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Abstract

Recently, egocentric activity recognition has attracted considerable attention in the pattern recognition and artificial
intelligence communities because of its widespread applicability to human systems, including the evaluation of dietary
and physical activity and the monitoring of patients and older adults. In this paper, we present a knowledge-driven
multisource fusion framework for the recognition of egocentric activities in daily living (ADL). This framework employs
Dezert–Smarandache theory across three information sources: the wearer’s knowledge, images acquired by a wearable
camera, and sensor data from wearable inertial measurement units and GPS. A simple likelihood table is designed to
provide routine ADL information for each individual. A well-trained convolutional neural network is then used to produce
a set of textual tags that, along with routine information and other sensor data, are used to recognize ADLs based on
information theory-based statistics and a support vector machine. Our experiments show that the proposed method
accurately recognizes 15 predefined ADL classes, including a variety of sedentary activities that have previously been
difficult to recognize. When applied to real-life data recorded using a self-constructed wearable device, our method
outperforms previous approaches, and an average accuracy of 85.4% is achieved for the 15 ADLs.

Keywords: Egocentric activity recognition, Activity of daily living, Multisource fusion, Knowledge-driven model,
Dezert–Smarandache theory

1 Introduction
In recent years, a variety of camera-based smart wear-
able devices have emerged in addition to smart watches
and wristbands, such as Google Glass, Microsoft Sense-
Cam, and Narrative. These wearables usually contain not
only a camera, but also other sensors such as inertial
measurement units (IMUs), global positioning system
(GPS), temperature sensors, light sensors, barometers,
and physiological sensors. These sensors automatically
collect video/image, motion/orientation, environmental,
and health data. Because these data are collected from
the viewpoint of the wearer, they are called egocentric or
first-person data. Tools for the automatic analysis and
interpretation of egocentric data have been developed
and applied to healthcare [1, 2], rehabilitation [3], smart
homes/offices [4], sports [5], and security monitoring

[6]. Egocentric activity recognition has now become a
major topic of research in the fields of pattern recogni-
tion and artificial intelligence [7, 8].
Traditional methods of egocentric activity recognition

often utilize motion sensor data from the IMU only and
process these data using conventional classification tech-
niques [9]. However, the performance of motion-based
methods depends on the location of the IMU sensor on
the body, and the classification accuracy tends to be
lower when used to distinguish more complex activities
in daily living (ADL), especially for certain sedentary
activities. A wearable camera can provide more ADL in-
formation than motion sensors alone. Therefore, vision-
based activity recognition using a wearable camera has
become the focus of research in the field of egocentric
activity recognition [10, 11].
In recent years, with the continuous development of the

deep learning framework, the accuracy of image/video
recognition has been improved greatly, and numerous
vision-based activity recognition methods, such as deep
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learning, have emerged [12–14]. It has been reported that
deep learning achieved a performance improvement of
roughly 10% over the traditional trajectory tracking
methods [14]. Although there has been significant pro-
gress in egocentric ADL recognition, the performance of
vision-based methods is still subject to a number of con-
straints, such as the location of the wearable camera on
the human body, image quality, variations in lighting con-
ditions, occlusion, and illumination. In practical applica-
tions, no single sensor can be applied for all possible
conditions. A common practice to avoid the risk of mis-
recognition by a single sensor is to fuse multiple recog-
nition results for the same target from different
sensors. Therefore, efforts have been made to combine
vision and other sensor data for egocentric ADL recog-
nition. For example, egocentric video and IMU data
captured synchronously by Google Glass were used to
recognize a number of ADL events [15]. Multiple
streams of data were processed using convolutional
neural networks (CNNs) and long- and short-term
memory (LSTM), and the results were fused by max-
imum pooling. The average accuracy for 20 distinct
ADLs reached 80.5%, whereas using individual video
and sensor data only yielded accuracies of 75% and
49.5%, respectively. In [16], the dense trajectories of
egocentric videos and temporally enhanced trajectory-
like features of sensor data were extracted separately
and then fused using the multimodal Fisher vector ap-
proach. The average recognition accuracy after fusion
was 83.7%, compared to 78.4% for video-only and
69.0% for sensor-only data. These results show that, for
egocentric ADL recognition, it is beneficial to integrate
IMU sensors and cameras at both the hardware and
algorithm levels.
Some commonly used multisource fusion methods

include Bayesian reasoning, fuzzy-set reasoning, expert
systems, and evidence theory composed of Dempster–
Shafer evidence theory (DST) [17] and Dezert–Smaran-
dache theory (DSmT) [18]. Among these methods, DST
and DSmT have a simple form of reasoning and can rep-
resent imprecise and uncertain information using basic
belief assignment functions, thus mimicking human
thinking in uncertainty reasoning. By generalizing the
discernment framework and proportionally redistribut-
ing the conflicting beliefs, DSmT usually outperforms
DST when dealing with multisource fusion cases with
conflicting evidence sources.
In egocentric ADL recognition using evidence theory,

an activity model is often required to convert the activity
data or features from different sources to the basic belief
assignment (BBA). Generally, activity models can be di-
vided into two types: data-driven and knowledge-driven
[19]. Most ADLs have certain regularities because they
occur at a relatively fixed time and place, and interact

with a fixed combination of objects. As a result, abun-
dant information about when, where, and how ADLs
occur can be used to establish a knowledge base. There-
fore, for ADL recognition, the knowledge-driven model
is more intuitive and potentially powerful. Although no
special knowledge-driven model for egocentric ADL re-
cognition currently exists, some knowledge-driven
models have been established in fields such as ADL
recognition in smart homes, e.g., descriptive logic model
[20], event calculus model [21], and activity ontology
model [22]. Although these models offer semantic clarity
and logical simplicity, they are usually complex. Users
must contact the developers to convert their own daily
routines into model parameters. Considering that this
kind of model is best created by the wearers themselves,
the current methods for knowledge representation re-
quire substantial simplification to improve their usability
and adaptability for egocentric ADL recognition.
In this study, we propose a new knowledge-driven mul-

tisource fusion framework for egocentric ADL recognition
and apply it to egocentric image sequences and other sen-
sor data captured by a self-developed chest-worn device
(eButton) [23] for diet and physical activity assessment.
The main contributions of this study are as follows:

(1) A knowledge-driven multisource fusion framework
based on DSmT is established for the fusion of prior
knowledge, vision-based results, and sensor-based
results. This framework enables the accurate recog-
nition of up to 15 kinds of ADLs, including a variety
of sedentary activities that are hard to recognize
using traditional motion-based methods, e.g., com-
puter use, meetings, reading, telephone use, wat-
ching television, and writing.

(2) The proposed knowledge-driven ADL model can be
established by the device user. Previously, users
were required to consult with an expert who could
represent the user’s life experience quantitatively
using certain index values. Our framework simpli-
fies this process significantly, allowing individuals to
express their ADL routines using a set of simple
association tables.

(3) A novel activity recognition algorithm based on
egocentric images is proposed. With the help of
“bags of tags” determined by CNN-based automatic
image annotation, the complex image classification
task is reduced to a text classification problem.
Furthermore, the entropy-based term frequency-
inverse document frequency (TF-IDF) algorithm is
used to perform feature extraction and ADL
recognition.

The remainder of this paper is organized as follows.
Our methods for ADL recognition are described in
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detail in Section 2. A series of experimental results de-
monstrating the performance of the proposed frame-
work are presented in Section 3. The comparison with
existing methods is shown in Section 4. Finally, we con-
clude this paper in Section 5 by summarizing our
approach and results and discussing some directions for
future research.

2 Methods
Our multisource ADL recognition method is illustrated
in Fig. 1. Conceptually, it consists of four main compo-
nents: (1) basic information about the ADL routines of
an individual (the user of the wearable device) is
acquired using a “condition–activity” association table,
(2) a CNN-based automatic image annotation pre-classi-
fies the textual results using an entropy representation,
(3) a set of motion and GPS data is processed and
pre-classified using a support vector machine (SVM),
and (4) a final classification is performed analytically by
fusing the pre-classified results represented in terms of
BBAs based on the DSmT framework.

2.1 BBA of user knowledge
It is widely accepted that “the person who knows you
the best is yourself,” although this is not universally true
(e.g., a doctor may know better regarding illnesses).
Nevertheless, people know their own lifestyle and ADL

routines far better than other people or a computer.
Therefore, we develop a knowledge-driven ADL model
that can be established by the user of a wearable device.
Previously, such a model would require the person to
consult an expert who represents the user’s life experi-
ence quantitatively using certain index values [20–22].
In our framework, we simplify this process significantly
to allow individuals to express their ADL routines using
a set of simple association tables.
Let us consider r sources of information ɛ1, ɛ2, …, ɛr.

