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ABSTRACT When we try to solve new or known problems to which we want to give new solutions, we
create new knowledge and realize new discoveries. To date, the scientific methods have used the probability
in order to analyze problems, make inference and build forecasts. However, everyone agreed that most
problems do not follow standard probabilistic rules. In this study we will build an uncertainty logic by using
the concept of probability, with those of plausibility, credibility and possibility. We will provide several
models which treats uncertainty information and allow to perform more reliable forecasts. After that, we
will prove the models reliability through a final simulation on the Biometrics and Sport fields using one of
the models; these simulation are fully replicabile for each field and for each of the provided models.

INDEX TERMS Biometrics, Credibility, Incompleteness, Plausibility, Possibility, Probability, Sports odds,

Uncertainty.

. INTRODUCTION

HE plausibility is a concept used in many inferential
Tcontexts and processes. A plausible inference theory
goes through a preliminary definition of what is "uncertain”
and how it affects the inferential process. A plausible inter-
ference can be invalidated, corrected or simply updated at the
entry of new data or information. In this sense, plausibility is
not only non-monotonous, but operates in an open conceptual
space. The data, the available information and inferential
rules are of a temporary nature and reviewable so, they are
constantly changing.

Polya (1954) defines the plausible reasoning as opposed to
the demonstrative reasoning. The plausible inference helps to
acquire new knowledge, using the inductions and the analogy
which are not certain and do not transmit the truth. The
plausible inference has a fluid, temporary and risky behavior.
Rescher (1976), conceives the plausible reasoning as a form
of deduction starting from uncertain premises, aimed at
the treatment of "cognitive dissonances". In this theory the
premises and conclusions are provisional, controversial and
fluid.

For Dezert (2002), the plausible reasoning is an extension
of the evidence theory of Dempster-Shafer, and therefore
of the Bayesian probability. His theory allows to deal with
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information not only uncertain, but also paradoxical'. This
reasoning has been fully studied: Cuzzolin in [1] defines
the properties of plausibility. Friedman, Halpern and Barnett
calculated and measured the plausibility [2] [3]. This concept
has been used in real world applications like [4] as well.
While Shved, Wanga and Wen provide a way to measure
uncertainty [5] [6] [7]. In this paper, we are going to define a
new perspective on the plausible reasoning.

Il. CONCEPTUAL OVERVIEW

This section in inspired by the work of author in [8]. The
formulation of a theory of plausibility which has been known
in antiquity is that of Sextus Empiricus. Truthly, he at-
tributes this theory to Carneade of Cyrene, in his composition
"Against the Logicians". Plausible here means "to persuade".
The criteria are:

« something is plausible if it seems to be true,

e is even more plausible if it seems to be true and is
compatible with other things that seem to be true (i.e.
it is stable),

o is stable and is tested.

!admitting contradictory information thanks to the "hyper" set -power"
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So it is not necessary that something be true or believed,
to be plausible. It simply has to satisfy some requirements,
so as to allow something to be assessed as in accordance or
consistent with related facts.

Uncertainty can be of two types:

o Aleatory (also known as stochastic), when it concerns
the randomness of the object of knowledge system;

« Epistemic (also known as subjective), i.e. when it refers
to the state of knowledge of the subject over the system.

The plausibility uncertainty belongs to the second type; it
is an expression of a subjective relationship.
According to Walton [9], it is a controversial question if the
plausibility is different from the probability, and it is difficult
to rule out that plausibility can be resolved in some special
case of probability.
In order to model the epistemic uncertainty with the proba-
bility, the Cox’s theorem is used. It establishes the existence
of a precise relationship between the notion of plausibility,
pl and the theory of probability calculation, pr. This theorem
proves that any system of plausible inferences, which is not
isomorphic to probability theory, must violate at least one of
the following conditions:

pl (A|X)=0++ Afalsein X

pl (A|X) =1+ Atruein X

0 < pl(AlX) <1

pl (AAB|X) = pl (A|X)pl(B|X)

pl (A[X) =1 - pl(A[X),

where pl (A|X) indicates the plausibility of A over X. If it
does not violate any of the constraints it is possible to replace
pr a pl and use the probability calculation without losing
information.

A. POLYA

According to Polya, the prototypes of plausible interference
are the analogy and the induction; in fact "the analogy and the
particular cases are the most abundant sources of plausible
arguments" [10] [11]. In particular "the inference by analogy
seems the most common and essential form of inference. It
produces more or less plausible conjectures which may or
may not be confirmed by experience or by more rigorous
reasoning". The plausible argument, as defined by Polya, is
not definitive: it produces provisional conclusions. The plau-
sibilistic reasoning is not subjective: the models of reasonings
are impersonal, while it is the force of the conclusions which
is of a subjective nature and therefore not representable by
means of quantity. As for the fundamental inductive model,
they have a correspondence in the demonstrative logic. In
[10], the impersonal rules which establish some kind of
evidence are described. While it is personal and subjective to
establish "whether a test has a sufficient weight or not". For
Polya the probability is the core in the plausibility notion.
The Bayes theorem is the foundation of Polya’s concept of
plausibility. The credibility of B is the confidence of A if B
is true. In fact, credibility can be a conditional probability

2

Pr{E/H} and therefore "have a numerical value, equal to
the probability that an event of the type predicted by E will
happen, computed on the basis of the statistical hypothesis H"
although "credibility and probability are differently defined"
[10]. When we deal with the plausibility of A, we are dealing
with the reliability of A and the strength of evidence in favor
of A, in other words, our trust in A. Credibility is expressed
in probabilistic terms, readjusting the Bayes’ theorem with
the substitution of probability (Pr) with credibility (Cr). In
this view, plausibility and probability are indistinguishable,
as the former can be reduced to the second; however it is not
always possible to compare numerically the plausibility of
two different events. The probabilistic conception of Polya is
affected by all the limitations of the Bayesian conception.

