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Abstract—Multi-sensor fusion strategies have been widely
applied in Human Activity Recognition (HAR) in Body Sensor
Networks (BSNs). However, the sensory data collected by BSNs
systems are often uncertain or even incomplete. Thus, designing a
robust and intelligent sensor fusion strategy is necessary for high-
quality activity recognition. In this paper, Dezert-Smarandache
Theory (DSmT) is used to develop a novel sensor fusion strategy
for HAR in BSNs, which can effectively improve the accuracy
of recognition. Specifically, in the training stage, the Kernel
Density Estimation (KDE) based models are first built and
then precisely selected for each specific activity according to
the proposed discriminative functions. After that, a structure
of Basic Belief Assignment (BBA) can be constructed, using the
relationship between the test data of unknown class and the
selected KDE models of all considered types of activities. In order
to deal with the conflict between the obtained BBAs, Proportional
Conflict Redistribution-6 (PCR6) is applied to fuse the acquired
BBAs. Moreover, the missing data of the involved sensors are
addressed as ignorance in the framework of the DSmT without
manual interpolation or intervention. Experimental studies on
two real-world activity recognition datasets (The OPPORTU-
NITY dataset; Daily and Sports Activity Dataset (DSAD)) were
conducted, and the results showed the superiority of our proposed
method over some state-of-the-art approaches proposed in the
literature.

Index Terms—HAR, Multi-sensor fusion, Belief function the-
ory, KDE, DSmT.
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HUMAN Activity Recognition (HAR) has spawned in-
tense researches in the past decades and continues to be

an active research area [1], [2], [3], [4]. These HAR systems
have enabled several practical applications, such as health
monitoring [5], physical activity [6] and gesture detection. Re-
cently, multi-sensor fusion for activity recognition is playing
an increasing role in HAR field and many strategies have been
proposed (see [7] for more references). Generally speaking,
multi-sensor fusion strategies can be mainly categorized into
three level categories depending on the abstraction level used
for data processing: data-fusion level [8], feature-fusion level
[9] and decision-level fusion [10]. Among all these three
fusion levels, decision-level fusion output is a unique decision
obtained from local decision of multiple (homogeneous or
heterogeneous) sensors. The fusion in this level has many
advantages: communication bandwidth saving, allowing the
combination of the heterogeneous sensors. In this paper, the
main topic thus focus on decision-level fusion area. Two
most common used approaches for this level of fusion are
majority voting [11] and naive bayes [12]. However, complex
sensory data, especially when these data are uncertain or even
incomplete, make these two methods unsuitable for HAR. Two
classical scenarios are described as follows:

(a) Uncertain Data Collected by 

Right Knee Sensor in OPPORTUNITY Dataset.

(b) Percentage of Missing data Collected 

by Right Knee Sensor in OPPORTUNITY Dataset.

Fig. 1: Uncertain and incomplete sensory data in OPPORTU-
NITY dataset.

1) Uncertain sensory data in HAR problem. In order
to intuitively discuss the uncertainty of sensory data, one
of the involved sensor in UCI OPPORTUNITY dataset [13],
[14] was randomly selected and parts of the original data of
three activities derived from the chosen sensor were drawn in
Fig.1(a). As we can see from Fig.1(a), some objects that are
very close can sometimes truly originate from different classes.
Such objects are really difficult to classify correctly into a
particular class using the given information. In this case, we
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call this data uncertain when it can belong to different specific
classes with probability mass assignments to estimate;

2) Incomplete sensory data in HAR problem. Missing
data frequently occur during the measurement of wearable-
based activity recognition. As we can see in Fig.1(b), sensory
data with incomplete pattern occupy an important proportion
which cannot be easily neglected in OPPORTUNITY dataset.
The traditional ways to cope with these feature vectors, which
include missing data, are to interpolate or delete the whole
vector. However, interpolation or deletion is not the wise
choice which may bring noise and information loss to the
recognition system.

The aforementioned discussions motivate our study, where
HAR in Body Sensor Networks (BSNs) is implemented based
on belief function theory [15]. Belief function allows to model
uncertainty and to fuse Basic Belief Assignments (BBAs) built
from sensors’ measurements. Within this theory, information
fusion relies on the use of a combination rule allowing the
pieces of evidences (drawn from sensor readings) expressed
in a common frame of discernment to be combined. Among
all available combination rules, Dempster’s rule proposed by
Shafer in Dempster-Shafer theory [15] is the most well-known
rule still used in many applications even if it remains very
controversial. Recently, Chen et al. [16] proposed a new
method based on Dempster-Shafer theory to improve human
action recognition by using the fusion of depth camera and
inertial sensors. Although the recognition results mentioned
in [16] is good, two key issues are ignored by authors: 1)
In Dempster-Shafer theory, there exists an assumption that
hypotheses considered should be exclusive. However, in HAR,
activities to be identified often fail to satisfy the characteristics
of mutual exclusion. For example, the intersection between
”Walking” and ”Running” can be defined as ”Standing” or
intermediate transition state ”Walking to Running” [17]; 2)
Dempster’s rule cannot solve high conflict issues and even
very low conflict issues in specific cases, which have been
widely discussed in [18], [19].

