
Available online at www.sciencedirect.com
www.elsevier.com/locate/inffus

Information Fusion 9 (2008) 259–277
A Bayesian approach to fusing uncertain, imprecise
and conflicting information

Simon Maskell

QinetiQ, St. Andrews Road, Malvern, Worcestershire, WR14 3PS, UK

Received 13 July 2006; received in revised form 16 February 2007; accepted 16 February 2007
Available online 25 April 2007
Abstract

The Dezert–Smarandache theory (DSmT) and transferable belief model (TBM) both address concerns with the Bayesian methodol-
ogy as applied to applications involving the fusion of uncertain, imprecise and conflicting information. In this paper, we revisit these
concerns regarding the Bayesian methodology in the light of recent developments in the context of the DSmT and TBM. We show that,
by exploiting recent advances in the Bayesian research arena, one can devise and analyse Bayesian models that have the same emergent
properties as DSmT and TBM. Specifically, we define Bayesian models that articulate uncertainty over the value of probabilities (includ-
ing multimodal distributions that result from conflicting information) and we use a minimum expected cost criterion to facilitate making
decisions that involve hypotheses that are not mutually exclusive. We outline our motivation for using the Bayesian methodology and
also show that the DSmT and TBM models are computationally expedient approaches to achieving the same endpoint. Our aim is to
provide a conduit between these two communities such that an objective view can be shared by advocates of all the techniques.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In information fusion applications, it is the representa-
tion of uncertainty that is the key enabler to extracting
information from multi-sensor data (both co-modal data
from multiple sensors of the same type and cross-modal
data from sensors of different types). The development of
all information fusion algorithms is critically dependent
on using an appropriate method to represent uncertainty.
A number of different paradigms have been developed for
representing uncertainty and so performing data and infor-
mation fusion, which are now briefly discussed:

• Fuzzy logic [1] represents belief through the definition of
a mapping between quantities of interest and belief
functions.
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• Bayesian probability theory [2] articulates belief through
the assignment of probability mass to mutually exclusive
hypotheses.

• Dempster–Shafer theory (DST) [3] generalises Bayesian
theory to consider upper and lower bounds on
probabilities.

• The transferable belief model (TBM) [4] and Dezert–
Smarandache theory (DSmT) [5] are further generalisa-
tions (over DST) of Bayesian theory. The TBM and
DSmT represent uncertainty over the assignment of
probability to mutually exclusive hypotheses by instead
assigning probability to a power set of mutually exclu-
sive hypotheses.

• Recently, a further generalisation, involving assignment
of mass to a hyper-power set of hypotheses has been
proposed [6].

Advocates of Bayesian theory make reference to a proof
that Bayesian inference is the only way to consistently
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manipulate belief relating to a set of hypotheses [7]. Con-
versely, advocates of DST, the TBM and DSmT motivate
their approaches by the fact that given a set of hypotheses,
Bayesian inference is unable to satisfactorily manipulate
uncertain, imprecise and conflicting information [3–5]. This
paper aims to act as a conduit between these two extreme
viewpoints and the associated information fusion research
communities. The hope is that this paper acts as a catalyst
for the cross-fertilisation of ideas between these communi-
ties. The paper is intended to complement related work
that has considered how one can subsume DST, the
TBM and DSmT into a Bayesian approach [8] and
approaches based on robust Bayesian inference [9]; this
paper differs in that we explicitly consider how to devise
Bayesian models that have the same emergent properties
as analysis with DST, the TBM and DSmT.

The approach that is adopted is to accept that an initial
application of Bayesian theory to fusion problems involving
uncertain, imprecise and conflicting information is unable to
satisfactorily manipulate such information. However, rather
than attempt to redefine the method for manipulating belief
on a given set of hypotheses, we choose to change the model
definition and so the definition of the hypotheses. We show
that, by exploiting recent advances in the Bayesian analysis
of complex data (e.g. the recent development of, for exam-
ple, particle filters [10] and Markov chain Monte-Carlo algo-
rithms [11]), one can devise a rigorous Bayesian approach to
fusing uncertain, imprecise and conflicting information.
Furthermore, this approach has the same emergent proper-
ties as the TBM and DSmT, which can therefore be regarded
as computationally efficient (although approximate) imple-
mentation strategies of this Bayesian approach.1

It should be noted that, as identified by the Bayesian
community [12], model design is a critical component of
a fusion system. Strong advocates of Bayesian inference
will advocate the Bayesian methodology on the basis that
this model design is made explicit. While making this expli-
cit is useful, the problem of understanding how to design
fusion systems remains whether model design is an implicit
or explicit part of this process!

