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Evidence reasoning (ER) combined with dimensionless index method can be used in rotating machinery fault diagnosis. In ER
algorithm, reliability is mainly obtained in two ways: distance-based method and correlation measure by set theory. In practice,
the distance-based method cannot generate high-discrimination reliability in high-coincidence data like dimensionless index data.
Therefore, correlation measure by set theory method is used in fault diagnosis more frequently. Because correlation measure by set
theory only considers upper bound and lower bound of fault data, we add a regularization term to calculate the relationship between
the inner data. Experience result shows that fault diagnosis accuracy had improved, which illustrates that the new reliability can

describe data relationship better.

1. Introduction

Rotating petrochemical machinery has become more and
more complicated. For instance, the connection between
parts is getting closer and closer. Its working and operat-
ing environment is more complex and demanding [1, 2].
Therefore, higher reliability and safety requirements are
put forward for equipment design, structure, process, and
operation state [3]. As a key component of petrochemical
units, rotary units cover important engineering fields such as
petrochemical, power, chemical, metallurgical, and mechan-
ical manufacturing [3, 4]. Rotating unit equipment (such as
generators, steam turbines, blowers, and large rolling mills) is
often the plant’s key equipment [5]. The operating condition
not only affects the operation of the machine itself but also
affects the subsequent production. Therefore, it is urgent to
discuss and study the fault diagnosis technology of rotating
units [6, 7].

At present, fault diagnosis methods can be divided into
three types according to the diagnosis model: analytical based
model, qualitative knowledge based model, and Dempster
Shafer Theory based model. Fault diagnosis based on the
analytic model is a method to find out the running rule of the
object. By studying the intrinsic relation between dynamic
parameters and response symptoms in fault state [8], the

information of normal operation and abnormal correlation
is obtained. This kind of method is suitable for systems with
an accurate quantitative mathematical model and a sufficient
number of sensors. They can gain fault pattern recognition
result by establishing physical model and mathematical
model. Typical analytical model-based methods include the
state estimation method, the parameter estimation method,
the equivalent space method, and the analysis redundancy
method.

Qualitative experience based fault diagnosis method is a
kind of reasoning method based on the qualitative model. The
core of this method is using incomplete prior knowledge to
describe the function structure of the system and establish
a qualitative model to realize reasoning. According to the
model, the behavior of the system is predicted and compared
with the actual system behavior to detect the failure of
the system. This method usually includes expert system,
graph search, and fault tree analysis. For complex fault
diagnosis, because the number and combination of faults are
unpredictable, the workload of constructing the qualitative
model is relatively heavy. Especially for complex systems,
unpredictable fault combinations will increase the scale of the
model exponentially. Therefore, when this kind of method
is applied, it is often used to analyze some specific complex
faults [9, 10].
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Evidence theory based fault diagnosis method is an
inexact reasoning theory, which can deal with uncertainty
information. The confidence interval is used to replace
the probability, the event is represented by the set, and
the Bayesian formula is replaced by the rule of evidence
combination. The confidence function can be expressed
directly by uncertainty and not knowing. In the applica-
tion of composite fault diagnosis, the D-S evidence theory
makes a decision result through the fusion reasoning of
each evidence body on the same recognition frame [11-13].
At present, a large number of evidence theory based fault
diagnosis methods are mainly aimed at the diagnosis of single
fault, which requires that the elements in the identification
framework have mutually exclusive relations [14]. But, for
complex fault diagnosis, such settings have fundamental
limitations. In order to extend its effectiveness in complex
faults, the extended evidence theory (Dezert-Smarandache
Theory, DSmT), which uses the intersection of elements in
the identification framework to represent concurrent and
composite faults, is proposed. Taking [14] as an example,
it gives an identification framework that can cover a single
fault and a composite fault. It sets the correlation degree
for different faults to the evidence. Each evidence in each
group is decomposed into two kinds of evidence, which are
independent and relevant. Then several independent pieces of
evidence are fused by using the DSmT combination rule, and
the uncertainty of different independent source evidence is
inferred; thus the identification of composite faults is realized.
However, this method can not realize fault discrimination
for conflicting evidence. Therefore, a fault diagnosis method
based on evidence reasoning and the dimensionless index
is proposed in [15]. This method can realize the fusion of
multiple attributes and realize the diagnosis of conflicting
evidence. However, there are many methods to calculate the
reliability in the process of ER (e.g., [16] uses distance method
and [17] uses set correlation measure), which has a great
influence on reasoning results. Because of the coincidence of
dimensionless index values between different faults, it is more
effective to use the set correlation measure method. However,
such a method will be affected by wild value in dimensionless
indicators.

