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Abstract: The Dezert-Smarandache theory of plausible and paradoxical reason-
ing is based on the premise that some elements θi of a frame Θ have a non-empty
intersection. These elements are called exhaustive. In number theory, this prop-
erty is observed only in non-Archimedean number systems, for example, in the ring
Zp of p-adic integers, in the field ∗Q of hyperrational numbers, in the field ∗R of
hyperreal numbers, etc. In this chapter, I show that non-Archimedean structures
are infinite DSm models in that each positive exhaustive element is greater (or less)
than each positive exclusive element. Then I consider three principal versions of the
non-Archimedean logic: p-adic valued logic MZp

, hyperrational valued logic M∗Q,
hyperreal valued logic M∗R, and their applications to plausible reasoning. These
logics are constructed for the first time.

7.1 Introduction

The development of fuzzy logic and fuzziness was motivated in large measure by the need for
a conceptual framework which can address the issue of uncertainty and lexical imprecision.
Recall that fuzzy logic was introduced by Lofti Zadeh in 1965 (see [20]) to represent data and
information possessing nonstatistical uncertainties. Florentin Smarandache had generalized
fuzzy logic and introduced two new concepts (see [16], [18], [17]):

1. neutrosophy as study of neutralities;

2. neutrosophic logic and neutrosophic probability as a mathematical model of uncertainty,
vagueness, ambiguity, imprecision, undefined, unknown, incompleteness, inconsistency,
redundancy, contradiction, etc.
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184 DSM MODELS AND NON-ARCHIMEDEAN REASONING

Neutrosophy is a new branch of philosophy, which studies the nature of neutralities, as
well as their logical applications. This branch represents a version of paradoxism studies. The
essence of paradoxism studies is that there is a neutrality for any two extremes. For example,
denote by A an idea (or proposition, event, concept), by Anti-A the opposite to A. Then there
exists a neutrality Neut-A and this means that something is neither A nor Anti-A. It is readily
seen that the paradoxical reasoning can be modeled if some elements θi of a frame Θ are not
exclusive, but exhaustive, i. e., here θi have a non-empty intersection. A mathematical model
that has such a property is called the Dezert-Smarandache model (DSm model). A theory of
plausible and paradoxical reasoning that studies DSm models is called the Dezert-Smarandache
theory (DSmT). It is totally different from those of all existing approaches managing uncertain-
ties and fuzziness. In this chapter, I consider plausible reasoning on the base of particular case
of infinite DSm models, namely, on the base of non-Archimedean structures.

Let us remember that Archimedes’ axiom is the formula of infinite length that has one of
two following notations:

• for any ε that belongs to the interval [0, 1], we have

(ε > 0) ⊃ [(ε ≥ 1) ∨ (ε+ ε ≥ 1) ∨ (ε+ ε+ ε ≥ 1) ∨ . . .], (7.1)

• for any positive integer ε, we have

[(1 ≥ ε) ∨ (1 + 1 ≥ ε) ∨ (1 + 1 + 1 ≥ ε) ∨ . . .]. (7.2)

Formulas (7.1) and (7.2) are valid in the field Q of rational numbers and as well as in the
field R of real numbers. In the ring Z of integers, only formula (7.2) has a nontrivial sense,
because Z doesn’t contain numbers of the open interval (0, 1).

Also, Archimedes’ axiom affirms the existence of an integer multiple of the smaller of two
numbers which exceeds the greater: for any positive real or rational number ε, there exists a
positive integer n such that ε ≥ 1

n or n · ε ≥ 1.

The negation of Archimedes’ axiom has one of two following forms:

• there exists ε that belongs to the interval [0, 1] such that

(ε > 0) ∧ [(ε < 1) ∧ (ε+ ε < 1) ∧ (ε+ ε+ ε < 1) ∧ . . .], (7.3)

• there exists a positive integer ε such that

[(1 < ε) ∧ (1 + 1 < ε) ∧ (1 + 1 + 1 < ε) ∧ . . .]. (7.4)

Let us show that (7.3) is the negation of (7.1). Indeed,

¬∀ε [(ε > 0) ⊃ [(ε ≥ 1) ∨ (ε+ ε ≥ 1) ∨ (ε+ ε+ ε ≥ 1) ∨ . . .]] ≡
∃ε¬¬[(ε > 0) ∧ ¬[(ε ≥ 1) ∨ (ε+ ε ≥ 1) ∨ (ε+ ε+ ε ≥ 1) ∨ . . .]] ≡
∃ε (ε > 0) ∧ [¬(ε ≥ 1) ∧ ¬(ε+ ε ≥ 1) ∧ ¬(ε+ ε+ ε ≥ 1) ∧ . . .]] ≡

∃ε (ε > 0) ∧ [(ε < 1) ∧ (ε+ ε < 1) ∧ (ε+ ε+ ε < 1) ∧ . . .]]
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It is obvious that formula (7.3) says that there exist infinitely small numbers (or infinites-
imals), i. e., numbers that are smaller than all real or rational numbers of the open interval
(0, 1). In other words, ε is said to be an infinitesimal if and only if, for all positive integers n,
we have |ε| < 1

n . Further, formula (7.4) says that there exist infinitely large integers that are
greater than all positive integers. Infinitesimals and infinitely large integers are called nonstan-
dard numbers or actual infinities.

The field that satisfies all properties of R without Archimedes’ axiom is called the field of
hyperreal numbers and it is denoted by ∗R. The field that satisfies all properties of Q with-
out Archimedes’ axiom is called the field of hyperrational numbers and it is denoted by ∗Q.
By definition of field, if ε ∈ R (respectively ε ∈ Q), then 1/ε ∈ R (respectively 1/ε ∈ Q).
Therefore ∗R and ∗Q contain simultaneously infinitesimals and infinitely large integers: for an
infinitesimal ε, we have N = 1

ε , where N is an infinitely large integer.

The ring that satisfies all properties of Z without Archimedes’ axiom is called the ring of
hyperintegers and it is denoted by ∗Z. This ring includes infinitely large integers. Notice that
there exists a version of ∗Z that is called the ring of p-adic integers and is denoted by Zp.