To solve those mentioned drawbacks in Dempster-
Shafer theory, Dezert and Smarandache proposed Dezert-
Smarandache Theory (DSmT) [18] to solve multi-sensor fu-
sion problems, with more reasonable assumptions and better
combination rules, which is more appropriate to handle HAR
problems. In this paper, a new use of DSmT is proposed
to solve HAR issues thanks to a novel decision-level fusion
strategy based on DSmT. Such DSmT-based HAR can be used
for online activity recognition system because of its higher
recognition accuracy and lower recognition delay, which can
meet the required response speed in real-time recognition sys-
tems (less than 200ms)[2]. Specifically, the main contributions
of this work are summarized as follows:

• A novel DSmT-based fusion strategy for HAR in BSNs
is proposed;

• Kernel Density Estimation (KDE) models are constructed
based on the sensor readings, and those selected KDE
models of all considered classes are applied to calculate
BBAs in DSmT;

• The missing data in original sensor readings are also

modeled by vacuous BBA (i.e. the total ignorance source
of evidence) in DSmT without any manual interpolation;

• The efficiency of our fusion system with two activities
recognition open datasets is demonstrated.

This paper is organized as follows: Section II provides an
inventory of the basic concepts of DSmT. Section III provides
a description of the new proposed fusion method. Section IV
includes the experimental results and discussions. The final
section V contains a brief conclusion.

II. BASICS OF DSMT

In DSmT framework, the BBAs are defined on the so-
called hyper-power set (or Dedekind’s lattice) denoted DΘ ,
(Θ,∪,∩) whose cardinalities follows Dedekind’s numbers
sequence, see [18], Vol.1 for details and examples. A (gen-
eralized) BBA, called a mass function, m(·) is defined by
the mapping: DΘ 7→ [0, 1], verifying m(∅) = 0 and∑
A∈DΘ m(A) = 1.
To palliate the drawbacks of Demspter’s rule, Martin et.al

[20] proposed a very interesting combination rule: PCR6. Due
to its good performance, it is widely applied in recent applica-
tions. We recall that the PCR6 formula for the combination of
two BBAs coincides with PCR5 formula originally developed
by Smarandache and Dezert in [18]. The combination of two
BBAs m1(.) and m2(.) by the PCR5 rule is given as follows:
for mPCR5(∅) = 0 and ∀A ∈ DΘ

mPCR6(A) = mPCR5(A) = m12(A)+∑
B∈DΘ\{A}|A∩B=∅

[
m1(A)2m2(B)

m1(A) +m2(B)
+

m2(A)2m1(B)

m2(A) +m1(B)
]

(1)
where m12(A) =

∑
B,C∈DΘ|B∩C=Am1(B)m2(C).

The combinations of more than two BBAs altogether with
PCR5 and with PCR6 fusion rule in general provide different
results. The choice of PCR6 with respect to PCR5 was
justified at first by Martin and Osswald in [20] from a specific
application, and then theoretically by Smarandache and Dezert
in [21]. The general formula of PCR6 for combining more than
two BBAs was given in details in [20] with examples.

III. DSMT-BASED FUSION STRATEGY FOR HAR IN BSNS

A. The Flow Chart of Our Proposed Method

Before entering in the detailed presentation of our DSmT-
based fusion strategy, we briefly introduce it through the
flowchart of Fig.2 for convenience. Specifically, in the training
stage, multiple KDE models are derived from the raw sensor
readings so as to build the model pool. Then, the represen-
tative model is selected for a particular activity based on our
proposed discriminative functions. After that, when the test
sample comes, the corresponding BBA is calculated through
each activity representative model. Finally, these BBAs are
combined with PCR6 rule, from which we make the final
decisions.
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Fig. 2: DSmT-Based Fusion Strategy for HAR in BSNs.

B. Mathematical Definitions of Daily Activities in DSmT

The goal of our work is to recognize human daily activities
thanks to DSmT-based framework. Thus, the basic mathemat-
ical definitions of the interested activities need to be given.
We assume that the finite frame of discernment considered in
our activity recognition problem is Θ = {θ1, θ2, · · · , θn}. The
corresponding hyper-power set of Θ is denoted DΘ. Singletons
in DΘ are used to represent the simple daily activity such
as θ1 , Standing, θ2 , Sitting, θ3 , Lying and so on.
Disjunctive focal elements in DΘ represent the coarse-grained
activities. For example, θ1 ∪ θ2 ∪ θ3 , Static Activity.
Also, if θ4 , Walking, θ5 , Running, then θ4 ∪ θ5

is regarded as Dynamic Activity. Following the definition
line of disjunctive focal elements, θ1 ∪ θ2 · · · ∪ θn represents
the whole unknown activity. Besides, the conjunctive focal
elements in DΘ can be used to stand for the transition
activity like θ1 ∩ θ2 , Standing to Sitting or θ1 ∩ θ2 ,
Sitting to Standing because θ1 ∩ θ2 = θ2 ∩ θ1 and
θ2 ∩ θ3 , Sitting to Lying or Lying to Sitting. In this
paper, we only consider a restricted hyper-power set, which is
denoted as DΘ

restricted = {θ1, θ2, · · · , θn, θ1 ∪ θ2 · · · ∪ θn}. In
DΘ
restricted, only two types of focal elements exist: one is the

singleton, which represents the simple activity and another is
θ1 ∪ θ2 · · · ∪ θn, which represents the unknown activity. More
complicated situations involving less restricted hyper-power
sets will be discussed in our future work.