As each source may contain multiple information en-
tities, each source ɛi is represented as a vector. With this
definition, we represent pairwise relationships (ɛi, ɛj)
from the r sources as a rectangular matrix. The matrix
entry in row ɛi and column ɛj expresses the strength (a
positive number) of the relation between these two ele-
ments. As the relationship between the two elements is
not commutative, i.e., A leads to B does not imply B
leads to A, the relationship matrix for (ɛi, ɛj) is generally
asymmetric. As an important special case, (ɛi, ɛj) for i = j
represents the relationships among the elements of ɛi.
According to Zintik and Zupan [24], all (ɛi, ɛj) can be
tiled into a large, sparse global matrix.
As our knowledge-driven model runs under the frame-

work of the Dezert–Smarandache theory, all activity-re-
lated conditions (e.g., time, place, order of occurrence)
must be specified through the construction of numerical

Fig. 1 Architecture of the proposed method

Yu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:14 Page 3 of 23



BBAs. Thus, if we view the ADLs and the conditions as
different information sources, we can use the above the-
oretical framework to represent ADLs in relationships
with certain conditions, including their time, place, and
order of occurrence, and then fill the pairwise matrices
(or tables) numerically. In our application, we require a
simple and intuitive form that can be used by individ-
uals. Therefore, we design each matrix as an association
table containing integer values from 0 (impossible) to 10
(assured). For example, to represent one’s ADLs at dif-
ferent clock times, a hypothetical individual’s time–activ-
ity table is presented in Table 1. In this table, the wearer
can adjust the time period according to his/her daily
routine, especially activities with relatively clear start
times, such as getting up, starting work, leaving work,
and sleeping. Multiple time–activity tables may be re-
quired for weekdays and weekends/holidays (see the ex-
amples in Appendixes 1 and 2). Similarly, a location–
activity table and an activity transition table (i.e., a table
specifying the previous activity and the current activity)
can be designed to further enrich the knowledge-driven
model. Our experiments indicate that such tables can be
completed quickly with little training.
Considering that the BBA value for each activity

should be between 0 and 1 (see Section 2.4), we apply
row-wise normalization according to the sum of all inte-
ger values in that row. For the example in Table 2, if the
clock time is 21:18:00, the corresponding BBA is con-
structed by dividing all integer values in the “21:01–
22:00” row by the sum of these values.

2.2 BBA of images
In our case, activity recognition from egocentric images
must be performed indirectly, because the person wear-
ing the camera is unlikely to appear in the images. We
perform the recognition task using the concept of a

combination of objects (CoO) [25, 26]. For example,
“computer use” is likely to have a CoO consisting of a
computer, monitor, screen, keyboard, and table. When
this CoO is fully or partially observed, the underlying ac-
tivity can be guessed with a certain degree of confidence.
In this study, the two main steps for ADL recognition
using the CoO concept are (1) extraction of CoO and
(2) construction of an ADL classifier. These steps are de-
tailed below.

2.2.1 Semantic feature extraction by CNN
In this study, we are mainly concerned with whether
ADL-related objects are present in the input image, ra-
ther than their order of presentation (although the order
may also carry some information). Ignoring the order,
we perform the CoO detection task in two steps. In the
first step, all objects in the input image are detected and
represented in the form of a textual list. This is essen-
tially a process of automatic image annotation. In the
second step, we check whether there is a CoO corre-
sponding to a particular ADL in the list.
Recently, with the continuous development of the

deep learning framework, automatic image annotation
can produce impressive image annotation results with
the aid of well-trained CNNs. A CNN is a class of deep,
feed-forward artificial neural networks that generally in-
clude a convolutional layer, a pooling layer, and a fully
connected layer. Some well-known pre-trained CNNs in-
clude AlexNet [27], VGGNet [28], and ClarifaiNet [29,
30] which are pre-trained using a large image database
such as ImageNet [31]. The typical process of automatic
image classification and annotation using the pre-trained
CNN is shown in Fig. 2 (considering the VGG-16 net-
work in VGGNet as an example). The output of the
automatic image annotation is a series of textual tags,
which can be defined as “bag of tags” (BoTs). As the

Table 1 Sample time–activity table

Time period Cleaning Computer use Eating Entertainment Lying down Meeting Reading …* Watching TV Writing

0:01–6:50 0 0 0 0 10 0 0 … 0 0

6:51–7:20 2 2 10 0 0 0 3 … 0 1

7:21–7:30 0 0 0 0 0 0 0 … 0 0

… … … … … … … … … … …

21:01–22:00 2 10 1 0 0 0 3 … 9 2

22:01–00:00 1 10 2 0 5 0 0 … 9 0

*Six columns (indicated by “…”) are omitted in the table, namely “shopping,” “talking,” “telephone use,” “transportation,” “walking outside,” and “washing up”

Table 2 BBA values of the user-provided knowledge of ADLs, based on Table 1 and a time stamp of 21:18:00

Time period Cleaning Computer use Eating Entertainment Lying down Meeting Reading …* Watching TV Writing

21:01–22:00 0.0488 0.2439 0.0244 0 0 0 0.0732 … 0.2195 0.0488

*Six columns (indicated by “…”) are omitted in the table, namely “shopping,” “talking,” “telephone use,” “transportation,” “walking outside,” and “washing up”
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BoTs are extracted from a specific image, it can be
regarded as the high-level semantic feature of the image.
After comparison, we find that the textual tags ex-

tracted by ClarifaiNet are more consistent with the ob-
jects in the images of our egocentric dataset. Therefore,
we use ClarifaiNet and adopt a process exemplified in
Fig. 2 to obtain the BoTs of each frame in the egocentric
image sequence, i.e.,

BoTsi ¼ CNNClarifaiNet Iið Þ ¼ Ti
1;T

i
2;…;Ti

L

� � ð1Þ

where Ii is the ith frame in the image sequence, T is
the extracted tag, and L is the number of tags extracted
from one frame of the image (when using ClarifaiNet,
the default value of L is 20). An example of BoTs is
shown in Table 3, and the images corresponding to these
BoTs are shown in Fig. 3.

2.2.2 BBA construction from BoTs
As mentioned above, CNN-produced BoTs can be
regarded as a high-level semantic feature from the spe-
cific egocentric image. Hence, it can be used in the clas-
sification of the ADL corresponding to the image. For
example, the tags in Table 3 correspond to two ADLs,
“computer use” and “eating.” We can select certain key-
words to represent these activities, e.g., “computer use”
can be represented by the set {“computer,” “technology,”

“laptop,” “keyboard,” “internet”} and “eating” corre-
sponds to the set {“food,” “meat,” “cooking,” “plate”}.
Table 3 also indicates that both sets contain some less
general or non-distinctive tags such as “no person,”
“people,” and “indoors.” Moreover, there may be substan-
tial differences among the tags extracted from the same
activity class because of different image contexts and ac-
quisition parameters (e.g., distance, view angle). Therefore,
the classification accuracy depends on selecting tags that
not only describe the target activity within a class, but also
distinguish activities across classes.
With the BoTs constructed in this way, ADL recognition

from egocentric images becomes a semantic textual classi-
fication task. We approach this task using the vector space
model [32] to represent BoTs and establish a text classi-
fier. First, we compute the term frequency-inverse docu-
ment frequency (TF-IDF) measure, which is widely used
for weighting textual features, given by [33]

tf i; j � idf i ¼
ni; jP
knk; j

� log
Dj j

j : ti∈d j; d j∈D
� ��� ��þ 1

ð2Þ

where tfi, j and ni, j denote the term frequency and num-
ber of occurrences of ti in document dj, respectively;
∑knk, j is the sum of the occurrences of all terms in
document dj (i.e., the total number of terms); idfi is the
inverse document frequency (a measure of whether the

Fig. 2 The typical process of automatic image classification and annotation using pre-trained CNN

Table 3 BoTs produced by ClarifaiNet for the egocentric images in Fig. 3

Image
no.