I shall show in this chapter that nonstandard numbers (actual infinities) are exhaustive
elements (see section 7.3). This means that their intersection isn’t empty with some other
elements. Therefore non-Archimedean structures of the form ∗S (where we obtain ∗S on the
base of the set S of exclusive elements) are particular case of the DSm model. These structures
satisfy the properties:

1. all members of S are exclusive and S ⊂ ∗S,

2. all members of ∗S\S are exhaustive,

3. if a member a is exhaustive, then there exists a exclusive member b such that a ∩ b 6= ∅,

4. there exist exhaustive members a, b such that a ∩ b 6= ∅,

5. each positive exhaustive member is greater (or less) than each positive exclusive member.

I shall consider three principal versions of the logic on non-Archimedean structures: hy-
perrational valued logic M∗Q, hyperreal valued logic M∗R, p-adic valued logic MZp , and their
applications to plausible and fuzzy reasoning.

7.2 Standard many-valued logics

Let us remember that a first-order logical language L consists of the following symbols:

1. Variables:

(i) Free variables: a0, a1, a2, . . . , aj , . . . (j ∈ ω)

(ii) Bound variables: x0, x1, x2, . . . , xj, . . . (j ∈ ω)
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2. Constants:

(i) Function symbols of arity i (i ∈ ω): F i0, F
i
1, F

i
2, . . . , F

i
j , . . . (j ∈ ω). Nullary function

symbols are called constants.

(ii) Predicate symbols of arity i (i ∈ ω): P i0, P
i
1, P

i
2, . . . , P

i
j , . . . (j ∈ ω).

3. Logical symbols:

(i) Propositional connectives of arity nj : �n0
0 ,�n1

1 , . . . ,�nr
r , which are built by superpo-

sition of negation ¬ and implication ⊃.

(ii) Quantifiers: Q0,Q1, ...,Qq.

4. Auxiliary symbols: (, ), and , (comma).

Terms are inductively defined as follows:

1. Every individual constant is a term.

2. Every free variable (and every bound variable) is a term.

3. If Fn is a function symbol of arity n, and t1, . . . , tn are terms, then Fn(t1, . . . , tn) is a
term.

Formulas are inductively defined as follows:

1. If Pn is a predicate symbol of arity n, and t1, . . . , tn are terms, then Pn(t1, . . . , tn) is a
formula. It is called atomic or an atom. It has no outermost logical symbol.

2. If ϕ1, ϕ2, . . . , ϕn are formulas and �n is a propositional connective of arity n, then
�n(ϕ1, ϕ2, . . . , ϕn) is a formula with outermost logical symbol �n.

3. If ϕ is a formula not containing the bound variable x, a is a free variable and Q is a
quantifier, then Qxϕ(x), where ϕ(x) is obtained from ϕ by replacing a by x at every
occurrence of a in ϕ, is a formula. Its outermost logical symbol is Q.

A formula is called open if it contains free variables, and closed otherwise. A formula with-
out quantifiers is called quantifier-free. We denote the set of formulas of a language L by L. We
will write ϕ(x) for a formula possibly containing the bound variable x, and ϕ(a) respectively
ϕ(t) for the formula obtained from ϕ by replacing every occurrence of the variable x by the
free variable a respectively the term t. Hence, we shall need meta-variables for the symbols of
a language L. As a notational convention we use letters ϕ, φ, ψ, . . . to denote formulas.

A matrix, or matrix logic, M for a language L is given by:

1. a non-empty set of truth values V of cardinality |V | = m,

2. a subset D ⊆ V of designated truth values,

3. an algebra with domain V of appropriate type: for every n-place connective � of L there
is an associated truth function f : V n 7→ V , and

4. for every quantifier Q, an associated truth function Q̃: ℘(V )\∅ 7→ V
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Notice that a truth function for quantifiers is a mapping from non-empty sets of truth values
to truth values: for a non-empty set M ⊆ V , a quantified formula Qxϕ(x) takes the truth value
Q̃(M) if, for every truth value v ∈ V , it holds that v ∈M iff there is a domain element d such
that the truth value of ϕ in this point d is v (all relative to some interpretation). The set M is
called the distribution of ϕ. For example, suppose that there are only the universal quantifier
∀ and the existential quantifier ∃ in L. Further, we have the set of truth values V = {>,⊥},
where ⊥ is false and > is true, i. e., the set of designated truth values D = {>}. Then we
define the truth functions for the quantifiers ∀ and ∃ as follows:

1. ∀̃({>}) = >

2. ∀̃({>,⊥}) = ∀̃({⊥}) = ⊥

3. ∃̃({⊥}) = ⊥

4. ∃̃({>,⊥}) = ∃̃({>}) = >

Also, a matrix logic M for a language L is an algebraic system denoted

M = <V, f0, f1, . . . , fr, Q̃0, Q̃1, . . . , Q̃q,D>

where

1. V is a non-empty set of truth values for well-formed formulas of L,

2. f0, f1, . . . , fr are a set of matrix operations defined on the set V and assigned to corre-
sponding propositional connectives �n0

0 ,�n1
1 , . . . ,�nr

r of L,

3. Q̃0, Q̃1, . . . , Q̃q are a set of matrix operations defined on the set V and assigned to corre-
sponding quantifiers Q0,Q1, ...,Qq of L,

4. D is a set of designated truth values such that D ⊆ V .

Now consider (n + 1)-valued  Lukasiewicz’s matrix logic Mn+1 defined as the ordered system
<Vn+1,¬,⊃,∨,∧, ∃̃, ∀̃, {n}> for any n > 2, n ∈ N, where

1. Vn+1 = {0, 1, . . . , n},

2. for all x ∈ Vn+1, ¬x = n− x,

3. for all x, y ∈ Vn+1, x ⊃ y = min(n, n− x+ y),

4. for all x, y ∈ Vn+1, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),

5. for all x, y ∈ Vn+1, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ Vn+1, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ Vn+1, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {n} is the set of designated truth values.
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The truth value 0 ∈ Vn+1 is false, the truth value n ∈ Vn+1 is true, and other truth values
x ∈ Vn+1 are neutral.

The ordered system <VQ,¬,⊃,∨,∧, ∃̃, ∀̃, {1}> is called rational valued  Lukasiewicz’s matrix
logic MQ, where

1. VQ = {x : x ∈ Q} ∩ [0, 1],

2. for all x ∈ VQ, ¬x = 1− x,

3. for all x, y ∈ VQ, x ⊃ y = min(1, 1 − x+ y),

4. for all x, y ∈ VQ, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),

5. for all x, y ∈ VQ, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ VQ, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ VQ, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {1} is the set of designated truth values.