This paper is a rejection of the hypothesis that a Bayes-
ian approach cannot solve certain problems involving the
fusion of uncertain, imprecise and conflicting information.
However, the author accepts that, while this paper demon-
strates that an axiomatically consistent and robust Bayes-
ian approach can be devised for such problems, specific
system level constraints may dictate that approximations
(such as those employed in the TBM and DSmT) should
be used. The conclusions from any comparison is highly
specific to the application being considered. So, this paper
1 The implication is that since TBM and DSmT approximate the only
consistent way to manipulate beliefs, there will be scenarios where these
approximations degrade performance significantly. Conversely, there will
be scenarios where these approximations do not impact performance and
are vital in facilitating real-time processing. Understanding which class of
scenarios includes a given scenario remains an open research question.
does not attempt to consider such comparisons, but aims to
demonstrate that Bayesian approaches can and should be
included in such comparisons in the future.

The paper begins in Section 2 with a description of how
this Bayesian approach is devised. Section 3 considers sev-
eral examples of how this approach is capable fusing uncer-
tain, imprecise and conflicting information. Finally,
Section 4 concludes.

2. Bayesian approach

2.1. Belief

Suppose an event has an outcome, x, that is one of a
number of mutually exclusive hypotheses, x 2 X . Further-
more, suppose one of these hypotheses is true, while the
others are all false.

From a Bayesian (not frequentist) perspective, probabil-
ity quantifies belief. To avoid confusion with belief func-
tions, the term probability will be used from this point
hence where appropriate. The probability associated with
a hypothesis, p(x), is a number that represents which of
the mutually exclusive hypotheses we believe to be true.
This probability is always non-negative and sums to unity
across the hypotheses2:

pðxÞP 0 ð1ÞX
x2X

pðxÞ ¼ 1 ð2Þ

Unfortunately, the true event is often very complex and
cannot be modeled exactly. In such scenarios one must
consider a model, which is an approximation to the real
world. This approximation is chosen to be high enough
fidelity that it captures the complexity of the event in terms
of the parameters of interest but low enough fidelity that
the probability can be calculated. It is this model complex-
ity that is the key to the development of a Bayesian
approach to fusing uncertain, imprecise and conflicting
information (as shown in Section 3.2).

This model is the prior; it articulates the anticipated out-
come of the event before any measurements are received.
The choice of prior makes explicit all relevant knowledge
of the system under consideration. Implicit consideration
of prior knowledge as part of (for example) maximum like-
lihood modeling, is often equivalent to a specific explicit
model of prior knowledge. However, there is a danger with
implicit prior knowledge modeling that one unintentionally
can introduce strong prior knowledge implicitly, as a result
of parameterisation for example; one cannot be simulta-
neously ignorant of all parameterisations of a variable3.
2 Open and closed worlds will be considered shortly.
3 As a simple example, consider a point in a 2D plane. If one assumes all

cartesian position of the point are equally likely, this puts a non-uniform
prior on points when defined in polar co-ordinates. So, an uninformative
prior on one parameterisation is not uninformative in another
parameterisation.



S. Maskell / Information Fusion 9 (2008) 259–277 261
This disparity between the true system and the model
can lead to the model covering a subset of the potential
outcomes of the event and naturally leads to the distinction
between a closed world assumption and an open world

assumption. In a closed world, one makes the strong
assumption that the subset of events that the model caters
for are a large subset of the total set of events. Conversely,
in an open world, one admits the possibility that the true
outcome of the event is not part of the model.

It is possible to articulate an open world in a Bayesian
model. To do this, one must consider the fact that the
(closed world) model is not a complete description of the
true system as part of the open world model. More specif-
ically, one must extend the model to include a hypothesis
or set of hypotheses that represent the assumption of a
closed world model being incorrect. These hypotheses do
not need to be carefully defined, but simply need to articu-
late knowledge of the anticipated order of magnitude of
variables (as is considered in Section 3.3).

2.2. Ignorance

One often has a number of decisions, d 2 D, that can be
made and a reward4 associated with making each decision
in the case that each hypothesis is true, RðdjxÞ. An optimal
decision, dw, is then defined as one that maximises the
expected reward:

dH ¼ arg max
d

X
x2X

RðdjxÞpðxÞ ð3Þ

The decisions can have labels and these labels can be
associated with the outcome of the event. However, there
is no requirement for the labels to be mutually exclusive
or for there to be the same number of labels as there are
hypotheses.

So, one can have decisions with labels that relate to mul-
tiple hypotheses being true. Given the rewards and the
probability, the optimal decision can then be to select a
decision with a label that relates to a sets of hypotheses
(as considered in Section 3.3). Using such a formulation
a Bayesian approach can decide to claim ignorance.

It is worth noting the similarity to ideas in the TBM and
DSmT literatures (such as the pignistic transform [4]) that
involve transforming belief masses associated with ele-
ments of the power set of hypotheses to decisions relating
to the mutually exclusive hypotheses.