BoTs

1 2 3 4 5 6 7 …

a Computer Technology Business Laptop People Indoors Keyboard …

b Computer Technology Keyboard Internet Laptop Business Electronics …

c Room No person Table Business Computer Indoors Office …

d Computer Technology Laptop Internet No person Business Keyboard …

e Food People Knife Indoors Meat Restaurant Cooking

f Food No person Meat Fish Dinner Meal Plate …

g Food Indoors People Knife Sugar Fruit Cooking …

h People Indoors Container Drink Food Table Tableware …
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term is common or rare across all documents) of term
ti; |{j : ti ∈ dj, dj ∈D}| is the number of documents con-
taining term ti in document set D; and |D| is the num-
ber of documents in D. Note that (2) does not apply to
the case where the document set contains different types
of documents, i.e., it cannot be used directly to classify a
BoT set containing different ADLs. To apply TF-IDF to
document sets containing multiple types of documents, a
number of modified algorithms have been developed, in-
cluding bidirectional normalization for the term frequency
[34], constraints imposed by the mutual information [35],
and the application of information entropy [36]. The
entropy-based TF-IDF generally provides better classifica-
tion because the statistical features of the terms among
different types of documents can be well-represented by
the information entropy. We modify the entropy approach
by adding an inter-class entropy factor e1i, k and an intra-
class entropy factor e2i to (2). This allows the BoT classi-
fier to “compact” the intra-class activities while “separat-
ing” inter-class activities, as described below.
Assuming that the total number of the ADLs to be

classified is K, the corresponding egocentric image set is
A = {A1, A2, … , AK}. For the kth activity Ak ∈A, the total
number of images is |Ak| and all BoTs extracted from
each image in Ak constitute the BoT subset BAk ¼ fB1;

B2;…;BjAk jg. For the BoT set of A, we then have BA ¼ f
BA1 ;BA2 ;…;BAk ;…;BAK−1 ;BAK g with jAj ¼PK

k¼1 jAk j. As-
sume that there are N unique tags T = {T1,T2, … ,TN} in
BA. For any tag Ti ∈ T, its inter-class entropy factor for
BAk , called e1i, k, can be defined as

e1i;k ¼ −
XAkj j

j¼1

C Bj;Ti
� �

C BAk ;Tið Þ � log2
C Bj;Ti
� �

C BAk ;Tið Þ
ð3Þ

where C(Bj,Ti) is the number of occurrences of tag Ti in
Bj (i.e., the jth subset of BAk ), given by

C Bj;Ti
� � ¼X

l
T i ¼¼ Bj lð Þ
� �

; Bj∈BAk ; ð4Þ

where the double equation signs denote “whether the
two operands are equal,” resulting in a binary output for
the bracketed variable. Using (4), CðBAk ;TiÞ can be
expressed as

C BAk ;Tið Þ ¼
XAkj j

j¼1

C Bj;Ti
� �

: ð5Þ

The intra-class entropy of Ti for BA, called e2i, can be
defined as

e2i ¼ −
XK
k¼1

D BAk ;Tið Þ
D BA;Tið Þ � log2

D BAk ;Tið Þ
D BA;Tið Þ ð6Þ

where DðBAk ;TiÞ is the number of BoTs containing tag
Ti in subset BAk , defined as

D BAk ;Tið Þ ¼ j : Ti∈Bj; Bj∈BAk

� ��� ��: ð7Þ
From this definition of DðBAk ;TiÞ , we can express

D(BA,Ti) as

D BA;Tið Þ ¼
XK
k¼1

D BAk ;Tið Þ

¼
XK
k¼1

j : Ti∈Bj; Bj∈BAk

� ��� ��: ð8Þ

It can be observed from (3) that e1i, k is used to
describe the distribution of tag Ti in BAk , which cor-
responds to the particular activity Ak. Moreover, the
more uniform the distribution of Ti in BAk , the lar-
ger the value of e1i, k and, consequently, the greater
the contribution of the Ti to the classification of ac-
tivity Ak. Similarly, in (6), e2i is used to describe the
distribution of tag Ti across the BoT subsets in BA,
which corresponds to all different activities. When
e2i reaches its maximum, however, the Ti are

Fig. 3 Examples of egocentric images of different activities. a–d are the egocentric images of “computer use”; e–h are the egocentric images of “eating”
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uniformly distributed among the BoT subsets in BA,
which means that Ti has no ability to distinguish dif-
ferent activities. Therefore, the value of e2i is in-
versely proportional to its contribution to the
classification, which is the opposite of e1i, k. Balan-
cing these two effects, the entropy-based TF-IDF is
given by

tf i;k � idf i � e1i;k � R e2ið Þ ¼ tf i;k � idf i � e1i;k
� 1−

e2i
log2K þ λ

	 

ð9Þ

where R(e2i) = 1 − e2i/(log2K + λ) is used to remap e2i
so that its value is proportional to the contribution in
the classification. The parameter λ is an empirically
determined small positive constant that guarantees
R(e2i) > 0.
Using (9), the BoT classifier can be obtained by appl-

ying a suitable training procedure. Specifically, the
entropy-based TF-IDF weight of each tag in the sample
BoT set is calculated, and the M tags with the highest
weight values are extracted from BAk to form the class
center vector ζk corresponding to activity Ak. All class
center vectors constitute the BoT classifier, given by

ClassifierB ¼ ζ1; ζ2;…; ζk ;…; ζKf g: ð10Þ

An example of the BoT classifier is presented in
Table 4.
When using the classifier defined in (10), the cosine

similarity between the input BoT and the center vec-
tor of each class (i.e., ζk) can be calculated, and the
class whose center is closest to the input is assigned
as the classification result. In addition, as the cosine
similarity is between 0 and 1, it can be directly used

to form the BBA for images; an example of this can
be seen in the third row (BBA of image) of Table 6.

2.3 BBA of IMU and GPS sensors
For IMU sensors, the output data are multiple 1-D
waveforms that can be processed using traditional pat-
tern recognition methods [9]. First, the data are divided
into non-overlapping segments, and the structural and
statistical features of each segment are extracted. These
features are used to train a classifier. The training ends
when a certain stopping criterion is met.
IMU sensors include an accelerometer and a gyro-

scope, each producing three traces of signals in the
x-, y-, and z-axes. These signals are divided into 3-s
segments without overlapping. To synchronize them
with the corresponding images, each segment is cen-
tered around the time stamp in the image data. The
features extracted in each segment include the mean,
standard deviation, correlation, signal range (differ-
ence between maximum and minimum), root mean
square, signal magnitude area [37], autoregressive
coefficients (calculated up to the sixth order), and
the binned distribution (selected to be 10) [38].
These features are combined with the GPS velocity
and coordinates (if unavailable, the most recent GPS
data are used) to form 127-dimentional feature vec-
tors that are fed into a multiclass SVM for training
and classification.
Support vector machine (SVM) [39] is a supervised

machine learning method widely used in classification
and regression analysis. SVM can improve the
generalization ability of a learning machine by minimiz-
ing the structural risk; hence, it can also yield reason-
ably good statistical rules for a relatively small sample

Table 4 Example of the BoT classifier

Activity ζk with the entropy-based TF-IDF value

1 2 3 4 5 6 …

Computer use Keyboard Monitor Screen Internet Electronics Laptop …

0.4328 0.3792 0.3255 0.3127 0.3071 0.2662 …

Eating Food Drink Restaurant Dinner Cooking Bowl …

0.3678 0.3286 0.3240 0.2894 0.2594 0.2361 …

Shopping Stock Market Shopping Shop Merchandise Supermarket …

0.4216 0.4185 0.4079 0.3363 0.2724 0.2373 …

Washing up Bathroom Wash Bath Hygiene Faucet Bathtub …

0.4955 0.4375 0.2879 0.2859 0.2789 0.2699

Transportation Dashboard Steering wheel Control Fast Drive Driver …

0.2769 0.2769 0.2733 0.2716 0.2696 0.2669

… … … … … … … …
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size. The dual objective function of SVM can be given
by the Lagrangian multiplier method as shown below

max
αi ≥ 0

min
w;b

ℒ w; b; αð Þ ¼ max
αi ≥0

min
w;b

1
2

wk k2−
Xn
i¼1

αi yi w
Txi þ b

� �
−1

� � !
ð11Þ

where x is the input data, y is the category to which x
belongs, w is the vector perpendicular to the classifica-
tion hyperplane, b is the intercept, and α is the Lagrange
multiplier.
After solving (11) using the quadratic programming

algorithm and introducing the kernel function κ(x1, x2)
= (〈x1, x2〉 + 1)2 to map the data to the high-dimensional
space, SVM can perform a nonlinear classification accor-
ding to the following binary prediction:

gSVM xð Þ ¼ sign wTxþ b
� �

¼ sign
XN
i¼1

αiyiκ xi; xð Þ þ b

 !
: ð12Þ

Commonly used kernel functions include polynomial
kernel and radial basis function.
The SVM is fundamentally a two-class classifier; however,

it can be extended to multiclass problems by using
one-against-one or one-against-all voting schemes. In
addition, the basic SVM classifier can only output the clas-
sification label rather than the probability or possibility for
evidence fusion. To solve this problem, the “libsvm” [40]
toolkit, which converts the output of the standard SVM to
a posterior probability using a sigmoid-fitting method [41],
is utilized. An example is provided in the fourth row (BBA
of sensors) of Table 6.

