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Abstract

Purpose — The purpose of this paper is to extend the work of fusing sensors with a Bayesian method
to incorporate the sensor’s reliability with regard to their operating environment. The results are then
to be used with the expected decision formula, conditional entropy and mutual information for
suboptimally selecting which types of sensors should be fused where there are operational constraints.
Design/methodology/approach — The approach is an extension of previous work incorporating an
environment parameter. The expected decision formula then forms the basis for sensor selection.
Findings — The author found that the performance of the sensors is correlated to the environment of
operation, given that the likelihood of error will be higher in a difficult terrain than would otherwise be
the case. However, the author also shows the sensors for fusion will vary if the author knows
specifically which terrain the sensors will be operating in.

Research limitations/implications — The author notes that in order for this technique to be
effective, a proper understanding of the limitations of the sensors, possible terrain types and targets
have to be assumed.

Practical implications — The practical implication of this work is the ability to assess the
performance of fused sensors according to the environment or terrain they might be operating under,
thus providing a greater level of sensitivity than would otherwise be the case.

Originality/value — The author has extended previous ideas on sensor fusion from imprecise and
uncertain sources using a Bayesian technique, as well as developed techniques regarding which
sensors should be chosen for fusion given payload or other constraints.

Keywords Decision theory, Information fusion

Paper type Research paper

1. Introduction

Data fusion can be defined as combining information from difference sources in order
to obtain a better picture of an environment than would otherwise be the case from
single disparate sources.

One of the first definitions of data fusion came from the North American Joint
Directors of Laboratories (JDL) (White, 1990) who defined data fusion as a “multilevel,
multifaceted process dealing with the automatic detection, association, correlation,
estimation and combination of data from single and multiple sources”.
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(Hall and Llinas, 1997), the fusion of conflicting and/or imprecise information
nonetheless does occur and a way to rigorously capture errors has proved problematic.
Several techniques have been developed to overcome some of the issues. These include:
fuzzy logic (Zadeh, 1975) and Dempster-Shafer theory (DST) and variants thereof
(Dempster, 1968; Shafer, 1976; Smets and Kennes, 1994; Dezert and Smarandache, 2005),
such as Dezert-Smaradanche theory (DSmT). The works using DST and other related
variants have attracted strong criticism from Bayesian staticians, namely because on
occassions, it can lead to counterintuitive results (Gelman, 2006; Zadeh, 1975). Further,
since we assume in this paper that we have prior information about the performance of
the means by which the information gathered is then fused then Bayesian statistics are
optimal and are much more well-established and accepted in the statistical community
than these other techniques. Thus, if we can incorporate uncertainty within a Bayesian
environment, then one can make the case that DST and these other methods become
redundant. Maskell (2008), developed a new approach using Bayesian statistics. This
technique is novel in that it allows the modelling of uncertain or imprecise information
within a Bayesian environment. Here, we extend this method of accommodating the
probability of erroneous advice so that the advice is not only dependent on its accuracy,
but also within the environment it is operating. By types of environments we might
mean terrain type, weather conditions or time of day. That is, difficult environments will
be more prone to error than others. For example, we would expect that the probability of
the advice being correct from a radar under sunny, cloudless conditions will be greater
than on a rainy, foggy day. Moreover, it is reasonable to assume that for surveillance
applications, a foe is likely to have different plans and courses of actions, according to the
environment or situation.