B. DEMPSTER-SHAFER

To overcome the limits of the bayesian conception and the
relative vision of plausible inference, the evidence theory of
Dempster-Shafer has been defined, hereafter denoted as DS.
Also for this theory the bayesian conception is the basis for
the plausibility notion. In particular, it "includes the bayesain
theory as a special case and therefore preserves at least some
of the attractions of that theory" [12] [13]. The DS theory
renounces the one-dimensional representation of belief: in
other words, it renounces to assign the remaining portion of
belief to the negation of the proposition. The DS theory starts
from what is called a discernment or universe of discourse
u, which is a series of mutually exclusive alternatives. The
DS theory assigns a basic probability, a belief function and
a plausibility function to the u subsets which are called
propositions. We define the following assignment to a basic
probability:

m: 2 — [0, 1] such thatm () = 0, >4, m(A) =1

which represents and expresses numerically the force of
evidence, the exact belief that an agent has in A.

The function m: 2* — [0, 1] is called belief function Bel,
when it satisfies the conditions:

. Bel() = 0,

e Bel(u) = 1.
Plausibility can now be defined. We observe that "a proposi-
tion is plausible in the light of evidence to the point where
the evidence does not support its opposite" [12]. Then we
introduce the dubious function, Dub, placing it as equal to
Cr(—A) where —A is the complement of A in u and we
define the function of plausibility, Pl, as Pl (A) = 1-Dub
(A) =1 (Cr—A). The plausibility function expresses what
should be believed in proposition A if all the not known facts
at present state support A; it also expresses the maximum
probabilistic value that can be allocated to a proposition
A: in particular "it measures the total mass of belief that
can be moved to A" [14]. The lower limit corresponds to
the belief function, and therefore the relation Cr (A) < Pl
(A) is valid. The difference between belief and plausibility
is also reflected at the functional level: indeed the belief
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function "is often zero for all atomic propositions in complex
domains, unless a large number of trials are available". The
other big difference between bayesian theory and DS theory
is the evidence combination, that is the belief updating rule
when there is a new evidence. In fact, in the DS’ theory the
combination rule substitutes the bayesian rule. The combina-
tion rule is also called orthogonal sum. The DS combination
rule suffers from some well-known structural limitations: in
fairly simple situations it could generate unexpected and non-
intuitive results, which strongly limit effectiveness [15].

C. DEZERT-SMARANDACHE

The Dezert-Smarandache’s theory [16], hereafter denoted as
DSm, has born as an explicit attempt to overcome some
difficulties of the DS theory. Plausibility is an upper limit of
the probabilistic value which a proposition can assume. Ds’
plausibility theory conceives plausible reasoning as a con-
ceptual model for guiding decision-making under uncertainty
conditions, which is broadly defined respecting the DS’ the-
ory. In particular, the uncertainty referred by Dezert extends
the one conceived in probability theory and DS’ theory. A
situation or an information state is "rational” when the basic
assignment m is a sum one and the closure of the operators N
and U on the universe elements is 0; it is strictly "uncertain”
when it is a sum one, and the closing of the operator U
can be different from zero; it is "paradoxical" when it is
sum one and the closing of the operator N can be different
from zero; it is "uncertain and paradoxical" when the closure
of both operators N and U can be different from zero. The
assumptions’ modification produces effects on the developed
conceptual model, but does not allow to exceed its limits.
Although Dezert tends to a more extensive discussion of the
plausible reasoning, his approach contributes to leaving it
anchored to a strongly reductionist view.

D. THE RESCHER’S DEDUCTIVIST CONCEPTION

Among the non-probabilistic approaches to plausibility the-
ory, Rescher’s deductivist approach stands out. According to
Nicholas Rescher, the "plausibility theory aims to provide
a rational instrument to treat cognitive dissonances" [17].
Rescher provides a preliminary distinction between plausibil-
ity and probability: the first "classifies propositions according
to the status of the evidentiary sources or the validating prin-
ciples that guarantee them", while "the probability weights
various alternatives and evaluates them". Instead of adopting
the probability theory as a basis for modeling the plausibility
notion, he bases his approach on the traditional Theophras-
tus’ principle, pointing to a return to the historical roots of
the plausibility theory. It never develops calculations which
merge quantities into new results, but proceeds only with
comparisons between different degrees of data. A further
aspect of the deductivistic approach to the plausibility notion
is the link with the entymatic argument where the common
knowledge makes it possible to integrate the missing steps,
that is the non-explicit assumptions within an inferences
sequence. The plausibility theory allows us to estabilish if the
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propositions are "candidates" to the truth or not. An argument
plausibility can therefore be defined as the maximum value
among the minimum plausibilistic values of the entemematic
integrations which allows a deductive conclusion derivated
from the premises.

E. NOT MONOTONICITY AND PLAUSIBILITY

Another non-probabilistic approach aimed at treating plausi-
ble inference is non-monotonous logics’ one. This approach
is characterized by the violation of one of the strongest
conditions of classical logic, known as "monotonicity". If the
conclusion ¢ is a consequence of a premises set I', then it
remains a consequence of any premises set A that contains
I" as its subset. According to this condition, a conclusion can
not be invalidated by the addition of new information, it re-
mains true once and for all, regardless of the premises that we
can add to the premises set I'. The valid propositions number
increases monotonously to the premises added to I increase.
If the propositions can be invalidated by the addition of new
premises, the valid assertions number may not only increase,
but may also decrease. The non-monotonous logic is based
on a reduced vision of uncertainty and it simply treats in-
ferences with exceptions. Inference forms modeled by non-
monotonic logics are uncertain as they produce provisional
conclusions which can be invalidated or reviewed in the light
of new information available, and this is a big limitation.
Furthermore, the non-monotonous approach conceives the
plausible reasoning as essentially addressed to the inferences
treatment proper to everyday experience. Thus, it neglects the
whole part of the plausible inference directly connected to the
scientific disciplines, including Mathematics. As theorized
by Polya and Cellucci [18], the plausible inference is full of
experimental reasoning that the classical logic does not allow
to handle.

F. THE COLLINS-MICHALSKI’'S COGNITIVE APPROACH
The cognitive approach to plausibility aims to show how
factors of a subjective and psychological nature can play
a decisive role in the process that leads to a choice. The
cognitive approach to plausibility is modeled in the Collins-
Michalscki’s plausibility theory hereafter denoted as C-M.
It intends to formalize the plausible inferences which fre-
quently recur in people’s responses to questions for which
they do not have a ready answer [19].

