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Abstract—Dezert-Smarandache Theory (DSmT) of plausible
and paradoxical reasoning has excellent performance when the
data contain uncertainty or conflicting. However, the methods
developed in DSmT are in general very computationally ex-
pensive, thus they may not be directly applied to multiple data
sources with high cardinality. In this paper, we explore the
feasibility of using DSmT in practical applications through a
case study. Specifically, we propose a DSm hybrid model with
reduced number of classes and thus low computational cost to
analyze temperature and humidity data received from multiple
sensors to determine comfort zones in a smart building. Data
from each sensor is considered as individual evidence that
can be uncertain, imprecise and even conflicting. Several types
of combination rules are applied to calculate the total mass
function. Then the belief, plausibility and pignistic probability
are deduced. They are used as metrics for decision making
to determine comfort levels of the monitored environment.
Both simulation and real data experiments demonstrate that
the proposed method would make DSmT feasible for practical
situation awareness applications.

Keywords-Dezert-Smarandache Theory (DSmT), Dempster-
Shafer Theory (DST), Comfort Zone, Uncertain Data Fusion,
Smart Building, Multi Sensor, Multi Hypothesis.

I. INTRODUCTION

In future smart buildings or smart environment, numerous

sensors will be deployed for monitoring and surveillance. As

a result, large amount of data will be collected from various

sources. In many practical cases, the data may contain

uncertainties and sometimes even are conflicting. How to

use the data to make inference and decisions becomes a

challenge.

Dempster-Shafer theory [1] has been used to combine

data (called evidence) from multiple sources. Compared to

traditional Bayesian method, Dempster-Shafer theory has

more flexibility in specifying ignorance and uncertainty

in the data. When conflicts level among source of data

become large and the refinement of frame of discernment

is inaccessible because of the vague and imprecise nature

of elements of frame of discernment, Dezert-Smarandache

theory of plausible and paradoxical reasoning (DSmT) [2]

can be applied as a powerful tool to combine the data.

However, the methods in the DSmT framework are in

general very computationally expensive, thus in many big

Figure 1. Relative humidity / temperature comfort zone (ISO7730-1984)

data processing, they may not be directly applied to multiple

data sources with high cardinality.

In this paper, we explore the feasibility of using DSmT in

practical applications through a case study. Specifically, we

propose a modified algorithm to use DSmT with reduced

computational cost to analyze temperature and humidity

data received from multiple sensors to determine comfort

zones in a smart building. Comfort zone is defined as the

range of temperature and humidity that people are feeling

comfortable [3]. It is known as a thermal/human comfort too.

Evaluating comfort zone is related to different parameters

and even different from person to person. Fig.1 shows the

“Comfort Zone” according to ISO7730-1984 standard. It

designed based on several experiments and a large amount

of empirical data that collected over several years from

different locations. As these graphs display, comfort zone

is different for winter and summer seasons.

In traditional buildings, the sensors are installed in some

fixed places and they may not be able to measure locations

of interest. In our previous work [4], we proposed a novel
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Figure 2. The architecture of the proposed community sensing system

framework of an environment air quality monitoring system

based on community sensing, see Fig.2. Leveraging on the

high penetration of smartphones and low cost and small form

factor of certain sensors with a Bluetooth module, critical

measurements such as air quality can be measured by each

sensor carried by a member of a community, and be sent to

that person’s smartphones, and eventually uploaded to server

using a corresponding app. Then the aggregated data at the

server side can be processed to determine comfort zone and

control HVAC 1 system to optimize the usage of electricity,

while keeping the inhabitants comfortable. In this project, we

have designed the architecture of the proposed community

sensing system, and implemented the system using com-

mercial off-the-shelf (COTS) Sensordrone [5], paired with

Android c© smartphones. Our system measures temperature,

humidity, pressure, carbon monoxide, and battery charge

level in real-time and it provided the experimental data in

this study.