2.3. Uncertain belief

If we receive two independent measurements, y1 and y2,
and wish to know how to update our probability about x,
p(x), given these measurements, we can apply Bayes rule as
follows:
4 Such reward functions could be defined by an expert or could be
estimated from historic data.
pðxjy1; y2Þ ¼
pðy1jxÞpðy2jxÞpðxÞ

pðy1; y2Þ
ð4Þ

where pðxjy1; y2Þ is the updated posterior probability and
we have assumed knowledge of how likely the measured
data was given any assumed known state, x, is articulated
in the likelihoods, pðy1jxÞ and pðy2jxÞ. Note that pðy1; y2Þ is
just a normalising constant and not a function of x and
that the assumption of independent measurements has
been exploited in deriving (4).

Eq. (4) is true if pðy1jxÞ and pðy2jxÞ are exact. However,
typically, these quantities are calculated by integrating over
some other parameters, h1 and h2:

pðxjy1; y2Þ ¼
pðy1jxÞpðy2jxÞpðxÞ

pðy1; y2Þ
ð5Þ

¼
Z

pðy1; h1jxÞdh1

Z
pðy2; h2jxÞdh2

� pðxÞ
pðy1; y2Þ

ð6Þ

If the integrals in (6) are not analytically tractable
then they must be approximated and therefore the result-
ing application of Bayes rule is also approximate. If one
of the approximations is less accurate than the other then
the associated term in Bayes rule will be more uncertain.
The result is that these errors have an adverse effect
on a fusion process that assumes pðy1jxÞ and pðy2jxÞ to be
exact.

To cater for this in a Bayesian framework, one can rep-
resent the error in the integrals by considering a number of
hypotheses for the error process and so a number of
hypotheses for the true likelihood. The diversity of the
sampled likelihoods then conveys the imprecise nature of
the probability and one can fuse the hypotheses by consid-
ering trajectories through the space of samples. This use of
the diversity of a set of samples to convey imprecise infor-
mation is illustrated in Section 3.4 using a simple variant of
a particle filter [10].

2.4. Conflict

Another form of imprecise information is that resulting
from conflicting information. The imprecise nature of the
probability is manifested as there being multiple different
explanations for the data that result in very different prob-
abilities about some quantity of interest. This conflict needs
to be represented if later data are to be able to refine the
probability over which explanation is most likely.

To articulate this conflicting information in a Bayesian
context, one can consider multiple hypotheses that explain
the data, where each hypothesis has associated with it a
probability about the quantity of interest. The conflict is
then represented through the diversity of these hypotheses,
which, in the case of conflicting, rather than imprecise
information, will typically result in very different probabil-
ities about the quantity of interest. This is exemplified in
Sections 3.1 and 3.5.



Table 1
Table of Experts’ fused conclusion as a function of their probability of making an error given the data, Y, as discussed in Section 3.1

P(e) P ð�e1;�e2jY Þ P ð�e1; e2jY Þ Pðe1;�e2jY Þ Pðe1; e2jY Þ P ðM jY Þ P ðT jY Þ P ðCjY Þ
0.01 0.0013 0.4731 0.4731 0.0525 0.4859 0.4859 0.0282
0.001 0.1303 0.4347 0.4347 0.0003 0.4305 0.4305 0.1391
0.0003 0.3333 0.3333 0.3333 0.0001 0.3300 0.3300 0.3400
0.0001 0.6000 0.2000 0.2000 0.0000 0.1980 0.1980 0.6040

Table 2
Parameter values for Identification fusion considered in Section 3.2

Model Mean Variance

747 0 1
Fighter model 1 0 1
Fighter model 2 0 100
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Fig. 1. Exemplar data for scenario 1 considered in Section 3.2.
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Fig. 2. Sequential classification output for exemplar data for scenario 1
considered in Section 3.2.
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3. Examples

We now consider some examples for which a simple
application of Bayesian inference encounters difficulties,
but where, through refining the model, we are able to
resolve these issues without departing from the Bayesian
paradigm.

In this paper, the aim is to demonstrate that one can
represent uncertainty over probability in a Bayesian con-
text. To model this uncertainty in a way that is easily
articulated necessitates the use of specific algorithms in
the context of the exemplar applications. It is anticipated
that other Bayesian algorithms would be better suited to
these applications. These other algorithms would be
equivalent to modeling the uncertainty over probability.
However, these other algorithms would not be well suited
to demonstrating that a Bayesian approach can represent
uncertainty over probability. This is the motivation for
the models, algorithms and parameter values used in this
section.

3.1. Zadeh’s example

This example was proposed by Zadeh [13], and has been
used as motivation to extend Dempster–Shafer reasoning
to consider conflict and demonstrated to be solved using
the TBM [14] and DSmT [15] theories. The discussion is
reminiscent of that proposed by other authors (for example
in [16]), but the focus here on demonstrating that the issue
identified by Zadeh can be resolved without a departure
from a Bayesian context.