C. Training Model Stage

In the training stage, the KDE model is employed to fit the
sensor readings. The most suitable KDE model to distinguish
a certain activity is then selected to be regarded as the
specific activity representative model. Among the process of
this training stage, two main steps are involved:

1) Construction of KDE Models: We assume that there are
M kinds of activities that need to be classified and the original
dataset collected from the wearable sensors are denoted as
xij , i = 1, · · · ,M and j = 1, · · · , N . Here, M represents
the types of activities to be classified and N is the number

of sensors. Thus, based on the Eq.(2), the KDE model of the
specific activity is derived from the sensor readings by

fij(xij) =
1

Q
·
Q∑
q=1

Kh(x−xijq ) =
1

Qh
·
Q∑
q=1

K(
x− xijq
h

). (2)

where f(xij) is the KDE model of xij which represents the
model of the j sensor for the i activity; K(·) is the kernel
function which can be ’normal’, ’epanechnikov’, ’box’ and
’triangle’; h is the smoothing parameter (the bandwidth) of
the KDE model. In this paper, the value of h is the adaptative
bandwidth selected by the method presented in [22]; The
parameter Q is the dimension of xij .

2) Selection of the Best Discriminative KDE Model for
the Specific Activity: As we can see from Eq.(2), each
activity can have N KDE models and we need to select
the most discriminative KDE model in order to reduce the
computational complexity and the interference model. Once
the unique KDE model for each activity is selected, one can
easily determine a specific sensor to identify activity because
there is one-to-one correspondence between the KDE models
and the wearable sensors. We propose two novel discriminant
evaluation functions as follows:

Definition 1: For the specific activity θs, s ∈ {1, · · · ,M},
the value of Sum of Statistical Difference (SSD) of the j, j =
1, · · · , N the KDE model is calculated as follows:

SSDθs(j) = [Ψ(fθsj)−Ψ(f1j)] + · · ·+ [Ψ(fθsj)−Ψ(fθM j)]

= (M − 1) ·Ψ(fθsj)−
M∑

i=1,i6=s

Ψ(fθij). (3)

In Eq.(3), θs is one of the specific activity among the M
considered activities; j is the sensor readings of the j sensor;
Ψ(·) calculates the statistical characteristic value of the derived
distribution of the KDE model fθsj . In this paper, Ψ(·) =
Mean(·), that is the average value of sensor readings.

The principle of selecting KDE model based on SSD is
quite simple: for the specific activity θs, if the SSD value
of the j, j = 1, · · · , N sensor is large, it means that
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(a) KDE models of g1 sensor for three activities θ1, θ2 and θ3.
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(b) KDE models of g2 sensor for three activities θ1, θ2 and θ3.

Fig. 3: Selection of the KDE Model for the Specific Activity Based on the Principle of SSD Function.

this j KDE model of θs has a better discriminative ability.
Here, a simple illustrative example was extracted from the
OPPORTUNITY dataset experiment in Section IV to show
the principle of SSD. As we can see in Fig.3, for the specific
activity θ1, the value of SSDθ1(g1) = (Mean(fθ1g1

) −
Mean(fθ2g1)) + (Mean(fθ1g1) −Mean(fθ3g1))(Fig.3(a)) is
larger that SSDθ1(g2) = (Mean(fθ1g2) −Mean(fθ2g2)) +
(Mean(fθ1g2

) − Mean(fθ3g2
))(Fig.3(b)). Here, g1 and g2

represent the g1 sensor and the g2 sensor. It can be clearly seen
in Fig.3 that KDE model (fθ1g1

) has the higher discriminative
ability than KDE model (fθ1g2

) for activity θ1.
In order to measure the distances between probability den-

sity functions of each pair of KDEs models, another well-
known choice for such measurement is Kullback-Leibler (KL)
divergence defined by, see [23]:

DivKL(fp1
||fp2

) =
∑
i

fp1
(i)log

fp1(i)

fp2
(i)
. (4)

Here fp1
and fp2

are two discrete probability density func-
tions. Similar to DivKL, another well-known divergence is
Jensen-Shannon (JS) divergence defined by:

DivJS(fp1 ||fp2) =
1

2
[DivKL(fp1 ||fp2) +DivKL(fp2 ||fp1)].

(5)
Based on Eq.(4) and Eq.(5), another discriminative evaluation
function is given to measure the discriminative ability between
different KDE models, which is named as Sum of Divergence
Difference (SDD):

Definition 2: For the specific activity θs, s ∈ {1, · · · ,M},
the value of SDD of the j, j = 1, · · · , N KDE model is
calculated as follows:

SDDθs(j) =

M−1∑
i,i6=s

Υ(fθsj , fθij). (6)

In Eq.(6), θs is the specific class of daily activity; Υ(·) repre-
sents the divergence function. In this paper, Υ(·) is defined as
KL (Eq.(4)) or JS (Eq.(5)). It is worth noting that in order
to make the statements more clear in the following sections,
we will directly use the Mean(·) to represent that SSD

criterion is applied for selecting KDE models in the process of
activity recognition. Similarity, DivKL(·) or DivJS(·) mean
that SDD is applied and DivKL(fp1

||fp2
) or DivJS(fp1

||fp2
)

is used in SDD criterion to measure the difference between
two distributions. For each activity θ1, θ2, · · · , θM , the best
discriminative M KDE models fθi , i = 1, · · · ,M can be
selected and denoted as follows:

fθ1g1
fθ2g1

· · · fθMg1

fθ1g2
fθ2g2

· · · fθMg2

...
...

