A) + {}^*\mathbf{P}(B)$. In particular ${}^*\mathbf{P}(\neg A) = {}^*1 {}^*\mathbf{P}(A)$ for all $A \in {}^*\mathcal{A}$.

Now consider hyper-valued fuzzy logic.

Definition 6. Suppose *X is a nonstandard extension. Then a hyperrational (respectively hyperreal) valued fuzzy set A in *X is a set defined by means of the membership function * μ_A : *X \mapsto V* \mathbf{Q} (respectively by means of the membership function * μ_A : *X \mapsto V* \mathbf{R}).

A set $A \subset {}^*X$ is called *crisp* if ${}^*\mu_A(u) = {}^*1$ or ${}^*\mu_A(u) = {}^*0$ for any $u \in {}^*X$.

The logical operations on hyper-valued fuzzy sets are defined as follows:

1.
$${}^{*}\mu_{A\cap B}(x) = \min({}^{*}\mu_{A}(x), {}^{*}\mu_{B}(x));$$

2. ${}^{*}\mu_{A\cup B}(x) = \max({}^{*}\mu_{A}(x), {}^{*}\mu_{B}(x));$
3. ${}^{*}\mu_{A+B}(x) = {}^{*}\mu_{A}(x) + {}^{*}\mu_{B}(x) - {}^{*}\mu_{A}(x) \cdot {}^{*}\mu_{B}(x);$
4. ${}^{*}\mu_{\neg A}(x) = {}^{*}\mu_{A}(x) = {}^{*}1 - {}^{*}\mu_{A}(x).$

7.5 *p*-Adic Valued Reasoning

Let us remember that the expansion

$$n = \alpha_{-N} \cdot p^{-N} + \alpha_{-N+1} \cdot p^{-N+1} + \ldots + \alpha_{-1} \cdot p^{-1} + \alpha_0 + \alpha_1 \cdot p + \ldots + \alpha_k \cdot p^k + \ldots = \sum_{k=-N}^{+\infty} \alpha_k \cdot p^k,$$

where $\alpha_k \in \{0, 1, \dots, p-1\}$, $\forall k \in \mathbb{Z}$, and $\alpha_{-N} \neq 0$, is called the *canonical expansion of p-adic* number n (or p-adic expansion for n). The number n is called p-adic. This number can be identified with sequences of digits: $n = \dots \alpha_2 \alpha_1 \alpha_0, \alpha_{-1} \alpha_{-2} \dots \alpha_{-N}$. We denote the set of such numbers by \mathbb{Q}_p .

The expansion
$$n = \alpha_0 + \alpha_1 \cdot p + \ldots + \alpha_k \cdot p^k + \ldots = \sum_{k=0}^{\infty} \alpha_k \cdot p^k$$
, where $\alpha_k \in \{0, 1, \ldots, p-1\}$,

 $\forall k \in \mathbf{N} \cup \{0\}$, is called the *expansion of p-adic integer n*. The integer *n* is called *p*-adic. This number sometimes has the following notation: $n = \dots \alpha_3 \alpha_2 \alpha_1 \alpha_0$. We denote the set of such numbers by \mathbf{Z}_p .

If $n \in \mathbf{Z}_p$, $n \neq 0$, and its canonical expansion contains only a finite number of nonzero digits α_j , then n is natural number (and vice versa). But if $n \in \mathbf{Z}_p$ and its expansion contains an infinite number of nonzero digits α_j , then n is an infinitely large natural number. Thus the set of p-adic integers contains actual infinities $n \in \mathbf{Z}_p \setminus \mathbf{N}$, $n \neq 0$. This is one of the most important features of non-Archimedean number systems, therefore it is natural to compare \mathbf{Z}_p with the set of nonstandard numbers $*\mathbf{Z}$. Also, the set \mathbf{Z}_p contains exhaustive elements.

7.5.1 *p*-Adic valued matrix logic

Extend the standard order structure on $\{0, \ldots, p-1\}$ to a partial order structure on \mathbf{Z}_p . Define this partial order structure on \mathbf{Z}_p as follows:

- $\mathcal{O}_{\mathbf{Z}_p}$ Let $x = \dots x_n \dots x_1 x_0$ and $y = \dots y_n \dots y_1 y_0$ be the canonical expansions of two *p*-adic integers $x, y \in \mathbf{Z}_p$.
 - 1. We set $x \leq y$ if we have $x_n \leq y_n$ for each $n = 0, 1, \ldots$
 - 2. We set x < y if we have $x_n \leq y_n$ for each n = 0, 1, ... and there exists n_0 such that $x_{n_0} < y_{n_0}$.
 - 3. We set x = y if $x_n = y_n$ for each n = 0, 1, ...