To solve the above problems, we propose a method
to regularize the reliability value. We use the correlation
coeflicient as the regularization term to improve the reliability
calculation formula. The Gini correlation coefhicient is used
in this paper because it can describe the relation of nonlinear
data effectively [18]. Therefore, this paper uses the improved
evidence reasoning algorithm and dimensionless index to
carry out fault diagnosis. The main contributions of this paper
are as follows:

(1) In traditional ER, the reliability only considers set
interval in fault data, neglecting the impact of relationship
between the inner data. In new proposed method, we used
correlation coefficient as reliability regularization. In practice,
the new reliability is more reliable.

(2) To achieve better fault diagnosis result, we combine
improved ER and dimensionless indexes in rotating machin-
ery fault diagnosis. The experimental result shows that the
new method is better than the traditional one.

Mathematical Problems in Engineering

2. Related Work

2.1. Dimensionless Index. The dimensionless index is a value
obtained by comparing two dimensions’ values [19]. The value
of the dimensionless index is determined by the nature or
shape of the probability density function of vibration signal
amplitude. The change of working condition has less effect
on the dimensionless index, which is helpful to the time
domain analysis of fault diagnosis. At the same time, the
dimensionless index is a ratio, which has little to do with
the sensitivity and magnification of the vibration detector.
So the monitoring system does not need to be calibrated,
which brings convenience to the fault diagnosis of the
actual equipment. The accuracy of traditional dimensionless
fault diagnosis is high for single fault diagnosis, but for
complex fault diagnosis, it needs to be further improved
[20, 21]. In order to overcome the shortcomings of traditional
dimensionless index construction and improve the accuracy
of fault diagnosis of rotating units, scholars have put forward
new algorithms for fault diagnosis.

Consider a random signal with its amplitude and prob-
ability density function denoted by x and p(x), respectively.
Using these notations, various types of dimensional indexes
can be defined as follows [22]:

Average amplitude:

X = J - |x| p(x) dx )

-0

Root mean square value:

KXims = \“m x2p (x) dx )

-0

Root mean square amplitude:

X, = Um Vix[p (x) dxr 3)

-0

Kurtosis:

p=] " xp ax @

-0

Maximum value:
Xpax = max (X) (5)

Dimensional indexes are sensitive to early fault data but
they are affected in a nonlinear manner with the increase
in the degree of failure, which results in diagnosis error.
Therefore, we take a ratio of two-dimensional indexes to form
a dimensionless index. Dimensionless indexes can eliminate
the nonlinear change effect of dimensional index values.
Various dimensionless indexes can be defined as follows:

Waveform index:

+00 172
|x* p(x) d
Sf _ [I—m X p * x] _ ers (6)
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Pulse index:

/1
limy_o, [ [ Ixl' p (x) dx]'
Ifz 1ml I:J’foo X P X X] _ Xmax (7)

[[52 1xl p () dx] B

Margin index:

/1
limy_o [ [ 12 p (x) dx|'
Mf _ lml [I—w X p X x] _ Xmux (8)

“—Jro(f ||/ (%) dx]z X

.
Peak index:

+00 1/1
lim; ., IxI' p(x) d
C _ 1ml [Jloo X p X x] _ Xmax (9)

INCRICE .

rms

Kurtosis index:

_ B
V_X4

rms

(10)

We can express all the dimensionless indexes using the
general equation (11). In (11), different dimensionless index
equation can be generated by choosing different values for
parameters [ and m.

too | 1/1
£ = [{_00 S dx]l/m ()
[ 120" p (x) dx]

-0

Equation (11) shows that dimensionless index calculation
is based on the probability density function of the input
signal. Hence, dimensionless index is a ratio that is not
affected by the absolute level of the signal.

2.2. Fault Diagnosis Method Based on Evidence Theory and
Dimensionless Index. Inspired by [16], we have the following
fault diagnosis process. For a fault diagnosis problem y,
assume that there are L basic attributes represented as x;(i =
1,...,L). Define the set of L basic attributes as a source
of evidence E = {x,...,x.}. According to the above
description, assume that every attribute has its own weight
w = {w,...,w,...,w}. Here, w; represents the important
degree of i, attribute. The evaluation results of every attribute
x;(i = 1,..., L) can simply represent the following reliability
distribution form:

$(x;) = {(Fp By (%)), n=0,...,N -1},
(12)

i=1,...,L

Note that f3;,(x;) = 0, Y Bin(x;) < 1, and B, (x;)
represent the reliability of attribute x; and evaluate result
point to fault F,.