. . .
...

fθ1gM fθ2gM · · · fθMgM

 (7)

and g1, g2, · · · , gM ∈ [1, N ]. Each of gi, i ∈ {1, · · · ,M}
represents the selected wearable sensor number.

D. Testing Stage

When the test sample becomes available, the corresponding
BBA is caluclated through each KDE model of each activity.
Finally, we combine all related BBAs with PCR6 rule and we
make the final decisions from the combined BBAs.

1) BBAs Calculation: In this paper, the considered frame of
discernment is Θ = {θ1, θ2, · · · , θM}. Each focal element in
Θ represents one kind of activity and here we just consider a
simplified DΘ

restricted = {θ1, θ2, · · · , θM , θ1 ∪ θ2 ∪ · · · ∪ θM}.
We consider a testing vector x with unknown class and we
want to identify the label of x corresponding to the activity it
belongs to. Next, we use the following equations to calculate
the BBAs (m1(·),m2(·), · · · ,mM (·)):

m1(θ1) =fθ1g1(x(g1)), · · · ,m1(θM ) = fθMg1(x(g1));

m2(θ1) =fθ1g2(x(g2)), · · · ,m2(θM ) = fθMg2(x(g2));

...
mM (θ1) =fθ1gM (x(gM )), · · · ,mM (θM ) = fθMgM (x(gM )).

It is worth noting that when the value of one feature is
missing, we directly assign ”1” to m(θ1 ∪ θ2 ∪ · · · ∪ θM )
which means in this case, we cannot obtain the valuable
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decision information. Besides, in order to make sure that
the derived BBAs satisfy the normalization condition, the
following normalization applies:
• If mi(θ1)+ · · ·+mi(θM ) ≤ 1, then mi(θ1∪· · ·∪θM ) =

1− (mi(θ1) + · · ·+mi(θM ));
• If mi(θ1) + · · · + mi(θM ) > 1, then mi(θk) =

mi(θk)∑
k=j,...,M mi(θj) for k = 1, . . . ,M , and mi(θ1 ∪ · · · ∪

θM ) = 0.
2) Global Fusion with PCR6 and Decision Making: After

obtaining the M BBAs, the PCR6 fusion rule is used to fuse
all these BBAs which is denoted symbolically by

mfusion = PCR6(m1,m2, · · · ,mM ). (8)

Then the final decision of the predicted class of x can be made
as θ∗i = argmaxθimfusion(θi), where θi is a focal element
of the DΘ

restricted based on the max of belief mass.
The DSmT-Based Activity Recognition technique is de-

scribed in Algorithm 1 for convenience.

Algorithm 1: DSmT-Based HAR
Input: Sequential original data

xij , i = 1, · · · ,M, j = 1, · · · , N , K =′ Normal′.
Output: The Predicted Class of Unknown data x∗.

1 Initialize: Cross Validation (xij)→ xtraining,xtesting;
2 Training Stage:
3 for i = 1, · · · ,M do
4 for j = 1, · · · , N do
5 fij(xij) = 1

Qh
·
∑Q
q=1 K(

x−xijq
h

);
6 end
7 end
8 for i = 1, · · · ,M do
9 for j = 1, · · · , N do

10 SSDθs(j) = (M − 1) ·Ψ(fθsj)−
∑M
i=1,i 6=s Ψ(fij);

11 or
12 SDDθs(j) =

∑M−1
i,i 6=s Υ(fθsj , fθij);

13 end
14 gi = max(SSDθi) or gi = max(SDDθi);
15 end
16 fmatrix =

fθ1g1 , · · · , fθMg1 ; fθ1g2 , · · · , fθMg2 ; · · · ; fθ1gM , · · · , fθMgM ;

17 Testing Stage:
18 DΘ

restricted = {θ1, θ2, · · · , θM , θ1 ∪ θ2 ∪ · · · ∪ θM};
19 for i = 1, · · · ,M do
20 mi(θ1) = fθ1gi(x

∗(gi)), · · · ,mi(θM ) =
fθMgi(x

∗(gi));
21 end
22 if mi(θ1) + · · ·+mi(θM ) ≤ 1 then
23 mi(θ1 ∪ θ2 ∪ · · · ∪ θM ) = 1− (mi(θ1) + · · ·+mi(θM ));
24 end
25 else if mi(θ1) + · · ·+mi(θM ) > 1 then
26 Normalization of BBAs mi(θ1), · · · ,mi(θM );
27 end
28 Fusion Step: mFusion = PCR6(m1(·), · · · ,mM (·));
29 Decision Step: Take as decision the maximum of belief

mass of focal elements θ∗i = argmaxθimfusion(θi);
30 final ;
31 return Predicted Class of x∗;

IV. PERFORMANCE EVALUATION

A. Datasets

The performance of the proposed DSmT-Based HAR was
evaluated on the following two open HAR datasets. The first
one is UCI OPPORTUNITY dataset [13], [14]. The details

of this dataset can be found in OPPORTUNITY UCI dataset1.
Three basic activities were classified: Walking, Sitting and
Lying; The other one is UCI DSAD2. The details of the
DSAD can be found in [24]. In this dataset, five common
daily activities including Sitting, Standing, Lying, Walking
and Running were classified to prove the effectiveness of our
proposed method.