Now introduce two operations max, min in the partial order structure on \mathbf{Z}_p :

- **1** for all *p*-adic integers $x, y \in \mathbf{Z}_p$, $\min(x, y) = x$ if and only if $x \leq y$ under condition $\mathcal{O}_{\mathbf{Z}_p}$,
- **2** for all *p*-adic integers $x, y \in \mathbf{Z}_p$, $\max(x, y) = y$ if and only if $x \leq y$ under condition $\mathcal{O}_{\mathbf{Z}_p}$,
- **3** for all *p*-adic integers $x, y \in \mathbf{Z}_p$, $\max(x, y) = \min(x, y) = x = y$ if and only if x = y under condition $\mathcal{O}_{\mathbf{Z}_p}$.

The ordering relation $\mathcal{O}_{\mathbf{Z}_p}$ is not linear, but partial, because there exist elements $x, z \in \mathbf{Z}_p$, which are incompatible. As an example, let p = 2 and let $x = -\frac{1}{3} = \dots 10101 \dots 101$, $z = -\frac{2}{3} = \dots 01010 \dots 010$. Then the numbers x and z are incompatible.

Thus,

- **4** Let $x = \ldots x_n \ldots x_1 x_0$ and $y = \ldots y_n \ldots y_1 y_0$ be the canonical expansions of two *p*-adic integers $x, y \in \mathbf{Z}_p$ and x, y are incompatible under condition $\mathcal{O}_{\mathbf{Z}_p}$. We get $\min(x, y) = z = \ldots z_n \ldots z_1 z_0$, where, for each $n = 0, 1, \ldots$, we set
 - 1. $z_n = y_n$ if $x_n \ge y_n$,
 - 2. $z_n = x_n$ if $x_n \leq y_n$,
 - 3. $z_n = x_n = y_n$ if $x_n = y_n$.

We get $\max(x, y) = z = \dots z_n \dots z_1 z_0$, where, for each $n = 0, 1, \dots$, we set

1. $z_n = y_n$ if $x_n \le y_n$, 2. $z_n = x_n$ if $x_n \ge y_n$, 3. $z_n = x_n = y_n$ if $x_n = y_n$.

It is important to remark that there exists the maximal number $N_{max} \in \mathbf{Z}_p$ under condition $\mathcal{O}_{\mathbf{Z}_p}$. It is easy to see:

$$N_{max} = -1 = (p-1) + (p-1) \cdot p + \ldots + (p-1) \cdot p^k + \ldots = \sum_{k=0}^{\infty} (p-1) \cdot p^k$$

Therefore

5 $\min(x, N_{max}) = x$ and $\max(x, N_{max}) = N_{max}$ for any $x \in \mathbb{Z}_p$.

Now consider *p*-adic valued matrix logic $\mathfrak{M}_{\mathbf{Z}_p}$.

Definition 7. The ordered system $\langle V_{\mathbf{Z}_p}, \neg, \supset, \lor, \land, \widetilde{\exists}, \widetilde{\forall}, \{N_{max}\} \rangle$ is called *p*-adic valued matrix logic $\mathfrak{M}_{\mathbf{Z}_n}$, where

- 1. $V_{\mathbf{Z}_p} = \{0, \dots, N_{max}\} = \mathbf{Z}_p,$
- 2. for all $x \in V_{\mathbf{Z}_p}$, $\neg x = N_{max} x$,
- 3. for all $x, y \in V_{\mathbf{Z}_n}, x \supset y = (N_{max} \max(x, y) + y),$
- 4. for all $x, y \in V_{\mathbf{Z}_n}$, $x \lor y = (x \supset y) \supset y = \max(x, y)$,

- 5. for all $x, y \in V_{\mathbf{Z}_p}$, $x \wedge y = \neg(\neg x \vee \neg y) = \min(x, y)$,
- 6. for a subset $M \subseteq V_{\mathbf{Z}_p}$, $\widetilde{\exists}(M) = \max(M)$, where $\max(M)$ is a maximal element of M,
- 7. for a subset $M \subseteq V_{\mathbf{Z}_p}$, $\widetilde{\forall}(M) = \min(M)$, where $\min(M)$ is a minimal element of M,
- 8. $\{N_{max}\}$ is the set of designated truth values.