Thus, the aim of our paper is to extend the ideas presented in Maskell (2008) to show
that it can be also used to model the performance of sensors in different environments.
However, a follow-on problem is what to do if we are forced to select a subset of all the
possible sensors available to us? How should we go about such a task? That is, in
situations where there are payload constraints such as with unmanned aerial vehicles
(UAV), it might not always be possible to use all the sensors at our disposal and instead
we are forced to choose a subset of these for fusion. This would allows us to select the best
sensors, in a suboptimal sense, from an available list being mindful of potential errors
within the environment where they will be operating. Then, based on the results using
this extension from previous work (Maskell, 2008), we can employ tools such as
conditional entropy, mutual information and the expected value of a decision formula
(Green and Swets, 1988) for sensor selection. In particular, with the expected decision
value, we will also be establishing a link between sensor selection and decision making.
The implications of this work are that we would be able to gauge the performance of
fused sensors with regard to the environment they might be operating under, which could
be then be used as the basis for sensor selection. The techniques can also be employed
as a means of selecting the most appropriate sensors to fuse where we are ignorant of
the operating environment. We illustrate this approach and further discuss these issues
with an example that fuses sensor outputs. We note that although here we restrict
ourselves to sensors in a defence scenario, the techniques here can be applied to humans
giving advice and other areas, such as medicine or economics. The rest of the paper will
be organised as follows. Section 2 will give some background on fusion of imperfect
sources, the decision value function, conditional entropy and mutual information.
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Table L.
Zadeh’s paradox

In Section 3, we show how we adapt a previous technique to include the operating
environment. In Section 4, we provide a couple of examples using our techniques along
with some discussion and in Section 5 we provide some concluding remarks.

2. Background
2.1 Fusion from imperfect sources using a Bayesian method
Recently (Maskell, 2008), a technique is used where more than one hypothesis can be
accommodated. There, it was employed to model two cases: one when a human gives
correct advice and the other when this advice is incorrect. For the latter, a uniform
distribution was assumed. This paper considered Zadeh’s paradox (Zadeh, 1975), which
1s summarised as Table I. The diagnosis of two experts regarding a patient where three
possible classes are listed as M for meningitis, C for concussion and 7 for brain tumor.
Using Bayes’ rule or the Dempter-Shafer approach, the counter-intuitive result of
having 100 percent belief that a patient was having a concussion was obtained.
Maskell (2008), addressed this problem by adding a parameter, ¢;, which accounts for
the possibility that an expert has made an error (¢; = 1) or not (¢; = 0), where 1 =
1,...,N is the number of separate pieces of evidence fused. Hence, the values in
Zadeh’s example are for when:

with the actual paradox summarised in the following table.
However, Maskell (2008) then revised this example by letting:

p(xlqi7ei:1):1/3axe {M7 T7C}7ZE {Oal}a (1)

and the results then become much more plausible so that the larger the error
probability, the more likely that the probability of the correct diagnosis being
meningitis or concussion was 0.5 for either case.

Further, the probability of a particular outcome given human advice can now be
given:

pielqr,g2) = > plx, e, e2lq1,q2) )
where:
b en ol a) _ b@qulx,e1,e2,g2)p(x, €1, e2lg2)
p(ailgz)
_ D(qulx, en)p(gzlx, e, e2)p(x, €1, €2) 3)
(q1,492)
o< p(qilx, enp(qelx, e2)p(x)p(er)per)
Human M C T
@ 0.99 0.00 001
a 0.00 099 001
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p(x,e1,e2lqr,2) o< px) | | [oCxlai, enpleilanpien |,

=12

noting that p(¢;) = 1,7 = 1, 2. This method also allows us to obtain the probability of
erroneous or correct advice. This is given by:

pler,eslar a2) =Y _px,er,eslq, g2). )

Hence, for the example above, if p(e1) = p(e2) = 0.01, the probability of at least one
expert giving incorrect advice is around 0.9462, whilst the probability that the
condition is actually concussion is 0.0282 and for either meningitis or a brain tumor
their probabilities are both 0.4859.

2.2 The decision value function

A function that we will also be using is the expected value function. We note that
originally it was framed in terms of signal detection theory (Green and Swets, 1988) and
whether a target was present or not. That is, first, we let ¢o and ¢; denote the hypotheses
indicating the absence or presence of a target, respectively. We also let @y and @; be the
decision maker accepting the gy or g1 hypothesis, respectively. We also define the
following:

+ Let V be the reward value associated with a correct choice of ¢, which occurs
with probability p(€o|qo). This is known as a correct rejection.