The truth value 0 ∈ VQ is false, the truth value 1 ∈ VQ is true, and other truth values x ∈ VQ

are neutral.

Real valued  Lukasiewicz’s matrix logic MR is the ordered system <VR,¬,⊃,∨,∧, ∃̃, ∀̃, {1}>,
where

1. VR = {x : x ∈ R} ∩ [0, 1],

2. for all x ∈ VR, ¬x = 1− x,

3. for all x, y ∈ VR, x ⊃ y = min(1, 1 − x+ y),

4. for all x, y ∈ VR, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),

5. for all x, y ∈ VR, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ VR, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ VR, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {1} is the set of designated truth values.

The truth value 0 ∈ VR is false, the truth value 1 ∈ VR is true, and other truth values x ∈ VR

are neutral.

Notice that the elements of truth value sets Vn+1, VQ, and VR are exclusive: for any members
x, y we have x ∩ y = ∅. Therefore  Lukasiewicz’s logics are based on the premise of existence
Shafer’s model. In other words, these logics are built on the families of exclusive elements
(see [15], [14]).
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However, for a wide class of fusion problems, “the intrinsic nature of hypotheses can be
only vague and imprecise in such a way that precise refinement is just impossible to obtain in
reality so that the exclusive elements θi cannot be properly identified and precisely separated”
(see [19]). This means that if some elements θi of a frame Θ have non-empty intersection, then
sources of evidence don’t provide their beliefs with the same absolute interpretation of elements
of the same frame Θ and the conflict between sources arises not only because of the possible
unreliability of sources, but also because of possible different and relative interpretation of Θ
(see [3], [4]).

7.3 Many-valued logics on DSm models

Definition 1. A many-valued logic is said to be a many-valued logic on DSm model if some
elements of its set V of truth values are not exclusive, but exhaustive.

Recall that a DSm model (Dezert-Smarandache model) is formed as a hyper-power set. Let
Θ = {θ1, . . . , θn} be a finite set (called frame) of n exhaustive elements. The hyper-power set
DΘ is defined as the set of all composite propositions built from elements of Θ with ∩ and ∪
operators such that:

1. ∅, θ1, . . . , θn ∈ DΘ;

2. if A,B ∈ DΘ, then A ∩B ∈ DΘ and A ∪B ∈ DΘ;

3. no other elements belong to DΘ, except those obtained by using rules 1 or 2.

The cardinality of DΘ is majored by 22n
when the cardinality of Θ equals n, i. e. |Θ| = n.

Since for any given finite set Θ, |DΘ| ≥ |2Θ|, we call DΘ the hyper-power set of Θ. Also, DΘ

constitutes what is called the DSm model Mf (Θ). However elements θi can be truly exclusive.
In such case, the hyper-power set DΘ reduces naturally to the classical power set 2Θ and this
constitutes the most restricted hybrid DSm model, denoted byM0(Θ), coinciding with Shafer’s
model. As an example, suppose that Θ = {θ1, θ2} with DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2}, where
θ1 and θ2 are truly exclusive (i. e., Shafer’s modelM0 holds), then because θ1 ∩ θ2 =M0 ∅, one
gets DΘ = {∅, θ1 ∩ θ2 =M0 ∅, θ1, θ2, θ1 ∪ θ2} = {∅, θ1, θ2, θ1 ∪ θ2} = 2Θ.

Now let us show that every non-Archimedean structure is an infinite DSm model, but no
vice versa. The most easy way of setting non-Archimedean structures was proposed by Abra-
ham Robinson in [13]. Consider a set Θ consisting only of exclusive members. Let I be any
infinite index set. Then we can construct an indexed family ΘI , i. e., we can obtain the set of
all functions: f : I 7→ Θ such that f(α) ∈ Θ for any α ∈ I.

A filter F on the index set I is a family of sets F ⊂ ℘(I) for which:

1. A ∈ F , A ⊂ B ⇒ B ∈ F ;

2. A1, . . . , An ∈ F ⇒
n⋂
k=1

Ak ∈ F ;

3. ∅ /∈ F .
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The set of all complements for finite subsets of I is a filter and it is called a Frechet filter.
A maximal filter (ultrafilter) that contains a Frechet filter is called a Frechet ultrafilter and it
is denoted by U .

Let U be a Frechet ultrafilter on I. Define a new relation v on the set ΘI by

f v g ≡ {α ∈ I : f(α) = g(α)} ∈ U . (7.5)

It is easily be proved that the relation v is an equivalence. Notice that formula (7.5) means
that f and g are equivalent iff f and g are equal on an infinite index subset. For each f ∈ ΘI

let [f ] denote the equivalence class of f under v. The ultrapower ΘI/U is then defined to be
the set of all equivalence classes [f ] as f ranges over ΘI :

ΘI/U , {[f ] : f ∈ ΘI}.

Also, Robinson has proved that each non-empty set Θ has an ultrapower with respect to a
Frechet ultrafilter U . This ultrapower ΘI/U is said to be a proper nonstandard extension of Θ
and it is denoted by ∗Θ.

Proposition 1. Let X be a non-empty set. A nonstandard extension of X consists of a mapping
that assigns a set ∗A to each A ⊆ Xm for all m ≥ 0, such that ∗X is non-empty and the following
conditions are satisfied for all m,n ≥ 0:

1. The mapping preserves Boolean operations on subsets of Xm: if A ⊆ Xm, then ∗A ⊆
(∗X)m; if A,B ⊆ Xm, then ∗(A ∩B) = (∗A ∩ ∗B), ∗(A ∪B) = (∗A ∪ ∗B), and ∗(A\B) =
(∗A)\(∗B).

2. The mapping preserves Cartesian products: if A ⊆ Xm and B ⊆ Xn, then ∗(A × B) =
∗A× ∗B, where A×B ⊆ Xm+n. 2

This proposition is proved in [5].

Recall that each element of ∗Θ is an equivalence class [f ] as f : I 7→ Θ. There exist two
groups of members of ∗Θ (see Fig. 7.1):

1. functions that are constant, e. g., f(α) = m ∈ Θ for infinite index subset {α ∈ I}. A
constant function [f = m] is denoted by ∗m,

2. functions that aren’t constant.

