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Emerging Biometrics: Deep Inference

and Other Computational Intelligence
S. Yanushkevich, S. Eastwood, K. Lai, and V. Shmerko

Abstract—This paper aims at identifying emerging computa-
tional intelligence trends for the design and modeling of complex
biometric-enabled infrastructure and systems. Biometric-enabled
systems are evolving towards deep learning and deep inference
using the principles of adaptive computing, – the front tides of
the modern computational intelligence domain. Therefore, we
focus on intelligent inference engines widely deployed in biomet-
rics. Computational intelligence applications that cover a wide
spectrum of biometric tasks using physiological and behavioral
traits are chosen for illustration. We highlight the technology
gaps that must be addressed in future generations of biometric
systems. The reported approaches and results primarily address
the researchers who work towards developing the next generation
of intelligent biometric-enabled systems.

Keywords: biometrics, inference, computational intelli-

gence, adaptive systems, technology gap.

I. INTRODUCTION

C
ontemporary biometric-enabled systems expect more

flexible, intelligent, and reliable solutions. Despite im-

pressive progress in this area, there are a lot of examples

of technology gaps related to Computational Intelligence (CI)

between the achieved and required performance, in particular:

Ambient intelligent systems, – an emergency branch of

biometrics focusing on the extension of human abilities in

performance improvement and graceful degradation [17],

[77], [163]. These systems are parts of the smart city and

smart home concepts [27], [39], [132].

Affective computing, – an emergency direction of biometrics

aiming at the automated analysis of human affective

behavior, such as an intelligent tutoring system with

feedback to instructors, e.g., e-coaching, e-teaching, and

e-training [19]. Multiple biometric modalities are used

in these interactions, such as audiovision, touch, smell,

movement (e.g., gesture detection), interpretation of hu-

man language commands, and other multisensory func-

tions [168]. A special case of affective computing is the e-

interviewer that aims to detect the likelihood of deception

[2], [126], [167].

Meta-inference engine, – CI-related resources for perfor-

mance improvement. Rodrigues et al. [141] showed that

in some attack scenarios, the multi-biometric systems

are as vulnerable as single modality systems. The CI

related countermeasures are reported in [15]. Scheirer et

al. [147], [148] explore the meta-recognition of biometric
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traits. Meta-analysis was used in traveler risk assessment

via watchlist by Lai et al. [99].

In these problems, proactive computing is a mandatory

requirement. Given state n of a biometric-enabled system,

calculate the probability that the system achieves state n+ j,

where j = 1, 2, . . . , k is the depth of prediction. In such a

formulation, potentially required resources can be activated in

advance. To make predictive judgments about some scenario

is one of the main requirements to the biometric-enabled

infrastructure.

The core of these systems are CI techniques and adap-

tive feedback at various hierarchical levels including the

machine-human loop. These applications involve large and

complex collections of hidden variables and uncertain param-

eters. Various perception aspects of biometrics are periodically

surveyed aiming at the identification and updating of trends,

achievements, and breakthrough directions. Keeping the same

goals, the proposed survey highlights the role and challenges

of CI in biometric-enabled infrastructure. For this, the follow-

ing high demand applications of the highest complexity are

chosen: authentication and risk assessment machines, ambient

assistants, affect detectors, and synthesizers of biometric traits.

We argue that these projections of CI-related problems of

biometrics cover a wide spectrum of biometric tasks using

physiological and behavior traits.

The CI-related angle of viewing of biometrics introduced

in this paper is different from the one mentioned in the

surveys, which focus on particular areas, modalities, and tasks,

such as:

• soft biometrics [30], [52], [55], [124], [165];

• ambient intelligence systems [1], [17], [36], [103], [163],

[183];

• automatic analysis of facial affect [28], [145];

• adaptive biometric systems [19], [57], [138], [147], [148];

• deep learning [102], [153];

• free energy principle for deep learning [49];

• multimodality data fusion [37], [98], [107], [123];

• anomaly detection (biometric-related tasks) [22];

• distance/similarity measures [23], [82];

• spoken dialog systems [189]; and

• synthetic biometrics [187], [175].

Recent revisions of the biometric system design needs has

brought a better understanding of the challenges and the short-

comings of the applied CI techniques. In particular, emerging

biometric applications are analyzed in the surveys dedi-

cated to:

• authentication machines [40], [96], e-passports/ID tech-

nology [8],
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• multimodal interactions [168],

• biometric recognition in surveillance scenarios [121],

• health, ambient intelligence, and security [44],

• forensics [78], [99],

• affect-aware computer applications [19], [28], [191], and

• smart cities [132].

These and other surveys have very different foci. In this

paper, we target the CI-related advances in the biometric tech-

nologies that interlace with and benefit from the latest achieve-

ments in cognitive science. The CI is the major foundation

upon which the next generation of biometric-enabled machines

is being stemmed. This generation includes e-teachers that

increase learning efficiency, e-coaches that address medical

applications, e-interviewers targeting security applications, etc.

The CI related view is timely and in great demand, as

biometric technologies tasks became more complicated and are

often formulated in terms of knowledge inference and machine

learning.

The variability of biometric data, unstable nature of the mea-

sured biometric phenomena, uncertainty in decision-making,

strong requirements for the reliability of biometric-enabled

systems, interdisciplinary of technologies, and deep social

embedding, – all of these represent a fraction of the mul-

tiple factors that prompt the seeking of new CI processing

approaches and paradigms. The example chosen in this paper

demonstrates an inference engine for an application scenario

that utilizes biometric traits.

This paper is organized as follows. Section II poses the

question of what kind CI techniques are needed in biometrics.

It is followed by i) Preliminary exploration and assessment

(II-A), ii) Taxonomical sketch of inference engines (II-B),

iii) Inference engine (II-C), and iv) Technology gap navi-

gator (II-D). Beyond the overview of the CI approaches to

biometrics, this paper provides perspectives and guidelines

on how to apply the latest advanced CI techniques such as

deep inference for frontier biometric applications (Section

III). Four examples are provided: 1) Authentication and risk

assessment machines (III-A), 2) Ambient assistants (III-B), 3)

Affect analyzers (III-C), and 4) Synthesizers of biometric traits

(III-D). Section IV concludes this survey.

The following standard abbreviations of inference engine

components are used throughout this paper:
BN − Bayesian Network;

CI − Computational Intelligence;

CNN − Convolutional Neural Network;

CRF − Conditional Random Field;

DBM − Deep Boltzmann Machine;

DBN − Dynamic Bayesian Networks;

DSN − Dempster-Shaffer Network;

HMM − Hidden Markov Model;

MRF − Markov Random Field;

PCA − Principle Component Analysis;

RBM − Restricted Boltzmann Machine;

SVM − Support Vector Machine.