+ Let V be the cost value associated with an incorrect choice of €, (when, in fact,
Qo is the correct alternative); that is, the person loses V(; when this type of
incorrect choice is made which occurs with probability p(€11qo). This is also
known as a false alarm.

+ Let V11 be the reward value associated with a correct choice of ¢, which occurs
with probability p(€11¢1). This is also known as a hit.

+ Let V1 be the cost value associated with an incorrect choice of €y (when, in fact,
@ is the correct alternative); that is, the person loses V7p when this type of
incorrect choice is made, which occurs with probability p(Qolq1). This is also
known as a miss.

Thus, the expected value of the decision strategy is given by:

E = VoP(q0)P(&lq0) + V11 P(q)P(@ilq1)
— V1oP(@)P(Qolq1) — Vo P(qo)P(@1q0)

noting that, of course, ZZ-ZOJP(QZ-IQJ) =1forj=0,1.

®)
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For the multinomial case, this can be reformulated in the following manner:
N N 3
E=Y"ViP@)PQilg) — Y _ ViP@)P@la) (6)
i i

where V; and V; are the rewards and costs of making the right and wrong decision,
respectively, given ¢;; and P(€);|g;) is the probability of selecting a hypothesis other
than g;.

2.3 Conditional entropy and mutual information

Entropy is a measure of uncertainty associated with a random variable. The concept
was introduced by Shannon (1948) and can be thought of as the average information
content when the value of the random variable is not known. A related concept to
entropy is conditional entropy or equivocation. It quantifies the remaining entropy of a
random variable given that another random variable is known. If the random variable
X 1s known with support X and we wish to find the remaining entropy of the random
variable Y with support ) then the conditional entropy H(Y|X) is given:

HYIX) =) > p,»in(p(ylx). (7)

rEXYE)Y

Further, once we have the conditional entropy, the amount of mutual information
which measures the mutual dependence of two variables can be given. If we define this
as I(Y; X), then this is intrinsically related to conditional entropy by the following
formula:

I(V;X)=HY) - HYI|X).

For the purposes of this paper, we attempt to discover the correlation between the
accuracy of the sensors’ reports and their operating environment (this will be shown
for one of the two example we demonstrate in Section 4). That is, if we know the
operating environment of the sensors, how certain can we be regarding their accuracy?

3. Fusion of imperfect sensors and/or advice with sensitivity to the
operating environment

In this section, we show how to extend the main idea by Maskell (2008) so that the
sensor’s advice can be encapsulated according to the operating environment and
the likelihood of a target given said environment. First we note that we can think of the
variable e (Maskell, 2008), not only as a possible error measurement, but as a variable
parameter in general. Noting that originally (Maskell, 2008), ¢ € {0,1} represented
correct or incorrect advice, respectively, this is now extended to ¢® € {0,1} where
n= {1, ...,N} are the number of distinct environments or terrains the sensors might
be operating under. For instance, we could have three terrain environments (e.g. plains,
hills, mountains) and within those environments the advice might be correct or incorrect.
Hence, if N = 3 so that for instance e = 0ore® = 1is when the sensor is operating in
the plains and giving correct or incorrect advice, respectively. Similarly, when e® = 0
and e® = 1, this indicates the performance of the sensor in a hilly terrain is providing
correct or incorrect advice, respectively, and so on for ¢®. In order to fuse the sensors
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under this paradigm, we still use equations (2) and (3) but with a few slight changes. We
interestingly note that if both sensors are operating in the same environment at the same
time then p(x, e(f“), eg“’lsl, s9) = 0, if 77 % no.
Thus, for the fusion of two sensors, we are able to estimate the following:
+ As before (Maskell, 2008), we are still able to derive the same probabilities of one
or both sensors making errors, as well as the probability of a particular target

being present are p(x, eg’“), eé”zalql, g2) and p(xlq1, q2).