The set of all constant functions of ∗Θ is called standard set and it is denoted by σΘ. The
members of σΘ are called standard. It is readily seen that σΘ and Θ are isomorphic: σΘ ' Θ.

The following proposition can be easily proved:

Proposition 2. For any set Θ such that |Θ| ≥ 2, there exists a proper nonstandard extension
∗Θ for which ∗Θ\σΘ 6= ∅.
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Figure 7.1: The members of ∗Θ: constant and non-constant functions.

Proof. Let I1 = {α1, α2, . . . , αn, . . .} ⊂ I be an infinite set and let U be a Frechet ultrafilter.
Suppose that Θ1 = {m1, . . . ,mn} such that |Θ1| ≥ 1 is the subset of Θ and there is a mapping:

f(α) =

{
mk if α = αk;
m0 ∈ Θ if α ∈ I\I1

and f(α) 6= mk if α = αk mod (n+ 1), k = 1, . . . , n and α 6= αk.
Show that [f ] ∈ ∗Θ\σΘ. The proof is by reductio ad absurdum. Suppose there is m ∈ Θ

such that m ∈ [f(α)]. Consider the set:

I2 = {α ∈ I : f(α) = m} =





{αk} if m = mk, k = 1, . . . , n;
I\I1 if m = m0.
∅ if m /∈ {m0,m1, . . . ,mn}.

In any case I2 /∈ U , because {αk} /∈ U , ∅ /∈ U , I\I1 /∈ U . Thus, [f ] ∈ ∗Θ\σΘ. 2

The standard members of ∗Θ are exclusive, because their intersections are empty. Indeed,
the members of Θ were exclusive, therefore the members of σΘ are exclusive too. However the
members of ∗Θ\σΘ are exhaustive. By definition, if a member a ∈ ∗Θ is nonstandard, then
there exists a standard member b ∈ ∗Θ such that a ∩ b 6= ∅ (for example, see the proof of
proposition 2). We can also prove that there exist exhaustive members a ∈ ∗Θ, b ∈ ∗Θ such
that a ∩ b 6= ∅.

Proposition 3. There exist two inconstant functions f1, f2 such that the intersection of f1, f2

isn’t empty.

Proof. Let f1 : I 7→ Θ and f2 : I 7→ Θ. Suppose that [fi 6= n], ∀n ∈ Θ, i = 1, 2, i. e., f1, f2 aren’t
constant. By proposition 2, these functions are nonstandard members of ∗Θ. Further consider
an indexed family F (α) for all α ∈ I such that {α ∈ I : fi(α) ∈ F (α)} ∈ U ≡ [fi] ∈ B as i = 1, 2.
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Consequently it is possible that, for some αj ∈ I, f1(αj) ∩ f2(αj) = nj and nj ∈ F (αj). 2

Thus, non-Archimedean structures are infinite DSm-models, because these con-
tain exhaustive members. In next sections, we shall consider the following non-Archimedean
structures:

1. the nonstandard extension ∗Q (called the field of hyperrational numbers),

2. the nonstandard extension ∗R (called the field of hyperreal numbers),

3. the nonstandard extension Zp (called the ring of p-adic integers) that we obtain as follows.
Let the set N of natural numbers be the index set and let Θ = {0, . . . , p− 1}. Then the
nonstandard extension ΘN\U = Zp.

Further, we shall set the following logics on non-Archimedean structures: hyperrational
valued logic M∗Q, hyperreal valued logic M∗R, p-adic valued logic MZp . Note that these many-
valued logics are the particular cases of logics on DSm models.

7.4 Hyper-valued Reasoning

7.4.1 Hyper-valued matrix logics

Assume that ∗Q[0,1] = QN
[0,1]/U is a nonstandard extension of the subset Q[0,1] = Q ∩ [0, 1] of

rational numbers and σQ[0,1] ⊂ ∗Q[0,1] is the subset of standard members. We can extend the
usual order structure on Q[0,1] to a partial order structure on ∗Q[0,1]:

1. for rational numbers x, y ∈ Q[0,1] we have x ≤ y in Q[0,1] iff [f ] ≤ [g] in ∗Q[0,1], where
{α ∈ N : f(α) = x} ∈ U and {α ∈ N : g(α) = y} ∈ U ,

i. e., f and g are constant functions such that [f ] = ∗x and [g] = ∗y,

2. each positive rational number ∗x ∈ σQ[0,1] is greater than any number [f ] ∈ ∗Q[0,1]\σQ[0,1],

i. e., ∗x > [f ] for any positive x ∈ Q[0,1] and [f ] ∈ ∗Q[0,1], where [f ] isn’t constant
function.

These conditions have the following informal sense:

1. The sets σQ[0,1] and Q[0,1] have isomorphic order structure.

2. The set ∗Q[0,1] contains actual infinities that are less than any positive rational number
of σQ[0,1].

Define this partial order structure on ∗Q[0,1] as follows:

O∗Q 1. For any hyperrational numbers [f ], [g] ∈ ∗Q[0,1], we set [f ] ≤ [g] if

{α ∈ N : f(α) ≤ g(α)} ∈ U .

2. For any hyperrational numbers [f ], [g] ∈ ∗Q[0,1], we set [f ] < [g] if

{α ∈ N : f(α) ≤ g(α)} ∈ U

and [f ] 6= [g], i. e., {α ∈ N : f(α) 6= g(α)} ∈ U .
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3. For any hyperrational numbers [f ], [g] ∈ ∗Q[0,1], we set [f ] = [g] if f ∈ [g].

This ordering relation is not linear, but partial, because there exist elements [f ], [g] ∈ ∗Q[0,1],
which are incompatible.

Introduce two operations max, min in the partial order structure O∗Q:

1. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], min([f ], [g]) = [f ] if and only if [f ] ≤ [g]
under condition O∗Q,

2. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], max([f ], [g]) = [g] if and only if [f ] ≤ [g]
under condition O∗Q,

3. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], min([f ], [g]) = max([f ], [g]) = [f ] = [g] if
and only if [f ] = [g] under condition O∗Q,

4. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], if [f ], [g] are incompatible under condition
O∗Q, then min([f ], [g]) = [h] iff there exists [h] ∈ ∗Q[0,1] such that

{α ∈ N : min(f(α), g(α)) = h(α)} ∈ U .