II. WHAT KIND OF INFERENCE AND CI IS NEEDED?

In a very general form, the inference problem is for-

mulated as follows: given a set of noisy or ambiguous

biometric measurements, infer the likely state of this

biometric trait. It is impossible to make these inferences

with complete certainty, but one can at least try to obtain the

most probable state of a hidden part of the biometric trait,

within a chosen model and measurements. Note that inferring

the most probable state is an optimization problem and can be

represented in various forms depending on the model, such as

minimum energy, minimum potential, and minimum distance.

Inference addresses computing the posterior probability

distribution of certain variables given some value-observed

variables as evidence. It is a well-accepted paradigm in certain

biometrics that features of interest in biometric traits should

be identified by deep inference and learning technologies.

In this section, we provide a more concrete sense to what we

mean when we speak of “inference” and “CI” in biometrics.

From the above perspectives, we need to revise the CI-related

methodologies and provide a taxonomical view of the available

resources.

A. Preliminary exploration and assessment

The view of contemporary biometrics in the light of CI tech-

nology requires some preliminary exploration and assessment

of this field. This assessment infers that the contemporary

biometric device or system is part of a more complex

organism whose resources are distributed over both the

physical and digital/virtual world.

The biometric-enabled systems become embedded in social

infrastructure. Examples include intelligent surveillance net-

works [199], the tracking and recognition of persons of interest

[45], and performing authentication and risk assessment of

individuals in transportation hubs [99], [101]. Biometrics are

an integrated part of the smart home [27], [39] and smart

city [132] concepts. In response to these trends, there is a

demand for the most advanced CI techniques and technologies.

In addition, the privacy issues of biometrics contributed to

design challenges. However, privacy in the age of biometrics

is out of this paper’s scope.

B. Sketch of the taxonomical revision of inference engines

In this sub-section, the taxonomical projections on inference

engines are revised. The core of the inference engine is a

graphical model that provides a framework for dealing with

high-dimensional probability distributions. In such a model,

the nodes of the graph represent the variables on which the

distribution is defined, the edges between the nodes reflect

their probabilistic dependencies, and a set of functions relating

nodes and their neighbors in the graph are used to define

a joint distribution over all of the variables based on those

dependencies. Typical inference problems include finding the

marginal probability of a task-relevant variable, or finding the

most probable explanation of the observed data.

Probabilistic task formulation in contemporary biometric-

enabled systems reflects the real world more realisti-

cally. For example, in e-borders, the question ‘‘Is this

traveler on the watchlist?’’ [16] is reformu-

lated as ‘‘What is the risk (or cost) of the

traveler being wrongly matched/non-matched
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to the watchlist?’’ [41], [43]. This means that the

watchlist check by a human operator is replaced by a watchlist-

based inference of risks, which is provided to a human

operator.

Conceptually, the inference engine consists of two types of

inference models [34], [48], [90]: 1) Discriminative models

that predict the distribution of the output given the input,

such as linear regression (the output is a linear function of

the input plus Gaussian noise), and Support Vector Machines

(SVMs) (the binary class variable is Bernoulli distributed with

a probability given by the distance from the input to the

support vectors), and 2) Generative models that account for

all of the data and provide a more general way to combine

the preprocessing task and the discriminative task.

In this paper, the focus of our interest are the models

that exploit the statistical properties of biometric traits more

efficiently by learning, especially ones that capture high-

order dependencies, – deep inference models. Such models are

useful not only for discriminative tasks but also for providing

adaptive priors for the generative tasks. They are able to i)
adapt to the input data, and ii) decompose the problem of

learning hierarchical nonlinear systems into a sequence of

simpler learning tasks.

Our survey is based on the criterion that the goal is not

to choose the model that is the best fit, but to choose a

model that fits the data well and is consistent with prior

knowledge. While a rigorous mathematical and taxonomical

vision of the inference and learning algorithms is introduced

by Frey and Jojic [48], here we summarize a general landscape

of inference engines as follows:

− Energy-based inference which associates a scalar energy

with each configuration of the variables of interest. The

idea is to approximate the true posterior distribution by

a simpler distribution, which is then used for making

decisions. We recommend the survey by Frison [49] for

details.

− Deep learning inference. The idea is to exploit the

property that natural signals such as biometric traits, are

compositional hierarchies. That is, higher-level features

can be obtained by composing lower-level ones. The

fundamentals of deep learning inference are developed

in [69], [70], [71], [120], [102].

− Biologically inspired inference such as evolutionary

algorithms for generating synthetic fingerprint images

[26], skin formation modeling [93], and features of plastic

surgery [14].

− Multimetric inference based on the concept of probability

propagation in causal networks. The main idea is to

use a uniform graphical platform that combines various

metrics such as point probability estimation in naive

Bayesian Networks (BN) [90], interval probability BNs

[101], Fuzzy Probability BNs [9], Dempster-Shafer BNs

[33], [42], [81], [155], and their Dezert-Smarandache

extensions [156].

− Hybrid approaches such as message-passing inference

that combines inference possibilities of both the BNs and

MRFs, with example applications to soft biometrics [25],

as well as Dynamic Bayesian Networks (DBNs) [90].

− Meta inference such as meta-recognition for performance

prediction [147], [148] and selecting a classifier from an

ensemble for recognition improvement [29]. Traditional

classification algorithms are very successful in meta-

learning, in particular, SVMs [114] and RBMs [129].

The above inference engines exercise the learning paradigm

in different manners. For example, Bayesian inference stipu-

lates how learners should update their beliefs in the light of

evidence. A Markov network, also called MRF, is similar to

a BN in its representation of dependencies. The difference

between them is that Bayesian networks are directed acyclic

graphs, whereas MRFs are undirected and may have cycles.

Thus, an MRF can represent certain dependencies that a BN

cannot (such as cyclic dependencies). On the other hand, a BN

can describe induced dependencies. Learning in energy-based

models such as MRFs corresponds to modifying that energy

function to have desirable properties [90].

The power of the inference engine refers to its ability to

capture high-order dependencies in the data. For example, deep

learning methods construct hierarchies composed of multiple

layers by greedily training each layer separately using unsuper-

vised algorithms [70], [71]. These hierarchical representations

encode information in a low-level to high-level manner. Deep

learning is a paradigm that learns multi-layered hierarchical

representations from data.

Good performance is reported in various tasks, in particular,

in silicon face mask detection [108] and hair style recognition

[135]. This is achieved due to the ability of algorithms to i)
adapt to the input data, ii) build recursively hierarchies using

unsupervised algorithms, and iii) represent the problem of

learning as a sequence of simpler learning tasks.

C. Inference engine

More detailed visions of the inference engine requires a

notion of the inference engine navigator, which is a set of

indicators that characterized the CI mechanism. Ideally, an

indicator should be reliable, sensitive, quantifiable, and should

provide information on the nature of the inference methodol-

ogy, sources of risks, hazards, requirement to the input data,

their preprocessing, encoding, as well as the output. The key

indicators that provide a way for choosing an appropriate

inference algorithm, and for predicting and interpreting the

results, are listed in Table I [48], [90].

a) Graph type: Visualization of a given modeling sce-

nario is a well determined stage [90] that is crucial in CI-

related processing. Graphical models provide a natural way to

represent dependencies of variables. They specify a complete

joint probability distribution function (p.d.f.) over all the

variables; this type of model, such as Bayesian networks, use

causal (directed) graphs, while MRF and CRFs use non-causal

(undirected) graphs that represent symmetric dependencies.