We use f3, as the reliability of problem y diagnosis to
E,. B, is the final reliability which fuses all the attribute

evaluation results. The following is to use the ER algo-
rithm proposed by Yang et al. to fuse the information
[16].

Let m,,; denote the basic probability assignment value of
basic attribute x;. Support diagnosis problem is F,. Other-
wise, mp; denotes the basic probability assignment value of
it not assigned to any of the fault types. The value of my;
describes the degree of uncertainty. The basic probability
assignment value can be obtained as follows:

m,; = wf,, n=01,...,N-1 (13)
N N
mF)i =1- zmﬂ,i =1- wizﬁn,i (14)
n=1 n=1
N
mF,,' =w; <1 - Zﬁn,i) (16)
i=1

My = g, + g, i=1,2,...,L 17)
It is easy to find that mp; is decomposed to two parts:
my,; and ;. mg; is affected by the weight of attribute and
my; is affected by the attribute by incomplete evaluation
information.
To obtain the final diagnosis result, we apply Dempster
combination rules directly to get the final evaluation results:

L
{Fn} My, = KLH (mn,i + mF,i + ﬁiF,i)
i=1

(18)
L
- H (g, + ip;)
i=1
L
{F} : g = K| [, (19)
i=1
N L
Ky = Z H (m,,; + g, + ig;)
n=1 i=1 (20)
L
-(N-1) H (g, + i)
i=1
m
F}:B,=—2—
{ } /3 (1 _ mF) (21)

Note that 3, are final reliability of fault diagnosis problem

to F,. Therefore, we can obtain the result simply:
n=arg max(B,), n=12,...,N (22)
According to the following description, reliability and
attribute weight play an important role in ER algorithm. The
reliability based on correlation measure by set theory will be

introduced in Section 3.1. For attribute weight and detailed
derivation of ER, see [16].



3. Method Description

3.1 Traditional Reliability Calculation Method. The value of
reliability obtained method has a very important effect on
the evidence reasoning result. This is because the reliability
value can accurately reflect the fault feature information and
directly determines the fusion weight of each dimensionless
index in the process of data fusion. In addition, reliability
also directly affects the calculation of Dempster combination
rules, such as basic probability assignment. The traditional
idea is to determine the reliability based on the distance
between the input data and the average value of the data.
This method can be used in low overlap data circumstances.
But, for high-overlap dimensionless index data, we are willing
to use correlation measure by set theory, because it is only
affected by upper and lower bounds of index values.

The dimensionless index &; can be denoted as interval
form [x;,x;]. When we want to obtain the correlation
between [x;,X;] and [¢; j, d; ;], It can be directly generated by

& j (x;)

B |[xi’§i] N [Ci,j’di,j” (23)
|[x%:]] + |[Ci,j’ di,j” - '[xiji] N [Ci,j’ di,j”

In (23), |[a, b]| denotes the length of set. Then, reliability
can be obtained:

o (x.
. 1,]( 1) (24)
ijo &ij (x:)

Equation (23) shows that the reliability calculation
method depends entirely on the interval value between
the two groups of calculated data. This method will lose
some information about the structure and correlation of the
data, which leads to an inaccurate calculation of reliability.
Therefore, a natural idea in the improved reliability design
method is to add a regularization condition after the relia-
bility calculation method. The new method should be able to
represent the relationship between the two sets of data. In this
paper, the calculation of the correlation coefficient is used to
obtain the information inside the data.

/31',]‘ (x;) =

3.2. Improved Reliability Method

Assumption 1. Given two sets of independent and identically
distributed data sets of the same length X, Y, the two sets of
data are matched one by one to form pairs. At first, we sort
X;and Y;(i = 1,2,...,n). The notation (X(,-),Y[,-]) denotes
the pairs that are sorted based on values of X;, such that
X, < X, < < X, = L,2,...,n). Additionally,
Yup Yop o Y (i = L,2,...,n) represent the values of Y
paired with unsorted points X;. Similarly, we can obtain
(X Yei))-

Definition 2. Based on the sorted data pairs, Gini correlation
coefficient can be defined as [18]