+ The probability of being provided correct advice about a particular target given
the operating environment 7 is:

e =0,60" =0lg1,q2) = px, ¢’ = 0,e” = 0lg1, g2)
191 ) €2 1,42 i i (”)zo (n)=0| .
Ze({’):OZe(l”):Op(x? el ) 82 q1, QZ)

* The probability that the fused sensors have or have not made an error (for any
target) in a particular given environment 7. For instance, the probability of both
sensors providing correct advice in given environment 7, = 71y = 7, 1S given by:

o _ g 0 _ _ pr(x, e(ln) =0, eén) = 0|6]17512)
p (61 Oa 62 0|(]17 Q2) 1 1 O
ZxZe({”:OZgg”:op (x7 el ) ez |6]1» qZ)

* The probability of a correct detection when environment is unknown. Here, we
make the assumption that we will follow the advice of a set of fused sensors
when a majority of those fused sensors provide correct advice. For instance, for
the two-sensor case, we have the probability that making the right decision for
the presence of a target type x is given by:

N
P(H ) = " p(x,ef" = 0,¢f” = Ol1, g2),

n=1

+ which is the sum of all probabilities when both sensors give correct advice for
target x. The more general case of S sensors is similarly formulated so that we sum
all the probabilities where at least|S/2] + 1 sensors are providing correct advice.

4. Examples

Consider the following examples of sensor performance under different weather
conditions. Suppose also we are given Table II and that for the purposes of this paper,
we assume that a fusion centre is trying to distinguish between three different types of
targets — say, a bomber (B), a fighter plane (F) and a reconnaissance plane (R),

Sensor Sunny Cloudy Rainy

Advice B F R B F R B F R
s1 0.9 0.05 0.05 0.7 0.15 0.15 0.6 0.3 0.1
S92 0.85 0.05 0.1 0.75 0.15 0.1 0.55 0.2 0.25

S3 0.8 0.1 0.1 0.7 0.05 0.25 0.65 0.25 0.1

Data fusion and
sensor selection
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Table II.

Performance of sensors
in different weather
conditions
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each with prior probabilities of 1/3 and in three possible distinct weather conditions,
also with uniformly distributed priors.

We also let the probability of any sensor making an error in sunny conditions be
0.05, the probability of an error in a cloudy day be 0.15, whilst in rainy conditions the
probability of incorrect advice is 0.25.

4.1 Known different environments

In this case, suppose that we know the environments where our sensors will be
operating. However, here we assume they will differ. This situation might occur if we
are wishing to fuse the tracking of an object between two sensors with a significant
time delay. For instance, we might wish to fuse two sensors which will be operating at
the same time on two consecutive days, but for one day, it will be sunny, whereas the
forecast for the next day will be cloudy; and because there is a considerable time delay
for a sensor to arrive back and resend it, on each occasion, it must be a different sensor.
Here are the results.

Thus, the probability that sensor 1, sent on a sunny day, fused with sensor 2, sent
on a cloudy day, both detect a bomber is 0.8801. Hence, in this case, we should send
sensors 1 and 2 (for sunny and cloudy days, respectively), since the probability that
they both give correct advice is 0.8964 (0.8801 + 0.0098 + 0.0065) and is the largest
value compared to all other possible sensor combinations.

4.2 Same environment

Here, we would like to assess the overall performance of fusing any two of those
sensors when they operate in the same, but unknown environment. Such a constraint
might be imposed because of payload constraints (such as UAV) or simply because we
have a limited budget and we can only purchase a finite number of sensors. We are
now able to give some performance measures for fusing sensors 1 and 2, 1 and 3, and
2 and 3.

The results, presented in Tables III-V, outline the probabilities of each target being
present with none, one or both sensors giving correct advice. (Note that due to
rounding off the probabilities, they may not add up to exactly 1.) For instance, the
probability that a bomber plane is correctly detected by both sensors 1 and 2 on a
cloudy day is 0.2224.

Given that this example is more complex than the first, we explain how different
measure such as conditional entropy, mutual entropy and the expected decision
formula can be used to determine which pair of fused sensors should be employed.