The truth value $0 \in \mathbf{Z}_p$ is false, the truth value $N_{max} \in \mathbf{Z}_p$ is true, and other truth values $x \in \mathbf{Z}_p$ are neutral.

Proposition 4. The logic $\mathfrak{M}_{\mathbf{Z}_2} = \langle V_{\mathbf{Z}_2}, \neg, \supset, \lor, \land, \widetilde{\exists}, \widetilde{\forall}, \{N_{max}\} \rangle$ is a Boolean algebra.

Proof. Indeed, the operation \neg in $\mathfrak{M}_{\mathbb{Z}_2}$ is the Boolean complement:

- 1. $\max(x, \neg x) = N_{max},$
- 2. $\min(x, \neg x) = 0.$

7.5.2 *p*-Adic probability theory

7.5.2.1 Frequency theory of *p*-adic probability

Let us remember that the frequency theory of probability was created by Richard von Mises in [10]. This theory is based on the notion of a collective: "We will say that a collective is a mass phenomenon or a repetitive event, or simply a long sequence of observations for which there are sufficient reasons to believe that the relative frequency of the observed attribute would tend to a fixed limit if the observations were infinitely continued. This limit will be called the probability of the attribute considered within the given collective" [10].

As an example, consider a random experiment S and by $L = \{s_1, \ldots, s_m\}$ denote the set of all possible results of this experiment. The set S is called the label set, or the set of attributes. Suppose there are N realizations of S and write a result x_j after each realization. Then we obtain the finite sample: $x = (x_1, \ldots, x_N), x_j \in L$. A collective is an infinite idealization of this finite sample: $x = (x_1, \ldots, x_N, \ldots), x_j \in L$. Let us compute frequencies $\nu_N(\alpha; x) = n_N(\alpha; x)/N$, where $n_N(\alpha; x)$ is the number of realizations of the attribute α in the first N tests. There exists the statistical stabilization of relative frequencies: the frequency $\nu_N(\alpha; x)$ approaches a limit as N approaches infinity for every label $\alpha \in L$. This limit $\mathbf{P}(\alpha) = \lim \nu_N(\alpha; x)$ is said to be the probability of the label α in the frequency theory of probability. Sometimes this probability is denoted by $\mathbf{P}_x(\alpha)$ to show a dependence on the collective x. Notice that the limits of relative frequencies have to be stable with respect to a place selection (a choice of a subsequence) in the collective. A. Yu. Khrennikov developed von Mises' idea and proposed the frequency theory of p-adic probability in [6, 7]. We consider here Khrennikov's theory.

We shall study some ensembles $S = S_N$, which have a *p*-dic volume *N*, where *N* is the *p*-adic integer. If *N* is finite, then *S* is the ordinary finite ensemble. If *N* is infinite, then *S* has essentially *p*-adic structure. Consider a sequence of ensembles M_j having volumes $l_j \cdot p^j$, $j = 0, 1, \ldots$ Get $S = \bigcup_{j=0}^{\infty} M_j$. Then the cardinality |S| = N. We may imagine an ensemble *S* as being the population of a tower $T = T_S$, which has an infinite number of floors with the following distribution of population through floors: population of *j*-th floor is M_j . Set $T_k = \bigcup_{j=0}^k M_j$.

This is population of the first k + 1 floors. Let $A \subset S$ and let there exists: $n(A) = \lim_{k \to \infty} n_k(A)$, where $n_k(A) = |A \cap T_k|$. The quantity n(A) is said to be a *p*-adic volume of the set A.

We define the probability of A by the standard proportional relation:

$$\mathbf{P}(A) \triangleq \mathbf{P}_S(A) = \frac{n(A)}{N},\tag{7.6}$$

where |S| = N, $n(A) = |A \cap S|$.

We denote the family of all $A \subset S$, for which $\mathbf{P}(A)$ exists, by \mathcal{G}_S . The sets $A \in \mathcal{G}_S$ are said to be events. The ordered system $(S, \mathcal{G}_S, \mathbf{P}_S)$ is called a *p*-adic ensemble probability space for the ensemble S.

Proposition 5. Let F be the set algebra which consists of all finite subsets and their complements. Then $F \subset \mathcal{G}_S$.

