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Abstract—As for uncertainties of ranging and direction angle
in the ultrasonic sensor measurement, an ultrasonic distance
measurement model is first of all proposed for representing
these uncertainties through analyzing working principle of the
ultrasonic sensor, which can be adopted to detect the contour
of wall plan and cylinder. Moreover, the Dezert-Smarandache
Theory (DSmT) method is employed to fuse the uncertainty data
measured by using the ultrasonic sensor. Next, Extended Hough
Transform (EHT) and Least Square Method (LSM) are combined
to identify the environmental contour. Then the measurement
uncertainty of the ultrasonic sensor is analyzed for setting the
threshold 7'h used for distinguishing line and cylinder, and
detection range of the cylinder radius is estimated. Finally, we
build an indoor environment and design the ultrasonic sensor
hardware system to detect the indoor environment for experi-
mental verification. The indoor environment contour obtained in
the experimental results is consistent with the real environment,
which illustrate the feasibility and effectiveness of the proposed
method. The proposed method has certain reference value for
research of simultaneous localization and mapping (SLAM) of
the mobile robot.

Index Terms—Ultrasonic sensor, DSmT fusion, Hough trans-
form, Least squares method, SLAM.

I. INTRODUCTION

OBILE robots, like humans, rely on maps to perceive
the external environment for estimating their posi-
tion. Robot navigation is a key technology for mobile robot
research.The technology includes localization, mapping and
path planning. The mapping is the basis of localization and
path planning. The ultrasonic sensor perceives information
about the environment surrounding the robot by transmitting
ultrasonic energy pulses and receiving reflected echoes. The
sonic velocity and transit time are used to estimate the position
of the reflector.
The sensing technologies currently adapted mainly include
laser sensing technology, visual sensing technology, ultrasonic
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sensing technology and infrared sensing technology. Among
them, the cost of laser is relatively high, the detection distance
is far away, and it is not affected by ambient light. It is
costly for indoor environment contour detection and cannot
fully exert its advantages, and cannot make the best use of it.
In addition, the laser classification of the object is limited,
and when there is a glass wall in the room, there is no
reflection information and there are blind spots. Compared
with laser sensors and vision sensors, ultrasonic sensors are
cost-effective and easy to control[1-3]. They have become a
common detection method for mobile robots to detect their
surroundings and acquire features of unknown environment
contour [4-6].

It is usually considered that there are three different levels
in ranging ultrasonic systems: low level processing (at the
signal level) such as signal coding, matched filter, etc; medium
level processing (at the sensor level) such as transducer ar-
rangement, firing strategies, sensor models, etc; and high level
processing (at the application level) such as object recognition,
reflector classification, etc.

In the above three levels of research, due to the uncertainty
of ultrasonic sensor measurement[7], there are two shortcom-
ings: (1) There is a certain error in the distance measurement
value; (2) The sonar sensor has typically a certain range of
sight, and large beam angle has a considerable uncertainty in
measurement orientation [8, 9].

In low level processing (at the signal level), [10] designed
a high-resolution adaptive spiking sonar, which is capable
to obtain bearing information from the spikes generated in
the ’auditory nerves’ of both ears by mimicking their neural
circuitry, but the algorithm is complex; The method proposed
in [11] reconstructs the environment by comparing the bin-
aural spectral template of existing echoes with one of the
returned echoes from different angles. [12] estimates location
and orientation of the target by extracting a detected arc of
ultrasonic scan. Both of the abovementioned methods can
improve detection accuracy of the object position through
multiple measurements, but these detection methods are lack
of flexibility and adaptability. [13] developed a data association
filter (DAF) which built a probability grid map for representing
environment contour information, improving reliability of data
and reducing error caused by measurement errors. However,
grid maps constructed by ultrasonic sensors cannot implement
a realistic representation of a given environment [14].

In medium level processing (at the sensor level), errors are
further reduced. In [15], every two transducers constitutes
a “vector sensor” and enough precision and reliability of
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time-of-flight (TOF) is improved, and the map is finally
drawn. When measuring in a two-dimensional system, the
ultrasonic sensor captures multiple detection distances for
multiple sampling times over a period. These distance de-
tection values are uniformly distributed random points within
annular-sector domain, then a brightness scan (B-scan) [16] is
displayed as the distribution density of these random points.
The method focuses on using statistical data to extract the
shape and contour of the measured object; however, it does
not reduce the orientation uncertainty of measurement. [17,
18] provided a grid map building method based on fuzzy logic
operations. And [19] developed a single echo ranging model
based on information fusion. Furtherly, our preliminary work
[20] adapted the DSmT data fusion method to establish an
ultrasonic sensor detection model, using probabilistic methods
to estimate the position of obstacles, reducing the distance
error and direction uncertainty during ultrasonic measurement,
but it lacks effective environmental contour detection and
environmental description methods. In a three-dimensional
system, in order to effectively reduce the noise disturbance and
direction uncertainty in the ultrasonic measurement procedure,
[21] proposed to integrate multiple ultrasonic sensors, using
the microphone array and hardware integration technology to
achieve ultrasonic 3D measurement and to accurately deter-
mine 3-D target locations over a wide field of view (FOV)
using simple delay and post-processing for allowing real-time
performance.