Probabilistic inference in graphical models pertains to com-

puting a conditional probability distribution over the values of

the hidden or unobserved nodes, given the values of evidence

or observed nodes.

Given the joint p.d.f., all possible inference queries can be

found by marginalization (summing out irrelevant variables).
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TABLE I
INFERENCE ENGINE NAVIGATOR AS A REPRESENTATIVE SET OF KEY INDICATORS.

Indicator Content of the inference and learning indicator

I1. Graph type
Graphical representations of the scenario that is being modeled fall into two main categories: causal or
non-causal. Causal models are denoted using directed graphs that do not contain any directed loops: a
“directed acyclic graph”. Non-causal models are denoted using the more general non-directed graphs.

I2. Cost function
The “cost function” associated with a model returns a number when presented with a specific scenario,
evidence, or choices.

I3. Approximate p.d.f.
A p.d.f. can be in the form of probability interval distributions (closed intervals in place of point
probabilities) and fuzzy probability distributions (triangular fuzzy numbers in place of point probabilities).

I4. Conflict resolving
Models and metrics that are “conflict resolving” have the ability to handle apparent contradictions and
disagreements in the initial and observed data.

I5. Metrics

The “metric” refers to certain quantities used to quantify uncertainty. Metrics include point probabilities,
interval probabilities, fuzzy probabilities, DS models, and DSm models. Metrics can be used in parallel
to generate a more comprehensive depiction of the scenario.

I6. Learning/Training
“Learning” refers to a process used to generate the parameters for a model, which are chosen using
available statistical data.

I7. Dynamic
Dynamic models track the evolution of a system with respect to time. Probability based dynamic models
include DBNs, CFNs, and Markov chains.

The factor graph has emerged as a unified model of directed

and undirected graphs [92]. For example, recently Laar and

Vries [95] have reported the application of a message-passing

algorithm in ambient computing such as hearing loss compen-

sation.

An alternative approach addresses graph learning or net-

work topology inference [72]. This approach is briefly ex-

plained as follows. In most modeling scenarios, the graph

structure is known. However, in many tasks such as facial

expression or gait recognition, it is reasonable to suppose

that graph topology is not fixed, it is varying with time. This

variability can be described in terms of transition probabilities,

probability distributions, and is modeled using, for example,

semi-Markov processes. In this case, the graph topology must

be inferred by the topology inference algorithms. Shuman

et al. [152] analyzed challenges of signal processing on

graphs. Meena et al. [111] reported results on facial expression

recognition. Properties of varying graphs (hidden structure and

dynamic relationships) were studied in [83]; the paper also

proposed an optimization framework using factor-graphs and

a message-passing algorithm.

b) Cost function: Many approximate inference tech-

niques can be viewed as a process of minimizing a cost

function, which measures the accuracy of an approximate

probability distribution [34], [48], [90], [143]. The free energy

principle [49] has been applied to recognition and person re-

identification. For example, free energy score computing was

applied to discriminative classifiers [130]. If the MRF model

is chosen, there are two strategies for optimization: graph-

cuts and message-passing based on factor graphs. In [91], the

MRF energy is minimized by the so-called tree-reweighted

message-passing algorithm. The essence of this approach is

to decompose the original MRF optimization problem, which

is NP-hard, into a set of easier MRF subproblems, each one

defined on a tree. High-order MRFs called the gated MRFs,

have been developed in [137]: one of two sets of latent

variables were used in order to create an image-specific energy

function that models the covariance structure. The authors

argued that such MRFs can be used as the front-end of a

standard deep architecture, often called a deep belief network

[70].

Note that the topology inference problem is formulated

in terms of energy functions such as the Dirichlet energy,

Flobenius energy, and the cumulative energy [83].

c) Approximate p.d.f.: In approximation techniques, the

distribution of parameter values before any data is examined

is called the prior distribution; the posterior distribution is the

conditional distribution of the parameter given the data.

Inference in most models, including Boltzmann machines,

is NP-hard in general. As a result, approximations are often

necessary. Even in cases, in which the complexity of the exact

algorithms is manageable, it can be reasonable to consider ap-

proximation procedures. The criterion of model approximation

is useful in choosing the inference engine. For example, the

MRF approximation model proposed in [91] is constructed

based on a set (a “bundle”) of subgradients of the objective

function, which is continuously refined throughout the mini-

mization algorithm. Sutskever and Hinton [160] showed that

deep belief networks can approximate any distribution over

binary vectors to an arbitrary level of accuracy, even when

the width of each layer is limited to the dimensionality of the

data.

As a rule, the Gibbs distribution approximates the real

distribution (uncertainty) if the energy cost function is chosen.

Scheirer et al. [147], [148] proposed a new statistical classifier

based upon the Weibull distribution that produces accurate

predictions of image recognition success or failure on a per

instance basis. This approach is called meta-recognition, as

it allows for adjustments of the recognition decisions using

post-recognition similarity score analysis. In meta-recognition,
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the so-called tail approximation borrowed from extreme value

theory is used. In addition, it provides a robust normalization

for the system’s non-match scores.

Bayesian inference faces a class of settings, where the

likelihood function is not completely known and where exact

simulation from the corresponding posterior distribution is

impractical or even impossible. Such settings call for practi-

cal if cruder approximations methods. Approximate Bayesian

computation, or likelihood-free inference algorithms, were

developed for performing Bayesian inference (approximations

to posterior distributions) without the need for explicit eval-

uation of the model likelihood function [109], [169]. These

likelihood-free techniques can be used in scenarios where the

model of interest has become intractable or an ill-behaved

likelihood function.

d) Conflict resolving: Facts about the same real-world

object are collected from various sources, e.g., facial expres-

sions from the visual band and infrared cameras, and gait traits

from various cameras. The objective of a conflict resolution

algorithm, also known as truth discovery, is to distinguish

between true and false patterns. This could be achieved by

assigning a correctness score to each pattern, such that the

highest scores are assigned to the true patterns.

Given the prior distributions and the conditional proba-

bilities, Bayesian inference offers a complete, scalable, and

theoretically justifiable approach for various tasks, such as

prediction and data fusion [34], [90]. However, in real sce-

narios, such complete knowledge is difficult or impossible to

obtain. BNs become numerically unstable when presented with

contradictory information.