In this paper, we start by introducing the details of

Dempster-Shafer theory of evidence (DST) in Section II

and Dezert-Smarandache theory (DSmT) of plausible and

paradoxical reasoning in Section III. Then we propose our

models and apply different combination rules to calculate

total mass, belief, plausibility and pignistic probability. Fi-

nally decision making based on those metrics are used to

compare for different models and combination rules. Sec-

tion IV describes data collection as our real data evidences.

Section V explains our case studies including both synthetic

data and real data analysis using the proposed methods with

several types of combination rules. Section VI concludes the

paper.

II. DEMPSTER-SHAFER THEORY

Dempster-Shafer theory (DST) of evidence, or DST, is

firstly originated by Dempster’s work [6] on the upper and

lower probabilities and later extended by Shafer’s work [1]

on the belief functions. It is an extension of the traditional

Bayesian probability that gives capability to deal with un-

certainty. To better understand Dempster-Shafer theory, we

firstly introduce some propositions [7]:

1Heating, ventilation, and air conditioning

Frame of discernment: let Θ be a finite set of elements.

Elements here refer to hypothesis or classes that for our

study are feeling zones. Θ called the frame of discernment.

For Dempster-Shafer model, all elements of Θ are assumed

be exclusive and exhaustive. The power set of Θ that

includes all subset of Θ is defined by 2Θ. Basically power

set includes all the elements of Θ and all combinations of

their union. So it is closed under union operator.

Mass Function: mass function or basic belief assignment

(bba) m is defined as a probability function. It maps a

number in [0,1] to elements of 2Θ in such a way that:

m : 2Θ → [0, 1] (1)

m(∅) = 0 (2)∑
A⊆2Θ

m(A) = 1 (3)

Here m(A) refers to the level of confidence in A, where

A is a subset of 2Θ. In our study, mass function refers

to degree of belief for each class of feeling. In the case

m(A) > 0, subset A is called a focal element. For the case

subset A includes more than one element, because we do

not have more information about each element separately,

related mass function m(A) cannot be decomposed to more

mass functions for each individual element. One of the main

differences between traditional Bayesian probability and

Dempster-Shafer theory is the uncertainty function m(Θ)
in DST:

m(Θ) = 1−
∑

A⊂2Θ

m(A) (4)

Combination rule of Dempster-Shafer: In many big data

applications, different types of data are aggregated from

multiple sensors that may originated from multiple sources.

Combined mass function can be calculated based on the

Dempster-Shafer rule:

m(A) = m1 ⊕m2 ⊕ ...⊕mn (5)

m(A) =

{
0 A = ∅
∑

⋂n
k=1

Ak=A m1(A1)m2(A2)...mn(An)

1−K A �= ∅
(6)

K =
∑

⋂n
k=1 Ak=∅

m1(A1)m2(A2)...mn(An) (7)

1−K =
∑

⋂n
k=1 Ak �=∅

m1(A1)m2(A2)...mn(An) (8)

Here K is the conflict value among all the sources of

information. It is used as a normalization factor, K ∈
(0, 1). The higher value of K indicates more conflicting

among information sources. As an example, for two sensors,

Dempster-Shafer combinational rule is:

m(A) = m1 ⊕m2 (9)
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Figure 3. The proposed DST and DSmT combination and decision making
for multiple data sources

m(A) =

{
0 A = ∅
∑

A1
⋂

A2=A m1(A1)m2(A2)

1−K A �= ∅ (10)

K =
∑

A1

⋂
A2=∅

m1(A1)m2(A2) (11)

1−K =
∑

A1
⋂

A2 �=∅
m1(A1)m2(A2) (12)

DST combination rule is associative, commutative and

markovian. For the cases with more than two sources of

data (called evidences in DST), DST combination rule

can be extended by applying combination rule between

two mass functions and then combine the result with new

evidences and so on to compute combination for all sources

of evidences. For DST combination we applied this method.