In the application-level study of ultrasonic ranging, [22]
adapted principal component analysis (PCA) and time-of-
flight (TOF) as parameters to identify reflector type by using
different designed macro sequence for every transducer encod-
ing their emissions and acquiring three-dimensional position
information. [23] presented a solution to combine a novel 3D
sonar sensor with BatSLAM mapping module, which simply
environment descriptors. By combining odometric information
derived from the 2D energy field with the one of the 3D energy
field, the position of the robot can be correctly estimated, and
the trajectory of the robot is reconstructed, and the function
of obstacle avoidance navigation is realized. Based on these
work, [24] simplified the hardware system, used low-cost
digital MEMS microphones to achieve ultrasound imaging,
and verified its practicality of extended microphones array.

In the abovementioned research work, the three basic
contours of the experimental environment are plane, corner
and cylinder, and the former two types has been effectively
extracted and identified.During detection of the corner, which
can lead to a double bounce of the ultrasonic signals, mea-
surements are completely confused due to the secondary re-
flection. Considering that the corner is composed of two walls,
that problem can be resolved by reconstructing the corner
according to these two walls information. In this paper, the
basic contour is furtherly simplified into walls and cylinders,
and the two are detected, identified and classified. At the
sensor level, firstly, sensor detection model is established and
the reliability function is designed to calculate the measured
data reliability and extract feature points. Secondly at the
application level, EHT and LSM are combined to recognize
the feature points and reconstruct contour so as to reduce

the uncertainty of ultrasonic sensors; then the uncertainty of
the measurement data of the ultrasonic sensor is analyzed
by statistical experiments, and the parameter setting and the
radius of the cylinder detection radius are estimated. Finally,
the proposed work are verified through building an indoor
environment and designing a detection control system. The
experimental results illustrate the effectiveness of the proposed
method.

The structure of this paper is arranged as follows. Ultrasonic
sensor detection model based on uncertainty representation
is given in Section II. In Section III, contour model based
reliability region detection is proposed. EHT and LSM are
combined to estimate the environment contour in Section IV.
Ultrasonic sensor uncertainty analysis, parameter setting, and
discussion on measurement range of cylinder radii is repre-
sented in Section V. Experiment is performed and analyzed
for illustrating the proposed method efficiency in Section VI
and finally the conclusion is obtained in section VII.

II. ULTRASONIC SENSOR DETECTION MODEL
BASED ON UNCERTAINTY REPRESENTATION

A. Ultrasonic detection model based on annular-sector region

The mathematical model is established according to physi-
cal characteristics of the ultrasonic sensor. Because the mea-
surement distance of the ultrasonic sensor has error and
orientation of measurement is uncertain, this paper proposes
annular-sector uncertainty region instead of possible positions
of detected objects, as shown in Fig.1. Fig.l1 is a single
ultrasonic detection model. R is the return distance data of
the ultrasonic detection. The error range is represented by
the shaded area of the sector, and w is the angle range of
the ultrasonic detection orientation, i.e. the beam angle. The
detection direction of the measured data is within this range.
Generally, w is related to the characteristics of the ultrasonic
sensor. According to the physical properties of the sonar, w
is set to 22.5°. ¢ that is the measurement error of distance R
is 2 mm. The annular-sector area in Fig.1 represents distance
inaccuracy and direction uncertainty of the ultrasonic sensor.
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Fig.1 Ultrasonic detection model by using uncertainty
representation.
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Fig.2. Ultrasonic sensor measurement result at three positions