Proof. Let A be a finite set. Then n(A) = |A| and the probability of A has the form:

$$\mathbf{P}(A) = \frac{|A|}{|S|}$$

Now let $B = \neg A$. Then $|B \cap T_k| = |T_k| - |A \cap T_k|$. Hence there exists $\lim_{k \to \infty} |B \cap T_k| = N - |A|$. This equality implies the standard formula:

$$\mathbf{P}(\neg A) = 1 - \mathbf{P}(A)$$

In particular, we have: $\mathbf{P}(S) = 1$.

The next propositions are proved in [6]:

Proposition 6. Let $A_1, A_2 \in \mathcal{G}_S$ and $A_1 \cap A_2 = \emptyset$. Then $A_1 \cup A_2 \in \mathcal{G}_S$ and

$$\mathbf{P}(A_1 \cup A_2) = \mathbf{P}(A_1) + \mathbf{P}(A_2).$$

Proposition 7. Let $A_1, A_2 \in \mathcal{G}_S$. The following conditions are equivalent:

- 1. $A_1 \cup A_2 \in \mathcal{G}_S$,
- 2. $A_1 \cap A_2 \in \mathcal{G}_S$,
- 3. $A_1 \setminus A_2 \in \mathcal{G}_S$,

4.
$$A_2 \setminus A_1 \in \mathcal{G}_S$$
.

But it is possible to find sets $A_1, A_2 \in \mathcal{G}_S$ such that, for example, $A_1 \cup A_2 \notin \mathcal{G}_S$. Thus, the family \mathcal{G}_S is not an algebra, but a semi-algebra (it is closed only with respect to a finite unions of sets, which have empty intersections). \mathcal{G}_S is not closed with respect to countable unions of such sets.

Proposition 8. Let $A \in \mathcal{G}_S$, $\mathbf{P}(A) \neq 0$ and $B \in \mathcal{G}_A$. Then $B \in \mathcal{G}_S$ and the following Bayes formula holds:

$$\mathbf{P}_A(B) = \frac{\mathbf{P}_S(B)}{\mathbf{P}_S(A)} \tag{7.7}$$

Proof. The tower T_A of the A has the following population structure: there are M_{A_j} elements on the *j*-th floor. In particular, $T_{A_k} = T_k \cap A$. Thus

$$n_{A_k}(B) = |B \cap T_{A_k}| = |B \cap T_k| = n_k(B)$$

for each $B \subset A$. Hence the existence of $n_A(B) = \lim_{k \to \infty} n_{A_k}(B)$ implies the existence of $n_S(B)$ with $n_S(B) = \lim_{k \to \infty} n_k(B)$. Moreover, $n_S(B) = n_A(B)$. Therefore,

$$\mathbf{P}_{A}(B) = \frac{n_{A}(B)}{n_{S}(A)} = \frac{n_{A}(B)/|S|}{n_{S}(A)/|S|}.$$

Proposition 9. Let $N \in \mathbb{Z}_p$, $N \neq 0$ and let the ensemble S_{-1} have the p-adic volume $-1 = N_{max}$ (it is the largest ensemble).

1. Then $S_N \in \mathcal{G}_{S_{-1}}$ and

$$\mathbf{P}_{S_{-1}}(S_N) = \frac{|S_N|}{|S_{-1}|} = -N$$

2. Then $\mathcal{G}_{S_N} \subset \mathcal{G}_{S_{-1}}$ and probabilities $\mathbf{P}_{S_N}(A)$ are calculated as conditional probabilities with respect to the subensemble S_N of ensemble S_{-1} :

$$\mathbf{P}_{S_N}(A) = \mathbf{P}_{S_{-1}}(\frac{A}{S_N}) = \frac{\mathbf{P}_{S_{-1}}(A)}{\mathbf{P}_{S_{-1}}(S_N)}, A \in \mathcal{G}_{S_N}$$

7.5.2.2 Logical theory of *p*-adic probability

Transform the matrix logic $\mathfrak{M}_{\mathbf{Z}_p}$ into a *p*-adic probability theory. Let us remember that a formula φ has the truth value $0 \in \mathbf{Z}_p$ in $\mathfrak{M}_{\mathbf{Z}_p}$ if φ is false, a formula φ has the truth value $N_{max} \in \mathbf{Z}_p$ in $\mathfrak{M}_{\mathbf{Z}_p}$ if φ is true, and a formula φ has other truth values $\alpha \in \mathbf{Z}_p$ in $\mathfrak{M}_{\mathbf{Z}_p}$ if φ is neutral.