Information is defined as common knowledge to a group of
people if: all the group members know it; they know that
others know it; they know that others know that they know it;
and so on. It is different from the simple mutual information,
"which implies only that specific possession of information
and not even the awareness of the others’ knowledge". That
mutual knowledge may become a common knowledge, in
presence of an "independent arbitrariness" to the various
agents who make inferences and share information. These
reasoning forms create plausible inference models which, al-
though dependent on cognitive and psychological factors, are
not included or traceable to the theory of Collins-Michalsky.

3
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This theory leaves out some facts which the plausible reason-
ing explicitly intended to treat and model.

G. OPEN SYSTEMS AND NETWORKS

Thanks to its recent developments, the networks’ theory can
be viewed as an analysis source and plausible inference
investigation. The knowledge representation in graph form
is capable of detecting essential aspects about the plausible
inference like nature and dynamics. We can consider an
hypothesis as ’plausible’ when it is connected to existing
knowledge and has a capability of self-adjustment and ro-
bustness (resistance to error): the greater the degree of con-
nection, the more likely the hypotesis to be plausible. Con-
nectivity will measure its integration and compatibility with
existing knowledge degree and robustness. The success of
this approach depends essentially on an adequate knowledge
representation in a reticular form, and in particular on the
chosen granularity. Plausible inferences can have very com-
plex forms, composed of many steps resulting from different
rules application (deductions, inductions, analogies), which
create equally complex graphs. It is possible to define plau-
sibility in terms of local or global properties. In particular, a
node can be plausible if it has numerous incident edges or if
there are different paths leading to it.

lll. DECISION IN UNCERTAINTY DOMAINS
A. SCENARIO
In the knowledge and collective intelligence era, like ever,
we are called to make decisions. Generally, we use problem
solving to achive goals (decision making). It is obvious that
a target could be reached by joining "elementary" decisions.
This highlights an important issue: in the modern decision-
making support systems, it is important to focus both on
the objectives and on the decisionaly path. The objective is
reached by joining sub-objectives through an optimal path.
If we were in Physics, with a material system that has to
transit from A to B in n finite steps and through m decision-
making paths, it would be easy to estimate the problem
complexity and reduce it with principles of minimization, i.e.
the problems of transaction energy, the transaction disorder
or time minimization.
In the case of a logistic transport problem, in which the
objective is moving merchandise or people from A to B, the
optimal solution may be achieved by maximizing merchan-
dise transported in a given time interval.
When there are more solutions or a target solution reachable
through different competitive strategies, these examples and
their generalizations give us the opportunity to formalize the
problem in (fig. 1):

o initial conditions definition,

« constraints fixing,

« target individuation,

« solution strategy definition,

« solution optimization.
A first problem classification is to establish whether it is de-
terministic or stochastic. The variables on which the problem
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FIGURE 1: How a problem is defined

depends could be hence described either by dynamic defined
laws or by some dynamics which are out of the analyst’s
control.

This indetermination could concern both the single vari-
able and the way it affects the output. In the first case we have
a direct indeterminacy (cause indeterminacy) that concerns a
problem variable. In the second case we have a derivative or
effect indeterminacy.

Imagine an individual that has to move from A to B by bus.
The first indetermination concerne when the bus will arrive
(temporal indeterminacy), so on the input variable "time". It
is obvious that reaching the B position could depend on the
traffic which represents an effect indeterminacy given by the
constraint "traffic" or road filling coefficient. Having knowl-
edge of multiple paths and their road status ("traffic" or road
filling coefficient) it is an obvious advantage to minimize the
B reaching time, also paying a route cost, corresponding to a
longer journey in terms of space.

This example allows to understand the simplicity of dealing
with non-deterministic problems when they can be reduced
to deterministic ones with a series of choices (constraints).
If we think about how to choose which path to take, the
answer leads to another dualism: infocompletness and in-
foincompletness. With the previous example it is simple to
understand how the knowledge of a free path allows the
driver to easily choose which road to follow to reach point
B (goal of the trip) in the shortest time. With this method we
can transform a non deterministic problem in a deterministic
one thanks to a choice based on the scenario knowledge.

In this way, we have introduced complex systems and
decision theory characterization: the info completeness-
incompleteness.

From the following three characterizations the stochasticity
is defined 2:

1) variables determinism, variables indeterminism;
2) functional link between variables and their impact on
the target determinism, target indeterminism;

That is the non-determinism of many problems in most of the cognitive
areas where it is necessary to make decisions
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3) completeness and incompleteness of the starting sce-
nario (input varables), the arrival scenario (output vari-
ables), and the constraints (functional models which
link inputs to outputs).

We give an example in the financial context where the

target is the reaching of a price target:

1) first type indetermination: tick instant;

2) second type indetermination: ticks succession;

3) third type indetermination, info incompleteness: ex-
changed volumes and price variation.

It is important to specify that the word stochastic could
not mean full random, because it is possible to build mod-
els which manipulate stochasticity and make predictions. In
other words, taking the previous example, we will be able to
give an estimation based on known constraints or analyst’s
needs, so we will be able to make predictions on the price
in a time frame. Stochastic dynamic systems solve many
problems even if they do not provide a perfectly deterministic
answer.

It is important to define the right position of the problem.
This problem concerns the certainty of the target. About
the previous examples, we must ask if the target price is
reachable, or if the considered bus line stops at point A etc.
So the question is if the target can be possibly achieved or it
is impossible.

Therefore, a set of linguistic nuances emerged between the
certain event and the impossible one.

In fact, other terms have emerged linguistically: possible,
plausible and credible. These terms need to be formally
defined. Shortly, our study highlights that decision-making
problems in complexity contexts are generated by dualisms:

o determinism, indeterminism;

« completeness, incompleteness;
which generate another dualism: certainty, uncertainty of the
target which have two extremes of solution. This target is
between certain event, impossible event and uncertain event,
which is reality and it is in the middle.

Uncertain dualism is faced by quantification of:

« plausible, implausible;

o credible, incredible;

« probable, improbable;

« possible, impossible;

The goal of our work is to understand how to use, quantify
and generalize these dichotomies in order to build decision-
making support systems which are not only probability-
based.

Someone could be confused and wonder why to use so
many different concepts and not rely on probability theory
or Bayesian processes.

There is a simple reason, some phenomena which consider
complexity or complex systems are not Gaussian (or other
known distributions) distributed, but they have heavy tails
which are not Gaussian.