B. Measures of Performance

As measures of the performance of our activity recognition
system, the classical Accuracy, Precision, Recall, and F1-score
[7] have been used. They are defined by

Accuracy =
1

n

n∑
k=1

TPk + TNk
TPk + TNk + FPk + FNk

. (9)

Precision =
1

n

n∑
k=1

TPk
TPk + FPk

. (10)

Recall =
1

n

n∑
k=1

TPk
TPk + FNk

. (11)

F1− Score =
1

n

n∑
k=1

(2 · precisionk · recallk
precisionk + recallk

). (12)

where k denotes class index and n is the number of classes.
True Negatives (TPk): the number of correctly recognized
class examples; True Negatives (TNk): the number of cor-
rectly recognized examples that do not belong to the class;
False Positives (FPk): examples that were either incorrectly
assigned to the class; False Negatives (FNk): not recognized
as class examples.

C. Results on UCI OPPORTUNITY dataset

1) Effectiveness of the Selection of Ψ(·) and Υ(·) in Eq.(3)
and Eq.(6): The selections of Ψ(·) in SSD and Υ(·) in SDD
were quite crucial to the representative KDE models for all
involved activities. Thus, the relevant comparisons about the
recognition rates were given in Fig.4 when Ψ(·) and Υ(·)
were set to (1) Ψ(·) = Mean(·), (2) Υ1(·) = DivKL(·), (3)
Υ2(·) = DivJS(·), respectively. As we can see in Fig.4, our
proposed method based on these three discriminative func-
tions3 distinguished three mentioned activities in Opportunity
dataset (four subjects) very well, which indirectly proved
the effectiveness of Mean(·), DivKL, DivJS in measuring
the difference between the distributions of activities. Besides,
all the three generated models had the highest recognition
accuracy on Subject 1. However, the sensors selected by
each function were quite different, and the corresponding
involved sensors were listed in Table I. It can be found that
the sensitivity of sensors to different daily activities varied,
and was influenced by their locations of deployment. Sensors

1http://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition.
2http://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities.
3As we introduced in Definition 1 and Definition 2, Ψ(·) means that SSD

(Eq.(3)) is used to choose the best KDE models and Υ1(·),Υ2(·) means that
SDD (Eq.(6)) is applied in our activity recognition model.
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TABLE I: The Selected Sensors in OPPORTUNITY dataset Based on Mean(·), DivKL(·), DivJS(·).

Subject
SSD : Ψ(·) = Mean(·) SDD : Υ1(·) = DivKL(·) SDD : Υ2(·) = DivJS(·)

Walking Sitting Lying Walking Sitting Lying Walking Sitting Lying

Subject 1 LLA-accX RLA-accX Back-magX LLA-magX RKN-accZ Back-magZ LWR-accY RKN-accZ LShoe-accZ

Subject 2 LLA-accX RLA-accX LShoe-accZ LLA-magX HIP-accY Back-magZ RKN-accY RKN-accZ Back-magX

Subject 3 RH-accY LLA-magX RShoe-accZ Back-magX Back-magZ Back-accZ RKN-accY Back-magZ RShoe-accY

Subject 4 LWR-accY RH-accY Back-magX Back-magZ LUA-accY Back-accZ LUA-accY LUA-accY Back-accX

*According to [26], each triaxial (x,y,z) sensor unit has 3-degree of freedom. And in this Table, all the meanings of the involved sensors are: Left
Lower Arm (LLA);Right Lower Arm (RLA);Right Knee (RKN);Left Wrist (LWR);Left Shone (LShone);Hips (HIP);Right Hand (RH);Right Shoe
(RShoe);Left Upper Arm (LUA);Accelerator x axis (accX);Magnetic Z-axis (magZ). More details about OPPORTUNITY Dataset can be referred
to [26].

located on the arm such as left lower arm, right hand, left wrist
were more likely to identify ”Walking” but sensors located on
the Back or shoes had higher recognition rates of ”Lying” than
other sensors. This directly indicates that it is not feasible or
wise to rely on a single sensor deployed in a single location
to identify various kinds of activities [25]. This is also our
motivation to use multi-sensor fusion strategy based on DSmT
to solve activity recognition problems.
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Fig. 4: Effectiveness of the selection of SSD(Ψ(·)) and
SDD(Υ(·)) in OPPORTUNITY dataset.

2) Recognition Rate versus Training Percentage: In this
experiment, we did modify the percentage of training set and
investigated the relationship between the training percentage
and the classification accuracy of our proposed method on
OPPORTUNITY dataset. It is worth mentioning that the
discriminative function chosen here was SSD (Eq.(3)) and
Ψ(·) = Mean(·). Since our experiments were conducted
based on ten-fold cross validation method, it is convenient for
us to test the relationship between recognition rate and training
percentage. According to the principle of ten-fold cross valida-
tion, the original datasets were first randomly divided into ten
equal parts. And then, in the first experiment, we first treated
10% data as training dataset and the remaining 90% data
were used as testing dataset; And in the second experiment,
20% datasets were used for training and the remaining 80%
for testing, and so on, until the last experiment which we
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Fig. 5: Classification accuracy vs. training percentage for the
OPPORTUNITY dataset.

used 90% datasets for training and the last 10% datasets for
testing. Besides, in order to further observe the performance
of the proposed method, we divided the original data into
100 equal parts on the basis of one hundred cross-validation.
And then one of the equal parts was randomly selected as the
training datasets (1%) and the remaining (99%) were regarded
as testing datasets. The average accuracy rates of all these ten
experiments was shown in Fig.5, which showed that even if
there were few training samples, the model proposed in this
paper still gave higher recognition accuracy.