Further, another even more complex example can be derived where we combine
both examples above. That is, if we have to fuse two sensors which may not even be in
the same environment and we have complete ignorance as to which environments they
may be. In this case, we would have 36 probability values for any given sensor pair.

4.3 Probability results

These tables also allows us to derive other interesting statistics. For instance, if we
assume that incorrect advice occurs when at least one of the sensors is incorrect, then
we notice that the probability of correct advice given its a sunny day for fused sensors
1 and 2 will be:
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Fused sensors Sensor report Bomber Fighter Recon. .
sensor selection

1,2) Correct Correct 0.8801 0.0098 0.0065

1,2 Correct Incorrect 0.069 0.0038 0.0038

1,2) Incorrect Correct 0.0172 0.0034 0.0023

1,2 Incorrect Incorrect 0.0013 0.0013 0.0013

21 Correct Correct 0.8537 0.0108 0.0215 365

1) Correct Incorrect 0.0717 0.0042 0.0084

21) Incorrect Correct 0.0176 0.0038 0.0038

21 Incorrect Incorrect 0.0015 0.0015 0.0015

1,3) Correct Correct 0.8696 0.0035 0.0173

1,3) Correct Incorrect 0.0731 0.0041 0.0041

1,3 Incorrect Correct 0.017 0.0012 0.0061

1,3) Incorrect Incorrect 0.0014 0.0014 0.0014

(3,1 Correct Correct 0.8365 0.0224 0.0224

3,1 Correct Incorrect 0.0703 0.0088 0.0088

31 Incorrect Correct 0.0183 0.0039 0.0039

3,1) Incorrect Incorrect 0.0015 0.0015 0.0015

(3,2 Correct Correct 0.8517 0.0213 0.0142

3,2 Correct Incorrect 0.0668 0.0084 0.0084

(32 Incorrect Correct 0.0187 0.0037 0.0025

3,2 Incorrect Incorrect 0.0015 0.0015 0.0015 Table III.

2,3 Correct Correct 0.8476 0.0036 0.0356 Target probabilities

2,3) Correct Incorrect 0.0712 0.0042 0.0084 when fusing sensors sent

23) Incorrect Correct 0.0175 0.0012 0.0062 on a sunny and then

2,3) Incorrect Incorrect 0.0015 0.0015 0.0015  cloudy day, respectively

Fused sensors (1,2)

Environment Sensor report Bomber Fighter Recon.

Sunny Correct Correct 0.5056 0.0017 0.0033

Sunny Correct Incorrect 0.0104 0.0006 0.0006

Sunny Incorrect Correct 0.0099 0.0006 0.0012

Sunny Incorrect Incorrect 0.0002 0.0002 0.0002

Cloudy Correct Correct 0.2224 0.0095 0.0064

Cloudy Correct Incorrect 0.0174 0.0037 0.0037

Cloudy Incorrect Correct 0.0187 0.0037 0.0025

Cloudy Incorrect Incorrect 0.0015 0.0015 0.0015

Rainy Correct Correct 0.0847 0.0154 0.0064 Table IV.

Rainy Correct Incorrect 0.0171 0.0086 0.0029 Target probabilities

Rainy Incorrect Correct 0.0157 0.0057 0.0071 when fusing

Rainy Incorrect Incorrect 0.0032 0.0032 0.0032 sensors 1 and 2

1 1
o (5, = 0,e = 0lgs,02)
p(e. e la,a2) = T = 0.5106/0.5345
ZxZLjE{O,l}p (xa e =1,6 = Jlaq1, QZ)

= 0.955,
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Table V.