When someone uses the term heavy tails, he is putting
a patch on a problem, because he does not have suitable
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methodologies to solve and to describe the uncertainty in a
rigorous framework. An example is the price distribution of
a financial instrument around a sample price in which a not-
normal distribution is observed, with heavy tails (larger than
Gaussian tails).

This means that some improbable events can still happen,
therefore it is important to estimate whether the event is
plausible, credible or possible and estimate reliability.
Info-incompleteness or the input indecision generate emo-
tions and beliefs that make decision-making process subjec-
tive.

So we understand why the rational operator becomes
emotional-affected and takes sentiment and subjective
choices.

The purpose of decision-making support systems must be
to build simulated scenarios, like those of game theory. In
game theory, different solutions/targets cooperate or compete
to the best choice, where the best word is based on different
parameters of decision-maker interest (target constraints).
Thanks to this methodology, related to technological help
and the support of simulated scenarios, an emotional-affected
operator will be brought to rationally (induced rational oper-
ator) decide before the result achievement (decision forward
in time).

Information incompleteness and the variables/information, or
functional bonds indetermination, generate emotions in the
decision maker which induce beliefs.

Thanks to this work we bring back the operator to be rational
on a larger cognitive basis (expanded knowledge); we use
other approaches like sentiment analysis or emotional anal-
ysis to control this beliefs.

The new realization moment will lead to the hyperconscious-
ness status where the operator is conscious of the augmented
scenario called hyperscenario.

B. CONTINUOUS OCCURENCE OF UNLIKELY
POSSIBLE

How many times have we witnessed the occurrence of highly
improbable events?

How many times was a football match conclusion plausible
and things have gone differently?

Moreover, how many times the price dynamics of a financial
instrument have made us to believe that we have understood
the dominant direction, but as soon as we entered the market
it had an opposite behavior?

These are some examples of how complex it is to make
previsions under uncertainty conditions (input, models and
results uncertainty) or information incompleteness.
Overcome determinism and entered the stochastic or un-
certainty phenomena context we find the terms: probable,
plausible, credible, possible.

In literature there are different research lines and thousands
works which describe, distinguish and model these terms
sometimes in a conflictual way.

In this study, we present a graded organic vision of the terms,
starting from the best modeled concept, rather probability,
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using that to model probable event, but that extend it to
describe other concepts where possible.

In other words, while Gyorgy Pélya® or Arthur Dempster
- Glenn Shafer* have tried to extract,in probabilistic terms
the belief function from the describable component. Here we
accept the difference among the terms; we hierarchize them
in strenght terms and we describe them with a method that is
more general and not probability exclusive.

In our vision the concepts:

probable(F;),
plausible(F;),
credible(C),
possible(F,),

have a decreasing strength, even if they all describe uncertain
events. So a:

« possible event is not necessarily credible;

« credible event is surely possible;

« credible event is not necessarily plausible, but it is surely
possible;

o plausible event is not necessarily probable, but it is
surely credible and possible;

« probable event is surely plausible, credible and possible.

From now on, it will be necessary to indicate a characteristic
multiple function for a process or phenomenon that is a
combination of more functions (i.e. distribution):

F1 probability
F2 plausibility
F3 credibility
F4 possibility

where F} are multiscale single-mode functions to 1 sum?.
We conduct an analysis that starts from a different perspec-
tive which naturally emerges from artificial intelligence stud-
ies when it is desidered to extend decision-making capability
of an artificial agent which operates in uncertain conditions,

with increasing cognitive capacities which try to tend to
human ones.

3pélya’s theory

4Dempster-Shafer’s theory manages the distinction between uncertainty
and ignorance and calculates a proposition evidence, in their work it is
calculated the belief function Bel(X), that is the probability that a proposition
is supported by evidence.

5When an E event is highly improbable i.e. P(E) < 1%, P(E) < 0,1%,
P(E) < 0,01% we are moving in the plausibility of improbable events.
Then it is not important how the event is improbable, but how much the
improbable event is plausible. Is similar for credibility and possibility.

With this assumption it is obvious that in uncertainty or in-
completeness information conditions, the improbable events
occurrence opens the space to emotions which significantly
demarcate the passage from strict uncertainty methods (prob-
ability) to the uncertain events treatment under emotional
effects action.

In this scenario the closer concept to probability is plausi-
bility, even if plausibility and credibility both concern an
estimation theory under emotional coditioning. For what
concerns affectivity it tends to provide a subjective answer
that aims to being objective. So we assign a probability to
an event based on the several people opinion, in the belief
case this comparison is not required, there is no subjective
evaluation objectification. Belief brings out the personal and
subjective evaluation to be shared, surely possible, but not
necessarily sharable.

In other words, for the belief it is sufficient that the propo-
sition to which a subjective probability is to be assigned is
possible.

From these considerations it emerges that as the concept of
probability is more stringent than plausibility one, in the
first we assume that even if there is uncertainty, there is
no emotionally driven assessment; instead in the plausibility
definition, we associate an emotional component to uncer-
tainty, but it represents the most people opinion. In the belief,
emotionality make brings the ego out, that is a personal and
subjective vision that does not require comparison with the
community, but only needs the possibility.

We summarize this in the conceptual provocation:

"when the improbable is highly possible we should not be
surprised if it is realized".

Formulated as the same way as a Edward Murphy® law it
should be a scientific truth to all.

In other words the current price p(t) is a certain form of
uniformity, while the trend p(t-1)-p(t) is a more or less
reliable, but not sure source.

Using the Dempster-Shafer’s (denoted as DS) theory rather
than bayesian model allows to exceed the multidimensional-
ity limit to sum one.

In other words, price growth possibility with a subjective
probability estimated, does not imply that the decrescence
has the complement to 1, so a decreasing trend probability is
equal to one minus uptrend probability.

Thanks to the DS theory it is possible to give a probability
to an E event and an E negation (—F), that could be another
probability different from 1-P(E) with P(E)+P(—E)<I.

In DS theory, C;.(E)<P,(E) means that credible is less strong
than plausible, because the plausibility is the probabilistic
maximum value that can be allocated to E proposition,
while belief is the probabilistic minimum assignable value
to E, above all because for plausible we mean something
believable for more people.