B. Wall and Cylinder Contour Detection based on Multiple
Measurements

In order to improve accuracy of measurement, this pa-
per adopts DSmT method[25] for data fusion of multiple
measurements, and updates the map to improve accuracy of
measurement data. Fig. 2 shows three measurements of the
ultrasonic sensor detecting different environmental contours at
three adjacent locations P,s1, Pos2, Pos3, and Fig. 2.(a) shows
the wall plan contour, and Fig.2.(b) shows the cylinder contour.
The overlapping area of three measurement results in figure is
the area where the sector region contacts wall plan or cylinder.
Then DSmT method is used to fuse the results of multiple
measurements to improve accuracy of the detected data. In
this paper, we first distinguish the two environmental contours
of straight line and circular arc. Two types of environmental
contours are selected by two detection model and identification
methods. Below we propose a method to distinguish two types
of environmental contours. We define a parameter Ry4, which

is a referential arc radius between R; and Rs. The definition
is expressed as follows:

Ryq = Ri + (R3 — Ry x dy2/d13) (1

Comparing the parameters Roq with Ro, if the difference is
very small, there is a common tangent line on the measured
arcs at three positions, that is, the detected contour is a wall
plan; if the difference is too large, there is no common tangent
line on the measured arcs at three positions, and there may
be a externally common tangent circle, and it means that the
detected contour is a cylinder. We set a threshold value T'h to
judge different types of environmental contours. The judgment
conditions are as follows:

Plan,
Cylinder,

N if|R2d—R2 |<Th

ContourType = { it | Rog — Ry |> Th 2)

By rotating and multiple measurements, a single sonar
sensor measurement can be equivalent to the simultaneous
measurement of multiple sonar sensors, whose data is used to
estimate the environmental contour. Therefore, this method can
also be used to detection of multiple sensors and environment
reconstruction.

III. CONTOUR MODEL BASED ON RELIABILITY
REGION DETECTION

The multiple measurements are performed for the same
detected cylinder, then abovementioned sonar detection model
is used to represent contour and then data fusion method is
adopted to processing these data for promoting measurement
accuracy, which runs with high efficiency in real-time and has
many practical application.

A. Basic principles of DSmT

Dempster Shafer Theory (DST) has obtained the extensive
attention of researchers of information fusion; the main reason
is that it is a brilliant mathematical model in dealing with
uncertain information. It takes Bayes theorem as its special
case and carries out abstract mathematical representation of
information fusion. Due to shortcomings and limitations of
that method, DSmT method [20] has been proposed for further
developing the DST. DSmT can process information obtained
from k independent sources and fuse data. In procedure of
fusion, the conflict factor, ki o . s, is generated. Dempster
improves DST through reassigning the total conflict quality
to a propositional space using a simple normalization process.
Due to counter-intuitive features of this DST rule in high
conflicts, it has caused great controversy. However DSmT
solves the problem of conflict allocation well, and there
are many multiple distribution rules. In this paper, a PCR6
assignment method is used. The representation of this method
is as following:
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Ci,2,....s is the sum of non-zero X, ki 2. . s is the collision
factor, m;(-) is the generalized reliability function, and e; 5. 4
is the sum of the non-zero focal elements generating the
amount of conflict.

B. Ultrasonic Data Fusion By Using Credibility

DSmT is adopted to represent the reliability of each grid
(pixel) in the annular-sector region. #; and 6, represent two
situations of occupancy grid. 61 denotes the occupied grid
and 6 denotes the unoccupied one. According to DSmT, we
can get a hyper-power set D® = {®,0,0,,01 N6, 01 Ub},
where 61 N O means that it is both occupied and unoccupied
as a conflict factor, and where 6; U 65 that it cannot be
determined whether it is occupied. We can formulate the
following reliability assignment functions (6), (7) and (8)
based on the physical properties of ultrasonic sensor and the
characteristics of actual measurement data.

{<

Since #; N O3 is only generated during calculation, there is
no need to adopt an assignment function [14]. In the above-
mentioned formula, A is the proportional coefficient of the
reliability function, and depending on the angle #. R is the
distance from the sonar position to the obstacle; d is the
distance from the sonar sensor position to the grid (x, y)
(point (x, y) are the pixel coordinate of the sonar scanning
region); @ is the angle between d and the central axis. w
is the beam angle of ultrasonic sensor set to 22.5°; € is
the error range of the sonar detect data, and it is set to 2
mm according to the physical properties of the sonar sensor.
When the angle theta are the same, and A is a fixed value,
we have m(01) = m(6z) A/2 and the conflict factor
m(f; N Oy) is the maximum, which satisfies the condition