3.1.1. Zadeh’s problem

Two experts are consulted about a patient. The experts
diagnose the patient into three classes, (M)eningitis,
(C)oncussion and Brain (T)umor. One expert states that,
‘‘I am 99% sure it’s meningitis, but there is a small chance
of 1% that it’s concussion’’. The other expert states that, ‘‘I
am 99% sure it’s a tumor, but there is a small chance of 1%
that it’s concussion’’.
3.1.2. Solutions to Zadeh’s problem

A straightforward application of a naı̈ve Bayesian (or
Dempster–Shafer) approach results in a fused output of
there being a 100% probability of the patient having
concussion.

Zadeh argues that this is counter-intuitive and asks
how both experts could be so wrong. The author asserts
that if one trusts the experts’ abilities to calculate these
probabilities, then this fused output is correct. However,
intuition indicates that one of the experts got something
wrong.
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Fig. 5. Exemplar data for scenario 3 considered in Section 3.2.
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From a Bayesian perspective, this indicates that the
model is insufficiently complex to consider factors that
intuition indicates are important. Specifically, there is a
need to model the fact that the experts may have made
an error. It is straightforward to extend the hypothesis
space to consider the experts making such errors.

Denote ei for the hypothesis that the ith expert makes an
error and �ei for the hypothesis that the ith expert does not
make such an error. One assumes each expert was in error
with a prior probability of PðeiÞ ¼ P ðeÞ. If an expert was in
error, then the classification probabilities for that expert
are taken to be uniform across the three classes.

One can then simply apply Bayes rule to calculate the
fused classification and the posterior probability that the
experts was in error. More specifically, one can consider
each of the four combinations of experts being in error
and not. For each combination, one can calculate a fused
classification result (normalised to unity) and a weight for
that combination (equal to the sum of the unnormalised
product of the experts’ classification probabilities multi-
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Fig. 3. Exemplar data for scenario 2 considered in Section 3.2.
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Fig. 4. Sequential classification output for exemplar data for scenario 2
considered in Section 3.2.

0 100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

time

p(
cl

as
s)

747
Fighter

Fig. 6. Sequential classification output for exemplar data for scenario 3
considered in Section 3.2.
plied by the priors on whether the experts were in error).
One can then calculate the fused classification as a
weighted sum of the fused classification results. Table 1
shows this fused classification result and the posterior
probabilities of the different combinations of experts’
errors, for each of a number of values for P(e).

It is evident that P(e) needs to be very small for this
approach to draw the same conclusion as the naı̈ve Bayes-
ian fusion approach5; one needs to place a surprisingly
large amount of trust in the experts’ opinions (ie. that
one expects less than 3 in 10,000 experts to be wrong a pri-
ori) for the most probable conclusion to be that the patient
has concussion. For values of P(e) judged to be in accor-
dance with the author’s intuition, the posterior indicates
5 This example emphasises that a probability of zero is a very
informative input; if one expert calculates the probability of a hypothesis
to be zero, no weight of evidence from other experts can make this the
most likely hypothesis. Zero and nearly-zero are therefore very different
probabilities in terms of their effect on a naı̈ve Bayesian fusion algorithm.
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Fig. 7. Risk averse classification scenario 4 considered in Section 3.3:
(a) likelihood; (b) classification probabilities; (c) expected cost; (d) deci-
sions.

Table 3
Costs for scenario 4 considered in Section 3.3

Decision Class

A B

A 1 0
B 0 1

Table 4
Parameter values for decision making scenarios (scenarios 4–7) considered
in Section 3.3

Class Mean Variance

A 1 0.1
B 0 0.04
; 0.5 1

Table 5
Costs for scenario 5 considered in Section 3.3

Decision Class

A B

A 1 0
B 0 0.01
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that one of the experts was in error and that the other
expert’s judgement was correct.

Note that this shows that by extending the hypothesis
space, one can consider problems with conflict in a Bayes-
ian context. It is also worth noting that, in this example,
the same effect could be considered by simply modifying
the expert’s probabilities before applying a naı̈ve Bayesian
fusion approach. Such an approach would not take
onboard the author’s perception of the point Zadeh was
making in his paper; the experts both believe they are
correct!
3.2. Identification fusion

Motivated by some previous work used to motivate the
TBM [17], we consider the classification of an air target
into one of two classes: fighter jet and 747. We observe
accelerations and have two models, one for fighter jet
and one for 747. Crucially and in contrast to [17], we use
models that agree with our intuition: for the bulk of the
time, a fighter jet and 747 have accelerations that are drawn
from the same Gaussian distribution. However, the fighter
jet occasionally has high accelerations. We model this with
a component with small weight in a Gaussian mixture for
the fighter jet’s model, such that the only difference is that
the model for the fighter jet’s acceleration has heavier tails
than that for the 747. The parameter values are shown in
Table 2.
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Fig. 8. Risk averse classification scenario 5 considered in Section 3.3: (a)
likelihood; (b) classification probabilities; (c) expected cost; (d) decisions.
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Fig. 9. Risk averse classification scenario 6 considered in Section 3.3: (a)
likelihood; (b) classification probabilities; (c) expected cost; (d) decisions.
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Table 6
Costs for scenario 6 considered in Section 3.3