6Murphy law is a pseudo-scientific paradoxes set with an ironic character
realised by Arthur Bloch with didactic phrases in statistical-mathematical
form
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Another difference element between our theory and DS
theory is: while the DS theory provides a method to change
previous opinions because of new beliefs, equally treating the
new and previous evidence, our dynamic systems experience
leads us to give more weight to the new evidence than old, to
refining the cognitive process and a gradual approach to the
solution.

In financial markets context, this means: if we do a price
average for assuming a future price, then an average that
weighs recent prices more than older ones will be more
appropriate than an average that equally weighs new prices
and older ones.

Nicholas Rescher’s non-probabilistic theory of plausibility
can be useful when there are equal reliability conflicting
information (news or indicators).

As an example, think that a set of news or indicators tells us
that the price of a financial instrument is destined to rise in a
time frame and to fall in another one.

Thanks to the Rescher’s theory, which is not sum 1, we can
associate a value of bullish belief, for example 0.9, and a
bearer of the same value, 0.9 too, since we have not bounded
it by sum one total like it happens to sum one total theories
as the probability one.

Consequently, the result is that the price will not certainly be
stationary, so a financial instrument with a lateral behavior is
to be excluded.

C. INFERENCE METHODS FOR FINANCIAL
INSTRUMENTS DOMINATED BY UNCERTAINTY:
INTERACTION BETWEEN FINANCIAL OPERATOR AND
MARKET

When a financial operator joins the market, he performs an
analysis (or someone does it for him) in order to decide
whether to enter on a financial instrument, and what kind of
position to take, in terms of size and of upward or downward
directions.

The financial operator does not remain an observer, interacts
with the financial market and disturbs it.

In other words, the analysis becomes an interaction with the
market, once the operator decides to enter.

This reasoning recalls that of Richard Feynman7, where he
explains the quantum systems measurement process and the
consequent Werner Karl Heisenberg’s uncertainty principle®.
About this Feynman explains that the fluctuations or uncer-
tainties that introduce a description in terms of expectation
and probability values to the state of a dynamic system,
proposes the following example. Suppose that the dynamic
system under study is an electron, or at least a particle of the
microscopic world described through Quantum Mechanics.

"Feynman’s reasoning says that only a quantum system, where there is
uncertainty or even worse ambiguity, can simulate the behavior of another
quantum system.

8The Heisenberg principle establishes the limits in the knowledge of
values that physical quantities associated with operators who do not interact
with each other take on a physical system at the same time.
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We suppose that on this dynamic system we want to make
a position and speed (or momentum) measurement. Make
a measurement means to send one or more photons (i.e. a
beam) in order to know in each instant where the electron is
and the its speed.

Feynman’s observation is that by making this measure we
are changing the state of motion of the electron system; we
are perturbing it, because, to provide information about the
electron speed and the electron position, the photon, bumping
it will change its speed and its motion.

So, the effect of the measure represents a perturbation. The
more we are sure of the position, having sent more photons
to measure the position, the less we can say about the speed
because doing the different measures we have perturbed
(if not distorted) the electron motion and vice versa. The
Heisenberg principle says that in the combined measure of
position and momentum it is impossible to be more precise
than a certain threshold value given by the reduced Planck
constant’ .

In the macroscopic scale reality, we understand that what
explained by Quantum Mechanics does not respond to our
common sense. Let the motion of a car, and we consider the
measurement process link to a beam of photons that collide
with the vehicle to know the position and the speed. It is
evident that the photons can not disturb the vehicle motion
state.

In this case the observer or measurer is unrelated to the
vehicle motion and any uncertainty is generated.

For this reason the macroscopic reality is described in Clas-
sical Mechanics, starting from the Isaac Newton’s principles
of dynamics (inertia principle, action and reaction principle).
Many macroscopic dynamical systems have a similar behav-
ior to quantum systems.

Considering the price dynamics of a financial instrument, it
is clear that what Feynman explained is in complete analogy.
If we replace the electron position with the price level of a
financial instrument, we formulate an uncertainty financial
markets principle similar to Heisenberg’s principle. In this
way it is impossible to certainty predict the price and volatil-
ity of a financial instrument in a future moment.

This because of the decision taken by the financial operator
and therefore the entry to the market automatically could
imply the market transition from one state to another one.
A state could be different from the previous one depending
on the operator size, (his liquidity introduced to the market)
giving a direction to it.

Think of the effects caused by market mover (such as the
effects of the decisions carried out by FED, ECB, BOE etc
)

What has been described explains the need to place the
financial markets in the complexity theory and to describe
them with increasingly accurate tools which can look at

9Planck’s constant, also called action quantum and denoted by h, is a
physical constant that represents the elementary action quantity, determining
that fundamental physical quantities do not evolve continuously, but are
quantized, that is, they can only assume values multiples of this constant.
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uncertainty from different perspectives and not only from the
probabilistic, plausibilistic, credibilistic or possibility.
Because all these visions in an instant, in different quantities,
contribute to the formation of the price.

We intend to provide a further enrichment level for the
MRQF theory [20] as a complementary work. For this aim,
we work on the modeling of uncertainty, and on how the var-
ious probable, plausible, credible, possible models contribute
to the construction of a market state function which absorbs
the individual probability, plausibility, credibility, possibility
functions. After that harmonizes them to allow the analyst to
make inferences about future market conditions and to help
him to make decisions about entering the market, in what
dimensions, and whether to bull or bear.

D. UNCERTAINTY TREATMENT BY INFORMATION
FUSION AND EXPECTATION FUNCTION MODELING
We define the expectation function a: 24 — [0,1] ob-

tained from an appropriate functional composition in terms
of P,, P, C,, P,, such that a () = 0 and Z?Zl a(4;) = 1.

1) First model: Average model

We indicate with P1 = Pr, P2 = Pl, P3 = Cr, P4 = Po.
The expectation function simplest model we can build is the
following average model

ai :al(P17P27P3aP4) = %Z?:lpl

Evidently this model assigns the same importance to the dif-
ferent distributions of the probability, plausibility, credibility
and possibility, so it is both an advantage and a disadvantage
depending on how much expert the analyst is and how much
we want to make expert the system. This model, as in
the probability theory is used for calculate more alternative
events expectation. Let us make a weather forecast example:

o P=place A forecasts of the military air force;
o Ps=place B forecasts by the sentiment;

o Ps=experts’ forecast for place C;

P,=users’ forecasts for place D;

This model can be used for calculate the expectation function
for the event "it will rain in the place A or in the place B or
in the place C or in the place D".