Associated with mass function, the belief function is

defined as:

Bel(x) =
∑

y∈2Θ,y⊆x

m(y) (13)

And plausibility function calculate as:

Pl(x) =
∑

y∈2Θ,x
⋂

y �=∅
m(y) = 1−Bel(x̄) (14)

where x̄ is the complement set of x, x̄ = Θ−x. It is clear that

Pl(A) ≥ Bel(A). Belief interval, [Bel(A), P l(A)], refers to

the imprecision on the true probability, when belief function

is the lower probability and plausibility function as an upper

probability.

The pignistic probability introduced by [8] is defined as:

betP (x) =
∑

y∈2Θ,y �=∅

|x ∩ y|
|y| .m(y) (15)

where |x| is the cardinality of x. Pignistic probability maps

belief to probability to make a hard decision. As a result,

belief functions provide a pessimistic view while plausibility

function is optimistic. Pignistic probability is a compromise.

Reliable decision making using big data fusion is a

challenge. Although there is not any unique metric for best

decision making, four different metrics including total mass

function, belief, plausibility and pignistic probability are

tested in our simulation and experiment.

III. DEZERT-SMARANDACHE THEORY

Dezert-Smarandache theory of plausible and paradoxical

reasoning (DSmT) is an extension of DST and a generalized

version of both DST and traditional Bayesian probability.

DSmT has better performance when the uncertainty or

conflicts among evidences are high. In DSmT, hyper power

set of Θ is defined by DΘ. It includes all the elements of Θ
and all combinations of their union and intersection. Thus

DSmT is closed under both union and intersection operators,

while DST is closed under union operator only. Unlike DST,

in DSmT we are not limited for exclusivity among elements

of Θ. It is clear that the cardinality of hyper power set

is much more than power set. Similar to DST, in DSmT

mass function or generalized basic belief assignment (gbba)

is defined as a mapping m : DΘ → [0, 1], m(∅) = 0
and

∑
A⊆DΘ m(A) = 1. Belief, plausibility and generalized

pignistic probability functions are defined as [2]:

Bel(x) =
∑

y∈DΘ,y⊆x

m(y) (16)

Pl(x) =
∑

y∈DΘ,x
⋂

y �=∅
m(y) = 1−Bel(x̄) (17)

betP (x) =
∑

y∈DΘ,y �=∅

|CM(x ∩ y)|
|CM(y)| .m(y) (18)

where | CM(x) | is the cardinality, i.e., the number of parts

x has in the model (Venn diagram).

Several combination rules have been developed based on

DSmT model [2]. Those rules can manage or redistribute

conflict values in different ways and have different complex-

ity of computation. There are numerous combination rules

can be defined to redistribute conflict values among elements

of hyper power set. Classic DSm rule of combination, hybrid

DSm rule, and series of proportional conflict redistribution

rules (PCR) from PCR1 to PCR6 are some of those com-

bination rules [2]. PCR5 is one of the most accurate rules

in managing conflict. It redistributes partial conflict values

just between the two elements that involved in that partial

conflict. However, comparing to other methods it is hard to
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Figure 4. Temperature, Humidity data and Comfort zone

implement due to high computational cost. For two sources

of evidences: ∀X ∈ DΘ \ {∅}
mPCR5(X) = m12(X)

+
∑

Y ∈DΘ,X
⋂

Y=∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )

]

where m12 refers to conjunctive consensus:

m12(X) =
∑

X1,X2∈DΘ,X1

⋂
X2=X

m1(X1)m2(X2) (19)

PCR5 can be applied to more than two data sources [9].

Fig.3 shows the flowchart of applying DSmT combination

rule (PCR5 as an example here) from sensing data to

decision making.

Except the classic DSm rule of combination, all other

combination rules based on DSmT model are non-

associative and non-markovian. This implies that for more

than two sources of evidences, combination rule cannot be

applied blindly between two mass functions in repetitive

way that we do in DST. Because these combination rules

are non-associative and non-markovian, the order of sources

in combination can change the result of combination. For

calculating PCR5 rule for more than two sources we adopt

a new method introduced in [10] to conserve the asso-

ciativity and markovian property requirement to guarantee

the correctness of the final combination. In fact, applying

this algorithm transfers a non-associative and non-markovian

rule to a quasi-associative and quasi-markovian rule.