Decision Class

A B

A 1 0
B 0 1
A
S

B 0.8 0.6

Table 7
Costs for scenario 7 considered in Section 3.3

Decision Class

A B ;
A 1 0 0
B 0 1 0
; 0.4 0.4 1
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3.2.1. Scenarios 1, 2 and 3

We use bank of filters [18] to fuse data over time.6 We
consider three scenarios: the weight on the large variance
component (Fighter Model 2) in the Gaussian mixture is
respectively 0.1, 0.01 and 0.001. Exemplar data (generated
by simulating from the fighter jet model) are shown in Figs.
1, 3 and 5. The associated classification output as a func-
tion of time is shown in Figs. 2, 4 and 6. Note that the time
scales are different for scenario 3 (since the average time
between outliers is significantly longer than in scenario 1).

From an initially equal classification probability, it can
be seen that the classification output evolves towards a
probability that favours the 747 until a large amplitude
measurement is received, at which point the target is classi-
fied as a fighter jet. The evolution is at a rate that decreases
as the heavy tailed component’s weight reduces.
0

0.1

0.2

–1 –0.5 0 0.5 1 1.5 2

d

3.3. Risk averse classification

Motivated by the desire to illustrate the ability of Bayes-
ian analysis to consider an open world and articulate igno-
rance, we consider a two class problem.
A

B

Empty
3.3.1. Scenario 4
The two classes, A and B, have likelihoods relating to a

scalar parameter as shown in Fig. 7a; the likelihoods are
Gaussian with parameters tabulated in Table 4. From this,
were one to observe a value of this parameter, the classifi-
cation probabilities would be as shown in Fig. 7b. Given
the same reward for correctly classifying and misclassifying
–1 –0.5 0 0.5 1 1.5 2

Fig. 10. Risk averse classification scenario 7 considered in Section 3.3: (a)
likelihood; (b) classification probabilities; (c) expected cost; (d) decisions.

6 Note that a related Bayesian approach can be used to make the filter
efficient by adapting in response to the number of likely classes [19]. This
approach is perceived by the author to meet the same design aims as the
Transferable Belief Model, which uses the transfer of belief to achieve this
efficiency.
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Fig. 11. Risk averse classification scenario 8 considered in Section 3.3: (a)
likelihood; (b) classification probabilities; (c) expected cost; (d) decisions.

Table 8
Costs for scenario 8 considered in Section 3.3

Decision Class

A B ;
A 1 0 0
B 0 1 0
; 0.4 0.4 1
A
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Fig. 12. Classification outputs for each of 100 samples in one Monte-
Carlo run considered in Section 3.4.

Table 9
Table of parameter values used in Section 3.4

Parameter Classifier 1 Classifier 2

A B A B

Mean 0 1 1 0
Variance 0.1 0.1 0.1 0.1
Variance of mean 0.5 0.5 0.00001 0.00001

Table 10
Classification naı̈ve output considered in Section 3.4

Class Classifier 1 Classifier 2 Fused output

A 0.9526 0.0474 0.5
B 0.0474 0.9526 0.5
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a target of each type (the rewards are tabulated in Table 3),
the expected cost for two decisions, A and B are as shown
in Fig. 7c. Hence, the optimal decision for different
observed parameters is as shown in Fig. 7d. Note that there
is a boundary to one side of which the optimal decision is
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Fig. 13. Weights for each of 100 samples in one Monte-Carlo run
considered in Section 3.4.

10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

MC run

cl
as

si
fic

at
io

n 
ou

tp
ut

A
B
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Fig. 15. Components’ mixture weights sorted in order of increasing
weight, as discussed in Section 3.5.
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discussed in Section 3.5.
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that the target is a member of class A and to the other side
of which the optimal decision is that the target is a member
of class B.

3.3.2. Scenario 5
If one changes the reward structure to that shown in

Table 5 such that there is a different reward for correctly
classifying one target type than the other then the decision
boundary moves, as illustrated in Fig. 8.

3.3.3. Scenario 6

To cater for ignorance, as discussed in Section 2.2,
rather than consider an alternative methodology for
manipulating probability, one can introduce another deci-
sion with a label of A

S
B. As shown in Fig. 9, by defining

appropriate rewards (given in Table 6), this decision (that
one is ignorant) is then optimal when certain observations
are received.

3.3.4. Scenario 7
Furthermore, by introducing an open world model, ;,

which (as defined in Table 4) is a vague prior on the param-



Fig. 17. Distributions associated with three components with largest
weights, as discussed in Section 3.5.