2) Second model: Product model
Another way of estimating the event expectation is through
the Pi product, formally

as = a1 (Py, Ps, P3, Py) = H?lei
where P; : 24 — [0, 1].
In general, we observe that
H?:l P < Z?:l b

To be able to say that as < aq, it is required a more detailed
study that includes the P; functional models, considering that
the function a; has the normalization factor equal to i. In

8

this model, as in the previous one, all the Pi have the same
importance. Let us make another weather forecast example:

o Pj=military air force rain forecasts;

e P,=sentiment for the wind;

o Ps=experts’ forecast for the temperatures;
o Pj=users’ forecasts for the humidity .

This model can be used for calculate the expectation function
for the event "it will rain, the wind will blow at 31km/h, there
will be 18 C° and the humidity will be 80%". It is important
to give a different importance to the Probability, Plausibility,
Credibility and Possibility; so, we define weights for each of
these concepts.

3) Third model: Weighted average method
To extend the previous models we assume that not all P; have
the same importance in the expectation function construction.
So, we build the following weighted average type model,
(Ciy aiPi)

Yl
where «; are weights relative to the different P;.
An example could be to give a 50% of weight to P; that is:
ar; = 0,5; 25% to Ps, 50 ap = 0,25; 15% to Ps, so a3 =
0,15,and 10% to Py , ay = 0, 1;
in this way the expectation function is

as =

4 . .
a3 = % =0,5P +0,25P +0,15P; + 0, 1P,.

4) Fourth model: Weighted product model

In analogy, to extend the product model for the expectation
function, we consider the following weigthed product model

Also in this way, we will have the possibility to weigh the
different contribution of the probability, plausibility, credi-
bility and possibility to the expectation function. In both the
weighted models we have the constraint of

4
Zai =1.
i=1

This is because when we use an expectation function model,
we are trying to rebuild a probability which had uncertain
inputs.

5) Overlap model with shift based on probability

First and third models represent overlap models and weighted
overlap of the different P; contributions to the expectation
function.

A further possible generalization could include a P; hierar-
chical use.

Let P, be the probability of the event, In detail we can
see probability, plausibility, credibility and possibility as
concepts to be used in descending order of importance.

For example we can consider
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P if1% < P, < 100%
P,  if0,1% < P, < 1%
Py if0,01% < P. <0,1%
P, ifP.<0,01%.

a5 =

This would mean that until 1% of the probability distribu-
tion we will use only the classical probability(P1); beyond
that probability we will define the improbable event, with
a plausibility (P2) coefficient between 0% and 100% in the
interval in which 1% < P, < 0,1%; similarly, however, 0.1%
< P, < 0.01% we define the improbable and implausible
event, with credibility (P3) between 0% and 100%; finally,
for even lower values of probability we will have unlikely
and implausible events, with a coefficient of possibility (P4)
between 0% and 100%.

At the ends of these evaluations there is the certain event
Py = 100% and the impossible one P; = 0%:

P24 —[0,1].

6) Overlap model with shift based on Pi hierarchical

As an alternative to the previous model, without making to
the probability play a pivotal role, but generalizing the Pi
and evaluating, with own importance, also the emotional and
cognitive elements, leads to the formulation of an expectation
function which can be defined as

Py if Pp, —30p, <p; < Pp, + 30p,

Py if?p,z —30p, <p < FPQ + 3op,

and p; > ?pl +30p,

if Pp, —30p, <p; < Pp, + 30p,

and p; > Pp, + 30p,

Py ifPp, —30p, <p; < Pp, +30p,
and p; > Pps + 3op,.

ag = § P

Where P is the average price on the considered set of data
and o is the standard deviation; the subscript P; indicates
with which distribution P and o are calculated.

From the provided models, we understand how general the
issue of decisions in uncertainty conditions is and how easy
it is to build models using the expectation function which
describe the inference processes in info-incompleteness and
input uncertainty terms.

The proposed reasoning theory is a meta model where
defining expectation function models makes it possible to
construct new and more opportune operative models contex-
tualised to a cognitive and informative domain.

7) Model based on Dempster’s composition rules

Another significant way to construct the expectation function
is to use the rule that Dempster has defined for the plausibil-
ity, extending it to the application of Pi case calculating the
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mass (m) function, the belief(bel) function and the Demp-
ster’s plausibility(we call it Dpl) for each P:

o m(Py), relative bel(Py) and Dpl(Py);

o m(Pz), relative bel(Py) and Dpl(P);

o m(P3), relative bel(Ps) and Dpl(Ps);

o m(Py), relative bel(Py) and Dpl(Py);
And finally compose it with the Dempster’s composition
rules.

E. RELIABILITY

In classical reasoning, the method, the element or the system
reliability, is the probability of not breaking for a certain pe-
riod t, under defined operating and environmental conditions;
i.e. reliability definition is in frequentistic terms:

R="L

with n f number of times that the method, element or system
has worked, and n tests number and samples used for the test.
By using our approach, reliability is obtained by changing
the probability P with the expectation function a. Similarly
we can define unreliability as Fault

F=1-R.

So we are in a 1-dimensional one-sum logic and therefore R
and F are time functions.

The reliability is linked to the number of successes or failures
obtained after a ¢ time.

Formally the reliability R is the following time function:

R:T —[0,1].

We also define average operating time of the method, ele-
ment, system, or mean time to failure (mtf) the following
quantity

mtF =1/,

with A number of faults / failures at t time.

In our study we considered R =R (T); in general R =R (T, C,
A) where t is the time, C is the method for judging successes
and failures and A are environmental conditions.

This reliability concept can be applied as an estimator to the
probability, plausibility, credibility and possibility functions,
in which backtesting can be seen how the different inferences
worked.

When we do not refer to the method but to the result, we need
to introduce the trustworthiness concept.

F. TRUSTWORTHINESS

In some contexts, simple reliability and trustworthiness, as
well as probability, plausibility, credibility and possibility,
can be considered synonyms, but this is not the case of
domains and events where complexity theory is required.
After setting the measurement conditions, the trustworthiness
indicates the costancy of a set of results.