5. for all hyperrational numbers [f ], [g] ∈ ∗Q[0,1], if [f ], [g] are incompatible under condition
O∗Q, then max([f ], [g]) = [h] iff there exists [h] ∈ ∗Q[0,1] such that

{α ∈ N : max(f(α), g(α)) = h(α)} ∈ U .

Note there exist the maximal number ∗1 ∈ ∗Q[0,1] and the minimal number ∗0 ∈ ∗Q[0,1] under
condition O∗Q. Therefore, for any [f ] ∈ ∗Q[0,1], we have: max(∗1, [f ]) = ∗1, max(∗0, [f ]) = [f ],
min(∗1, [f ]) = [f ] and min(∗0, [f ]) = ∗0.

Now define hyperrational-valued matrix logic M∗Q:

Definition 2. The ordered system <V∗Q,¬,⊃,∨,∧, ∃̃, ∀̃, {∗1}> is called hyperrational valued
matrix logic M∗Q, where

1. V∗Q = ∗Q[0,1] is the subset of hyperrational numbers,

2. for all x ∈ V∗Q, ¬x = ∗1− x,

3. for all x, y ∈ V∗Q, x ⊃ y = min(∗1, ∗1− x+ y),

4. for all x, y ∈ V∗Q, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),

5. for all x, y ∈ V∗Q, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ V∗Q, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ V∗Q, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {∗1} is the set of designated truth values.
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The truth value ∗0 ∈ V∗Q is false, the truth value ∗1 ∈ V∗Q is true, and other truth values
x ∈ V∗Q are neutral.

Let us consider a nonstandard extension ∗R[0,1] = RN
[0,1]/U for the subset R[0,1] = R ∩ [0, 1]

of real numbers. Let σR[0,1] ⊂ ∗R[0,1] be the subset of standard members. We can extend the
usual order structure on R[0,1] to a partial order structure on ∗R[0,1]:

1. for real numbers x, y ∈ R[0,1] we have x ≤ y in R[0,1] iff [f ] ≤ [g] in ∗R[0,1], where
{α ∈ N : f(α) = x} ∈ U and {α ∈ N : g(α) = y} ∈ U ,

2. each positive real number ∗x ∈ σR[0,1] is greater than any number [f ] ∈ ∗R[0,1]\σR[0,1],

As before, these conditions have the following informal sense:

1. The sets σR[0,1] and R[0,1] have isomorphic order structure.

2. The set ∗R[0,1] contains actual infinities that are less than any positive real number of
σR[0,1].

Define this partial order structure on ∗R[0,1] as follows:

O∗R 1. For any hyperreal numbers [f ], [g] ∈ ∗R[0,1], we set [f ] ≤ [g] if

{α ∈ N : f(α) ≤ g(α)} ∈ U .

2. For any hyperreal numbers [f ], [g] ∈ ∗R[0,1], we set [f ] < [g] if

{α ∈ N : f(α) ≤ g(α)} ∈ U

and [f ] 6= [g], i.e.,{α ∈ N : f(α) 6= g(α)} ∈ U .

3. For any hyperreal numbers [f ], [g] ∈ ∗R[0,1], we set [f ] = [g] if f ∈ [g].

Introduce two operations max, min in the partial order structure O∗R:

1. for all hyperreal numbers [f ], [g] ∈ ∗R[0,1], min([f ], [g]) = [f ] if and only if [f ] ≤ [g] under
condition O∗R,

2. for all hyperreal numbers [f ], [g] ∈ ∗R[0,1], max([f ], [g]) = [g] if and only if [f ] ≤ [g] under
condition O∗R,

3. for all hyperreal numbers [f ], [g] ∈ ∗R[0,1], min([f ], [g]) = max([f ], [g]) = [f ] = [g] if and
only if [f ] = [g] under condition O∗R,

4. for all hyperreal numbers [f ], [g] ∈ ∗R[0,1], if [f ], [g] are incompatible under condition O∗R,
then min([f ], [g]) = [h] iff there exists [h] ∈ ∗R[0,1] such that

{α ∈ N : min(f(α), g(α)) = h(α)} ∈ U .

5. for all hyperreal numbers [f ], [g] ∈ ∗R[0,1], if [f ], [g] are incompatible under condition O∗R,
then max([f ], [g]) = [h] iff there exists [h] ∈ ∗R[0,1] such that

{α ∈ N : max(f(α), g(α)) = h(α)} ∈ U .
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Note there exist the maximal number ∗1 ∈ ∗R[0,1] and the minimal number ∗0 ∈ ∗R[0,1]

under condition O∗R.

As before, define hyperreal valued matrix logic M∗R:

Definition 3. The ordered system <V∗R,¬,⊃,∨,∧, ∃̃, ∀̃, {∗1}> is called hyperreal valued matrix
logic M∗R, where

1. V∗R = ∗R[0,1] is the subset of hyperreal numbers,

2. for all x ∈ V∗R, ¬x = ∗1− x,

3. for all x, y ∈ V∗R, x ⊃ y = min(∗1, ∗1− x+ y),

4. for all x, y ∈ V∗R, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),

5. for all x, y ∈ V∗R, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ V∗R, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ V∗R, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {∗1} is the set of designated truth values.

The truth value ∗0 ∈ V∗R is false, the truth value ∗1 ∈ V∗R is true, and other truth values
x ∈ V∗R are neutral.

7.4.2 Hyper-valued probability theory and hyper-valued fuzzy logic

Let X be an arbitrary set and let A be an algebra of subsets A ⊂ X, i. e.

1. union, intersection, and difference of two subsets of X also belong to A;

2. ∅,X belong to A.

Recall that a finitely additive probability measure is a nonnegative set function P(·) defined
for sets A ∈ A that satisfies the following properties:

1. P(A) ≥ 0 for all A ∈ A,

2. P(X) = 1 and P(∅) = 0,

3. if A ∈ A and B ∈ A are disjoint, then P(A ∪B) = P(A) + P(B). In particular P(¬A) =
1−P(A) for all A ∈ A.

The algebra A is called a σ-algebra if it is assumed to be closed under countable union (or
equivalently, countable intersection), i. e. if for every n, An ∈ A causes A =

⋃
n
An ∈ A.