2.4 Hierarchical fusion of knowledge, image, and sensor
data by DSmT
In DSmT, the discernment framework Θ = {θ1, θ2, … , θn}
is extended from the power set 2Θ in Dempster–Shafer
theory to the hyper-power set. The hyper-power set, de-
noted by DΘ, admits the intersections of elements on
the basis of the power set. For example, if there are two
elements in the discernment framework Θ = {θ1, θ2}, the
power set is 2Θ = {∅, θ1, θ2, θ1 ∪ θ2} and the hyper-power
set is DΘ = {∅, θ1, θ2, θ1 ∪ θ2, θ1 ∩ θ2}. The BBA defined
on the hyper-power set DΘ is

m Xið Þ : DΘ→ 0; 1½ �; Xi∈DΘ

m ∅ð Þ ¼ 0;
X
θ∈DΘ

m θð Þ ¼ 1

8<
: ð13Þ

The combination rule is the core of evidence theory. It
combines the BBAs of different sources within the same
discernment framework to produce a new belief assign-
ment as the output. In the DSmT framework, the most

widely used combination rule is the Proportional Con-
flict Redistribution (PCR) rule. There are six PCR rules
(PCR1–PCR6), defined in [18]. Their differences are
mainly in the method of proportional redistribution of
the conflicting beliefs. Among these rules, PCR5 is
widely used to combine two sources and PCR6 is usually
applied to more than two sources. In particular, PCR6 is
the same as PCR5 when there are exactly two sources. If
s represents the number of sources, the PCR5/PCR6
combination rule for s = 2 is

mPCR5=PCR6
1⊕2 Að Þ ¼X

X1;X2∈DΘ

X1∩X2 ¼ A

m1 X1ð Þm2 X2ð Þ þ
X

X∈DΘ

X∩A ¼ ∅

m2
1 Að Þm2 Xð Þ

m1 Að Þ þm2 Xð Þ þ
m2

2 Að Þm1 Xð Þ
m2 Að Þ þm1 Xð Þ

� � ð14Þ

where m1⊕ 2 denotes m1⊕m2, i.e., sources 1 and 2 are
used for evidence fusion for the focal element A in dis-
cernment framework DΘ. The PCR6 combination rule
for s > 2 is

mPCR6
1⊕2⊕…⊕s Að Þ ¼

X
X1;X2;…;Xs∈DΘ

∩si¼1Xi ¼ A

Ys
i¼1

mi Xið Þþ

X
X1;X2;…;Xs−1∈DΘ

Xi≠A; i∈ 1; 2;…; s−1f g
∩s−1j¼1Xi


 �
∩A ¼ ∅

Xs−1
k¼1

X
i1;i2;…;isð Þ∈P 1;2;…;sð Þ

Xk
p¼1

mip Að Þ �

Yk
j¼1

mi j Að Þ
Ys−1

p¼kþ1

mip Xp
� �

Xk
j¼1

mi j Að Þ þ
Xs−1

p¼kþ1

mip Xp
� �

2
666664

3
777775

ð15Þ

where P(1, … , s) is the set of all permutations of ele-
ments {1, … , s}.
In the proposed approach, when DSmT is used for

ADL recognition, the discernment framework contains
15 ADLs, as detailed in Eq. (16) and Table 5.

Θ ¼ A1;A2;…;A15f g ¼
f“cleaning; ”“computer use; ”“eating; ”“entertainment; ”
“lying down; ”“meeting; ”“reading; ”“shopping; ”“talking; ”
“telephone use; ”“transportation; ”“walking outside; ”
“washing up; ”“watching TV; ”“writing”g

ð16Þ

As the total number of sources is three (i.e., know-
ledge, image, and sensor data), PCR6 should be selected
as the evidence combination rule if all sources are used
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in the data fusion process. An example of the fusion re-
sult from three sources using (15) is presented in Table 6.
In this example, the BBAs of knowledge, image, and sen-
sor data are derived from the time–activity table, cosine
similarity between current BoT and class center, and
posterior probability of the support vector machine
classifier’s output, respectively.
In our case, the information sources differ greatly

in the signal type and processing algorithm, e.g., the
image source provides a specific combination of ob-
jects, whereas the sensor source provides the motion
status of the person wearing the device. Hence, the
corresponding recognition results are often different.
This can be observed in Table 6. For the same activ-
ity, the recognition results from the image and sensor
sources are “entertainment” and “watching TV,” re-
spectively. In fact, “entertainment” (specifically “play-
ing poker” in this case) and “watching TV” are both
sedentary activities, and it is difficult to distinguish
them using motion sensors (both the IMU and GPS
sensors). Therefore, the recognition result from the
image source should be more reliable. However, after
fusion, the final recognition result is “watching TV”
because the belief value of “entertainment” assigned
by the BBA of the sensors is very low.
Based on previous research [15, 16] and our own

study (described in Section 3), most ADLs achieve sig-
nificantly higher accuracy when using vision-based
data than with motion sensor-based data. Thus, in

many cases, if the three sources of information are
fused directly, the accuracy of the output is often af-
fected by the low specificity of the motion sensors.
However, we still need to use motion sensors to identify
ADLs that have significant motion signatures, such as
“cleaning,” “walking outside,” and “lying down.” Therefore,
considering the reliability of each information source, we
consider user knowledge and image sources to be
high-priority data and the motion sensor source to be
low-priority data, i.e., we supplement the sensor informa-
tion only when the fusion of user knowledge and image
sources leads to a conflict.
We implement the source-priority concept using a

two-level hierarchical fusion network with descend-
ing candidate sets (2-L HFNDCS, see Fig. 4), similar
to the implementation strategy proposed in [42, 43].
When the two-source fusion between the knowledge
and image-based methods provides a conflicting re-
sult, motion sensor data are added to the pool of
evidence for a second-level three-source fusion. In-
stead of considering all activities, only the candidate
activities identified by two-source fusion are used as
the input for the three-source fusion. The initial
number of candidate activities is given in advance,
and this number can be adjusted according to subse-
quent test results. The output of the final fusion is
the activity with the highest belief among the candi-
date activities. The 2-L HFNDCS algorithm can be
described as follows.

Table 6 Example of three-source fusion using the PCR6 rule

CN CU ET EM LD MT RD SP TK TU TP WO WU TV WT

BBA of knowledge 0.1860 0.0233 0.2326 0.1163 0 0 0.0233 0 0.1163 0.1860 0 0.0698 0.0233 0.0233 0

BBA of image 0.0401 0.0260 0 0.4452 0 0.1526 0.0610 0 0.0939 0.1505 0 0 0 0 0.0308

BBA of sensors 0.0041 0.0303 0.0078 0.0558 0.0338 0.0076 0.0077 0.0229 0.1781 0.0264 0.0101 0.0174 0.0178 0.5602 0.0200

Fusion result 0.0565 0.0057 0.0754 0.2561 0.0031 0.0427 0.0103 0.0015 0.1017 0.0960 0.0003 0.0106 0.0022 0.3341 0.0037

Conditions: the time stamp of the camera is 17:30:57 on Thursday. The captured image can be seen in Fig. 6(d), and the ground truth is “entertainment”
Italics represent the maximum value of the BBA for all activities of the same information source, and the corresponding activity is the recognition result of that
information source

Table 5 The description of the discernment framework defined
in Eq. (16)

Θ

1 Cleaning (CN) 6 Meeting (MT) 11 Transportation (TP)

2 Computer use
(CU)

7 Reading (RD) 12 Walking outside
(WO)

3 Eating (ET) 8 Shopping (SP) 13 Washing up (WU)

4 Entertainment
(EM)

9 Talking (TK) 14 Watching TV (TV)

5 Lying down (LD) 10 Telephone use
(TU)

15 Writing (WT)

Algorithm of 2-L HFNDCS
Input: BBA of knowledge (BBA_k), BBA of vision (BBA_v), BBA of sensors 