The Dempster-Shafer (DS) evidence theory allows for the

representation of both uncertainty and imprecision, and can

effectively deal with missing information and complimentary

hypotheses. In DS theory [150] and the related transferable

belief model [33], the uncertainty and imprecision are repre-

sented via the notion of confidence values that are committed

to a single or a union of hypotheses. These possibilities are

useful in practice [112], [122], including the fusion of local

and global matching scores [89]. However, DS theory, as well

as Bayesian inference, fail to model conflicts in data that may

arise, for example, between information sources. Specifically,

Bayesian inference assumes that all sources provide bodies of

evidences using the same objective and universal interpretation

of the phenomena under consideration; therefore, it cannot

handle conflicts. In DS inference, the conflict resolving mech-

anisms are weak and often lead to false conclusions especially

for a large number of conflicts.

The Dezert-Smarandache (DSm) theory of reasoning with

plausible and paradoxical cues helps to overcome these lim-

itations [156]. The DSm theory demonstrates good results in

the practice of multi-source fusion [199]. One of the reasons

is that DSm can distinguish sources involved in the fusion

process, with respect to reliability (an objective property) and

importance (a subjective property).

e) Metrics: Useful recommendations on choosing an ap-

propriate measurement metric, including DS evidence theory,

are given in [82]. Samples of the most common measuring

approaches are as follows:

• Point probabilities utilized in classical models such as

BN, MRF, DBM, and PCA.

• Probability interval BNs [32].

• Credal networks [85].

• Fuzzy BNs [9].

• DS BNs [42].

It is reasonable to combine these and other metrics at the

unified graphical platform such as causal networks [42],

[101]. The strength of this approach is that it introduces the

uncertainty in different metrics. For example, the integration

of the fuzzy metric in regression analysis [172], SVM [66],

Bayesian networks [9], and RBMs [24] provides a competitive

performance in data representation capability and robustness

in order to cope with various types of uncertainties.

Biometric trait processing using information theory mea-

surements is of special interest. There are a lot of efforts

on the application of information-theoretical measures for

the performance evaluation of a biometric system, such as

the information content of biometric traits, for example iris

[31], and the information gained through biometric systems

[161]. Zhang et al. [196] proposed the use of an information-

theory approach for face photo-sketch recognition. In [104],

an entropy-measuring model for biometric verification systems

has been proposed. Specifically, authors showed that the

imposter distribution leaks information about the randomness

of the biometric representations. This work is closely related to

meta-learning [114], [129] and meta-recognition [147], [148].

A study by Wang et al. [176] offers a generalized framework

for the analysis of biometric systems, including privacy leak-

age, in terms of information theory. In particular, they specified

a fundamental trade-off between the user’s privacy (provided

personal biometric information) and the user’s security (prob-

ability that the adversary can falsely authenticate as a genuine

user) for a multiple biometric system. Entropy can also be

useful in e-interviewer development, as shown in [182].

Other applications of information theory in biometrics in-

clude, for example, measuring the similarity between two

probability distributions (e.g. true and approximate). The rela-

tive entropy (also known as the Kullback-Leibler divergence)

has been used by [48], [90].

f) Learning/Training: Learning can be thought of as

inferring plausible models to explain observed data. It is

well documented that models which include a latent (hidden-

state) structure may be more expressive than fully observable

models [69], [70], [71]. The ultimate goal of unsupervised

learning is to discover representations that parametrize a lower

dimensional yet highly nonlinear manifold, and hence capture

the intrinsic structure of the input data. This structure is

represented through features also called latent variables in

models. For example, HMMs and DBMs use hidden states

to model observations; their tasks are formulated in terms of

generative probabilistic functions. A limitation of generative

models is that observations are assumed to be independent

given the values of the latent variables.

Another discriminative model well suited for language

processing, gesture and emotion recognition, in particular,

is the Conditional Random Field (CRF). They make use of

arbitrary feature-vector representations of the observed data
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points. Various modifications of CRFs are known, such as the

dynamic CRF used to learn the hidden dynamics between input

features [10] and the continuous CRF used to model the affect

continuously [136].

Hybrid models such as Bayesian deep learning, were re-

cently proposed by Wang and Yeung [173].

Depending on the model type, different instabilities in

learning are observed. For example, when training a DBM,

approximation instability addresses the effect of noisy gradi-

ents. Learning with both BNs and DBNs involves two aspects:

learning the structure (graph topology) and learning the param-

eters (conditional probability tables) for each variable. It is

possible to model scenarios with full and partial observability

(e.g., missing data).

Meta-learning is aimed at building a self-adaptive learner

with the ability to improve its biases dynamically, thus increas-

ing its efficiency through experience. For this, meta-knowledge

(knowledge about knowledge) must be accumulated and ana-

lyzed. The key question in this process is what kind of meta-

features are suitable in a given scenario (dataset, inference

mechanism, algorithm, task). Traditional classification algo-

rithms such as SVMs [114] and RBMs [129] were shown to

be successful at meta-learning.

g) Dynamic networks: Biometric tasks often require

the processing of an audio data stream or a surveillance

video stream using a feedback loop. Such problems can be

formulated as control of a non-linear dynamic process. This

is a typical iterative affective process aiming at the prediction

of the identified object’s dynamics (human walking, talking,

running, or facial expression). In such a formulation, the two

phases should be distinguished: recognition of an object of

interest, and control of the process.

Another critical factor in some scenarios such as gait

analysis [184], face identification in video [64], [198], facial

expressions recognition [124], and pulse estimation [74], is the

time factor. Dynamical properties of the Restricted Boltzman

Machine (RBM) for processing video sequences have been

demonstrated by Sutskever and Hinton [160]. The DBMs have

been used in [158] for robust fingerprint spoofing attack de-

tection. The joint DBM for audio-visual person identification

have been proposed in [4].

DBNs are an extension of BNs to model dynamic processes

[90]. A DBN consists of a series of time slices that represent

the state of all the variables at a certain time. Usually,

DBNs are restricted to have directed links between consecutive

temporal slices, known as a first-order Markov model. They

can be seen as a generalization of Markov chains and hidden

Markov models (HMMs).

D. Technology gap navigator

Lai et al. [101] proposed to use the technology gap

methodology developed by the U.S. Pacific Northwest Na-

tional Laboratory [67], for the purpose of biometric-enabled

infrastructure. The following key drivers are defined: the

opportunistic driver (whether or not suitable signatures can

be developed), the mature driver (whether or not a suitable

deployment scenario can be developed), and the development

driver (whether or not a suitable measurement method can be

developed). The two sides of the gap should be specified: the

technology state-of-the-art and the required technology for a

given problem. Some examples of those are provided below:

1) In the technology gap navigator for large biometric-

enabled infrastructure, known as “The Checkpoint of the

Future” [75], the basic drivers include risk assessment, tech-

nology, operations, and their components or modules. The

components include passenger data, known traveler data (pre-

screening), identity management, behavior analysis, alternative

measures for unpredictability and deterrence, etc. Examples

of technology gap navigators are also provided in [16], [43],

[166].