A set function P(·) defined on a σ-algebra is called a countable additive probability measure
(or a σ-additive probability measure) if in addition to satisfying equations of the definition of
finitely additive probability measure, it satisfies the following countable additivity property: for
any sequence of pairwise disjoint sets An, P(A) =

∑
n

P(An). The ordered system (X,A,P) is

called a probability space.
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Now consider hyper-valued probabilities. Let I be an arbitrary set, let A be an algebra of
subsets A ⊂ I, and let U be a Frechet ultrafilter on I. Set for A ∈ A:

µU(A) =

{
1, A ∈ U ;
0, A /∈ U .

Hence, there is a mapping µU : A 7→ {0, 1} satisfying the following properties:

1. µU (∅) = 0, µU (I) = 1;

2. if µU (A1) = µU(A2) = 0, then µU(A1 ∪A2) = 0;

3. if A1 ∩A2 = ∅, then µU (A1 ∪A2) = µU(A1) + µU(A2).

This implies that µU is a probability measure. Notice that µU isn’t σ-additive. As an
example, if A is the set of even numbers and B is the set of odd numbers, then A ∈ U implies
B /∈ U , because the filter U is maximal. Thus, µU(A) = 1 and µU (B) = 0, although the
cardinalities of A and B are equal.

Definition 4. The ordered system (I,A, µU ) is called a probability space.

Let’s consider a mapping: f : I 3 α 7→ f(α) ∈M . Two mappings f , g are equivalent: f v g
if µU({α ∈ I : f(α) = g(α)}) = 1. An equivalence class of f is called a probabilistic events and
is denoted by [f ]. The set ∗M is the set of all probabilistic events of M . This ∗M is a proper
nonstandard extension defined above.

Under condition 1 of proposition 1, we can obtain a nonstandard extension of an algebra A
denoted by ∗A. Let ∗X be an arbitrary nonstandard extension. Then the nonstandard algebra
∗A is an algebra of subsets A ⊂ ∗X if the following conditions hold:

1. union, intersection, and difference of two subsets of ∗X also belong to ∗A;

2. ∅, ∗X belong to ∗A.

Definition 5. A hyperrational (respectively hyperreal) valued finitely additive probability mea-
sure is a nonnegative set function ∗P : ∗A 7→ V∗Q (respectively ∗P : ∗A 7→ V∗R) that satisfies the
following properties:

1. ∗P(A) ≥ ∗0 for all A ∈ ∗A,

2. ∗P(∗X) = ∗1 and ∗P(∅) = ∗0,

3. if A ∈ ∗A and B ∈ ∗A are disjoint, then ∗P(A ∪ B) = ∗P(A) + ∗P(B). In particular
∗P(¬A) = ∗1− ∗P(A) for all A ∈ ∗A.

Now consider hyper-valued fuzzy logic.

Definition 6. Suppose ∗X is a nonstandard extension. Then a hyperrational (respectively
hyperreal) valued fuzzy set A in ∗X is a set defined by means of the membership function ∗µA:
∗X 7→ V∗Q (respectively by means of the membership function ∗µA: ∗X 7→ V∗R).
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A set A ⊂ ∗X is called crisp if ∗µA(u) = ∗1 or ∗µA(u) = ∗0 for any u ∈ ∗X.

The logical operations on hyper-valued fuzzy sets are defined as follows:

1. ∗µA∩B(x) = min(∗µA(x), ∗µB(x));

2. ∗µA∪B(x) = max(∗µA(x), ∗µB(x));

3. ∗µA+B(x) = ∗µA(x) + ∗µB(x)− ∗µA(x) · ∗µB(x);

4. ∗µ¬A(x) = ¬∗µA(x) = ∗1− ∗µA(x).

7.5 p-Adic Valued Reasoning

Let us remember that the expansion

n = α−N · p−N +α−N+1 · p−N+1 + . . .+α−1 · p−1 +α0 +α1 · p+ . . .+αk · pk + . . . =

+∞∑

k=−N
αk · pk,

where αk ∈ {0, 1, . . . , p− 1}, ∀k ∈ Z, and α−N 6= 0, is called the canonical expansion of p-adic
number n (or p-adic expansion for n). The number n is called p-adic. This number can be
identified with sequences of digits: n = . . . α2α1α0, α−1α−2 . . . α−N . We denote the set of such
numbers by Qp.

The expansion n = α0 +α1 · p+ . . .+αk · pk + . . . =
∞∑
k=0

αk · pk, where αk ∈ {0, 1, . . . , p− 1},
∀k ∈ N ∪ {0}, is called the expansion of p-adic integer n. The integer n is called p-adic. This
number sometimes has the following notation: n = . . . α3α2α1α0. We denote the set of such
numbers by Zp.

If n ∈ Zp, n 6= 0, and its canonical expansion contains only a finite number of nonzero digits
αj , then n is natural number (and vice versa). But if n ∈ Zp and its expansion contains an
infinite number of nonzero digits αj , then n is an infinitely large natural number. Thus the set
of p-adic integers contains actual infinities n ∈ Zp\N, n 6= 0. This is one of the most important
features of non-Archimedean number systems, therefore it is natural to compare Zp with the
set of nonstandard numbers ∗Z. Also, the set Zp contains exhaustive elements.

7.5.1 p-Adic valued matrix logic

Extend the standard order structure on {0, . . . , p−1} to a partial order structure on Zp. Define
this partial order structure on Zp as follows:

OZp Let x = . . . xn . . . x1x0 and y = . . . yn . . . y1y0 be the canonical expansions of two p-adic
integers x, y ∈ Zp.

1. We set x ≤ y if we have xn ≤ yn for each n = 0, 1, . . .

2. We set x < y if we have xn ≤ yn for each n = 0, 1, . . . and there exists n0 such that
xn0 < yn0.

3. We set x = y if xn = yn for each n = 0, 1, . . .
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Now introduce two operations max, min in the partial order structure on Zp:

1 for all p-adic integers x, y ∈ Zp, min(x, y) = x if and only if x ≤ y under condition OZp ,

2 for all p-adic integers x, y ∈ Zp, max(x, y) = y if and only if x ≤ y under condition OZp ,

3 for all p-adic integers x, y ∈ Zp, max(x, y) = min(x, y) = x = y if and only if x = y under
condition OZp .