To implement PCR5 rule of combination based on this

algorithm for n ≥ 3 sources, we firstly calculate conjunctive

rule part, m12(X), between first two sources and transfer the

whole conflict mass to empty or non empty set (we used

non empty set Θ) and save the result. Then we calculate

conjunctive rule between the saved results with the third

source. We repeat this for first n − 1 sources. Finally we

apply PCR5 rule between the conjunctive result among n−1
sources and the last source. This algorithm has the advantage

that the order of sources in the combination rule is no longer

important and both associative and markovian properties are

satisfied as well.

IV. DATA COLLECTION

In our experimental data collection, we used the pro-

posed platform in Fig.2 to monitor the air quality inside

an apartment during summer season. We put five sets of

Sensordrones nodes and Android c© smartphones with related

apps in different parts of the apartment named room1,

room2, living, dining, and kitchen, respectively. For all

five sensor nodes, sensing interval is set to five seconds.

The sensor nodes measured temperature, humidity, pressure,

carbon monoxide, and battery level of sensor node. In

addition, time stamps and GPS location data are uploaded

to the server. We only used temperature and humidity data

for our case study.

As an example, the monitored temperature and humidity

data for a ten-hour sensing period including 7500 data

samples and their mappings in comfort zone are shown in

Fig.4. Fluctuations in temperature and humidity are caused

by running of air conditioner (AC) periodically for cooling

during the summer. AC was set to 77 degree Fahrenheit. AC

was turned off for the last four hours. Then temperature and

humidity started to increase in all places as expected.

V. DATA ANALYSIS AND DECISION MAKING

This section explains the details of our proposed model

and implementation of DST and DSmT related combination

rules based on our model. Both simulation results and

real data analysis based on the experiments are shown to

determine the comfort zone inside the apartment. According

to the “Comfort Zone” in ISO7730-1984 standard [3] shown

in Fig.1, we defined 9 classes/zones including the comfort

zone and 8 other classes around the comfort zone. We will

call this model the first model. Fig.5 shows the 9 classes

for the summer season. In Fig.5, small blue square markers

show the center of related classes and red solid lines are

used as a boundary to distinguish between different classes.

Table.I displays temperature and humidity values and feeling

definition for related classes based on the first model. Thus

the frame of discernment for feeling zone evaluation is

Θ = {l1 = “I”, l2 = “II”, ..., l9 = “IX”} (20)

Here “I” refers to the first class and “II” refers to the second

class and so on. Because all 9 classes are exclusive and

716718718718718



Figure 5. The 9 classes for summer season - First model

Table I
THE PROPOSED 9 CLASSES

Class Temperature Humidity Feeling Definition
I 70.7 90 Too Cold & Humid
II 76.1 90 Too Humid
III 81.5 90 Too Warm & Humid
IV 70.7 50 Too Cold
V 76.1 50 Comfort Zone
VI 81.5 50 Too Warm
VII 70.7 10 Too Cold & Dry
VIII 76.1 10 Too Dry
IX 81.5 10 Too Warm & Dry

exhaustive, it satisfies the Dempster-Shafer model. It is noted

that uncertainty is not considered in this model.

Feeling definitions in Table.I based on Fig.5 explain the

human feeling for the range of temperature and humidity in

each classes. For example, class “I” means “too cold and

humid” and so on. Based on our proposed method in Fig.5,

Dempster-Shafer combination rule can be applied to our data

to compute total mass. Because in this model all 9 classes are

singleton and exclusive, the total mass and belief functions

are equal.