Definition 8. A function $\mathbf{P}(\varphi)$ is said to be a probability measure of a formula φ in $\mathfrak{M}_{\mathbf{Z}_p}$ if $\mathbf{P}(\varphi)$ ranges over numbers of \mathbf{Q}_p and satisfies the following axioms:

- 1. $\mathbf{P}(\varphi) = \frac{\alpha}{N_{max}}$, where α is a truth value of φ ;
- 2. if a conjunction $\varphi \wedge \psi$ has the truth value 0, then $\mathbf{P}(\varphi \lor \psi) = \mathbf{P}(\varphi) + \mathbf{P}(\psi)$,
- 3. $\mathbf{P}(\varphi \wedge \psi) = \min(\mathbf{P}(\varphi), \mathbf{P}(\psi)).$

Notice that:

- 1. taking into account condition 1 of our definition, if φ has the truth value N_{max} for any its interpretations, i. e., φ is a tautology, then $\mathbf{P}(\varphi) = 1$ in all possible worlds, and if φ has the truth value 0 for any its interpretations, i. e., φ is a contradiction, then $\mathbf{P}(\varphi) = 0$ in all possible worlds;
- 2. under condition 2, we obtain $\mathbf{P}(\neg \varphi) = 1 \mathbf{P}(\varphi)$.

Since $\mathbf{P}(N_{max}) = 1$, we have

$$\mathbf{P}(\max\{x \in V_{\mathbf{Z}_p}\}) = \sum_{x \in V_{\mathbf{Z}_p}} \mathbf{P}(x) = 1$$

All events have a conditional plausibility in the logical theory of p-adic probability:

$$\mathbf{P}(\varphi) \equiv \mathbf{P}(\varphi/N_{max}),\tag{7.8}$$

i. e., for any φ , we consider the conditional plausibility that there is an event of φ , given an event N_{max} ,

$$\mathbf{P}(\varphi/\psi) = \frac{\mathbf{P}(\varphi \wedge \psi)}{\mathbf{P}(\psi)}.$$
(7.9)

7.5.3 *p*-Adic fuzzy logic

The probability interpretation of the logic $\mathfrak{M}_{\mathbf{Z}_p}$ shows that this logic is a special system of fuzzy logic. Indeed, we can consider the membership function μ_A as a *p*-adic valued predicate.

Definition 9. Suppose X is a non-empty set. Then a p-adic-valued fuzzy set A in X is a set defined by means of the membership function $\mu_A: X \mapsto \mathbf{Z}_p$, where \mathbf{Z}_p is the set of all p-adic integers.

It is obvious that the set A is completely determined by the set of tuples $\{\langle u, \mu_A(u) \rangle : u \in X\}$. We define a norm $|\cdot|_p : \mathbf{Q}_p \mapsto \mathbf{R}$ on \mathbf{Q}_p as follows:

$$|n = \sum_{k=-N}^{+\infty} \alpha_k \cdot p^k|_p \triangleq p^{-L},$$

where $L = \max\{k : n \equiv 0 \mod p^k\} \ge 0$, i. e. L is an index of the first number distinct from zero in p-adic expansion of n. Note that $|0|_p \triangleq 0$. The function $|\cdot|_p$ has values 0 and $\{p^{\gamma}\}_{\gamma \in \mathbb{Z}}$ on \mathbb{Q}_p . Finally, $|x|_p \ge 0$ and $|x|_p = 0 \equiv x = 0$. A set $A \subset X$ is called *crisp* if $|\mu_A(u)|_p = 1$ or $|\mu_A(u)|_p = 0$ for any $u \in X$. Notice that $|\mu_A(u) = 1|_p = 1$ and $|\mu_A(u) = 0|_p = 0$. Therefore our membership function is an extension of the classical characteristic function. Thus, A = B causes $\mu_A(u) = \mu_B(u)$ for all $u \in X$ and $A \subseteq B$ causes $|\mu_A(u)|_p \le |\mu_B(u)|_p$ for all $u \in X$.