(BBA_s), Number of candidates (Nc)
Output: Activity recognition result (Ax)
(1) Compute Fu1 = PCR6(BBA_k, BBA_v) by two-source PCR6 

combination rule in (14)
(2) Let Max_pos(.) denote the position of the maximum in a matrix
(3) If Max_pos(Fu1) = = Max_pos(BBA_v) //no conflicts
(4) Ax = Max_pos(Fu1)
(5) Else
(6) Sort Fu1, obtain the positions of the first Nc maximums, i.e.,

Max_pos(Fu1, Nc)
(7) Compute Fu2 = PCR6(BBA_k,BBA_v,BBA_s) using three-source

PCR6 combination rule in (15)
(8) Ax = Max_pos(Fu2(Max_pos(Fu1, Nc)))
(9) End
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3 Experimental results
3.1 Experimental setup and data acquisition
Previously, our laboratory developed eButton (Fig. 5), a
disk-like wearable device the size of an Oreo cookie that
can be used to study human diet, physical activity, and
sedentary behavior [23]. The eButton is equipped with a
camera, IMU, and other sensors that are not used for
the current study, such as those for measuring the
temperature, lighting, and atmospheric pressure. The
resolution of the camera is 1280 × 720 pixels. To save
power, the camera acquires one image every 4 s. The
built-in IMU contains a three-axis accelerometer and a
three-axis gyroscope with a sampling frequency of 90
Hz. The GPS data are acquired from the wearer’s mobile
phone at 1-s intervals and synchronized with the eBut-
ton data using time stamps.
Two volunteers with regular daily routines and rela-

tively invariant living environments were selected for
our experiments. After signing a consent form ap-
proved by the Institutional Review Board, they were
asked to fill out the time–activity table described above.
Their time–activity tables are provided in Appendixes 1

and 2. The volunteers then wore the eButton for a rela-
tively long time (approximately 10 h per day for about
3 months). To form a gold standard for performance
comparison, the resulting egocentric data were manu-
ally reviewed and annotated. For regular daily routines,
the environment and motion patterns corresponding to
certain activities were very similar. In contrast, the fre-
quency and duration vary widely among less regular ac-
tivities, resulting in a large imbalance among the
number of samples corresponding to different activities.
To reduce this data imbalance, a key frame extraction
method was used [44, 45]. As the two eButton wearers
each participated in the study for about 3 months, we
had sufficient data to form two independent datasets
(one for training and one for testing). We combined
these data to form an egocentric activity dataset, called
the eButton activity dataset [47].
In the eButton activity dataset, each wearer (referred

to as W1 and W2) has a separate set of time–activity ta-
bles, a training set, and a test set. Although the training
set and the test set do not overlap, they both have the
same structure: a subset of egocentric images, a subset

Fig. 4 Architecture of 2-L HFNDCS

Fig. 5 Appearance of the eButton and examples of its wearing methods

Yu et al. EURASIP Journal on Advances in Signal Processing         (2019) 2019:14 Page 10 of 23



of motion sensor data, and a GPS data file. In the subset
of egocentric images, each activity to be recognized cor-
responds to an image sequence. Each frame in the image
sequence was extracted by the key frame extraction
method [44, 45]. The number of key frames corre-
sponding to different activities is listed in Table 7, and
some sample frames are shown in Fig. 6. The file name
of each key frame includes the specific time stamp. In
the motion sensor subset, there is a one-to-one corres-
pondence between the motion sensor data and the

images in the image subset, i.e., each image corre-
sponds to a motion sensor data file. The motion sensor
files contain all raw sensor data (three-axis acceleration
and three-axis gyroscope) from within a 3-s window
centered around the stamp time of the image. There is
also a one-to-one correspondence between the GPS
data and the image subset. The GPS data (including
time, coordinates, velocity, etc.) are synchronized with
the time stamp of an image and recorded in one row of
the GPS data file.

Table 7 Numbers of key frames in the image subset

Set CN CU ET EM LD MT RD SP TK TU TP* WO WU TV** WT

Training set W1 127 139 115 117 153 99 146 170 79 106 185 101 102 84 97

W2 123 119 149 105 120 84 112 107 80 95 106 97 113 – 108

Test set W1 113 139 155 59 178 92 101 149 70 99 184 146 90 70 125

W2 120 95 159 87 197 95 91 91 42 98 128 98 95 – 109

*Transportation method differs between the two wearers; W1 drives and W2 uses the bus
**W2 does not watch TV

Fig. 6 The sample image of each activity in the training set. Images a through o correspond to “cleaning,” “computer use,” “eating,”
“entertainment,” “lying down,” “meeting,” “reading,” “shopping,” “talking,” “telephone use,” “transportation” (driving), “walking outside,” “washing
up,” “watching TV,” and “writing,” respectively
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3.2 Experimental results
All data were analyzed using Matlab 8.6 on a PC running
Windows 10 Pro. To facilitate the performance evaluation
and comparison, the F1 measure [46], which is commonly
used in the field of pattern recognition, was selected as the
criterion for evaluating different classification methods. F1
is defined as

F1 ¼ 2 � PR= P þ Rð Þ
P ¼ TP= TP þ FPð Þ; R ¼ TP= TP þ FNð Þ ð17Þ

where P is precision and R is recall. TP, FP, and FN
represent the number of true samples, false positive
samples, and false negative samples, respectively, derived
from the confusion matrix. F1 is also called the
harmonic mean of recall and precision.

3.2.1 ADL recognition results using images
Bag of tags (BoTs) were extracted from all key frames in
both the training and test sets using the ClarifaiNet with

the “General” model [30]. In the process of obtaining the
entropy-based TF-IDF classifier for the training set, the
positive constant λ used to remap item R(e2i) was empir-
ically selected to be 0.01 and the number of tags was M
= 20. The confusion matrices and F1 measures of the
recognition results are presented in Figs. 7 and 10,
respectively.
The results in Figs. 7 and 10 indicate that the

image-based method achieves fairly high recognition ac-
curacy for ADLs with different environments and com-
bination of objects (CoOs). In contrast, when the
classifier is used to distinguish among activities with
similar environments and CoOs, the recognition results
are less accurate. Specifically, the following situations are
notable: (1) The environments and CoOs of different ac-
tivities are almost identical. For example, there is no es-
sential difference between “reading” and “writing,”
except for the presence of a pen. If this key object is not
correctly recognized, it is very difficult to distinguish
these two activities. (2) Although the objects in use are

Fig. 7 Confusion matrices for the image-based method as applied to a wearer 1 and b wearer 2

Fig. 8 Confusion matrices for the fusion results obtained by 2-L HFNDCS as applied to a wearer 1 and b wearer 2
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not the same, the BoTs extracted from these objects are
very similar. For example, the BoTs extracted from
“computer use” and “telephone use” are very similar, as
both contain tags such as “screen,” “electronics,” and
“information,” making it hard to distinguish whether the
wearer is using a computer or a telephone. (3) There are
overlaps among some activities. For example, overlaps
occur among “meeting,” “computer use,” and “talking,”
because meetings usually include operating a computer
and talking, resulting in errors in some short-term rec-
ognition results. Nevertheless, there are usually differ-
ences in the duration of these competing activities; for
example, computers and telephones are generally not
used at the same time, and many meetings have a rela-
tively fixed schedule. Additionally, there are some differ-
ences among the motion status of activities with similar
BoTs, which can be reflected by IMU and GPS sensor
data. Therefore, the accuracy of ADL recognition can be
further improved by fusing the knowledge and recogni-
tion results from the sensors.

3.2.2 ADL recognition results using motion sensors
For the SVM classifier in the sensor-based method, the
size of the time window for feature extraction is 3 s; the
features extracted from this time window constitute a
127-dimentional vector, as described in Section 2.4. In
training the classifier, the SVM uses a radial basis func-
tion as the kernel. For the training samples of W1 and
W2, the cost and gamma parameters (c, g) were deter-
mined using cross-validation to be (16, 0.33) and (5.29,
0.57), respectively. The F1 measure of the sensor-based
method when applied to the test datasets of the two
wearers is plotted in Fig. 10.
As mentioned above, motion sensors usually offer bet-

ter discrimination between activities with a clearly differ-
ent motion status. As seen in Fig. 10, the motion
sensor-based method achieves better recognition accur-
acy for activities such as “cleaning,” “lying down,” “trans-
portation,” and “walking outside.” For sedentary
activities such as “reading,” “telephone use,” “watching
TV,” and “writing,” the discrimination is relatively poor.
Therefore, the recognition results from the sensor-based
method are not suitable for direct fusion with the know-
ledge and image-based recognition results; they can only
be used as auxiliary evidence in the 2-L HFNDCS
algorithm.