Target probabilities
when fusing
sensors 1 and 3

Fused sensors (1,3)

Environment Sensor report Bomber Fighter Recon.
Sunny Correct Correct 0.4877 0.0034 0.0034
Sunny Correct Incorrect 0.0107 0.0006 0.0006
Sunny Incorrect Correct 0.0095 0.0012 0.0012
Sunny Incorrect Incorrect 0.0002 0.0002 0.0002
Cloudy Correct Correct 0.2127 0.0033 0.0163
Cloudy Correct Incorrect 0.0179 0.0038 0.0038
Cloudy Incorrect Correct 0.0179 0.0013 0.0064
Cloudy Incorrect Incorrect 0.0015 0.0015 0.0015
Rainy Correct Correct 0.1026 0.0197 0.0026
Rainy Correct Incorrect 0.0175 0.0088 0.0029
Rainy Incorrect Correct 0.019 0.0073 0.0029
Rainy Incorrect Incorrect 0.0032 0.0032 0.0032

whereas if the sensors fused were numbers 2 and 3, this figure is 0.951. However, on a
rainy day, we notice that fusing sensors 2 and 3 is more beneficial than fusing sensors
1 and 2, where the probabilities of correct advice are 0.625 and 0.615, respectively. This
implies that our choice of sensors can be influenced if we have knowledge of the type of
environment they will be operating in. If we are unsure, then we marginalise the
probabilities of all errors over { =1,2,3 for ¢“). For fused sensors 1 and 2, the
probability of correct advice given by both sensors is 0.8554; for sensors 1 and 3, it is
0.8288; and for sensors 2 and 3, it is 0.8478.

4.4 Conditional entropy and mutual information

For our example, we let Y be the error variable and X be the environment. We recall
that under our definition of conditional entropy we are calculating the average entropy
of the accuracy of a report (determined by both sensors giving correct reports)
averaged over all possible environments. We recall that when both sensors give correct
advice we deem that to be correct and anything else is labelled as incorrect. Conditional
entropy, in our case, is the amount of uncertainty remaining about the accuracy of a
report when the weather is known. Thus, it would be desirable to have our value
H(Y|X) as small as possible. For instance, we see that when vy = Correct we have the
unnormalised value of:

P(Correct|Sunny) = 0.5056 + 0.0017 + 0.0033 = 0.5106.
Similarly, we can then notice the unnormalised value of:
‘P(Incorrect|Sunny) = 0.5345 — 0.5106 = 0.0239.

Note that the value of 0.5345 is calculated by adding all the values under the sunny
environment. Thus, the respective conditioned probabilities become:

p(Correct|Sunny) = 0.5106/0.5345 = 0.955 and
p(Incorrect|Sunny) = 0.0239/0.5345 = 0.045.

Hence, repeating this process for all weather conditions and recalling equation (7), we
have that:
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HY2(Y]X) = —0.5106/1(0.955) + 0.0239/2(0.045) + 0.238312(0.815)
+ 0.0542/1(0.185) + 0.1065/2(0.615) + 0.0667/2(0.385)
=0.353.

HI3(Y|X)=0.365 and H®3(Y|X)=0.370.

Thus, under this measure fusing sensors 1 and 2 should be preferred.

Now, suppose we consider mutual information. In this case, the value I(Y;X)
represents the mutual dependence between the environment and the accuracy of the
advice from the fused sensors. To calculate H(Y) we merely have to determine
the overall probabilities of a correct report (again determined by both sensors
indicating correct reports) and an incorrect report (all other cases). For instance,
for fused sensors 1 and 2, we have that the overall probability of a correct report is
given by:

p(Correct) = 0.5056 + 0.0017 + 0.0033
0.2224 4- 0.0095 + 0.0064
0.0847 + 0.0154 + 0.0064 = 0.8554,

thus H32(Y) = —(0.8554/n(0.8554) + 0.1446/n(0.1446)) = 0.413. Combining this
with H32(Y]X) = 0.353, we then see that /0?(Y;X) = 0.06. Similarly, since
H1Y9 =0419 and H®3 =0426 we have that I1¥(V;X)=0.054 and
I@3(Y;X) = 0.056. This means that there is the least correlation between the
environment and the scenario where both reports are correct, when we fuse sensors
1 and 3. However, there was not much difference between all the fused sensors’ cases.