JUNE 2019 4

proposed by [19]. As can be seen from Fig.3, the closer
to R = 3.0 m the detect distance is, the larger m(f;) is,
while the m(02) is opposite. Furthermore, the m(6; U 62) is
only related to the angle 6, which would be more able to
reflect the physical properties of uncertain direction. It is not
enough to capture available information for realizing accurate
environment contour by using single ultrasonic measurement,
due to its uncertainty and inaccuracy. Here a remedy is to
use multiple of ultrasonic measurements to fuse measurement
data to reduce its uncertainty and increase the reliability of
measurement data.
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Fig.4. Contact areas of wall plan and annular-sector.
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250 1 C. Reliability Representation based on Contact Point
& uy The uncertainty area represented by annular-sector domain
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s ", is large enough to make it difficult for accurate reconstructing
2 » the environmental contour. Therefore, on the foundation of a
250 & large number of measurements, we can consider the tangent
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region as detection region containing the common tangent line
S0l 4 wag or common tangent arc, which is extracted as annular-sector
ey . . .
hl/ region. Multiple sets of ultrasonic measurements are used to
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X(em) reduce the range of uncertain area [25]. We first represent the
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Fig.5 Calculation of contact point reliability of wall plan.
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(c) The detection result of cylinder reliability areas
Fig.7 Calculation of cylindrical reliability using DSmT.

reliability area for the environment contour of wall plan as the
linear type. As shown in Fig.4, there are some annular-sector
region, which are tangent to the wall plan and whose central
angle is 6e/R. Those area include all of possible detected
points of the wall plan and those points are the detected
positions where ultrasonic waves are reflected when touching
the wall plan. In reconstruction of the environmental contour,
the detected points can be used to estimate the wall plan.
Since multiple measurements can be used to reconstruct the
environment contour, we can get multiple sector reliability
regions, as shown in Fig.5.

Fig.5 (a) shows the reliability area for multiple measure-
ments that overlap with each other. The value of reliability of
pixels in each area is between 0 and 1, as shown in Fig.5 (b).
Then DSmT method is adopted to fuse the data to furtherly
obtain the reliability area. As shown in Fig.6, the higher the
reliability value of pixel in the reliability region is, the greater
the probability of this point being a detected point is. The
reliability area of the cylinder is represented in the same way,
as shown in Fig.7. The higher the reliability of the detected
points is, the higher the accuracy of reconstructing the contour
of the environment will be.

D. Feature Point Extraction based on Adjacent Pixel Cluster-
ing

Reliability regions consist of multiple contact points in Fig.6
and Fig.7 (c). The reliability of the pixel points in each area is
between 0 and 1, and there is an extremum, i.e. the optimum
solution of detected points. These points are found and used to
fit straight segments and discrete arcs, which can reconstruct
the environment contour and to improve estimation accuracy.

The specific procedures are as following steps. Pixel points
of each reliability region is first clustered. The cluster method
is to search every pixel in its 8 fields and put these pixel
points with adjacency relationship into one set. In the clustered
pixels, the most reliable point is found that are most likely to
be contact with the wall for reconstructing the environment
contour. The flow chart of the clustering algorithm adopted in
this paper is shown in Fig.8. And the steps are summarized as
follows: Step 1: To initialize the storage space and establish
an empty link list. Each node of the list stores an array and the
category tag value is initially set to 1. Step 2: In the reliability
regions, to sample a pixel and determine whether the sampling
point is classified and identified. If yes, repeating resample
procedure. If not, to create a new node in the link list, whose
classification value is the current category, and store it in the
current node. Then, the current node is inserted into the tail
of the list and to go to Step 3. Step 3: To search these pixels
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adjacent to the above-mentioned pixel by scanning 8 adjacent
fields. If find, the adjacent points are marked as the current
category and push it into the stack. Then this step is repeated
until the adjacent pixels are not found, go to step 4. Step
4: To determine whether the current stack is empty. If not
empty, pop the pixel at the top of the stack and to go to Step
3. If empty, go to step 5. Step 5: The current category tag
value is added with one and the algorithm determines whether
there are any unmarked points (pixels) in any other reliability
areas. If any, return to step 3, if not, end scanning procedure,
and go to step 6. Step 6: Find the point with the highest
reliability as the detected point in the clustered point set. After
processing by using the above-mentioned steps, adjacent pixels
in each reliability region are grouped into a class and stored
in an array of link list node. What’s more, the point with
the highest reliability is found as the detected point, which
lays a foundation for reconstruction of accurate environment
contours in the future.

‘ cluster =1 ‘

#‘

v

Scan pixels of reliability areas and set the
unmarked point as cluster

Ll

A

Scan the 8 adjacent fields of pixels

Push Pixels into the stack

Are there adjacent pixels ? .
! P set the value of pixel to cluster

Store pixel coordinates into v

class set
L cluster++

‘ Pop pixel coordinates ‘

Are the reliability areas
completely scanned?