2) In state-of-the-art facial identification of non-cooperative

individuals (such as surveillance in mass-transit systems) [64],

[62], one aspect of the technology gap states that contemporary

surveillance tools provide a large spectrum of possibilities

for law enforcement in mass-transit hubs. Another aspect is

highlighted in [40]: the authentication and risk assessment

mechanisms should be significantly improved. This technology

gap states that low quality facial traits (e.g. from surveillance

cameras) cannot be used for the purpose of identifying a

person of interest via automated watchlist screening because

of the poor performance of facial recognition tools.

3) The gap in deep inference technology using the RBM has

been specified, in particular, by Chen et al. [24]. It involves i)
the model selection (such as how many units are in a hidden

layer, and how many hidden layers), ii) the setting problems

(such as Gibbs step, learning rate, and batch learning), and

iii) the computational cost of training (needs to be speed up

using more efficient optimization techniques including various

metrics).

III. FRONTIERS IN APPLICATIONS

To demonstrate the CI related challenges in biometric-

enabled systems and infrastructures, we chose the following

practical applications:

– Authentication and risk assessment machines for mass-

transit hubs and large public events. These machines

operate under the umbrella of specific supporting infras-

tructure [96], [99], [100].

– Ambient assistants aims at social issues of critical

importance: care management based on new cognitive

paradigms [77].

– Affect detectors for affect-aware interfaces that aim at

automated detection and intelligently respond to users’

affective states in order to increase usability and effec-

tiveness [38], and

– Synthesizers of biometric traits, useful countermeasure

technologies [20], [53], [187]; they may prove to be

useful for generating data for deep learning.

The common features of these applications are as follows:

i) they are CI related; ii) they reflect challenges encountered

in biometric research, and iii) synthetic biometrics are in great

demand in CI related techniques for learning, testing, and

attack countermeasures.
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A. Authentication and risk assessment machines

a) Tasks: An authentication and risk assessment ma-

chine aims at the identification or verification of a subject, as

well as his/her risk assessment, using available sources, e.g.,

watchlist check. The framework of this task [100] involves

three types of human identity: attributed (name, date, and

place of birth); biometric (such as face, iris, fingerprint, retina,

gait, dynamic signature, and DNA profile); and biographical

(life events including details of education, employment, mar-

riage, mortgage, and property ownership).

b) State-of-the-art: It is well documented [75], [43],

[64], [140], [166] that the key trend of e-borders is the

integration of intelligent support at all levels of surveillance,

control, and decision-making. Evidence accumulation and risk

assessment machines are the critical components of this trend

[166], [50]. They are mandatory in border crossing check-

points, airports, and seaports, and will be included in the future

transportation systems and mass transit hubs [47].

In the area of risk assessment, significant progress has

recently been reported in tasks such as:

− watchlist check using surveillance face images [198].

− screening technology [154].

− proactive post-recognition score analysis [147].

− face verification from surveillance video frames [62]

achieved by using DBM, entropy-based selection, and the

fusion of abstract and low-level features.

− iris recognition based on HMM model and information

theory measures [31].

− fingerprints, finger-vein, and finger knuckle patterns that

were simultaneously acquired and employed for more

reliable biometrics identification [94], [97].

In modeling or thwarting the attacks on biometric sys-

tems, CNNs were recently applied for fingerprint liveness

detection [125], as well as for iris, face, and fingerprint

spoofing detection [113], [158]. Face scrambling as privacy

protection during Internet-of-Things-targeted image/video dis-

tribution was suggested in [79]. A new type of identity

attack in automated border control infrastructure, the so-called

double-identity fingerprint and double-identity face image, was

studied in [46]. This type of attack addresses high-risk border

crossing scenarios. The authors of [108] have introduced a

novel detector of the facial silicone mask presentation attack

based on a multilevel deep dictionary via greedy learning. In

[135], a multi-layered (hierarchical) MRF for facial hair style

analysis was utilized. This MRF model does not use high order

cliques but still reaches globally coherent solutions. In [18],

the mitigation of targeted biometric impersonation has been

proposed. Targeted impersonation is defined as a method of

spoofing the biometric traits.

Soft biometrics are becoming a priority in some applications

such as terrorist countermeasures, security screening, and

tracking persons of interest via surveillance networks. Soft at-

tributes have a semantic interpretation, such as “tall”, “young”,

“female”. In the survey [30], an inference engine is for the

prediction of soft biometric traits. It employs relationships

between biometric modalities and physical attributes which

can be inferred from observed data. For example, the body

mass index can be predicted from face images [179], age can

be derived from gait, and skin disease from facial images.

Public safety and security based on surveillance networks

has an urgent need of CI techniques for human identification

using semantic descriptions (e.g. “pointy nose”, or “puffy

lips”) in eyewitnesses verbal statements [5]. In [86], CI

techniques are used for the more general task of automated

regeneration of image descriptions.

c) Technology gap: Regarding technology gaps in au-

thentication, it has be suggested that three types of identity

proofs (attributed such as by a document, acquired, e.g., a

password or something a subject knows or reveals during

an interview, and the biometric one), must be combined in

automated screening. In e-borders, the e-passport introduces

two types of identity: an attributed and a biometric one [76].

Emerging solutions are needed for risk assessment to mitigate

the impacts of various unwanted effects of biometric traits

such as impersonation [101]. A useful representation of the

technology gap in the area of deception detection is given in

[177] (despite it being eight years old, it is mostly still true

today).

In on-line criminal investigations, short-term watchlists can

be deployed in transportation hubs for searching for suspects.

It is based on detailed descriptions provided by eyewitnesses

or compiled from images captured by surveillance cameras.

This problem is known as the detection of semantic visual

attributes. Such watchlists contain the fine-grained attributes

of persons of interest. Attribute detectors aim at the extraction

of 1) facial features such as bald, beard, mustache, color

of hair, hat, sunglasses, eyeglasses, skin tone, and gender,

and 2) torso attributes such as clothing color, patterned, and

solid. An experiment using a large set of surveillance cameras

monitoring metro turnstiles was conducted in order to evaluate

face capture and attribute-based person identification [45],

[174]. Facial sketches were investigated as helpful data to be

added to the short-term watchlists [193], [192]. Authentication

and risk assessment are also mandatory mechanisms in the

smart home [27], [39] and smart city [132].

Designing biometric-enabled security for smart cities is

another challenging problem. Surveillance networks with vis-

ible band cameras are useful only in daytime. In a no-light

environment, active IR band cameras should be used. Near IR

illumination provides acceptable conditions for the restoration

of near IR images. For example, 98%, 94%, and 76% accu-

racies for 60m, 100m, and 150m screening near IR images,

respectively, was reported in [84]. The passive IR band, the

camera sensor detects IR radiation in the form of heat, which is

emitted from the face. In [128], canonical correlation analysis

and manifold learning dimensionality reduction is used in

cross-spectral face recognition such as matching visible facial

images against images acquired in the passive IR band, and

vice-versa.

Detection of the features of plastic surgery [14] and their

mitigation in facial recognition [80], as well as illicit drug

and alcohol abuse detection [185], have been investigated for

a similar objective.