3.2.3 Fusion of three data sources using 2-L HFNDCS
After obtaining the BBAs of the image and motion
sensor-based methods, the 2-L HFNDCS algorithm was
applied to fuse this with the knowledge BBA. Analysis of
the confusion matrices from the image-based method
(Fig. 7) indicates that the most confusing activities are
sedentary activities, and no more than three other

activities are frequently confused with each individual
sedentary activity. Therefore, in the implementation of
2-L HFNDCS, the number of candidate activities for the
second-level fusion was set to Nc = 3. The confusion
matrix of the recognition results after fusion using 2-L
HFNDCS is presented in Fig. 8. The F1 measure of the
fusion results for the three sources is illustrated in
Fig. 10.

3.2.4 Fusion results of the image-based method and the
sensor-based method using simplified 2-L HFNDCS
To verify the effect of prior knowledge, the BBA of
the knowledge data was removed so that only the
image-based results and the sensor-based results were
fused. The fusion process still tries to adopt the 2-L
HFNDCS algorithm, but the first fusion layer is no
longer needed because there is no knowledge BBA.
Thus, the algorithm can be simplified. Considering
the reliability difference between the image-based and
sensor-based results, the process of candidate
selection is retained in the second layer and candidate
activities are directly selected from the image-based
results (note that Nc = 3). The simplified 2-L
HFNDCS without knowledge BBA is illustrated in
Fig. 9. The F1 measure of the fusion results for the
image-based method and the sensor-based method is
also illustrated in Fig. 10.
Comparing Figs. 7 and 8, it is clear that the recogni-

tion accuracy of confusing activities such as “entertain-
ment,” “meeting,” “reading,” and “talking” is greatly
improved when the time–activity table is added. More-
over, after fusion, the recognition accuracy for some sed-
entary activities that cannot be adequately distinguish by
the image-based method, such as “computer use,” “tele-
phone use,” “reading,” and “writing,” is also improved to
a certain extent. In addition, as seen from Fig. 10, the
image-based recognition accuracy of activities that are
closely related to the motion status, such as “cleaning,”
“lying down,” and “walking outside,” is also improved by
the fusion with sensor-based results.

4 Comparison and discussion
There are two existing ADL recognition methods that
fuse egocentric visual and sensor data [15, 16]. These
methods do not use a knowledge-driven model and
are applicable to multimodal egocentric activity data
[16] recorded by the motion sensor and video camera
in Google Glass. The dataset described in [16] con-
tains 20 different activities grouped into four top-level
categories for multiple wearers (see Table 8). The
method proposed in [15] performs ADL recognition by
passing egocentric video through a two-stream convolu-
tional neural network and applying motion sensor data to a
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multistream long and short-term memory. The recognition
results are then fused by means of maximum pooling. In
the method of [16], the dense trajectories of egocentric
video and the temporally enhanced trajectory-like features
of sensor data are extracted separately. The recognition

results are then fused by a multimodal Fisher vector. As the
dataset presented in [16] is openly available (http://people.-
sutd.edu.sg/~1000892/dataset), we can compare the results
given by the proposed method with those of previous
methods based on the same open datasets.

Fig. 9 Architecture of the simplified 2-L HFNDCS

a

b

Fig. 10 F1 measures of four methods as bar graphs for a wearer 1 and b wearer 2
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4.1 Performance comparison on their respective datasets
The proposed method was applied to the eButton data-
sets (described in Section 3.1), and the other two
methods were applied to the dataset described in [16].
Although they were applied to different datasets, all
three methods fused the vision and motion sensor data.
As a result, the recognition accuracy can be compared
for different information sources. The comparison re-
sults are presented in Table 9, where the average accur-
acy is reported over all activities and wearers.

4.2 Discussion of the comparison on the respective datasets
In Table 9, the vision-based accuracy of all three
methods is similar. However, there are greater differ-
ences in the sensor-based accuracy of the proposed and
existing methods, because the eButton dataset contains
more sedentary activities that are difficult to distinguish
using motion sensors alone, such as “entertainment,”
“meeting,” and “watching TV.” Nevertheless, the accur-
acy of the proposed method using the fused data is
higher than that of the two existing methods, mainly be-
cause our framework introduces user knowledge into
the recognition process.

4.3 Performance comparison on the same dataset
As the methods proposed in [15, 16] use egocentric
video, the vision data are taken from the egocentric
video in the open multimode dataset. However, the
vision-based method proposed in this paper uses an ego-
centric image sequence, so it cannot use this open data-
set directly. To enable the proposed method to be
applied to the dataset in [16], we must convert the ego-
centric video to an egocentric image sequence. Each
video and its corresponding motion sensor data are 15-s
long, and the sampling rate of the motion sensor is 10
Hz. Thus, we can use the same sampling rate to convert
the video to an image sequence and form a one-to-one
correspondence between the images and the motion sen-
sor data. After conversion, the egocentric image set has
20 (activities) × 10 (videos/activity) × (150 frames/video)
= 30,000 frames. After extracting 20% of the key frames
(6000 frames) using the key frame extraction method,
two non-overlapping datasets (training set and test set)

were generated (see Table 10). We define this converted
dataset as M-20.
Note that the methods proposed in [15, 16] do not

use a prior knowledge model, and so their data (in-
cluding the converted dataset M-20) do not contain
any prior knowledge, i.e., there is no corresponding
time–activity table. Therefore, in applying the pro-
posed method to M-20, only the image and motion
sensor data were fused. In addition, considering that
the activities to be recognized in M-20 are quite dif-
ferent from those in the eButton dataset, the same six

Table 8 Activity categories of the egocentric activity dataset
presented in [15]

Ambulation

1 Walking (WO)

2 Walking upstairs (US)

3 Walking downstairs (DS)

4 Riding elevator up (VU)

5 Riding elevator down (VD)

6 Riding escalator up (SU)

7 Riding escalator down (SD)

8 Sitting (ST)

Daily activities

9 Eating (ET)

10 Drinking (DR)

11 Texting (TU)

12 Making phone calls (MP)

Office work

13 Working at PC (CU)

14 Reading (RD)

15 Writing sentences (WT)

16 Organizing files (OF)

Exercise

17 Running (RN)

18 Doing push-ups (DP)

19 Doing sit-ups (DT)

20 Cycling (CY)

Table 9 Comparison of different methods on their respective datasets

Proposed
method (%)

Method proposed in [15] (ConvNets+LSTM) + pooling fusion (%) Method proposed in [16]
(DT + temporal enhanced features) +
Fisher vector (%)

Average pooling Maximum pooling

Vision 79.2 68.5% 75.0 78.4

Sensors 43.1 – 49.5 69.0

Fusion 85.4 76.5 80.5 83.7

Proposed method was applied to the eButton datasets described in Section 3.1; the other two methods were applied to the datasets described in [16]
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activities were extracted from the two datasets to
evaluate the ability of the proposed method to
recognize the same activities in different datasets. The
six activities were “eating,” “reading,” “texting” (“tele-
phone use” in eButton dataset), “walking” (“walking
outside” in eButton dataset), “working at PC” (“com-
puter use” in eButton dataset), and “writing sen-
tences” (“writing” in eButton dataset). The data from
these activities formed a separate subset, defined as
MS -6. Both M-20 and MS -6 were used to evaluate
the proposed method.
In applying the proposed method to M-20 and MS-6,

the parameter values of the entropy-based TF-IDF algo-
rithm used for the egocentric images in the training set
are consistent with those used to analyze the eButton
dataset. The confusion matrices produced by applying
the trained BoT classifier to the M -20 and MS -6 test
sets are shown in Fig. 11. For the motion sensor data,
feature extraction by windowing is not required because
there is a one-to-one correspondence with the images
produced during the conversion from video to image se-
quence, and the motion sensor data frame (a
19-dimensional vector) can be directly used as a feature
in training the SVM. The kernel function is again the ra-
dial basis function. Using cross-validation, the cost and
gamma parameters (c, g) of M-20 and MS-6 were found
to be (256, 9.19) and (5.278, 1.74), respectively. The

confusion matrices produced by applying the trained
SVM classifier to the M -20 and MS -6 test sets are
shown in Fig. 12.
According to Fig. 11, the number of candidate activ-

ities in the next fusion process is Nc = 8 (M-20) and Nc
= 4 / (MS-6). As there is no time–activity table in the
dataset, i.e., there is no knowledge BBA, the simplified
2-L HFNDCS algorithm without prior knowledge (see
Section 3.2.4) was employed to obtain the fusion result
of the image-based method and sensor-based method.
The fused F1 measures of M-20 and MS-6 are shown in
Fig. 13. The average of the F1 measure over all activities
was computed, and a comparison of the proposed
method and the methods in [15, 16] on the same dataset
is presented in Table 11.