Extract the point with the highest reliability as
the detected point for the clustered point set

End

Fig.8 Flow chart of extracting detection point in reliability
area based on clustering adjacent pixels.

IV. LEAST SQUARE DETECTION BASED ON EHT

After extracting the detected points (i.e. the feature points)
from the reliability areas, we reconstruct the environment
contours by using EHT and LSM. Firstly, the feature points
are accurately classified using the deviation discriminant in
EHT. Then we adopt LSM to perform line and discrete circles
fitting on the classified feature points, and the environment
contours are finally represented.

A. The Basic Principle of HT

Duda and Hart introduced polar coordinates into HT[26].
This parameterization method has also been widely adopted
by later researchers, and its expression is as follows:

p=x-cosf+y-sinf 9

Where p is the perpendicular distance from the origin of
the image space to the line to be represented (i.e. vertical
distance from origin to line), and € is the angle between normal
line through the origin of the image space and the x-axis.
This polar method is equivalent to use a normal vector to
represent a straight line, as shown in Fig. 9 (a). In this paper,
these parameters are used to represent the straight line of the
environment contour.

According to Eq.9, the points in the original image space
correspond to the sinusoidal curves in the parameter space, that
is, mapping relations have a point-sinusoidal curve duality,
as shown in Fig. 9 (b). According to the characteristics of
HT, the collinear points in the image space is mapped into
the sinusoids in the parameter space, and these sinusoids
will intersect at a point. And the accumulated number at the
intersection point is the voting value. The higher the voting
value is, the higher the probability that the point corresponding
to the line will be. As for circle detection, HT can also be
similarly used by extending it to Random Hough Transform
(RHT).

B. LSM for Fitting Straight Line

RHT method is used to screen the feature data, and then
LSM is adopted to fit the screened data and obtain higher
accuracy. This procedure is also implemented in the later
cylinder identification. LSM is a classical linear regression
method, which can obtain the regression line with the smallest
mean square error. The basic principle of this method is
described as follows.

P
P
>

2 C 1
g p:3xcost9+ysin0 E 5
= = 3
P 4 4
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(a) Linear parameterization. (b) Point-sinusoidal duality.
Fig.9 HT principle explanation
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Fig.10 Environmental contour fitting flow chart based on HT
and LSM.

Assume that the equation of line to be estimated (i.e. a straight
line representing the environment contour) is y = a - x + b,
including the undetermined coefficients a, b, and the given
data set {(z;,y;)[i =1,---,n}. After substituting these data
points into the equation, the error indicator E is:

E = Z(ami +b—y)? (10)
i=1
When the error E is the minimum, the partial derivative of
the linear parameters a, b is equal to 0 as follows:

OF/da =2 (y; —ajx; —b)x; =0 an
Then we get the linear equations about a, b:
(Sat)a+ (Cah = Ty )
Qo wi)a+nb =3y,

Weset A=Y 22 B=>u;,C =Y yiz;,D =3 vy and
the equations are simplified as:

{ Aa+Bb=C

Ba+nb=D (13)

To solve a, b, the solution of the equations is:

{ a=(Cn—BD)/(An — BB)

b— (AD — CB)/(An — BB) (14

C. Environmental Straight Line Contour Reconstruction Using
EHT and LSM

After obtaining the feature points of the reliability areas, the
deviation discriminant based HT called as EHT and LSM are
combined for reconstructing environment contour. The specific
procedure is shown in Fig.10. This method is that we map the
feature points into the parameter space and find the highest
peak of voting (the highest point of voting total) to get the
corresponding (pmaz> Omaz) > @ shown in Fig.11, and then
the feature points are classified according to the deviation
discriminant. The deviation discriminant is defined as

| 2; cos(Omaz) + i SIN(Omaz) |< € (15)

Where x; and y; are the feature point coordinates and € is
the distance error of the ultrasonic sensor measurement. When
x; and y; satisfy this formula (15), the feature points belong to
the current category. When all of the points in the feature set
are judged or the number of points is less than 2, the judgment
procedure is ended. The dots of different colors in Fig 12 are
the classified points. Then the classified points are fitted using
LSM to reconstruct the environmental contours.