These achievements suggest that the technology gap hinder-

ing the performance of biometric systems is diminishing.
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B. Ambient assistants

a) Tasks: Ambient Intelligent (AmI) systems aim at sup-

porting handicapped and/or elderly people in their daily living

activities. The problem addresses the demographic change in

the population and the increase of costs for healthcare. A

survey of AmI technologies is provided in [17]. The core of

ambient assisted living is behavioral biometrics [163], [183].
b) State-of-the-art: Nappi and Wechsler [119] consid-

ered biometrics as a means to bridge the gap between ambient

intelligence (the integration of CI in our natural surroundings)

and augmented cognition (the extension of human abilities in

performance improvement and graceful degradation). Design

platforms for ambient assisted living are discussed in [133].

The core technology there has been the wireless body area

networks (WBANs) which can monitor patients or mobile

users’ health status [170]. For example, ALADIN (Ambient

Lighting Assistance for an Ageing Population) project is based

on an adaptive lighting system with intelligent open-loop

control to ensure eye health, sleep quality, improved mood,

and cognitive performance [103].

WBANs provide various services in different areas such as

remote health monitoring, sports, entertainment, and military.

It can be used to collect different physiology parameters

including blood pressure, electrocardiography (ECG), and

temperature [115]. Ambient assistants are crucial components

of the smart home [27], [39] and smart city [132] concept.

The typical ambient intelligence technology gap addresses

the passengers of a long flight duration. To reduce possible

passenger physical stress and mental distraction, in-flight

exercises have been recommend. However, the motivation

to do these exercises in a confined space during a long-

haul flight seems to be a problem. A partial solution, as

proposed in [180], is to equip an airplane seat with sensors that

detect passengers’ body movements and gesture. The detected

gestures are then used as input for interactive applications

in in-flight entertainment systems. A satellite approach is to

assess the passenger state using facial expressions.

Another practical application that characterized a significant

technology gap addresses the Subjective Well-Being (SWB)

problem. This application is based on the CI approaches

to measuring the happiness of an individual or group of

individuals at a particular time, and for a specific activity. SWB

is an important indicator of social life and decision-making; it

is associated with judgments of how one’s life is doing and the

amount of positive emotions experienced in one’s life. Instead

of the classic question-answer approach, the SWB is based

on the automatic monitoring of facial expressions to provide

useful support or alternatives. An approach to group happiness

assessment using neural networks is introduced in [171]. The

SWB is also a vital component of the monitoring policy in

the smart home and smart city concept.
c) Technology gap: Adaptation and learning mecha-

nisms are the crucial problems of the ambient assistant devel-

opment; the feasibility of solutions to this problem is directly

related to the corresponding technology gap. A system is said

to be adaptive when it is equipped with the ability to respond

to statistical variations of the environment. Such a system with

adjustable parameters interacts with the environment through

sensory inputs and activation outputs. An adaptive element,

either internal or external to the system, adjusts the parameters

of the system to optimize the performance. This is usually

done through a feedback control which refers to an operation

that, in the presence of disturbances, tends to reduce the

difference between the output of a system and some reference

input.

In biometric systems, adaptivity was studied, and some

of the technology gaps were identified as shown below.

Rattani [138] defined the task of the adaptation or updating

module as a continuous process of adapting the system to

the intra-class variation of the input data due to changing

acquisition conditions and lifestyle-related changes, e.g., age.

An application of such adaptation can be an e-interviewer

that utilizes affective computing that focuses on recognizing,

interpreting, and responding to human affects (feelings and

emotions) using various sensory modalities such as facial

expressions, body language, voice, and other physiological

responses [19]. The computer maps measured sensory data

to affective variables such as stress, workload or engagement,

then continuously adapts its behavior, via a feedback loop,

based on the recognized affects.

In a meta-recognition process for post-recognition score

analysis [147], [148], the feedback loop is used for prediction

that can take action to improve the overall accuracy of the

recognition system.

An adaptive mechanism is a vital component of any ambient

system. It aims to regulate the system in order to operate

efficiently in dynamic ubiquitous environments [57].

C. Affect analyzers

a) Tasks: Biometric-enabled affect analyzers aim at the

detection of patterns that characterize (directly or indirectly)

the mental and behavior state of a subject in human-machine

and human-human interactions. The core concept of an affect

analyzer is a feedback loop in which measured sensory data is

mapped into an affective state landscape, such as depression,

stress, workload, deception features, or engagement. In the

follow-up interactions, an adaptation to the detected affects is

vital, as adaptation is the fundamental principle of survival of

any living organisms.

A typical example is an affect analyzer for tutoring purposes

that aims at the improvement of students’ learning. In this

application scenario, automatically detected contextual cues,

facial expressions, and body movements are fused to make a

decision on confusion, frustration, and boredom.

b) State-of-the-art: An overview of affect detection

methods is given in [19], [191]. Affective feedback can be

applied to problems such as warning car drivers in the case of

recognized drowsiness [134]. The classification of a driver’s

visual attention allocation is of increasing interest in the

pursuit of accident reduction. Gaze estimation can be divided

into two components: head pose estimation [188] and eye pose

estimation [51].

In [118], several sets of features were used in supervised

learning for the detection of concurrent and retrospective

self-reported engagement: 1) facial expressions from videos,
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2) heart rate, and 3) animation units (from the Microsoft

Kinect Face Tracker). A Computer Expression Recognition

Toolbox (CERT), reported in [105], can automatically detect

Action Units (AUs) as well as head pose and head position

information. CERT uses Gabor features as inputs to SVMs that

provide likelihood estimates of the presence of 20 different

AUs on a frame-by-frame basis. CERT has been tested with

databases of both posed and spontaneous facial expressions,

achieving accuracies of 90.1% and 79.9%, respectively, for

discriminating between presence versus absence of AUs.

The CI is the core of human fatigue detection [54]. Biomet-

ric traits of depression detection (a severe psychiatric disorder

preventing a person from functioning normally in both work

and daily lives) is studied in [54], [178]. Depression cues can

be observed from audio and facial evidence, as well as from

body and eye movement.

The multi-sensory platform called Wize Mirror aims at

health related self-monitoring and self-assessment [6]. The

Wize Mirror detects on a regular basis physiological changes

relevant to cardio-metabolic risk factors and offers personal-

ized strategy towards a correct lifestyle, via tailored coaching

messages.

A particular type of ambient assistant, affect cognitive

analyzer, and dialog spoken system [182] is a biometric-

enabled interview supporting machine or e-interviewer. The

interview-supporting machines for security applications aim

at deception detection [2], [126], [167]. It is well documented

that in order to achieve an acceptable practice accuracy for

the e-interviewer, there is a need to analyze and track many

modalities containing distinct indicators of potential deception.

Given a question set, responses by an individual are measured

using various biometric modalities and their relationships.

They form the modality-specific information content or risk

deception landscape.

Extended CRFs, the so-called continuous CRFs, have been

developed by Baltrusaitis et al. [10] for modeling the affect

(emotions from multi-model sources) continuously.