Fig. 18. Distributions associated with three components with smallest
weights, as discussed in Section 3.5.

S. Maskell / Information Fusion 9 (2008) 259–277 269
eter value7, one can define rewards (shown in Table 7) such
that the optimal decision given certain observations is to
classify the target as not a member of A or B. This is illus-
trated in Fig. 10.

3.3.5. Scenario 8

Finally, one can combine these concepts to devise a
Bayesian approach to decision making that adopts an open
world model and can decide one is ignorant. This is exem-
plified in Fig. 11, which is based on the costs shown in
Table 8.
7 The definition of the open world model needs to make explicit any
implicit knowledge of the order-of-magnitude of the parameters. This
process of explicitly articulating this knowledge is potentially non-
intuitive. However, this knowledge must exist if one can entertain the
possibility that a closed world assumption is not valid.
3.4. Fusion of imprecise classification information

We now consider an example of fusing the output of two
Gaussian classifiers, each of which has a model for classes
Fig. 19. Received Image discussed in Section 3.6.



Fig. 20. Templates for cone considered in Section 3.6.
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A and B. We assume one of the classifiers is more impre-
cise; the estimates of its parameters have a larger variance
(perhaps due to the availability of less training data for this
classifier). The mean and variance for the models in the
classifiers together with the variance of the mean are shown
in Table 9.8

The two classifiers make a measurement of 0.2. If we use
the estimated parameter values, the classifiers output the
probabilities shown in Table 10. A naı̈ve Bayesian fusion
of these two classification outputs results in the fused out-
put shown. Note that the fused output is midway between
the two classifiers’ output, whereas, since we know that the
parameter values for classifier 2 are more accurate, one
might expect the fused output to be biased towards the out-
put of classifier 2.

We represent the uncertainty over the classifiers’ param-
eters through the diversity of 100 samples. More specifi-
cally, we employ importance sampling (a full particle
filter, with resampling, is not necessary here since we are
8 Note that, in this specific case, one could analytically integrate the
uncertainty over the mean estimate. However, the aim here is to devise an
exemplar illustration of how a Bayesian analysis can be used to fuse
imprecise information and the specifics of the example are chosen
primarily to be straightforward to understand by the target audience.
only considering two outputs9). We sample 100 samples
of the means for the two classes and the two classifiers.
For each sample, we calculate the importance weight,
which (since we have sampled from the prior) is just the
likelihood (integrating over the classes) and a classification
output.

The classification outputs for one Monte-Carlo run are
shown in Fig. 12 (sorted in decreasing order of probability
of class B). The weights are shown in Fig. 13 (sorted in the
same order as Fig. 12). It is clear that the samples with high
weights all have fused outputs that have a high classifica-
tion probability for class B.

We calculate an output by using a weighted average of
the samples’ classification outputs. The resulting output
from each of 100 Monte-Carlo runs are shown in Fig. 14.
It is clear that this output is in agreement with intuition
and is accounting for the imprecision of the information
A particle filter would be necessary if we were considering the fusion of
many classifier outputs. The model design would need to explicitly
consider whether the errors in the parameter estimates were assumed static
or could be modeled as independent errors at each timestep. If the
parameters are assumed static, then more sophisticated techniques (such
as [20] and more recent related developments) will be needed to avoid the
degeneracy issues that are encountered when naı̈vely applying particle
filters to such problems.



Fig. 21. Templates for cylinder considered in Section 3.6.
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in the fusion of the identification outputs; the fused classi-
fication output is evidently closer to that output from clas-
sifier 2.

Note that this example has assumed that we have the
ability to consider the imprecise classification output as
the result of unknown parameters of the classifier, which
we can sample. There is an argument for considering sce-
narios in which the classifier operates as a black box.
One could then consider the observed classification output
as a measurement and use likelihoods in the classification
space to model the imprecision. However, the author has
a strong preference for explicitly considering the parame-
ters of the classifier and this has motivated the example
chosen.
3.5. Conflict over belief of vector-valued continuous variables

There has been recent interest in the extension of the
TBM to consider uncertainty over real-valued quantities
[21]. In this example, we demonstrate that a Bayesian
approach to such problems is straightforward to develop
and that it trivially extends beyond the scalar real-valued
quantities considered before to representation of uncer-
tainty over vectors of real-valued quantities. This example
also demonstrates the ability of the Bayesian approach to
handle conflict.

We consider a scenario where we are interested in some
state, x. We observe y, which is the sum of x and some
measurement noise, e:

y ¼ xþ e ð7Þ

Both x and e are heavy tailed so an outlier for y can be
the result of either the process generating x or that gener-
ating e. We wish to infer the values of x and e from a single
outlying measurement of y.