With this definition we understand how in an uncertainty
context, in terms of probabilities and distributions which are

9
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dependent on emotion (such as plausibility and credibility),
the reliability can precisely express how the same dynamics
are differently considered.

For example, a trader with the same trend at different times
may feel the need to act / react differently.

At this point the result trustworthiness acquires a different,
but equally important role from the previous concepts.
Trustworthiness is not reliability, accuracy or validity of a
data synonymous; but we will say that an estimate is trust-
worthy if the results remain constant over time.

If this does not happen, we will say that the estimation or the
result is untrustworthiness.

There are several methods to estimate trustworthiness; we
will use the Pearson!® correlation index which is the basis
of the various reliability estimates.

The Pearson correlation index between two variables x and y
is

— Ty with
oxoy

-1<r< 1

where o x y denote the covariance and o x o y the standard
deviations of x and y respectively.

We distinguish the following cases:

r < 0 : related variables

r = 0 : non related variables

r > 0 : anticorrelated variables

0 < r < 0.3 : weakly correlated variables

0.3 < r < 0.7 : moderately correlated variables

r > 0.7 : highly correlated variables

and similarly for anti-correlation cases.

Generally in the case of more than two variables, the Pearson
index will become

r=Tij.

We have a correlation matrix of r rows and r symmetric
column 7, = r;, with coefficients on the diagonal equal to
l,asr;, =0,/ 0.

For example, in the financial case we can estimate the relia-
bility of two or more periods of results.

IV. SIMULATION
In this section we will describe a simulation based on the

described theory. This simulation has been developed in two
fields:

o Biometric fusion choiches,
o Sport odds.

For each field, we suppose to have different features to be
applied at probability, plausibility, credibility and possibility.
Our aim is to calculate how much these features weight in the
formula:
Z?:l ai P

S
In particular in the biometrics field we have:

az =

10The Pearson correlation index between two statistical variables is de-
fined as their covariance divided by the standard deviations product of the
two variables and expresses a possible linearity relationship between them.

10

Fingerprint | Face | Iris | Retina
Accuracy 90 76 93 94

Vascul. | Ear | Voice | Signature
Accuracy 96 74 66 67

Hand | Palm | BodyMot. | DNA
Accuracy 67 88 78 98

TABLE 1: Biometrics accuracy

Fingerprint | Iris | Face
Accuracy 90 93 76

TABLE 2: Selected biometrics

« probability: the biometrics statistical reliability that is in
the [0,1] interval,

« plausibility: the biometrics sentiment that is in the [0,1]
interval,

« credibility: the awareness and reliability of the recogni-
tion algorithm that is in the interval [0,1],

« possibility: the system fault statistic.

In Sport odds, all the features are in the [0,1] interval:

« probability: the bookmaker quotes average,
« plausibility: the experts opinions,

o credibility: the sentiment analysis,

« possibility: the users forecasts.

The simulation has been developed with r studio; we created
the two simulated datasets'! and they have been disturbed in
order to simulate uncertainty.

A. BIOMETRICS SIMULATION
When we fuse biometrics in a multibiometric system, we are
dealing with a decision-making problem. The decisions can
be joined by several methods: voting method, where, each
classifier votes for a class, then the pattern will be assigned
to the most voted class, we focused on this method; Gupta,
Singh Walia and Sharma [22] propose a score based fusion
method; Divyakant et al. [21] describe other fusion methods.
We initialize each biometric with the related accuracy:

Delac et al. [23] and Tripathi [24] calculated the biometrics
reliability; we have extracted the biometrics accuracies from
these works (table 1). Suppose to build a multibiometrics
system that use the most plausible biometrics in terms of ac-
curacy and user-acceptability (user acceptability is described
by Tripathi [24] and Rui [25]). We select:

« Fingerprint,

o Iris,

o Face.

In the table 2, we can see the selected biometrics accuracy.

After that, we initialized three algorithms for each bio-
metrics and relative success rate: random high, medium and
lower rate. The success rate can be found in table 3.

Hone field, one dataset
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Fingerprint | Iris | Face
Al 85 93 73
A2 76 88 71
A3 90 85 70

TABLE 3: Supposed algorithm success rate

1000
]

600
1

0 200
1

. . _

77 8 83 86 89 92 95 98

FIGURE 2: Multibiometric system distribution

We simulated this multibiometric system 10000 times
with 100 hypothetical positive subjects and we obtained the
distribution in fig. 2.

The skewness of this distribution is 0.6456361, which rep-
resents an asimmetric distribution. The kurtosis is -1.261064
which represents a platykurtic distribution. These results
follows because of randomic selection of positive or negative
biometrics system’s choice.

B. ADDING UNCERTAINTY

Now we add uncertainty to the multibiometric system’s prob-
ability. We estimate it having a combination of:

o biometrics reliability estimation (10% of uncertainty
factor), in the figure 3 we can found the distribution of
this feature,

« sentiment analysis on biometrics (30% of uncertainty
factor'?), in the figure 4 we can found the distribution
of this feature,

o Awareness and reliability of the recognition algorithm
(no uncertainty, we have a well defined statistic when
we develop a biometric algorithm), in the figure 5 we
can found the distribution of this feature,

« system fault statistic (in which there is not uncertainty,
but there are few experiments), in the figure 6 we can
found the distribution of this feature.

So, we simulated the system 300 times for 100 hypothet-
ical recognized subjects. The simulated result (Fig. 7) have
a skewness of 0.09512331 and a kurtosis of -1.369442 that
means we are in presence of heavy tails in this distribution.
In the following paragraph we used these simulated results as
dataset in order to calculate the weights of Pr,P1,Cr and Po.