In order to calculate the mass function, we first calculate

the normalized Euclidean distance between measured data

from sensors and class parameters:

d
lj
i =

⎛
⎝ m∑

x=1

(
Sx − f

lj
x

fmax − fmin

)2
⎞
⎠

1/2

(21)

Here d
lj
i refers to the distance between sensor i and class j,

Sx is sensor data and f
lj
x is the value of class j. fmax−fmin

is used for normalization. Then for sensor node k, distance

values for all classes can be obtained:

Dk = {dl1k , dl2k , ..., dlnk } (22)

For the small value of distance dlik , the probability that the

class of sensor k is li is higher. Then mass function can be

Figure 6. Mass-decision for diagonal test data set - 9 classes DST model

calculated based on the distance values for each sensor node

k and each class j:

mk(lj) =
1/d

lj
k∑m

j=1(1/d
lj
k )

(23)

Finally mass functions for each sensor node k related to all

n classes are:

mk = {mk(l1),mk(l2), ...,mk(ln)} (24)

To evaluate our proposed method, we generate several

random test data sets and feed them as input to our

MATLAB c© program to calculate the Dempster-Shafer com-

bination based on Fig.3. One of the test data set is shown

in Fig.6. In Fig.6 eight set of random data are chosen that

move diagonally from bottom left to right top along the

time. First two sets are inside zone seven (VII), next set

inside zone four (IV), next three sets are inside comfort

zone and the last two sets are in zone three (III). The total

mass function and related decision based on the maximum

values of mass are also shown. Based on the first model, all

nine classes are singletone and exclusive, so the mass and

belief are equal. Although the value of plausibility is greater

than mass with the value of final uncertainty (small value as

an offset), the overall decision result are the same for mass,

belief, plausibility and pignistic probability, as expected.

Similarly we feed our experimental data to the proposed

algorithm in Fig.3 to calculate the Dempster-Shafer combi-

nation. Fig.7 shows the total mass and the related decision. It

is observed that, when AC is turned on, four times it moves

inside the comfort zone (class 5) from class 6. We calculated

related conflict during all ten hours, and conflict values are

717719719719719



Figure 7. Total mass, decision and conflict for 9 classes DST

high. Thus it is clear that to overcome the effect of high

conflict we need to apply DSmT.

According to the Sensordrone specification document

[11], accuracy of temperature sensors are +/ − 0.5◦C or

+/−0.9◦F and accuracy of humidity sensors are +/- 2%RH.

Therefore measurements reported by Sensordrone sensors

add uncertainty factor based on the accuracy range of related

sensors. Thus we expand our first model to a more accurate

one as in Fig.8. Dashed lines in Fig.8 are drawn around solid

line, intersection between classes, based on +/−0.9◦F and

+/- 2%RH measurement error for temperature and humidity

sensors, respectively. That means each class can be extended

from its solid line boundary to near dashed line. We call this

proposed model the second model. We can treat this new

proposed model in two different ways, refined Dempster-

Shafer model or hybrid DSm model. Because original nine

classes are not exclusive completely in the second model, it

is not a Dempster-Shafer model any more. In fact this second

model is a hybrid DSm model, not a free DSm model,

because there are some exclusivity among some classes but

not full non-exclusivity among all classes. For example,

based on Fig.8 class one has intersection with classes 2,4

and 5 while it is exclusive from classes 3,6,7,8 and 9. It is

clear that class 5 is the only class that has intersection with

all other classes.

If we define each new decomposed area in Fig.8 as a

new class, total 25 classes without any intersection with

others, then we can have Dempster-Shafer model with 25

Figure 8. Proposed 25 classes for summer season - Second model

exclusive and exhaustive classes. In this case, Dempster-

Shafer combination rule can be applied to calculate total

mass functions on the new 25 classes instead of 9 classes

before. Note that we only use this as a ground truth in

this study. The number of decomposed area without any

intersection with each other will grow exponentially when

uncertainties exist, thus in reality it would prevent the use of

DST with exclusive and exhaustive classes due to the huge

number of the decomposed area. On the contrary, the number

of the areas remains the same for DSm hybrid model, as

explained later.

Fig.9 shows the results for random test data set. It is

clear that decision based on belief, plausibilty and pignistic

probability are similar and outperform the decision based

on the mass function. Fig.10 shows the total mass, belief

functions and related decision making result for our ten

hours data. According to Fig.10, maximum mass functions

move between classes 18 (Intersection between class 3 and

6 < 36 >, based on Smarandach codification [12]) and 23

(Intersection among classes 2,3,5 and 6 < 2356 > , [12]).