In *p*-adic fuzzy logic, there always exists a non-empty intersection of two crisp sets. In fact, suppose the sets *A*, *B* have empty intersection and *A*, *B* are crisp. Consider two cases under condition $\mu_A(u) \neq \mu_B(u)$ for any *u*. First, $|\mu_A(u)|_p = 0$ or $|\mu_A(u)|_p = 1$ for all *u* and secondly $|\mu_B(u)|_p = 0$ or $|\mu_B(u)|_p = 1$ for all *u*. Assume we have $\mu_A(u_0) = N_{max}$ for some u_0 , i. e., $|\mu_A(u_0)|_p = 1$. Then $\mu_B(u_0) \neq N_{max}$, but this doesn't mean that $\mu_B(u_0) = 0$. It is possible that $|\mu_A(u_0)|_p = 1$ and $|\mu_B(u_0)|_p = 1$ for u_0 .

Now we set logical operations on p-adic fuzzy sets:

1.
$$\mu_{A\cap B}(x) = \min(\mu_A(x), \mu_B(x));$$

2. $\mu_{A\cup B}(x) = \max(\mu_A(x), \mu_B(x));$
3. $\mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - \min(\mu_A(x), \mu_B(x));$
4. $\mu_{\neg A}(x) = \neg \mu_A(x) = N_{max} - \mu_A(x) = -1 - \mu_A(x).$

7.6 Conclusion

In this chapter, one has constructed on the basis of infinite DSm models three logical manyvalued systems: $\mathfrak{M}_{\mathbf{Z}_p}$, $\mathfrak{M}_{*\mathbf{Q}}$, and $\mathfrak{M}_{*\mathbf{R}}$. These systems are principal versions of the non-Archimedean logic and they can be used in probabilistic and fuzzy reasoning. Thus, the DSm models assumes many theoretical and practical applications.

7.7 References

- [1] Bachman G., Introduction to p-adic numbers and valuation theory, Academic Press, 1964.
- [2] Davis M., Applied Nonstandard Analysis, John Wiley and Sons, New York, 1977.
- [3] Dezert J., Smarandache F., On the generation of hyper-power sets, Proc. of Fusion 2003, Cairns, Australia, July 8–11, 2003.
- [4] Dezert J., Smarandache F., Partial ordering of hyper-power sets and matrix representation of belief functions within DSmT, Proc. of the 6th Int. Conf. on inf. fusion (Fusion 2003), Cairns, Australia, July 8–11, 2003.
- [5] Hurd A., Loeb P. A., An Introduction to Nonstandard Real Analysis, Academic Press, New York.
- [6] Khrennikov A. Yu., Interpretations of Probability, VSP Int. Sc. Publishers, Utrecht/Tokyo, 1999.
- [7] Khrennikov A. Yu., Van Rooij A., Yamada Sh., *The measure-theoretical approach to p-adic probability theory*, Annales Math, Blaise Pascal, no. 1, 2000.
- [8] Koblitz N., p-adic numbers, p-adic analysis and zeta functions, second edition, Springer-Verlag, 1984.
- [9] Mahler K., *Introduction to p-adic numbers and their functions*, Second edition, Cambridge University Press, 1981.
- [10] Mises R. von, Probability, Statistics and Truth, Macmillan, London, 1957.
- [11] Pearl J., Probabilistic reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann Publishers, San Mateo, CA, 1988.
- [12] Robert A. M., A course in p-adic analysis, Springer-Verlag, 2000.

- [13] Robinson A., Non-Standard Analysis, North-Holland Publ. Co., 1966.
- [14] Sentz K., Ferson S., Combination of evidence in Dempster-Shafer Theory, SANDIA Tech. Report, SAND2002-0835, 96 pages, April 2002.
- [15] Shafer G., A Mathematical Theory of Evidence, Princeton Univ. Press, Princeton, NJ, 1976.
- [16] Smarandache F., A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Probability, and Statistics, (2nd Ed.), Amer. Research Press, Rehoboth, 2000.
- [17] Smarandache F., Neutrosophy: A new branch of philosophy, Multiple-valued logic, An international journal, Vol. 8, No. 3, pp. 297–384, 2002.
- [18] Smarandache F., A Unifying Field in Logics: Neutrosophic Logic, Multiple-valued logic, An international journal, Vol. 8, No. 3, pp. 385–438, 2002.
- [19] Smarandache F., Dezert J. (Editors), Applications and Advances of DSmT for Information Fusion, Collected Works, American Research Press, Rehoboth, June 2004, http://www.gallup.unm.edu/.smarandache/DSmT-book1.pdf.
- [20] Zadeh L., *Fuzzy sets*, Inform and Control 8, pp. 338–353, 1965.
- [21] Zadeh L., Fuzzy Logic and Approximate Reasoning, Synthese, 30, pp. 407–428, 1975.