3) Comparison Between Base Classifiers and Fused Clas-
sifiers in OPPORTUNITY dataset: In order to deeply analyze
the relationship between base classifiers and fused classi-
fier in our proposed model, the detailed comparisons were
given in Fig.6. Based on the results presented in Fig.4,
the discriminative function chosen here was SSD (Eq.(3))
and Ψ(·) = Mean(·). In Fig.6, the x-axis represents the
KDE model corresponding to the selected sensor, the y-axis
represents the number of correctly classified test samples,
the value above each histogram represents the classification
recognition rate corresponding to each KDE model, and the
solid line at the top of the histogram represents the total
number of test samples. As we can see from Fig.6: (1) the
recognition accuracy of the fused model was significantly
improved compared with that of the base classifier; (2) the
performance of based classifiers were obviously different.
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Fig. 6: Comparisons Between Base Classifiers and Fused Classifiers in OPPORTUNITY dataset.
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Fig. 7: Confusion matrices of Four Subjects in OPPORTUNITY dataset.

Among these mentioned base classifiers, RH-accY in subject 4
had the lowest rate: 56.9885% and LWR-accY also in subject
4 had the highest rate: 88.7390%. The main reason for the
performance difference of the based classifiers is that we
looked for the relative best KDE model for the specific activity
based on our proposed SSD or SDD, not the absolute best
KDE model for all activities. More concretely, in subject 1,
the specific KDE model corresponding to LLA-accX had the
best classification only for Walking; the specific KDE model
corresponding to RLA-accX had the best classification only for
Sitting and the specific KDE model corresponding to Back-
magX had the best classification only for Lying. In this way,
we could effectively guarantee the degree of diversity among
base classifiers, which is really important for ensemble fusion
[11].

4) Comparisons with State-of-the-art Approaches Based on
Monte-Carlo Simulation: In this part, we further gave the con-
fusion matrix (Fig.7) of the four subjects in OPPORTUNITY
dataset based on our proposed method. It is worth noting that
in the confusion matrix of subject 2-4, there existed a spe-
cial label ”UNKNOWN” which was quite different from the
three mentioned activities: Walking, Sitting and Lying. This
”UNKNOWN” label occurred in our DSmT-Based method
because of the missing value in original sensor readings. When
the current sensor reading was NULL or missing value, the
maximum belief mass (’1’) was assigned to the focal element
(Θ) which meant at current time, we really did not know
the actual class. Modeling missing or NULL information is
the feature of our proposed method in this paper, which is
quite different from the traditional supplementation of NULL
or missing information by interpolation. In this way, our
proposed method can reduce the risk of misjudgment without
guaranteeing any changes to the original data. Besides, we

repeated 50 experiments and recorded the recognition rates of
all four subjects in Table II. Among the mentioned classical
approaches, the performance of k-Nearest Neighbours and
Nearest Centroid Classifier were heavily affected by the num-
ber of ’k’-closest samples and the centroid of each class. These
two principles of classification were difficult to work very well
when there existed uncertain data in HAR problem. Linear dis-
criminative analysis and quadratic discriminant analysis based
on the assumption that the features are normally distributed
are obviously unsuitable in HAR problems. Extreme learning
machine has been successfully applied for the task of HAR.
And for extreme learning machine, sigmoid activation function
was utilized and the number of hidden nodes was set to 100.
However, due to the randomness of the algorithm, the results
of extreme learning machine were unstable and had a wide
variability. As we can observe in Table II, our method gave
the highest activity recognition accuracy in subject-1, subject-
2 and subject-4, and Ensemble-Extreme Learning Machine
(Majority Voting) gave the highest recognition accuracy in
subject 3. In addition to the comparison of classification
accuracy, we also showed the testing time for each individual
sample of our proposed method in Table II. Our method was
running in MATLAB R2018b with a hardware of Intel Quad
Core i5-4670 CPU at 3.4GHz and 16G RAM. As shown in
Table II, our proposed method was significantly more efficient
than other general listed methods. The low recognition delay
of our method was mainly because in the testing phase, only
the data of selected sensors in the testing sample participates in
the BBA calculation. The low-recognition delay also showed
its potential for the application in online activity recognition
systems, because such real-time activity recognition often
requires the predictions are updated 1-5 times/s [2].
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TABLE II: Comparison with state-of-the-art results on UCI OPPORTUNITY dataset.