The ordering relation OZp is not linear, but partial, because there exist elements x, z ∈ Zp,
which are incompatible. As an example, let p = 2 and let x = −1

3 = . . . 10101 . . . 101,
z = −2

3 = . . . 01010 . . . 010. Then the numbers x and z are incompatible.

Thus,

4 Let x = . . . xn . . . x1x0 and y = . . . yn . . . y1y0 be the canonical expansions of two p-adic
integers x, y ∈ Zp and x, y are incompatible under condition OZp . We get min(x, y) =
z = . . . zn . . . z1z0, where, for each n = 0, 1, . . ., we set

1. zn = yn if xn ≥ yn,

2. zn = xn if xn ≤ yn,

3. zn = xn = yn if xn = yn.

We get max(x, y) = z = . . . zn . . . z1z0, where, for each n = 0, 1, . . ., we set

1. zn = yn if xn ≤ yn,

2. zn = xn if xn ≥ yn,

3. zn = xn = yn if xn = yn.

It is important to remark that there exists the maximal number Nmax ∈ Zp under condition
OZp . It is easy to see:

Nmax = −1 = (p− 1) + (p− 1) · p+ . . . + (p − 1) · pk + . . . =
∞∑

k=0

(p − 1) · pk

Therefore

5 min(x,Nmax) = x and max(x,Nmax) = Nmax for any x ∈ Zp.

Now consider p-adic valued matrix logic MZp .

Definition 7. The ordered system <VZp ,¬,⊃,∨,∧, ∃̃, ∀̃, {Nmax}> is called p-adic valued matrix
logic MZp, where

1. VZp = {0, . . . , Nmax} = Zp,

2. for all x ∈ VZp , ¬x = Nmax − x,

3. for all x, y ∈ VZp, x ⊃ y = (Nmax −max(x, y) + y),

4. for all x, y ∈ VZp, x ∨ y = (x ⊃ y) ⊃ y = max(x, y),



7.5. P -ADIC VALUED REASONING 199

5. for all x, y ∈ VZp, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),

6. for a subset M ⊆ VZp, ∃̃(M) = max(M), where max(M) is a maximal element of M ,

7. for a subset M ⊆ VZp, ∀̃(M) = min(M), where min(M) is a minimal element of M ,

8. {Nmax} is the set of designated truth values.

The truth value 0 ∈ Zp is false, the truth value Nmax ∈ Zp is true, and other truth values
x ∈ Zp are neutral.

Proposition 4. The logic MZ2 = <VZ2,¬,⊃,∨,∧, ∃̃, ∀̃, {Nmax}> is a Boolean algebra.

Proof. Indeed, the operation ¬ in MZ2 is the Boolean complement:

1. max(x,¬x) = Nmax,

2. min(x,¬x) = 0. 2

7.5.2 p-Adic probability theory

7.5.2.1 Frequency theory of p-adic probability

Let us remember that the frequency theory of probability was created by Richard von Mises
in [10]. This theory is based on the notion of a collective: “We will say that a collective is a
mass phenomenon or a repetitive event, or simply a long sequence of observations for which
there are sufficient reasons to believe that the relative frequency of the observed attribute would
tend to a fixed limit if the observations were infinitely continued. This limit will be called the
probability of the attribute considered within the given collective” [10].

As an example, consider a random experiment S and by L = {s1, . . . , sm} denote the set of
all possible results of this experiment. The set S is called the label set, or the set of attributes.
Suppose there are N realizations of S and write a result xj after each realization. Then we
obtain the finite sample: x = (x1, . . . , xN ), xj ∈ L. A collective is an infinite idealization of this
finite sample: x = (x1, . . . , xN , . . .), xj ∈ L. Let us compute frequencies νN (α;x) = nN (α;x)/N ,
where nN(α;x) is the number of realizations of the attribute α in the first N tests. There exists
the statistical stabilization of relative frequencies: the frequency νN (α;x) approaches a limit as
N approaches infinity for every label α ∈ L. This limit P(α) = lim νN (α;x) is said to be the
probability of the label α in the frequency theory of probability. Sometimes this probability is
denoted by Px(α) to show a dependence on the collective x. Notice that the limits of relative
frequencies have to be stable with respect to a place selection (a choice of a subsequence) in the
collective. A. Yu. Khrennikov developed von Mises’ idea and proposed the frequency theory of
p-adic probability in [6, 7]. We consider here Khrennikov’s theory.

We shall study some ensembles S = SN , which have a p-dic volume N , where N is the
p-adic integer. If N is finite, then S is the ordinary finite ensemble. If N is infinite, then S
has essentially p-adic structure. Consider a sequence of ensembles Mj having volumes lj · pj ,
j = 0, 1, . . . Get S = ∪∞j=0Mj . Then the cardinality |S| = N . We may imagine an ensemble S as
being the population of a tower T = TS , which has an infinite number of floors with the follow-
ing distribution of population through floors: population of j-th floor is Mj . Set Tk = ∪kj=0Mj .
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This is population of the first k + 1 floors. Let A ⊂ S and let there exists: n(A) = lim
k→∞

nk(A),

where nk(A) = |A ∩ Tk|. The quantity n(A) is said to be a p-adic volume of the set A.

We define the probability of A by the standard proportional relation:

P(A) , PS(A) =
n(A)

N
, (7.6)

where |S| = N , n(A) = |A ∩ S|.

We denote the family of all A ⊂ S, for which P(A) exists, by GS . The sets A ∈ GS are said
to be events. The ordered system (S,GS ,PS) is called a p-adic ensemble probability space for
the ensemble S.

Proposition 5. Let F be the set algebra which consists of all finite subsets and their comple-
ments. Then F ⊂ GS.

Proof. Let A be a finite set. Then n(A) = |A| and the probability of A has the form:

P(A) =
|A|
|S|

Now let B = ¬A. Then |B∩Tk| = |Tk|−|A∩Tk|. Hence there exists lim
k→∞

|B∩Tk| = N−|A|.
This equality implies the standard formula:

P(¬A) = 1−P(A)

In particular, we have: P(S) = 1. 2

The next propositions are proved in [6]:

Proposition 6. Let A1, A2 ∈ GS and A1 ∩A2 = ∅. Then A1 ∪A2 ∈ GS and

P(A1 ∪A2) = P(A1) + P(A2).