4.4 Discussion of the comparison on the same dataset
From the results in Table 11, it is apparent that ap-
plying the proposed method to M-20 produced much
lower recognition performance in the proposed
vision-based method than in the existing methods.
This is because the vision-based part of the proposed
method is based on the combination of objects in the
static images, whereas the methods in [15, 16] use
vision-based motion features extracted from the video
(optical flow [15] and dense trajectories [16]). Thus,
for activity pairs with similar scenes but different

Table 10 Composition of the converted dataset M-20

Set CY DP DT DR ET* MP OF RD VD VU SD SU RN ST TU DS US WO CU WT

Training 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150

Test 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150

*Italics indicate that the activity is the same as the corresponding activity in the eButton dataset used in this paper. The same six activities constitute MS-6

Fig. 11 The confusion matrices of the trained BoT classifier applied to the test set of a M-20 and b MS-6. M-20 and MS-6 are the converted
datasets extracted from the multimodal egocentric activity dataset proposed in [26]
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vision-based motion features, such as “riding elevator
up” and “riding elevator down,” “riding escalator up”
and “riding escalator down,” “walking upstairs” and
“walking downstairs,” “walking,” and “running,” the
methods in [15, 16] will achieve better recognition
performance. Note that, for some outdoor activities
with similar scenes but large differences in motion

speed, such as “making phone calls” (walking slowly
while making phone calls outside), “walking,” and
“running,” the proposed method can distinguish them
using the speed value obtained from the GPS sensor.
However, the dataset used in this experiment contains
no GPS data, leading to poor recognition performance
of these activities by the proposed method.

Fig. 12 The confusion matrices of the trained SVM classifier applied to the test set of a M-20 and b MS-6

a

b

Fig. 13 F1 measures of the fusion results for M-20 (a) and MS-6 (b) by simplified 2-L
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The comparison shows that the proposed method is
better suited for recognition of ADLs with larger
scenes or object differences. This result is validated
by the high recognition accuracy of the proposed
method when applied to dataset MS -6. Compared to
the existing methods, the key factor in the proposed
framework is the introduction of the prior knowledge
model. Considering that neither M -20 nor MS -6
contains any prior knowledge data, the recognition
performance could be expected to improve signifi-
cantly once the wearers’ daily routines (time–activity
tables) are introduced.
In addition, for the methods proposed in [15, 16], it is

necessary to extract optical flow between adjacent
frames by means of the time-consuming optical flow
field estimation algorithm. Even in the multistream deep
learning framework proposed by [15], in the video pro-
cessing part, three convolutional networks are used to
accomplish feature extraction of single-frame images,
optical flow, and stabilized optical flow. In contrast, the
proposed algorithm only deals with a single-frame image
and does not need to extract the optical flow. Only a
pre-trained convolutional neural network is needed to
extract the semantic features of a single image. There-
fore, the computational complexity of the proposed algo-
rithm is much lower than that of the methods proposed
in [15, 16]. Detailed complexity comparison can be seen
in Table 12.

5 Conclusion
A knowledge-driven multisource fusion framework
for egocentric activity of daily living (ADL)

recognition is presented in this paper. The frame-
work is based on Dezert–Smarandache theory
(DSmT) and consists of information from three
sources: a set of knowledge obtained from the
wearer, a set of images from a wearable camera, and
a set of sensor data from an IMU and a GPS sensor.
With regard to user knowledge, we propose a con-
venient model building method, which only requires
the user to fill in a time–activity table through a
user-friendly interface. For the egocentric image se-
quence, we propose a novel egocentric ADL recogni-
tion algorithm based on image semantic features. An
advanced automatic annotation algorithm is used
based on a pre-trained CNN to obtain semantic in-
formation from each image, and an entropy-based al-
gorithm is subsequently applied to further extract
semantic features, so as to reduce the image classifi-
cation problem to a text classification problem. In
addition, in the DSmT-based multisource fusion part,
we propose a hierarchical fusion architecture to
eliminate the reliability differences between different
information sources. Our experimental results show
that the recognition performance for a number of
ADLs that have previously been considered difficult
can be significantly improved through the fusion of
user knowledge with information from images and
motion sensors. When applied to a self-built egocen-
tric activity dataset, the proposed method achieved
an average recognition accuracy of 85.4% across 15
predefined ADL classes, significantly higher than the
accuracy that can be reached without incorporating
user knowledge.

Table 11 Comparison of different methods applied to the same dataset

Proposed method Method in [15] Method
in [16]
(%)

M-20 (Nc = 8) (%) MS-6 (Nc = 4) (%) Maximum pooling (%)

Vision 53.2 75.8 75.0 78.4

Sensors 65.8 72.2 49.5 69.0

Fusion 72.3 85.2 80.5 83.7

Table 12 Comparison of the complexity of different methods

Proposed method Method in [15] Method in [16]

Vision One pre-trained CNN (single image) +
entropy-based TF-IDF

Three-stream CNN (single frame, optical flow, and
stabilized optical flow)

Optical flow-based dense
trajectory

Low High Very high

Sensors SVM Four-stream LSTM Temporal enhanced trajectory-
like features

Low Medium Low

Fusion DSmT Average or maximum pooling Multimodal Fisher vector

Medium Low Medium
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6 Appendix 1
6.1 Detailed time–activity tables for wearer 1

Table 13 Time–activity table for workdays (Monday to Thursday) for eButton wearer 1

Time period CN CU ET EM LD MT RD SP TK TU TP WO WU TV WT

0:01–6:50 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0

6:51–7:20 2 2 10 0 0 0 3 0 6 8 0 0 8 0 1

7:21–7:30 0 0 0 0 0 0 0 0 6 8 0 10 0 0 0

7:31–8:00 0 0 0 0 0 0 0 0 10 8 0 9 0 0 0

8:01–8:50 1 10 0 0 0 0 0 0 5 8 3 3 5 0 0

8:51–9:20 0 5 0 0 0 0 2 0 0 9 2 10 0 0 2

9:21–10:00 0 10 1 0 0 0 5 0 6 8 0 5 3 0 5

10:01–11:20 0 10 1 0 0 0 5 0 5 8 0 0 3 0 5

11:21–12:00 0 5 4 0 0 0 2 2 3 8 0 10 0 0 2

12:01–12:30 0 2 10 0 0 0 2 0 5 8 0 4 2 8 1

12:31–13:00 0 2 2 0 8 0 0 0 5 3 0 1 0 5 0

13:01–13:30 0 0 2 0 10 0 0 0 2 6 0 0 0 4 0

13:31–13:50 0 4 0 0 0 0 4 0 0 9 0 10 0 0 2

13:51–17:00 0 10 4 0 0 0 8 0 6 8 0 5 2 0 8

17:01–17:30 0 3 2 2 0 0 1 0 8 9 0 10 2 2 1

17:31–18:00 8 1 10 5 0 0 1 0 5 8 0 3 1 1 0

18:01–20:00 4 2 4 6 0 0 10 0 8 9 0 1 0 8 5

20:01–21:00 2 4 5 10 0 0 6 0 5 6 0 0 3 8 0

21:01–22:00 2 10 1 0 0 0 3 0 5 6 0 0 3 9 2

22:01–00:00 1 10 2 0 5 0 0 0 0 5 0 0 8 9 0

Table 14 Time–activity table for Friday (on this day a regular meeting present) for eButton wearer 1