D. Circle Detection Using Random Sampling Consensus
based HT

1) Circle detection method based on Random Sam-
pling Consensus based HT: Random Sampling Consensus
(RANSAC) [27, 28] based HT also called as EHT is pro-
posed to detect circle. The traditional RANSAC and HT are
mainly for some circles with particularly obvious boundaries.
However, for some circles with discrete boundaries, they are
difficult to be identified by some traditional methods. The
algorithm in this paper makes some improvements based on
these traditional algorithms, so that it can identify the circle.
The algorithm can be roughly divided into three main steps;
these steps are detailly represented as follows:

(D Detection of circle In detection of the circle, RANSAC
and HT are mainly used, and three points are randomly
selected from all the discrete pixel points, and a circle is
formed based on the three points. Then a ring is formed based
on this circle, all the pixels contained in the ring are stored into
an array, and the number of pixel points is counted. The circle
is divided into several different sector regions according to a
certain angle, then the number of pixel points in each annular-
sector region is counted and to calculate the variance of the
number of pixel points in each region. After that, the circle
proportion is defined as statistic quantity, which is the total
pixel number dividing the number of the sector region that
should contain the pixel points.

@ Extraction of the best circle In Step 1, circle correspond-
ing to the total number of pixels is generated, which are sorted
according to the circle proportion in a descending order. Take
the first ten circles with larger circle proportion. Among the
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top ten circles, the circle with the smallest variance is selected
as the best circle.

3 Deleting data points of the best circle. Multiple experi-
mental result illustrate that the circle obtained by the above-
mentioned method is the one we need. Then the circle is
displayed and the pixels around it are marked. These pixels are
then removed from the total pixels and then the next circle will
be detected similarly. After these three steps are completed,
one circle is obtained and loop is repeated again for continuing
to find other circles until all the circles are found.

votes

Fig.11 Highest peak extraction of hough transform.
250 T T

o The first t)llpe of feature poiflts of the wall
® The second type of feature points of the wall
The third type of feature points on the wall
200 ® The fourth type of feature points of the wall 7
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Feature points of the cylinder
150 . * o
&
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=
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e
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Fig.12 Feature point classification diagram based on hough
transform.

2) Circle fitting method using LSM: We suppose a series
of data points x;, y; near a circle, and fit these points by using
LSM to optimize the parameters of the circle [29]. The circular
equation is (z — z.)? + (y — y.)> = R?. The fitting of LSM
requires that the sum of the squares of the distances f is the
smallest,

F=3 (@i—a)+ (i —v)* = R*)*  (16)
We define an auxiliary function g(x,y),
g(@,y) = (v — ze)” + (y = Yo)* — R? a7

Then the expression (16) can be expressed as:

f= Zg(ﬂ%yi)Q

According to the usual steps of LSM, it can be seen that
f takes the extreme value corresponding to the following
conditions:

(18)

of _
Or. 0
9
2L =0 (19)
of _
55 =0
Solve the fitted center coordinate (z.,y.) and radius R:
Suuvsuv - Suuusvv - Suvvsvv + Squvvv
- 20
v 2(‘912“; - Suuva) + o ( )
_ _Suusuuv + SuuuSuv + Squuvv - SuuS'uvv +
Ye 2(52, — SuuSun) Y
(21)
R=sqrt(d ((wi— )+ (i —ve)?)  (22)
Where these items are as follows:
v=3 /N y=>uy/N
Suuu = ’LL,‘{-)) va'u = U?
S > )
Suu = ZU? Spo = ZUZQ
Suv = Zuivi Suuv = ZUZZ’UZ' Su’uv = ZU'LU?

V. UNCERTAINTY ANALYSIS AND PARAMETER
SETTING

In the procedure of environmental contour reconstruction
using measurement data of the ultrasonic sensor, the noise of
the ultrasonic sensor has a great influence on the environmental
contour reconstruction. This section calibrates the error distri-
bution of the sensor detection, and the parameter T'h setting
in the section II, performs experimental testing, and discusses
estimation of detection range of the cylinder radius.

A. Estimation of measurement uncertainty of ultrasonic sensor

In this paper, an HC-SR04 ultrasonic sensor is used to detect
the distance between the sensor and the wall for calibrating
the ultrasonic sensor noise. The measurement scheme is to
measure the contour of the wall surface by a group of three
positions in the horizontal direction with separation distance
lstep, as shown in Fig.13(a). Also 12 groups of the positions
are designed vertically with the same interval distance [gcp.
First group of positions is 30 cm away from the wall surface,
other groups are separated with [4., = 20cm. Each group
includes 50 times of measure data. As for each measurement,
d = Roq— Ra, the value d should be 0 in theory. Due to noise
disturbance, the error data distribution should theoretically sat-
isfy the Gaussian distribution, and the experimental results are
statistically consistent with the Gaussian distribution shown in
Fig.13(b), where p is 0.23cm, o is 0.32cm, and the statistical
result o is consistent with the error range 0.3 cm given in
the ultrasonic sensor manual, and the p falls within the error
range.
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B. Parameter Setting and Measurement Testing