In the e-interviewer, data acquisition is implemented via

non-contact technologies using various modalities (acquisition

framework) such as the heart rate and blood pressure (in

particular, micro color facial changes caused by the heartbeat),

vocalic features, oculometric factors, respiratory functions,

thermal features, and kinesic factors. Analysis and profiling

of the risk of deception requires deep inference technology.

For example, an e-interviewer AVATAR (Automated Virtual

Agent for Truth Assessment in Real-Time) machine should

be smart and introduce itself as a virtual border officer [126],

[167].

Periocular recognition (region around the eye) is of particu-

lar interest in watchlist technology and e-interviewers. The

authors of [157], [195] introduced views on how CI can

improve solutions to this challenging problem.

Body odor can be considered as an additional physiological

and behavior indicator. For example, some moods, such as de-

pression, may affect our body odor. The odor can also indicate

the presence of certain diseases such as skin cancer. The most

resent results on odor pattern recognition using various CI

techniques such as the k−nearest neighbors algorithm, linear

discriminant analysis, logistic regression, BNs, and support

SVMs are reported in [142].

Haarmann et al. [65] recognized the level of arousal from

heart rate and skin conductance, then used it to adapt the

turbulence level in a flight simulator. In [60], an approach for

the estimation of blood flow fluctuations from thermal video

has been developed. The core is a bioheat transfer model as

a partial differential equation with boundary conditions, that

reflects the thermo-physiological processes in a skin region

proximal to a major vessel. The inverse problem for this model

is formulated as the estimation of blood flow speed and related

parameters, such as temperature and vessel location of a region

of interest (e.g., face), using data from the infrared camera.

Finally, the problem of critical social importance, that can

benefit form using the CI biometric techniques, is support for

community and city establishments such as shelters [127] and

similar facilities that are associated with social services or

charities provided to homeless people, or dislocated due to

emergencies or natural disasters. It is of critical concern that

homelessness in today’s world is considered in relation with

human dynamics in the changing world, natural disasters, and

related potential threats such as epidemics and terrorism.

c) Technology gap: Technology gaps in affective system

development are related to the following problems [38]:

• Aiming at fusion when collecting and processing data,

and in decision-making, shall be a priority, as single bio-

metric modalities may not provide reliable performance.

• A small subset of the encompassing modalities and

affective states often result in incorrect decisions.

• Standard procedures are needed for collecting scenarios

and the creation of databases (benchmarks) for the eval-

uation and comparison of affect detectors.

Crowdsourcing is a general name for techniques that involve

posing many small-scale tasks to a crowd of users, and

piecing together the crowd’s responses to achieve a larger-

scale goal. Computer games are a primary example of where

computational actions can be adjusted to the players facial

expression [110]. However, interest in facial expressions has

moved far beyond computer vision and interaction research,

reaching areas like media consumption or health applications.

Another example is driver distraction and inattention leading

to crashes and incidents. In [139], the driver’s stress is studied

using a BN. For this, the electrocardiogram, electrodermal

activity, and respiration, as well as past observations of driving

behavior are used. This study can be useful as a baseline

(ground truth) for the approaches based on distant measures.

Results on driver’s eye/head tracking reported in [3] can be

useful in comparison with the same scenario but processing

via CI tools.

In health self-monitoring and self-assessment (Wize Mirror

concept) [6], the CI related gaps are identified using 1) the

scientific challenge (intelligent methods for translating face

signs into repeatable, accurate, and efficient computational

measures), and 2) the technological challenge (such as a

non-intrusive platform, seamlessly integrated into a daily-life

environment, temporal and spatial data synchronization, and

real-time processing of multimodal data).
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D. Synthesizers of biometric traits

a) Tasks: Generating artificial or synthetic biometric

traits (e.g., face, fingerprints, iris, signature) that are as real

as possible. Various approaches are known. Consider, for ex-

ample, the reconstruction paradigm. Let the model be chosen,

its input and output is represented by a biometric trait and

its extracted features, respectively. Now the task is to check

whether a model extracts a reconstruction of the input itself

from the features. Let the PCA model be chosen. In this model,

the mapping of the feature space is a linear projection into

the leading principal components and the reconstruction is

performed by another linear projection. It is predictable, that

the reconstruction is perfect only for those data points that

lie in the linear subspace spanned by the leading principal

components which are the structures captured by this model.

There is a way for improvement of the above approach.

In PCA for instance, the input is reconstructed from the

features to assess the quality of the encoding, while in a

probabilistic setting we can analyze and compare different

models in terms of their conditional probability distributions.

These reconstructions can be more like real data compared,

for example, with PCA.

b) State-of-the-art: Two challenging problems are rec-

ognized in deep learning techniques: 1) the amount of data

required to populate/train the parameters, and 2) the duration

of training. The solution of the first and second problem

addresses the development of synthesizers of biometric traits

and a parallel algorithm with hardware acceleration support

(e.g. [190]), respectively.

Cappelli [20] was the first to develop a commercially

available fingerprint synthesizer (software package) based on

an augmentation paradigm for the purpose of evaluating fin-

gerprint recognition algorithms. Any biometric trait can be

augmented using techniques such as translation, rescaling,

cropping, and others, to design a synthetic trait. Any CI

method can be used for this purpose, such as genetic algo-

rithms [26]; one has to start using a set of real fingerprint

acquisitions, then apply an evolutionary or other algorithm

to initialize a set of filters, which are used to modify the

fingerprint images and generate synthetic samples.

The control of generated traits is a key problem in biometric

synthesizer design. In particular, the initial data can contain

features of interest and the synthesizer should generate a set of

traits with these features. In this content, the method proposed

in [194] provides some additional possibilities via control of

the statistical models of the features.

A review of biometric synthesizers and their applications

according to the following taxonomical view can be found in

[187]: i) synthesis as an inverse problem of biometrics, and ii)

synthesis in terms of biometric data forgery. The underlying

paradigm is defined as analysis-by-synthesis, or learning-by-

synthesis, that is, synthesis-based feedback control.

Note that inverse problems are typically ill-posed tasks. In

addition to synthetic biometric traits generation, an inpainting

of the face images [159] was formulated as an inverse problem

with a sparse-promoting prior based on the learned global

model; a dictionary learning technique was used that utilized

adaptive learning on a set of atoms representing real signals

as sparsely as possible.

Banerjee et al. [11] have formulated the requirements for

a facial synthesizer for the need of training deep inference

engines, such as CNNs: i) generate an arbitrary large number

of facial images, ii) and generate a balanced number of

images per person. This also allows for avoiding any potential

issues of invasion of privacy. The paper reported on successful

experimental results on training the CNN for face recognition

using 200,000 synthetic faces with a resolution of 512× 512.

In summary, the progress achieved to date in synthetic

biometrics is as follows:

Synthetic 2D fingerprints: Initial data in the Capelli [20]

synthesizer include fingerprint type, image size, region of

interest, and singular points. In the approach developed

in [194], statistical features of a master fingerprint are

used to generate multiple impressions. The possibilities

of a synthesizer based on an evolutionary paradigm have

been studied in [26].