We choose to represent the heavy tailed distributions for
x and e using a scale mixture of Normals [22]:

pðxÞ ¼
Z

pxðrxÞNð0; r2
xÞdrx ð8Þ

pðeÞ ¼
Z

peðreÞNð0; r2
eÞdre ð9Þ

where Nðl; r2Þ is a Normal distribution with mean l and
variance r2 and we choose pxðrÞ ¼ peðrÞ ¼ Gaðr; . . .Þ such
that p(x) and p(e) are Student-T distributed.

Our approach is to sample values for the vector valued
quantity, ½rx; re� from their priors such that, conditional
on this sample, we have a Normal distribution for the vec-
tor valued quantity [x,e]. We can then represent the uncer-



Fig. 22. Templates for sphere considered in Section 3.6.
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tainty over the probability associated with this vector real-
valued quantity using a mixture of these Normal distribu-
tions. The weights of the mixture components and the
posterior values for the mean and variance of the compo-
nents are then calculated using a standard Kalman filter.

Fig. 15 shows the components’ mixture weights sorted in
order of increasing weight. Fig. 16 shows the values of rx

and re for these components (sorted in the same order).
Note that there is a trend for the components with the high
weight to have smaller scales but that there is not a strong
preference as to which process caused the outlier; the
conflict regarding the potential causes for the outlier is
represented. Finally, to emphasise that this process is rep-
resenting uncertainty over vector real-valued quantities,
Fig. 17 and 18 respectively show the prior distribution over
the joint space of [x,e] for the three components with the
highest weights and the three components with the lowest
weights.10 Note that the components with high weight have
a large variance in one direction and that the components
with low weight all have low variances in both directions.
10 The careful reader will note that, while in this specific example, the
posterior is nonzero on a scalar subspace of the vector since the posterior
is nonzero on the line y ¼ xþ e, this is a feature of the specific example
and the approach can readily be used in higher-dimensional vector valued
problems such as those previously considered in a tracking context [23].
3.6. ATR fusion

In the last set of results, we consider a challenging
unclassified automatic target recognition (ATR) task
similar to that considered previously [24]. We observe
imagery (silhouettes) of a target that is one of: cone, hemi-
sphere, sphere or cylinder. There are viewpoints where all
four classes project to a circle on the image plane. We
assume we know the azimuth, elevation and range of
the target and that the classes are such that the objects
project to the same circle at these viewpoints. This sce-
nario is designed such that given imagery of a circle, we
cannot identify the target: it is only when the target
changes orientation that we can potentially identify the
target.

We generate nine points uniformly over the surface of a
unit sphere11 and use the resulting points to define look
directions. For each look direction and for each class, we
We sample the points randomly over the surface of a sphere and then
iteratively adjust the positions of the points. Each pair of points mutually
repel one another with a force that is aligned with the vector between them
and decays with the square of the distance that the points are apart. The
points are constrained to move on the unit sphere. The procedure
terminates when the distance moved by any point is less than a given small
distance.



Fig. 23. Templates for hemisphere considered in Section 3.6.
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generate a template silhouette. This template library is
available to the classification algorithm. Exemplar tem-
plates used are shown in Figs. 20–23.

We do not model the error process using the sum
squared difference for all pixels in the silhouette proposed
in [25] and used in [24]. Instead, we assume that the vector
of pixel values comprising the image, d, is a non-linear
function of the look angle, h, but a linear function of the
derived template silhouette, Gh plus zero-mean Gaussian
noise, e:

d ¼ AGh þ e ð10Þ

From this model, by putting a uniform prior on A and a
Jeffrey’s prior on the variance of e, one can derive the fol-
lowing posterior:

pðhjdÞ / 1

jGT
h Ghj

� ðdTd � dTGhðGT
h GhÞ�1GT

h dÞ�
N2

2 þ1
� �

ð11Þ

where d is assumed to be the vector of pixel values for an
N � N pixel image. We find the principled derivation of
the likelihood appealing and have found experimentally
that it outperforms the sum squared difference approach.
Note that if the templates Gh are normalised to have unit
energy (such that GT

h Gh ¼ 1) then (11) is maximised at
the same point as a correlator that calculates dTGh. How-
ever, in contrast to such correlators, (11) can be considered
to be a likelihood (with respect to h), making it possible to
fuse independent measurements by simply multiplying the
likelihoods.

One way to perform ATR in this scenario is to
consider a hidden Markov model (HMM) with
hidden states that relate to each of the sampled look
directions.

We consider an application where the system is provided
a sequence of identical images which are all low-noise. The
image used, simulated from a cone viewed from an angle
near to those that would project to a circle, is shown in
Fig. 19.

The results obtained from applying a HMM to this
problem of fusing data from the 10 time steps are shown
in Fig. 24 where nine Monte-Carlo runs are shown (with
different template sets). The elements of the transition
matrix used are calculated from considering each state to
correspond to a point on the surface of a sphere. A random
walk over this surface is then used to calculate the transi-
tion probabilities. The intensity of the random walk is such
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Fig. 24. Fusion output using a HMM considered in Section 3.6.
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that the standard deviation of the change in viewing angle
between each of the 10 time steps is 0.1�.