12Default users are not expert and we have few data on this argument
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FIGURE 3: Multibiometric system distribution based only on
reliability, the skewness is 0.69 and the kurtosis is -1.20
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FIGURE 4: Multibiometric system distribution based only
on sentiment analysis, the skewness is 0.64 and the kurtosis
is-1.24
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FIGURE 5: Multibiometric system distribution based only
on the best three algorithms, the skewness is 0.58 and the
kurtosis is -1.04

C. WEIGHT CALCULATION

To calculate the weights, we based the method on the mean
square deviations by backtesting the uncertainty data with the
real probability data. The values which weigh most are those
that have the average difference closest to the real probability,

after that, we calculated the scraps and the distribution of the
weights. Let P1=Pr, P2=Pl, P3=Cr, P4=Po and q; the related
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FIGURE 6: Multibiometric system distribution based only on
system faults, the skewness is 0.83 and the kurtosis is -0.69
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FIGURE 7: Multibiometric system distribution with all
P,., P, C,, P,; there are few experiments because of the
bound with the system faults feature.

weight, let z; the uncertain value and p the real probability,
then:
N
> j=1 (z; —p)?
N

g; —

. Then we normalize the results:
i
a; = =i .
> j=10]
The results are showed in the table 4.

So, the best feature for the biometrics area is the biometric
reliability estimation. After this, we are going to calculate
the standard deviations between the real probability and the
estimated expectation in 300 simulations. Thanks to this
simulation we have recovered an approximation of the real
probability (expectation) of the multibiometrics system, we
remember that the real probability is 88%, the expectation
calculated using the retrivied weights with the a3 formula

Pr Pl Cr Po
0.58% | 0.13% | 0.15% | 0.14%

Weight

TABLE 4: Weights in the Biometrics simulation
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FIGURE 8: Victory of the first team distribution

S il

Zle a; ’
for the first individual is 91.33%. For 300 individuals, the
standard deviation between real probability and estimated
expectation is 2.52%.

as =

D. SPORTS ODDS SIMULATION

Suppose we want to estimate the probability of a result in a
sport event as a soccer match. In our simulation we figured
the strenght of the italian teams basing on the number of
achieved points in the Serie A season 2017/2018.

We created a function for quotas calculation. In this func-
tion, factors as home-away factor, difference of points and
team form status are used in order to calculate quotas.

We assigned the expectation features in this way, all the
following features are in the [0,1] interval:

o probability: the bookmaker forecasts,
« plausibility: the expert opinions,

« credibility: the sentiment analysis,

o possibility: the users forecasts.

We simulated the match between the leader of the league
team and second one 10000 for 100 times. We took as
reference the victory of the first classificated team (fig. 8).

The skewness is 0.6705781, which represents an right
asimmetric distribution. The kurtosis is -1.160554, which
represents a platykurtic distribution. These results follows
because of randomic, but weighted with team strenght, se-
lection of the match result.

E. ADDING UNCERTAINTY
Now we add uncertainty to the victory probability of the
leader team, we estimate it having a combination of:

« the bookmaker forecasts (10% of uncertainty factor on
the team form and -7% of bookmaker work fee), in the
figure 9 we can found the distribution of this feature,

« expert opinions (20% of uncertainty factor on the team
form), in the figure 12 we can found the distribution of
this feature,

« sentiment analysis: combination between bookmaker
forecasts and 10% of uncertainty on the team form be-
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FIGURE 9: Victory of the first team distribution related to
bookmakers forecasts, the skewness is 0.65 and the kurtosis
is-1.17
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FIGURE 10: Victory of the first team distribution related to
sentiment, the skewness is 0.74 and the kurtosis is -1.07
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FIGURE 11: Victory of the first team distribution related to
users forecasts, the skewness is 0.74 and the kurtosis is -1.05

cause the collective opinion is influenced by bookmak-
ers quotas, in the figure 10 we can found the distribution
of this feature,

e users forecasts (random uncertainty factor of team
forms combined with bookmaker quotas). The random
factor is in the interval 0-50%, in the figure 11 we can
found the distribution of this feature.
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FIGURE 12: Victory of the first team distribution, related to
experts forecasts, the skewness is 0.72 and the kurtosis is -
1.07
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FIGURE 13: Victory of the first team distribution with uncer-
tainty

So, we simulated the system 10000 times adding uncer-
tainty (fig. 13).

The simulated result have a skewness of 0.5768954 and a
kurtosis of -1.315472 so, we are in presence of heavy tails in
this distribution.

F. WEIGHT CALCULATION
We calculated the weights using means of standard deviations
method, doing backtesting on simulated data. We assign a
weight for each feature based on standard deviation, the more
the feature is far from the real probability, the less it weights
in the formula. The results are shown in the table 4.

So, the best feature for the sports odds field is the sentiment
estimation. After this, we are going to calculate the standard
deviations between the real probability and the estimated
expectation in 10000 simulations. Thanks to this simulation

‘Pr‘Pl‘Cr‘Po
Weight ‘ 0.06% ‘ 0.45% ‘ 0.46% ‘ 0.03% ‘

TABLE 5: Weights in the sport simulation
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we have recovered an approximation of the real probability
(expectation) of the leader team victory, we remember that
the real probability of this event is 38,83%, the expectation
calculated using the retrivied weights with the a3 formula
Z?=1 ;i P;

E;‘L:I a; ’
for the first simulation is 38.61%. For 10000 simulations,
the standard deviation between real probability and estimated
expectation is 0.25%.

as =

V. CONCLUSIONS AND FUTURE WORK

In this work, we extended the Dempster Shafer’s theory
introducing the novel concept of Credibility and Possibility
in addition to the already existing Probability and Plausibility
ones and we combined them in several models which can be
applied to real problems. Thanks to the information fusion,
we obtained a versatile environment where the weights of
the objective function a can be modelled. We proposed seven
models which extends and includes the classical probability
by giving a more suitable tool for describing and forecasting
events which happens more frequently than their probability
and in which there are uncertainty conditions. These models
are generalizable, so they could be applied to all the fields in
which there is uncertainty on data input using an historical
dataset as test for weight calculation. For example, in the
financial field, we can assign to Pr = fundamental analysis; P1
= technical analysis; Cr = experts’ opinions; Po = sentiment
analysis. Select the data and calculate the weights for the
expectation function. Another example could be the forecast
of success of a product; in this case, we could assign: Pr =
success rate of products of the same category; Pl = sentiment
analysis; Cr = experts’ opinions; Po = customers opinions. In
the future we will apply this models in the financial field with
historical data. Again, in the financial area, we are developing
a Token Evaluation System which permit to evaluate digital
assets like tokens on the Blockchain and which is based on
the proposed theories.
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