2

Proposition 7. Let A1, A2 ∈ GS. The following conditions are equivalent:

1. A1 ∪A2 ∈ GS,

2. A1 ∩A2 ∈ GS,

3. A1\A2 ∈ GS,

4. A2\A1 ∈ GS. 2

But it is possible to find sets A1, A2 ∈ GS such that, for example, A1 ∪A2 /∈ GS . Thus, the
family GS is not an algebra, but a semi-algebra (it is closed only with respect to a finite unions
of sets, which have empty intersections). GS is not closed with respect to countable unions of
such sets.
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Proposition 8. Let A ∈ GS, P(A) 6= 0 and B ∈ GA. Then B ∈ GS and the following Bayes
formula holds:

PA(B) =
PS(B)

PS(A)
(7.7)

Proof. The tower TA of the A has the following population structure: there are MAj elements
on the j-th floor. In particular, TAk

= Tk ∩A. Thus

nAk
(B) = |B ∩ TAk

| = |B ∩ Tk| = nk(B)

for each B ⊂ A. Hence the existence of nA(B) = lim
k→∞

nAk
(B) implies the existence of nS(B)

with nS(B) = lim
k→∞

nk(B). Moreover, nS(B) = nA(B). Therefore,

PA(B) =
nA(B)

nS(A)
=
nA(B)/|S|
nS(A)/|S| .

2

Proposition 9. Let N ∈ Zp, N 6= 0 and let the ensemble S−1 have the p-adic volume −1 =
Nmax (it is the largest ensemble).

1. Then SN ∈ GS−1 and

PS−1(SN ) =
|SN |
|S−1|

= −N

2. Then GSN
⊂ GS−1 and probabilities PSN

(A) are calculated as conditional probabilities with
respect to the subensemble SN of ensemble S−1:

PSN
(A) = PS−1(

A

SN
) =

PS−1(A)

PS−1(SN )
, A ∈ GSN

2

7.5.2.2 Logical theory of p-adic probability

Transform the matrix logic MZp into a p-adic probability theory. Let us remember that a
formula ϕ has the truth value 0 ∈ Zp in MZp if ϕ is false, a formula ϕ has the truth value
Nmax ∈ Zp in MZp if ϕ is true, and a formula ϕ has other truth values α ∈ Zp in MZp if ϕ is
neutral.

Definition 8. A function P(ϕ) is said to be a probability measure of a formula ϕ in MZp if
P(ϕ) ranges over numbers of Qp and satisfies the following axioms:

1. P(ϕ) = α
Nmax

, where α is a truth value of ϕ;

2. if a conjunction ϕ ∧ ψ has the truth value 0, then P(ϕ ∨ ψ) = P(ϕ) + P(ψ),

3. P(ϕ ∧ ψ) = min(P(ϕ),P(ψ)).
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Notice that:

1. taking into account condition 1 of our definition, if ϕ has the truth value Nmax for any its
interpretations, i. e., ϕ is a tautology, then P(ϕ) = 1 in all possible worlds, and if ϕ has
the truth value 0 for any its interpretations, i. e., ϕ is a contradiction, then P(ϕ) = 0 in
all possible worlds;

2. under condition 2, we obtain P(¬ϕ) = 1−P(ϕ).

Since P(Nmax) = 1, we have

P(max{x ∈ VZp}) =
∑

x∈VZp

P(x) = 1

All events have a conditional plausibility in the logical theory of p-adic probability:

P(ϕ) ≡ P(ϕ/Nmax), (7.8)

i. e., for any ϕ, we consider the conditional plausibility that there is an event of ϕ, given an
event Nmax,

P(ϕ/ψ) =
P(ϕ ∧ ψ)

P(ψ)
. (7.9)

7.5.3 p-Adic fuzzy logic

The probability interpretation of the logic MZp shows that this logic is a special system of fuzzy
logic. Indeed, we can consider the membership function µA as a p-adic valued predicate.

Definition 9. Suppose X is a non-empty set. Then a p-adic-valued fuzzy set A in X is a set
defined by means of the membership function µA: X 7→ Zp, where Zp is the set of all p-adic
integers.

It is obvious that the set A is completely determined by the set of tuples {<u, µA(u)> : u ∈
X}. We define a norm | · |p : Qp 7→ R on Qp as follows:

|n =

+∞∑

k=−N
αk · pk|p , p−L,

where L = max{k : n ≡ 0 mod pk} ≥ 0, i. e. L is an index of the first number distinct
from zero in p-adic expansion of n. Note that |0|p , 0. The function | · |p has values 0 and
{pγ}γ∈Z on Qp. Finally, |x|p ≥ 0 and |x|p = 0 ≡ x = 0. A set A ⊂ X is called crisp if
|µA(u)|p = 1 or |µA(u)|p = 0 for any u ∈ X. Notice that |µA(u) = 1|p = 1 and |µA(u) = 0|p = 0.
Therefore our membership function is an extension of the classical characteristic function. Thus,
A = B causes µA(u) = µB(u) for all u ∈ X and A ⊆ B causes |µA(u)|p 6 |µB(u)|p for all u ∈ X.

In p-adic fuzzy logic, there always exists a non-empty intersection of two crisp sets. In fact,
suppose the sets A, B have empty intersection and A, B are crisp. Consider two cases under
condition µA(u) 6= µB(u) for any u. First, |µA(u)|p = 0 or |µA(u)|p = 1 for all u and secondly
|µB(u)|p = 0 or |µB(u)|p = 1 for all u. Assume we have µA(u0) = Nmax for some u0, i. e.,
|µA(u0)|p = 1. Then µB(u0) 6= Nmax, but this doesn’t mean that µB(u0) = 0. It is possible
that |µA(u0)|p = 1 and |µB(u0)|p = 1 for u0.
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Now we set logical operations on p-adic fuzzy sets:

1. µA∩B(x) = min(µA(x), µB(x));

2. µA∪B(x) = max(µA(x), µB(x));

3. µA+B(x) = µA(x) + µB(x)−min(µA(x), µB(x));

4. µ¬A(x) = ¬µA(x) = Nmax − µA(x) = −1− µA(x).

7.6 Conclusion

In this chapter, one has constructed on the basis of infinite DSm models three logical many-
valued systems: MZp , M∗Q, and M∗R. These systems are principal versions of the non-
Archimedean logic and they can be used in probabilistic and fuzzy reasoning. Thus, the DSm
models assumes many theoretical and practical applications.
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