4.5 Lower bound on expected value of a decision

Let 1 =1,2 and 3 denote a bomber (B), fighter (F) and reconnaissance plane (R),
respectively. Using equation (5) for this example we thenlet V; = V> =1,/ = {1...3}.
We can now obtain a lower bound for the expected value of a decision. As stated, we
assume that when both sensors report correctly, then the correct decision will be
made and that an incorrect decision will be taken otherwise. Now, given that
probability of all three targets is 1/3, we can see, for example, that for fused sensors 1
and 2 we have:

P(Hp|hp) = 0.5056 + 0.2224 + 0.0847 = 0.8127
P(Hp|hr) = 0.0017 4 0.0095 + 0.0154 = 0.0266
P(Hpg|hg) = 0.0033 + 0.0064 + 0.0064 = 0.0161.

For calculating the probability of making the wrong decision we simply add all the
other entries in a target’s column. For instance:

P(H plhp) = 0.0104 + 0.0099 + 0.0002 + 0.0174
-+ 0.0187 4 0.0015 + 0.0171 4 0.0157 4- 0.0032
= 0.0941
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Table VI.

Target probabilities
when fusing
sensors 2 and 3

E1? =1/3((0.8127 4 0.0266 + 0.0161) — (0.0941 + 0.0278 + 0.0229)) = 0.2369
E1® =1/3((0.798 4 0.0264 + 0.0223) — (0.0974 + 0.0279 + 0.0227)) = 0.2329
E®® =1/3((0.8028 4 0.0203 + 0.0247) — (0.0991 + 0.0255 + 0.027)) = 0.2321

Hence, using this approach, and with cost values given above, we should fuse and use
sensors 1 and 2. If, however, the reward and cost values change, our preferred fused
sensors might also change. For example, if V1 = Vo =1,V3=10and V; = Vi =
V5 =1 then sensors 2 and 3 should be employed in the fusion process. We note also
that if we know in which type of weather the sensors will be operating under, then we
can still use the expected decision formula by simply marginalising the probabilities
belonging to that environment as listed in Table VI.

5. Concluding remarks

The purpose of this paper was to further extend the ideas shown by Maskell (2008) and
use this as a basis for sensor selection. We have done this by allowing opinions of
sensors, humans, etc. to differ within different operating environments. That is, since
the accuracy of sensors will vary according to their operating environment, it is also
reasonable that these different levels of accuracy should also be modelled. We have
been able to show that the choice of fused sensors will depend not only on the operating
environment, but also on the perceived importance of potential targets when we use
the expected decision formula. We note that although in our example we used the
weather as a variable, there is no reason why the operating environment variable
might not be the type of terrain, time of day, etc. Further, another novelty of this paper
is that we were able to incorporate the expected decision formula, originally formulated
by Green and Swets (1988) to derive a lower bound for the expected value of a
decision as a method for selecting which sensors to fuse. Other alternatives such as
conditional entropy and mutual information were also shown as a means for
sensor selection.

Fused sensors (2,3)

Environment Sensor report Bomber Fighter Recon.
Sunny Correct Correct 0.4725 0.0035 0.0069
Sunny Correct Incorrect 0.0104 0.0006 0.0012
Sunny Incorrect Correct 0.0098 0.0012 0.0012
Sunny Incorrect Incorrect 0.0002 0.0002 0.0002
Cloudy Correct Correct 0.2338 0.0033 0.0111
Cloudy Correct Incorrect 0.0196 0.0039 0.0026
Cloudy Incorrect Correct 0.0183 0.0013 0.0065
Cloudy Incorrect Incorrect 0.0015 0.0015 0.0015
Rainy Correct Correct 0.0965 0.0135 0.0067
Rainy Correct Incorrect 0.0165 0.006 0.0075
Rainy Incorrect Correct 0.0195 0.0075 0.003

Rainy Incorrect Incorrect 0.0033 0.0033 0.0033
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