Even if we consider just maximum mass among original

focal classes one to nine, it is clear that maximum mass

move four times between class 6 and comfort zone. As a

result, decision making by total mass functions do not give

reasonable result. It seems belief, plausibility and pignistic

probability functions are better for decision making. It is

observed in Fig.10 that when AC turned on six times,

decision result based on belief (Similar with plausibility and

pignistic probability decision) six times transfer to comfort

zone (class 5) from class 6. Hence the decision making by

belief, plausibility and pignistic probability in this proposed

718720720720720



Table II
PROPOSED 25 CLASSES FOR SUMMER SEASON

Class No. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Intersection Classes 1,2 2,3 4,5 5,6 7,8 8,9 1,4 2,5 3,6 4,7 5,8 6,9 1,2,4,5 2,3,5,6 4,5,7,8 5,6,8,9

Temperature (◦F ) 73.4 78.8 73.4 78.8 73.4 78.8 70.7 76.1 81.5 70.7 76.1 81.5 73.4 78.8 73.4 78.8

Humidity (%) 90 90 50 50 10 10 70 70 70 30 30 30 70 70 30 30

Figure 9. Mass-belief decision for test data set - 25 classes DST model

Table III
AVERAGE RUN-TIME

DST9 DST25 DSmT

Average Run-Time (Seconds) 0.1601211 0.8071339 4.2721231

second model outperform the first model. Nevertheless,

Fig.10 shows that conflict values did not decrease for the

new model in DST mode and conflict values are even higher.

As an alternative method, we treat Fig.8 as a DSm hybrid

model with nine classes. They are not completely exclusive

among all classes but they are exhaustive. We applied PCR5

rule based on the quasi method outlined in Section III. The

result in Fig.11 and Fig.12 show that PCR5 decision is very

accurate even if there are only nine classes in the DSm

hybrid model.

Table.III compares the average run time for the three

methods discussed. It is clear that DSmT model with PCR5

needs more computation time in this test case. However,

DSmT model will sustain because the number of classes

remains the same while DST model will not due to the

exponential growth in the number of classes, as explained

before. Thus it is expected that DSmT model with PCR5

would be appropriate for big data processing with large

number of classes or high cardinality. Furthermore, DSmT

model with PCR5 outperforms DST model with the same

number of classes by a big margin. Define PD as the

Figure 10. Decision making based on mass and belief for 25 classes DST

Table IV
PROBABILITY OF DETECTION AND FALSE ALARM

Model PD PF

DST9 26.58% 0

DSmT-PCR5 96.31% 17.38%

detection probability, i.e., correct detection of comfort zone

(PF = Pr(H1|H1)). Similarly PF is define as the probabil-

ity of wrong decision (PF = Pr(H1|H0)). Using DST 25

classes model as a ground truth, we calculate PD and PF

for DST 9 classes and DSmT model. Table.IV shows that

DSmT model has much higher PD = 96.31% comparing to

DST 9 model PD = 26.58%.

VI. CONCLUSIONS

The feasibility of using Dezert-Smarandache Theory

(DSmT) for big data processing is explored in this paper.

The methods in DSmT such as PCR5 have very high com-

putational complexity, thus they cannot be directly applied to

multiple big data sources with high cardinality. We propose

a DSm hybrid model with reduced number of classes and

thus low computational cost and evaluate its performance

through a case study. Specifically, the proposed method is

719721721721721



Figure 11. PCR5 decision based on test data for 9 classes DSm model

applied to analyze temperature and humidity data for smart

building applications. Our results show that the proposed

DSm hybrid model will sustain because the number of

classes remains low while DST model will not due to the

exponential growth in the number of classes. Comparing to

DST with the same number of classes, DSmT has much

better performance when the data contain high level of

uncertainty. The results using real data sets demonstrate the

potentials of the proposed method for big data processing

when the data sets contain high level of uncertainty.
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