Reported Methods
Accuracy

Subject1 Subject2 Subject3 Subject4 Average Computational Cost

Extreme Learning Machine [27] 0.7056±0.1123 0.7126±0.0687 0.6587±0.0295 0.7154±0.1414 13.6175 ms

Linear Discriminant Analysis [28] 0.7859±0.0246 0.8147±0.0274 0.7346±0.0318 0.7913±0.0419 11.0537 ms

Nearest Centroid Classifier [14] 0.8305±0.0312 0.8718±0.0289 0.7647±0.0185 0.8185±0.0152 10.3426 ms

K-Nearest Neighbours (k = 5) [14] 0.8995±0.0015 0.8516±0.0101 0.8383±0.0291 0.8516±0.0091 11.6340 ms

Quadratic Discriminant Analysis [14] 0.9143±0.0076 0.8517±0.0078 0.8562±0.0218 0.8216±0.0214 13.5754 ms

Naive Bayes [12] 0.8742±0.0015 0.8401±0.0053 0.8210±0.0315 0.8517±0.0091 15.7027 ms

Ensemble-Extreme Learning Machine(Majority Voting) [11] 0.9142±0.0098 0.8843± 0.0144 0.8714±0.0156 0.8830±0.0144 29.5384 ms

New Method (HAR DSmT-based) 0.9714±0.0014 0.8869±0.0026 0.8439±0.0199 0.9262±0.0025 -

Computational Testing Time For Each Individual Sample 8.6545 ms 14.2733 ms 7.5581 ms 7.6887 ms 9.5436 ms
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Fig. 8: Effectiveness of the selection of SSD(Ψ(·)) and
SDD(Υ(·)) in DSAD.

TABLE III: The Selected Sensors in DSAD Based on
DivJS(·).

Subject
SDD : Υ2(·) = DivJS(·)

Sitting Standing Lying Walking Running

Person 1 RAzgyro LAzmag LAzacc LAzmag RAxacc

Person 2 RLzacc RAymag RLyacc LAxmag Txgyro

Person 3 Tyacc Txmag RAyacc RAxmag LAymag

Person 4 LLzacc RLxacc RAyacc RAxmag LAxmag

Person 5 LLxmag LLzmag RLyacc LAxmag LAzmag

Person 6 RLxmag RLxacc Tygyro RAxacc Tzmag

Person 7 RLyacc LLxacc Tzmag RAzmag Txacc

Person 8 RLzacc LAxacc LAzacc Txmag LAymag

D. Results on UCI DSAD

1) Effectiveness of the Selection of Ψ(·) and Υ(·) in Eq.(3)
and Eq.(6): Similar to the discussions in OPPORTUNITY
dataset, we also gave the performance comparisons between
the selections of Ψ(·) and Υ(·) in DSAD. First, the com-

parisons of recognition accuracy with different evaluation
criterion was shown in Fig.8 when Ψ(·) and Υ(·) were set
to (1) Ψ(·) = Mean(·), (2) Υ1(·) = DivKL(·), (3) Υ2(·) =
DivJS(·), respectively. Different from the phenomenon in
Fig.4, our proposed method based on DivKL(·) and DivJS(·)
could give higher recognition accuracy in DSAD. Due to
the robust performance of our proposed method based on
Υ(·) = DivJS(·) in DSAD, in the following experiments, the
discriminative function DivJS was applied in Eq.(6). Besides,
the sensors selected by DivJS were also listed in Table III.
It can be found that the sensitivity of sensors to different
daily activities varied, and was influenced by their locations of
deployment and the types of sensors. In Table III, T : Torso;
RA : Right Arm; LA : Left Arm; RL : Right Leg; LL :
Left Leg; x, y, zacc : x, y, z acclerometers; x, y, zmag :
x, y, z magnetometers; x, y, zgyro : x, y, z gyroscopes.
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Fig. 9: Classification accuracy vs. training percentage for
DSAD.

2) Recognition Rate versus Training Percentage: In this
part, we also varied the percentage of training set and inves-
tigated the relationship between the training percentage and
the classification accuracy of our proposed method on DSAD.
Similar to the experiments in OPPORTUNITY dataset, here
we also conducted ten independent experiments. The average
accuracy rates of all ten experiments can be seen in Fig.9.
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Fig. 10: Comparisons Between Base Classifiers and Fused Classifiers in DSAD.

From these results, we could also draw the same conclusion
as from the proposed method, i.e. classification accuracies for
DSAD could reach a high level, without a large amount of
training samples.

3) Comparison Between Base Classifiers and Fused Clas-
sifiers in DSAD: Similar to the experiments in OPPORTU-
NITY dataset, we also analyzed the relationship between base
classifier and fused classifier in DSAD, which was shown in
Fig.10. As we can see from Fig.10: (1) when the classifica-
tion difference between base classifiers were quite obvious,
the final performance of fused model could be substantially
improved. For example, in person 4, the range of classification
accuracy of all base classifiers was [RA-yacc: 74.0080%,
LL-zacc:93.6386%] and the final rate of fused model was
98.6185%; (2) On the contrary, when the performances be-
tween base classifiers were close, the performance of final
fused model was not substantially improved. For example, in
person 7, all five base classifiers had similar recognition rates:
86.6024%, 91.9036%, 87.2459%, 91.9036%, 91.9036% and
the performance of the final fused model was 92.4498%. These
two groups of phenomena further verified the rationality of the
modeling strategy proposed in this paper: base KDE model
was only selected for the specific activity, which did guaranty
the diversities between base models.