Based on the abovementioned uncertainty calibration, o is
used as T'h to distinguish between wall and cylinder. The
traditional Hough transform (HT) can recognize the contour of
linear environment well and the cylindrical contour. However,
the calculation is large and the complexity is relatively high.
Therefore, the random Hough transform (RHT) is adopted
to reduce the calculation amount. The proposed algorithm
adopts RHT for pre-processing of the measured data to reduce
the noise influence. Fig. 14 represents that cylinder data is
obtained when T'h is set as o, and the cylinder with the
cylinder radius of 6.77cm, 11.37cm, 15.37cm and 19.90cm
can be detected. The detection range of the cylinder radius is
related to ultrasonic sensor uncertainty variance o, the interval
distance between the adjacent positions of the ultrasonic sen-
sor, and the distance from the cylinder to the sensor position,
which is discussed in the following part.

C. Discussion on Measurement Range of Cylinder radii

Fig.15 shows that three positions abased ultrasonic sensor
detection is adopted to measure the cylinder contour. Through
deep analysis of the measurement procedure, the conclusion
is obtained that detection effect of the cylinder with different
radii are related with sonic sensor detection variance o, the
interval distance [, between adjacent positions of sensor
detection, and the distance L from the cylinder to the sonic

50
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Measurement times

-200)
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(a)Uncertainty calibration. (b) Fitting of noise distribution
Fig.13 Noise distribution analysis of the sensor range data.
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Fig.14 Detection of cylinders with different radii using
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Fig.15 Measurement range of cylinder radii using different d,
lstep and L.

sensor. In order to simplify the analytical model, this assumes
that the ultrasonic sensor detects a cylinder with a radius R
directly above three adjacent positions P;, P», Ps, and the
spacing distance d for distinguishing the wall and the cylinder
is with threshold Th = o. And the relationship of the variable
is represented using expression (24), where Ry = L, Ry =
L — d, R is the radius of the measuring cylinder, which is
related to the setting of d. Since d is relatively small, the
constant term d in Equation (25) is omitted for approximation.
It can be seen that the detection radius R of the cylinder will
reduce with d increasing, I, decreases and L increasing. In
this experiment, d = o = 0.32 cm, lsp = 20 cm, and the
upper bound of the measurement of R is obtained. This value
is directly related to the distance L from the ultrasonic sensor
to the cylinder. The smaller L is, the larger the upper bound
of R is. Fig. 14 show that cylinder contour can be recognized
when L is 30 cm. When the cylinder is relatively small, the
reflection area of the ultrasonic contacting cylinder becomes
smaller, the ultrasonic return rate decreases, and the ranging
error increases. Therefore, threshold T'h of d is enlarged to
30, and R = 104.16—L is obtained. When L is 30 cm, 70 cm,
the cylinder can be detected. When L exceeds 104.16 cm, the
cylinder measurement data in the test is difficult to be used
for distinguishing the wall and the cylinder that is, exceeding
the detection range of the cylinder radius, which verifies the
rationality of the analysis expression.

(Ri + R)®

=12, + (R+Ry—d)? (24)

2

e
R =22idq-L
"

~ fracl?,.,4d — L,iflge, = 20,d = o = 0.32

step

~ 3125 — L,

(25)

VI. EXPERIMENTAL VERIFICATION AND
ANALYSIS

The experimental verification was carried out using an
ultrasonic sensor (HC-SR04), a drive motor (28BYJ-48 stepper
motor), and a control device (C8051F340 single chip develop-
ment board), and the devices used in the experiment are shown
in Fig.16. Here the ultrasonic sensor is standard module, which
provides range information directly. On the foundation of
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the above-mentioned theoretical methods, a pentagonal indoor (62.1,1833)
experimental environment was built using a drawing board ’ (2585, 102.8)
. . .. O
as show in Fig. 17(a). We planed the measurement positions o 0° o o
in the experimental environment. As shown in Fig. 17(b), o ©0©° © o
from the starting point (start), the measurement position was c 0 ° © o
designed along the rectangular path, and the end point (end) o
meets the start finally. Then, the ultrasonic sensor connected o e G
to stepper motor is controlled by a single-chip microcomputer, o 4 Swﬂo o 0 © ©
and the contour of the surrounding environment is measured $ho
with an interval of 22.5°in the range of -135°to +135°around (220.0, -70.
the measuring direction of the path. The ultrasonic sensor
model an.d the DSmT fusion method are com.bm.e.d to pro- (-114.5, -51.6) (717, -93.1
cess multiple measurement results to obtain reliability region
including the contact points, as shown in Fig.17(c), and the (b) Planned ultrasonic sensor measurement position.
250 . .
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(d) Environment Contour Recognition based EHT and LSM.
Fig.17 Detection results of environmental contours.