(Inn-1)) YL, Qi-1-n)Y

ro (1 X) = (U/n(n=-1) ¥, 2i-1-n)Y,

(25)
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(I/n(n-1)) YL, 2i-1-n) Xy
(Inmn-1)) YL, 2i-1-n) X

In (25) and (26), n denotes the number of points in a
data set. From (25) and (26), we can note that r5(Y, X) #

r6(X,Y). Hence, we defined a symmetric Gini correlation
(SGC) coefficient as defined in the following equation:

rg(X,Y) = (26)

re (X,Y) = % [re (¥, X) + 15 (X,Y)] (27)

The correlation coefficient has the following properties:
(1) correlation coefficient lies in the interval [-1,+1]; (2) the
correlation between X and Y is a positive correlation or a
negative correlation if the sign of the correlation coefficient
is positive or negative, respectively; (3) if the correlation
coefficient is 0, then X and Y are uncorrelated; (4) if
magnitude of the correlation coefficient value is close to 1, it
implies that the correlation between X and Y is stronger.

It can be seen from the above correlation equation
that the Gini correlation coefficient calculation method is
relatively simple, which provides the condition for real-time
fault diagnosis. Gini correlation coeflicient is more stable
than other classical correlation coefficients in dealing with
nonlinear data [18].

According to the correlation measure of the set, the same
dimensionless index of different fault types is considered as
the regularization based on the set correlation metric. The
composition equation is as follows:

a;; (x;) = Mo (x) + A,rG™ (x;) (28)
Then, the new reliability can be generated by
&i,j (x;)
ZQLO & j (x;)

According to the new reliability calculation equation,
it can be found that the accuracy calculated in the same
recognition frame is not lower than the accuracy of old
reliability.

Ez‘,j (x;) = (29)

4. Experiment

4.1. Experiment Data. Experimental data is collected from
large rotating machinery in petrochemical fault diagnosis
experiment platform of multistage centrifugal fan fault diag-
nosis unit. The fault diagnosis unit consists of 11IKW 5-
stage centrifugal blower plus transmission, torque sensor,
inverter motor, and several failure axes, tooth, and bearing
members. The fault diagnosis unit can simulate common
fault in multistage centrifugal blower unit. EMT390 data
acquisition probe is placed in a position denoted with label
“t” as shown in Figure 1. At the same time, the experimental
data is read and stored using the Guangdong Provincial Key
Laboratory system software. The originally collected data
comprises the chassis vibration acceleration values. Since the
different location of fault can have different effect on the
operation of the entire axis, we can obtain the fault type by
analyzing the chassis vibration acceleration information.



Mathematical Problems in Engineering

FIGURE I: Petrochemical large-scale rotating equipment fault diag-
nosis experimental platform and data acquisition chassis location
physical map. (a) Motor, (b) coupling or gearbox, (c) fans, (d)
platform base, (e) oil tube, and (f) data acquisition probe placement.

4.2. Fault Diagnosis Model. Before data acquisition, the
fault type, fault combination, motor speed and so on are
determined. Then the lab staft change the normal parts of the
unit and replace the corresponding fault parts according to
the type of fault. Turn the machine on to a specified speed
of 1000 rpm. Then the vibration acceleration of the housing
is collected by the EMT390 data collector in the specified
position. In order to facilitate the cross-use of data validation
and diagnosis method, a fault type data acquisition process is
completed by two people, each collecting two groups of data.
The process is shown in Figure 2.

The vibration acceleration of all fault types is stored
in the fault data folder, and 46 sets of data stored in one
folder are read out by the data-reading program. There are
1024 vibration acceleration values in each group of data. In
the process of dimensionless index calculation, five different
dimensionless index values are calculated for 1024 vibration
acceleration values. Therefore, each set of fault data contained
46 x 5 dimensionless values.

The fault diagnosis model is divided into five steps. First,
the raw data are collected on the large petrochemical unit
in Guangdong Petrochemical Equipment Fault Diagnosis
Laboratory. Second, the dimensionless processing is used to
extract the eigenvalues of the original data. Third, according
to the composite degree of fault type, it can be divided into
single fault and composite fault. Fourth, the input fault data
is determined according to the fault type of fault data within
the identification framework. Fifth, the fusion results are
obtained to determine the diagnostic results. The specific
steps can be described as follows.

Step 1. Determining the type of fault to be collected.

Step 2. Replacing the normal petrochemical unit parts to the
designated fault parts.

Step 3. Electrifies the motor and debugs to 1000 rpm.