Synthetic 3D fingerprints: Kuecken [93] developed the bi-

ologically inspired mathematical models of fingerprint

formation. In [97], a virtual environment was developed

for generating 3D fingerprint samples; the synthesizer

starts from a real or synthetic image of contact-based

acquisition.

Synthetic hand prints: The hand print is a hybrid high-

resolution biometric trait that combines fingerprints, the

palmprint, and hand-shape. A synthesizer of hand prints

is proposed in [116]. This is an example of a synthetic

multi-biometric.

Synthetic hand geometry: In [61], this task is formulated as a

reverse engineering (inverse biometric) problem: recover

the original hand geometry sample from its parametrized

template. Such a reconstruction process has been gener-

ally referred to as inverse biometrics.

Synthetic iris: The PCA, MRF, and Gabor filter are well suited

for iris synthesis [200]. The main concern of the recent

report [21] is the simulation of uncontrolled acquisition

conditions.

Synthetic 3D eye: In [181], an eyeball and eye region synthe-

sizer have been developed for training a gaze estimator

based on a CNN.

Synthetic face: It is a common practice to augment any

facial database, using techniques such as translation and

rotation, as well as CNNs [11]. In security, synthetic

facial traits, such as morphing images, are identified as

attacks. Therefore, new databases and detectors of such

attacks shall be developed.

Facial sketches: This is a particular case of synthetic facial

images. Survey [175], as well as papers [193], [192],

provide a necessary platform for facial sketch techniques.

A synthesizer that explores the differences in visible

face images and thermal images was proposed in [128].

A study by Berger et al. [12] contributes to a more

complicated problem, – both style and abstraction in

sketching of a human face. Klum et al. [87] studied

how facial sketches can be used in law enforcement, in

particular, in watchlist checks at mass-transit hubs.
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Synthetic signature: A 3D model of synthetic signatures for

biometric system training was first suggested in [186].

In [59], an approach based on a priori knowledge about

a certain signature have been developed. A set of pa-

rameters of required signatures are input data to this

synthesizer. It is different from the augmentation-based

techniques that starts from one or more real samples of

a given person.

Synthetic gait: Gait synthesizers using HMM and PCA models

are studied in [162]. An augmentation paradigm was

chosen in [68] for synthetic gait template design using

real gait energy images.

Synthetic speech: It is a common practice to use the CI

techniques in i) speech synthesizers for the purpose of

training speaker verification systems [164], as well as ii)
in speech spoofing detectors [146].

Synthetic body: Body images captured beyond the visible

spectrum (the range of 30−300 GHz that corresponds to

wavelengths 10−1 mm) overcome some limitations such

as clothes variations. A database of millimeter wave body

images (shapes) was created in [117]. Millimeter band

biometric traits, such as respiration, heartbeats, voice,

gait, body shape [131], are usually studied in combination

with concealed weapon detection.

The above is a brief introduction to synthetic biometrics.

Our goal is to highlight the urgent unsolved problems in this

area.

c) Technology gap: The following CI-related technol-

ogy gaps and emerging problems are identified in the area of

synthetic biometrics.

– Biases: Synthetic biometric data are characterized by

various biases that are difficult or impossible to predict. In

particular, Galbally et al. [53] proposed a set of measures

for the detection of differences in image quality properties

between real and synthetic biometric traits.

– Deep inference: The deep inference engine is needed

for exploring high order dependencies in quality of real

and synthetic biometric traits. For example, differences

can address the optical processes of 3D biometric traits

acquisition versus the technique of 2D synthetic traits.

It should be noted that the results obtained using existing

databases of synthetic biometric traits have to be used with

caution. Synthetic traits may not reflect the performance of

a recognition system in a real-life scenario. For example, it

was reported in [63], that synthetic features can be detected

in a popular Capelli’s fingerprint synthesizer [20]. A second

order minutiae statistic reflecting the covariance structure of

the minutiae distributions was applied for that in [63]. In terms

of countermeasures, synthetic biometric data can be used to

train the biometric system to recognize spoofing.

IV. SUMMARY AND CONCLUSIONS

This survey is motivated by ever raising requirements for the

performance of biometric-enable systems in many emerging

applications. We identify and analyze the existing challenges

using technology gap methodology [67]. An adequate response

to these challenges inevitably involves CI techniques such as

machine learning, in particular, deep inference, and advanced

pattern recognition paradigms. The reason is that biometric

traits of interest are often are hidden in high order dependen-

cies of patterns, while the power of many popular statistical

techniques is limited and prevents the proper dealing with such

data.

To the best of our knowledge, this survey is the first

attempt, after Frey and Jojic [48], to revise available CI-related

resources for deep inference needs. Conceptually, our study is

a practical reflection of the mentioned study with an extension

via Hinton’s team’s results on deep inference [69], [70], [71],

[144]. Recently, Wang and Yeung [173] introduced their vision

on the development of Bayesian deep learning models. A

synergy of these works is reflected in this survey on CI-related

techniques and cognitive technology in biometrics.

While the efficiency of the most CI-related techniques

and methodologies has been proven in various fields time

and again, the inference for biometric applications requires

a much more detailed study and mathematical modification.

For example, message-passing inference provides near infor-

mation theoretical limits in communication, such as turbo

encoding, but this border performance is not straightforward

in biometric-enable applications. The latter strongly depends

on the task, scenario, and available data [48], [197].

The key conclusions from our study are as follows:

1) Emerging applications demand ever increasing perfor-

mance in terms of recognition accuracy, reliability of decision-

making, fusion at all levels, adaptivity, countermeasures,

and robustness. It also calls for bridging with breakthrough

achievements in forensic and cognitive studies. The CI-related

techniques provide promising results in this domain.

2) New inference and learning algorithms are re-

quired for system level decision-making. The high priority

techniques include e.g., DBNs, message-passing inference

(Bayesian networks and MRFs). The concept of the infer-

ence engine that combines different inference paradigms, is

a promising prospect because it explores the uncertainty in

an aggressive way (different interpretations of uncertainty

and multi-metrics). Because of the high complexity of such

inference, hardware acceleration, such as VLSI architecture

for the RBM [190], can be useful in real-time applications.

3) Techniques for unsupervised training of deep infer-

ence engines is the high priority problem. It is a commonly

accepted fact that the possibilities of biometric benchmark

databases which contain natural biometric traits, are limited for

the purposes of deep inference learning, because it is difficult

or impossible to achieve an acceptable training quality. The

development of the generators of synthetic biometric traits is

a reasonable alternative.

Finally, the mass-transit systems and border agencies

worldwide are looking towards integrating biometrics into

Blockchain Emergency (BE) identification, which is important

in times of humanitarian crises and natural disasters. Pilot

Projects on BE e-ID are currently being conducted in several

countries, in particular, by Canadian [58] and US [35] Border

Agencies.
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