feature points are extracted in Fig.17(d). After that, EHT and
LSM are combined to fit the feature points into a straight line
or a circle, and the environmental contour is estimated, as
shown by the thick line in Fig. 17(c). Finally, traditional HT
and LSM fitting environment contours are compared with the
fitting method proposed in this paper, as shown in Fig. 18,
where the line segments labeled 1-5 are the original contours
the points A-F represent the intersections of the five line
segments, the circle labeled 6 are the cylindrical contours,
and F is the position of the cylinder. These several kinds of
contours represents the original intersection and position of
features, and the estimated environmental contours (including
straight and cylindrical parts) for both methods by using three
(a) Indoor experimental environment. different marks.
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B Rl Cononrs O Hongh Transform The data in Table 1 is comparison of the real and estimated
X Least Squares Method Based on Hough Transform environmental contours of line data. The data in Table 2
200 is the contour intersection point coordinates of EHT and
150k | LSM, and the intersection point error of the experimental
results compared with the real environment. Comparing the
100k - average error in the table, the average error of HT is 4.02,
—_ and the average error of EHT and LSM is 3.25. It can be
E 50f ] seen that the second method has a smaller error. The data in
= Table 3 is the actual and estimated data of center and radius
or 7 of the cylinder contour in the experimental environment. It
can be seen that the environmental cylinder contour error
=01 1 estimated by EHT is smaller. From the data in Table 2 and
100k i Table 3, we can get that the error of the straight line and
the cylinder data obtained by EHT and LSM is relatively
-150 L L L L smaller, and the obtained contours are also more accurate,
-100 0 100 200 300  that is, the estimated contours using the proposed method are
X(em) closer to the real environment contours, which illustrate the

Fig.18 Comparison of intersection points of the real and effectiveness of the proposed method.

estimated environment contours.
TABLE I: Comparison of raw and estimated environmental VII. CONCLUSIONS
contours data. (cm).

Although the ultrasonic sensor is cheap and easy to be used,
Real Data HT EHT and LSM there are uncertainties in the range and the orientation angle of
| 6(ad) 1.3248 1.3265 13211 measurement, which cause serious errors in estimating the en-
p(cm)  162.658 164.3347 164.2017 vironment contour. An ultrasonic distance measurement model
2 f}grcamd; _22‘299%92966 _2%'322292 _2%‘19172463 based on uncer.tainty represeptatioq ig first of all propose?d
;  Otad) 1.724 1.7104 1.7206 through analyzing the working principle of the ultrasonic
plem)  -102.9515  -97.3285 -99.952 sensor. Moreover, the multiple measurements are performed
4 Gzra:;i; 715337137 71%35 11§8 71332566 4 for generating the reliability region based on the contact points,
S Z(fad) 2011 5 8972 58997 and DSmT method is adopted to fuse the data extracted from
p(cm)  100.5188 99.5121 99.9550 these region to reduce uncertainty. Next, the EHT and LSM
are combined to reconstruct the environment contour. Then
the detection uncertainty is analyzed for setting the parameter
TABLE II: Comparison and error of coordinates of T'h, detection range of the cylinder radius is estimated.Finally,
intersection points of environmental contours line. (cm). the proposed algorithm and traditional method are contrasted

to illustrate the effectiveness of the proposed method. In this

Real Data(cm) HT EHT and LSM work, concerning the measurement error related to corner
coordinate  error  coordinate  error . . X
(cm) (cm) (cm) (cm) detection due to a double bounce of the ultrasonic signals,
. - 621 56,8 5305 -57.525 465 the corner conFour can be compensated acco.rdlng to the tyvo
y 183.3 183.527 184.127 walls information, which need further analysis and correction
B T 2585 258.394  2.143 256335 2519 in the future. method has certain reference value for research
Y 102.8 104.941 104.087 . . . . . .
. o 220 21823 3588 220586 3749 of.enV1ronmen.tal information perception of intelligent robots
y -70.2 -67.11 -67.486 using ultrasonic sensors.
D T 71.7 -67.11 8.079 69.248 3.479
Y -93.1 -89.202 -90.632
E T -114.5 -115.266 0.994 -115.265 1.859 REFERENCES
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