Note that, in run 6, the fusion of the images results in
an increasingly confident classification output. This con-
tradicts intuition since there is little new information
contained in the last nine images. This comes about
because the HMM is approximating the difference
between the observed image and the templates as noise.
In fact, in this scenario, the errors are dominated by
the disparity between the look directions for which the
templates are defined and the look direction associated
with the imagery.

To model this quantisation error, we consider the look
direction to be a continuous (multivariate) variable defin-
ing the look direction, rather than the discrete variable
used in the HMM approach. We consider each of the tem-
plate silhouettes as being associated with a value of this
continuous variable. We therefore pose the problem in
terms of a regression from look direction to observed
imagery.

To model the dependence of the imagery on the look
direction, we use a Gaussian process [26]. A Gaussian pro-
cess is simply a generalisation of a multivariate Gaussian
distribution to an infinite set of variables, each of which is
associated with a continuous value of the look direction.
The covariance structure of the variables is then parameter-
ised succinctly. In this specific application, the joint distri-
bution of a pixel value for two look directions, gh1

and gh2
is:

pðgh1
;gh2
Þ¼N

0:5

0:5

� �
;s

1 exp �jh1�h2j
r

� �

exp �jh1�h2j
r

� �
1

2
64

3
75

0
B@

1
CA
ð12Þ

where Nðl;RÞ is a multivariate Gaussian with a mean of l
and a covariance of R, r is a scaling parameter in distance
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Fig. 25. Fusion output using a particle filter considered in Section 3.6.

12 The reader interested in understanding the details of how to implement
a particle filter with such models is referred to [10] and the many other
tutorials on the subject.
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between points and |D| is the size of the vector D (calculated
as the angle between the two look directions). The images
that have been shown all have zero entries where the image
is black and one where the image is white. s is chosen such
that, in the presence of no other knowledge, the prior for
the pixel in the image has a covariance equal to that of
the template images.

We can then form a joint distribution on an unknown gh

and the template silhouette’s pixels gh1
. . . ghN

. Hence, we
can produce a distribution for pðghjgh1

� � � ghN
; h1 � � � hN ; hÞ.

So, given the templates, their associated look angles and
an unseen look angle, we can produce a distribution on
the template for this unseen look angle. Note that the pixels
comprising the image are modelled as being the result of
independent Gaussian processes (with the same spatial sta-
tistics) and that we apply a nonlinear map (based on hyper-
bolic tangent) to image intensities (to cater for the fact that
the intensities are binary in the templates.
We apply this technique with a value for r of 45�; this is
the scale of look directions over which we assume the
images are constant and is much bigger than our assumed
change in aspect between images.

We use an SIR particle filter to perform inference with
100 particles with the likelihood defined by (12) and the
same dynamics as used to define the HMM.12

Brief pseudo-code (assuming we have the same template
library, as used by the HMM, i.e. templates, T LðcÞ, for each
class, c, associated with each of a number of known look
directions, hL) for the particle filter implementation is as
follows:



• FOR each particle, i ¼ 1 . . . P
– Initialise particle’s look directions with hi

0 (uniformly distrib-
uted over sphere)

– Initialise particle’s template library, T i
0 ¼ ;

– FOR each class, i ¼ 1 . . . C

* Initialise weights, wi;j
0 ¼ ðPCÞ�1

– END FOR

• END FOR
• FOR each timestep, t ¼ 1 . . . T

– FOR each particle, i ¼ 1 . . . P

* Sample look direction, hi
t � pðhtjhi

t�1Þ
* Sample a class, cq, uniformly

* Form Gaussian process Covariance using (12) for template
seen from hi

t given hi
1:t�1 and hL

* Sample Tq from Gaussian process (using covariance, T i
t�1

and T LðcIÞ)
* Augment template library: T i

t ¼ fT I; T i
t�1g

* FOR each class, c ¼ 1 . . . C
– Evaluate Gaussian process, pc, for Tq given T LðcÞ

and T i
t�1

– Calculate likelihood, l, using (11)
– Calculate weight as wi;j

t ¼ wi;j
t�1

pcl
pcI

* END FOR

– END FOR
– Normalise weights
– Output classification probabilities as pðcjy1:tÞ �

P
iw

i;j
t

– Resample if necessary

• END FOR
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The results are shown in Fig. 25. It is clear that the tech-
nique addresses the concern with the HMM; a Bayesian
approach that models the quantisation error does not
change its classification probabilities so significantly as
new measurements with little new information content are
received.
4. Conclusions

It has been shown that a Bayesian approach can fuse
uncertain, imprecise and conflicting information. Examples
have emphasised the importance of model definition.
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