Time period CN CU ET EM LD MT RD SP TK TU TP WO WU TV WT

0:01–6:50 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0

6:51–7:20 2 2 10 0 0 0 3 0 6 8 0 0 8 0 1

7:21–7:30 0 0 0 0 0 0 0 0 6 8 0 10 0 0 0

7:31–8:00 0 0 0 0 0 0 0 0 10 8 0 9 0 0 0

8:01–8:50 1 10 0 0 0 0 0 0 5 8 3 3 5 0 0

8:51–9:20 0 5 0 0 0 0 2 0 0 9 2 10 0 0 2

9:21–10:00 0 10 1 0 0 0 5 0 6 8 0 5 3 0 5

10:01–11:00 0 10 0 0 0 0 5 0 5 8 0 0 3 0 5

11:01–11:20 0 5 4 0 0 0 2 2 3 8 0 10 0 0 5

11:21–11:45 0 2 10 0 0 0 2 0 5 8 0 0 2 8 1

11:46–12:00 0 0 2 0 0 0 0 0 0 9 0 10 0 0 0

12:01–15:00 0 2 1 0 0 10 2 0 5 8 0 2 0 0 1

15:01–17:00 0 10 4 0 0 0 8 3 6 8 5 0 2 0 8

17:01–17:30 0 3 2 2 0 0 1 2 8 9 2 10 2 2 1

17:31–18:00 8 1 10 5 0 0 1 2 5 8 2 2 1 1 0

18:01–20:00 5 2 4 6 0 0 0 6 5 5 2 0 0 4 0
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7 Appendix 2
7.1 Detailed time–activity tables for wearer 2

Table 14 Time–activity table for Friday (on this day a regular meeting present) for eButton wearer 1 (Continued)

Time period CN CU ET EM LD MT RD SP TK TU TP WO WU TV WT

20:01–21:00 2 0 0 2 0 0 0 3 5 8 2 0 1 8 0

21:01–22:00 1 0 1 1 0 0 0 3 5 6 0 0 3 9 0

22:01–00:00 3 5 2 0 2 0 0 0 0 5 0 0 8 10 0

Table 15 Time–activity table for Saturday for eButton wearer 1

Time period CN CU ET EM LD MT RD SP TK TU TP WO WU TV WT

0:01–1:00 0 0 0 0 5 0 0 0 0 6 0 0 10 0 0

1:01–8:00 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0

8:01–9:00 0 2 10 0 0 0 1 0 0 8 0 0 8 0 0

9:01–10:00 6 0 3 1 0 0 0 2 2 8 5 0 0 2 0

10:01–12:00 0 3 0 2 0 0 0 10 5 8 8 2 2 5 0

12:01–13:00 0 2 6 2 0 0 0 10 5 8 8 2 2 5 0

13:01–14:00 0 2 8 0 0 0 0 5 5 8 2 2 2 2 0

14:01–18:00 0 0 0 3 0 0 0 8 5 8 2 2 2 2 0

18:01–19:00 0 0 10 3 0 0 0 5 5 8 2 2 2 4 0

19:01–20:00 0 0 5 2 0 0 0 3 5 8 2 2 2 5 0

20:01–21:00 0 1 0 2 0 0 0 3 5 6 2 0 1 8 0

21:01–22:00 1 2 1 1 0 0 0 3 5 6 0 0 3 9 0

22:01–00:00 0 10 2 0 2 0 0 0 0 5 0 0 8 10 0

Table 16 Time–activity table for workdays (Monday, Wednesday, to Friday) for eButton wearer 2

Time period CN CU ET EM LD MT RD SP TK TU TP WO WU TV WT

2:01–7:00 0 0 0 0 10 0 0 0 0 0 0 0 0 – 0

7:01–8:00 0 2 0 4 6 0 0 0 0 0 0 3 0 – 0

8:01–9:00 3 5 5 2 5 0 0 0 0 2 0 10 8 – 0

9:01–10:00 0 8 0 1 2 0 3 0 2 2 0 5 0 – 3

10:01–11:00 0 9 0 0 0 0 5 0 4 1 0 1 0 – 3

11:01–12:00 0 9 0 0 0 0 5 0 6 1 0 1 0 – 4

12:01–13:00 0 9 5 5 3 0 3 0 4 2 0 6 0 – 5

13:01–14:00 0 9 7 5 5 0 3 0 2 1 0 6 0 – 5

14:01–15:00 0 9 2 0 5 0 5 0 3 1 0 2 0 – 5

15:01–16:00 0 9 0 0 0 0 5 0 1 1 0 1 0 – 5

16:01–17:00 0 9 0 0 0 0 5 0 1 1 0 1 0 – 5

17:01–18:00 0 9 0 0 0 0 3 0 1 1 0 1 0 – 5

18:01–19:00 0 7 7 0 0 0 3 0 1 1 0 6 0 – 5

19:01–20:00 0 7 4 0 4 0 3 0 1 1 5 6 0 – 3

20:01–21:00 0 9 4 0 1 0 5 0 1 1 0 1 0 – 3

21:01–22:00 0 9 2 0 0 0 5 0 3 3 2 1 0 – 3

22:01–23:00 0 9 1 6 0 0 3 0 3 3 6 7 0 – 3
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Table 16 Time–activity table for workdays (Monday, Wednesday, to Friday) for eButton wearer 2 (Continued)

Time period CN CU ET EM LD MT RD SP TK TU TP WO WU TV WT

23:01–0:00 0 7 0 7 0 0 0 0 1 1 4 7 0 – 0

0:01–1:00 0 3 0 6 7 0 0 0 1 0 4 4 8 – 0

1:01–2:00 0 1 0 2 8 0 0 0 0 0 1 0 0 – 0

Table 17 Time–activity table for Tuesday (on this day a regular meeting present) for eButton wearer 2

Time period CN CU ET EM LD MT RD SP TK TU TP WO WU TV WT

2:01–7:00 0 0 0 0 10 0 0 0 0 0 0 0 0 – 0

7:01–8:00 0 2 0 4 6 0 0 0 0 0 0 3 0 – 0

8:01–9:00 3 5 5 2 5 0 0 0 0 2 0 10 8 – 0

9:01–10:00 0 8 0 1 2 3 3 0 2 2 0 5 0 – 3

10:01–11:00 0 9 0 0 0 7 5 0 4 1 0 1 0 – 3

11:01–12:00 0 9 0 0 0 6 5 0 6 1 0 1 0 – 4

12:01–13:00 0 9 5 5 3 0 3 0 4 2 0 6 0 – 5

13:01–14:00 0 9 7 5 5 0 3 0 2 1 0 6 0 – 5

14:01–15:00 0 9 2 0 5 0 5 0 3 1 0 2 0 – 5

15:01–16:00 0 9 0 0 0 0 5 0 1 1 0 1 0 – 5

16:01–17:00 0 9 0 0 0 0 5 0 1 1 0 1 0 – 5

17:01–18:00 0 9 0 0 0 0 3 3 1 1 0 1 0 – 5

18:01–19:00 0 7 7 0 0 0 3 3 1 1 0 6 0 – 5

19:01–20:00 0 7 4 0 4 0 3 5 1 1 5 6 0 – 3

20:01–21:00 0 9 4 0 1 0 5 5 1 1 0 1 0 – 3

21:01–22:00 0 9 2 0 0 0 5 0 3 3 2 1 0 – 3

22:01–23:00 0 9 1 6 0 0 3 0 3 3 6 7 0 – 3

23:01–0:00 0 7 0 7 0 0 0 0 1 1 4 7 0 – 0

0:01–1:00 0 3 0 6 7 0 0 0 1 0 4 4 8 – 0

1:01–2:00 0 1 0 2 8 0 0 0 0 0 1 0 0 – 0

Table 18 Time–activity table for Saturday for eButton wearer 2

Time period CN CU ET EM LD MT RD SP TK TU TP WO WU TV WT

2:01–8:00 0 0 0 0 10 0 0 0 0 0 0 0 0 – 0

8:01–9:00 0 2 0 4 6 0 0 0 0 0 0 3 0 – 0

9:01–10:00 5 5 5 2 5 0 0 0 0 2 0 10 8 – 0

10:01–11:00 0 8 0 1 2 0 3 0 2 2 0 5 0 – 3

11:01–12:00 0 9 0 0 0 0 5 0 4 1 0 1 0 – 3

12:01–13:00 0 9 5 5 3 0 3 0 4 2 0 6 0 – 5

13:01–14:00 0 9 7 5 5 0 3 0 2 1 0 6 0 – 5

14:01–15:00 0 9 2 0 5 0 5 0 3 1 0 2 0 – 5

15:01–16:00 0 9 0 0 0 0 5 0 1 1 0 1 0 – 5

16:01–17:00 0 9 0 0 0 0 5 0 1 1 0 1 0 – 5

17:01–18:00 0 9 0 0 0 0 3 0 1 1 0 1 0 – 5

18:01–19:00 0 7 7 0 0 0 3 5 1 1 0 6 0 – 5

19:01–20:00 0 7 4 0 0 0 3 3 1 1 5 6 0 – 3

20:01–21:00 0 9 4 0 0 0 5 0 1 1 0 1 0 – 3
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