4) Comparison with State-of-the-art Approaches Based on
Monte-Carlo Simulation: In this part, we further gave the
confusion matrix (Fig.11) of the eight persons in DSAD
based on our proposed method. As we can see in Fig.11,
our method had a higher recognition rate in identifying the
activities of all mentioned persons. Besides, we further re-
peated 50 experiments and compared DSmT-based method
with the other traditional method in references in Table IV. All
parameters involved in the mentioned state-of-the-art models
were consistent with those mentioned in the literature, which
were not listed in detail here. For k-Nearest Neighbours, the
performance of this method changed for different values of k.
A value of k = 5 gave the best results, therefore the accuracy

TABLE IV: Comparison with state-of-the-art results on UCI
DSAD.

Reported Methods Accuracy Computational Cost

Artificial Neural Networks [24] 0.743 23.2442 ms

Bayesian Decision Making [24] 0.758 27.4170 ms

K-Nearest Neighbours [24] 0.860 20.2664 ms

Support Vector Machines [24] 0.876 25.9724 ms

differential Recurrent Neural Networks [29] 0.8956 50.9993 ms

pFTA-Learn + K-Nearest Neighbors [30] 0.9018 19.4653 ms

New Method (HAR DSmT-based) 0.9515 17.0964 ms

of the k-Nearest Neighbours algorithm was provided for k = 5
in Table IV. For support vector machine, following the one-
versus-the-rest method, each type of activity was assumed as
the first class and the remaining 4 activity types were grouped
into the second class. The overall accuracy rate of support
vector machine was calculated as 87.6%. Besides, we also
conducted performance comparison between our technique
and differential Recurrent Neural Networks (the related source
codes for dRNN could be downloaded from [29]). As shown
in Table IV, our proposed method with DSmT-based fusion
strategy could achieve even higher accuracy than traditional
approaches. Although SVM and dRNN were powerful models
for classification and they were not able to properly combine
the characteristics of multiple sensors; conversely, DSmT-
based approach was especially designed to effectively fuse
these information from multi-sensor readings, which proved to
be very effective for HAR in BSNs. Besides, we also showed
the testing time for each individual sample of our proposed
method in Table IV. Results showed that DSmT-based HAR
takes shorter time than other classical methods.
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Fig. 11: Confusion matrices of 8 Persons in DSAD.

V. CONCLUSION

In this paper, we addressed the challenge of HAR problem
in BSNs from the perspective of multi-sensor fusion strategy
and exploited the unique DSmT-Based fusion strategy. In this
novel fusion strategy, there were two points worth mentioning:
1) unlike traditional fusion strategy, not all sensor readings
were used for modeling and fusing, only the selected rep-
resentative sensors were finally fused; 2) BBA of each test
sample was constructed according to KDE models. Besides,
the vacuous BBA was directly given when test sample had
incomplete pattern. Extensive performance evaluations on two
wearable sensor-based HAR datasets (OPPORTUNITY dataset
and DSAD) demonstrated that the proposed approach out-
performed start-of-the-art methods in accuracy. In our future
work, we will explore the performance of the proposed method
in complex activity recognition. In this work, our proposed
DSmT-based model was currently trained and tested offline.
In our future research works, we will investigate and test
how such new model can be applied to an online activity
recognition system in real-time.
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classification techniques using the opportunity human activity dataset,”
IEEE International Conference on Systems, Man, and Cybernetics, pp.
233–240, 2011.

[27] J. Cao, W. Li, C. Ma, and Z. Tao, “Optimizing multi-sensor deployment
via ensemble pruning for wearable activity recognition,” Information
Fusion, vol. 41, pp. 68–79, 2018.

[28] R. Chavarriaga, H. Sagha, and J. D. R. Millan, “Ensemble creation
and reconfiguration for activity recognition: An information theoretic
approach,” in IEEE International Conference on Systems, 2011.

[29] V. Veeriah, N. Zhuang, and G. J. Qi, “Differential recurrent neural
networks for action recognition,” in IEEE International Conference on
Computer Vision (ICCV), 2015.

[30] J. Ye, G. Qi, N. Zhuang, H. Hu, and K. A. Hua, “Learning compact fea-
tures for human activity recognition via probabilistic first-take-all,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 42,
no. 1, pp. 126–139, 2020.

Yilin Dong was born in Yancheng, China, in 1990.
He received the Ph.D. degree in Control Science
and Engineering from the School of Automation,
Southeast University, Nanjing, China, in 2020. His
research interests include belief function theory, in-
formation fusion, and pattern recognition.

Xinde Li (M’09-SM’16) earned his Ph.D. in Control
Theory and Control Engineering, from Department
of Control Science and Engineering, Huazhong Uni-
versity of Science and Technology (HUST),Wuhan,
China, in 2007. Afterwards, he joined School of
Automation, Southeast University, Nanjing, China,
where he is currently a Professor and Ph.D. Super-
visor. During the period from 2012 to 2013, he was a
visiting scholar in School of Interactive Computing,
Georgia Institute of Technology. In 2016, he was a
Postdoc Research Fellow in Department of Electrical

and Computer Engineering, National University of Singapore. His research
interests include information fusion, object recognition, computer vision,
intelligent robot, and human-robot interaction. He was granted a “Talent of
Qing Lan Project” award of Jiangsu province and a “Six Major Top-talent
Plan” award of Jiangsu province, China.

Jean Dezert was born in L’Hay les Roses, France,
in 1962. He received the degree in electrical engi-
neering from the Ecole Française de Radioélectricité
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