Step 4. Data acquisition personnel use EMT390 to collect
vibration acceleration of the housing.

Step 5. Using data management software to read the sensor
data and save it on the computer.

Step 6. Using MATLAB program to read the collected data
and convert them into five dimensionless indexes.

Step 7. Calculating the initial reliability according to the
correlation measure method of five dimensionless index sets.

Step 8. Calculating the correlation coefficient according to
the five dimensionless index values to obtain the regulariza-
tion term.

Step 9. Setting the parameter value to obtain the new relia-
bility.

Step 10. Calculating the weight of each dimensionless index
according to the result of new reliability calculation.

Step 11. Fusing reliability and weight according to Dempster
combination rule.

Step 12. Finding out the fault type corresponding to the
maximum reliability of the four fusion results.

In the process of experiment, we need to establish a fault
identification framework and train the optimal parameters
A, and A, corresponding to the framework by collecting
multiple groups of data. So, in the experiment, the diagnosis
effect of each recognition frame is optimized. When the
optimization reaches a certain effect, we begin to consider the
linkage diagnosis in each recognition frame. When unknown
fault data are input, the optimal diagnosis results can be found
in each identification framework. Therefore, the establish-
ment of a relatively complete identification framework library
is necessary for the practical application of the fault diagnosis
method in the industry. Figure 3 is the basic structure of the
recognition framework library.

The types of failures used in the experiment include
two types, one fault, and more than two complex faults.
In the experiment on this paper, we use three recognition
frameworks. Identify faults included in frame 1: outer ring
wear, inner ring wear, normal, and left bearing outer ring
wear. The faults included in frame 2 include large gear missing
teeth and left bearing outer ring wear composite failure, large
gear missing teeth and left bearing missing ball composite
failure, large and small gear missing teeth and outer ring wear
composite failure, and large and small gear missing teeth and
inner ring wear and composite failure. The faults included
in frame 3 include large gear missing tooth, large and small
gear missing tooth composite failure, bearing lacking ball,
large gear missing tooth, and a left bearing inner ring wear
composite failure.

4.3. Fault Diagnosis Result. According to Figures 4 and 5, the
accuracy of fault diagnosis obtained by using the traditional
method is 58.3% on identification frame 1 and 58.3% on iden-
tification frame 2. The accuracy of fault diagnosis obtained
by using the proposed method is 75.0% on recognition frame
1 and 66.7% on recognition frame 2. Recognition frame 3
combines single fault and composite fault. Fault diagnosis
result is shown in Figure 6. The accuracy of the method in
[17] is 58.3% and the accuracy of the improved method is
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FIGURE 3: The basic structure of recognition frame library.

75.0%. The results show that the total diagnostic accuracy of
traditional reliability calculation method is 58.3%, and that
of the improved algorithm is 72.23%. The overall diagnostic
accuracy has been greatly improved. From the fault type of
error diagnosis, the main fault in identifying frame 1 is outer
ring wear, while in frame 2, the main fault is the composite
fault of large and small gear missing teeth and inner ring wear
of left bearing. The fault in recognition frame 3 is the large
gear tooth-missing fault.

It can be seen intuitively from the three diagrams of the
experimental results that the actual fault identification effect
of the improved evidence reasoning method of recognition
frame 1, recognition frame 2, and recognition frame 3 is

better than [17]. The feasibility and accuracy of the proposed
method in practical operation are verified. In terms of the
overall diagnosis effect, the diagnosis effect of a single fault
is better than that of a complex fault. This is because the
information carried by the data collected by the single fault
is easy to identify and distinguish. Because its fault data
represent many features of fault, complex fault is prone to
misdiagnosis.

5. Conclusion

In traditional evidence reasoning and dimensionless indexes
combining fault diagnosis method, the diagnosis result is
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FIGURE 5: Diagnostic accuracy of each fault type in frame 2.

often wrong. This is largely due to the coincidence of the  different faults, in this paper, an improved evidence reasoning
dimensionless indicators of different fault data. Because the = method based on reliability regularization is proposed. The
reliability calculated based on dimensionless index is not  reliability regularization is mainly realized by calculating the
accurate when the dimensionless index overlaps between Gini correlation coefficient between data. For the reason that
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Gini correlation coeflicient has a good ability to judge the
nonlinear data, the regularized reliability value can better
reflect the relationship between the two groups of data and
obtain a more practical evaluation result. The experimental
results show that the improved reliability method is closer
to the actual fault situation and the diagnostic accuracy is
improved.
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