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Abstract

Abstract: With the advent of new image acquisition techniques and the emergence of high
resolution satellite systems, remote sensing data to be exploited have become increasingly rich
and varied. Their combination has thus become essential to improve the process of extracting
useful information related to the physical nature of the observed surfaces. However, these
data are generally heterogeneous and imperfect, which poses several problems in their joint
treatment and requires the development of specific methods. It is in this context that falls this
thesis that aimed at developing a new evidential fusion method dedicated to heterogeneous
remote sensing images processing at high resolution. In order to achieve this objective, we
first focus our research, firstly, on the development of a new approach for the belief functions
estimation based on Kohonen’s map in order to simplify the masses assignment operation of
the large volumes of data occupied by these images. The proposed method allows to model not
only the ignorance and the imprecision of our sources of information, but also their paradox.
After that, we exploit this estimation approach to propose an original fusion technique that will
solve problems due to the wide variety of knowledge provided by these heterogeneous sensors.
Finally, we study the way in which the dependence between these sources can be considered
in the fusion process using the copula theory. For this reason, a new technique for choosing
the most appropriate copula is introduced. The experimental part of this work is devoted to
land use mapping in case of agricultural areas using SPOT-5 and RADARSAT-2 images. The
experimental study carried out demonstrates the robustness and effectiveness of the approaches
developed in the framework of this thesis.

Keywords: Belief function theory, estimation, Kohonen’s map, heterogeneous data fusion,

optical and radar images, dependencies, copula theory.

Résumé : Avec l’avènement de nouvelles techniques d’acquisition d’image et l’émergence
des systèmes satellitaires à haute résolution, les données de télédétection à exploiter sont de-
venues de plus en plus riches et variées. Leur combinaison est donc devenue essentielle pour
améliorer le processus d’extraction des informations utiles liées à la nature physique des sur-
faces observées. Cependant, ces données sont généralement hétérogènes et imparfaites ce qui
pose plusieurs problèmes au niveau de leur traitement conjoint et nécessite le développement
de méthodes spécifiques. C’est dans ce contexte que s’inscrit cette thèse qui vise à élaborer
une nouvelle méthode de fusion évidentielle dédiée au traitement des images de télédétection
hétérogènes à haute résolution. Afin d’atteindre cet objectif, nous axons notre recherche, en
premier lieu, sur le développement d’une nouvelle approche pour l’estimation des fonctions de
croyance basée sur la carte de Kohonen pour simplifier l’opération d’affectation des masses des
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gros volumes de données occupées par ces images. La méthode proposée permet de modéliser
non seulement l’ignorance et l’imprécision de nos sources d’information, mais aussi leur pa-
radoxe. Ensuite, nous exploitons cette approche d’estimation pour proposer une technique de
fusion originale qui permettra de remédier aux problèmes dus à la grande variété des connais-
sances apportées par ces capteurs hétérogènes. Finalement, nous étudions la manière dont la
dépendance entre ces sources peut être considérée dans le processus de fusion moyennant la
théorie des copules. Pour cette raison, une nouvelle technique pour choisir la copule la plus
appropriée est introduite. La partie expérimentale de ce travail est dédiée à la cartographie de
l’occupation des sols dans les zones agricoles en utilisant des images SPOT-5 et RADARSAT-2.
L’étude expérimentale réalisée démontre la robustesse et l’efficacité des approches développées
dans le cadre de cette thèse.

Mots clés : La théorie des fonctions de croyance, estimation, la carte de Kohonen, fusion des

données hétérogènes, images optiques et radars, dépendances, la théorie des copules.
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Introduction

Mise en contexte

La grande variété des capteurs (optiques, radar et Lidar) installés sur les satellites ainsi que
l’amélioration rapide de leurs caractéristiques spatiales et spectrales ont permis l’acquisition
d’une multitude d’images présentant des données de résolution métriques et submétriques extrê-
mement riches et précises permettant d’atteindre un niveau de détails jamais atteint auparavant.
Avec l’avènement de telles images, le contenu d’information à exploiter s’est réellement densi-
fié au cours des dix dernières années. L’extraction des informations plus utiles et complètes liées
à la nature physique des surfaces observées est devenue donc de plus en plus convoitée par les
diverses applications de la télédétection. Néanmoins, le traitement joint de ces données pose des
problèmes particuliers et nécessite par conséquent des méthodes spécifiques. Cela est principa-
lement dû, d’une part, à leur hétérogénéité et, d’autre part, à leur nature imprécise, incomplète,
voire erronée.

Dans ce travail de thèse, nous nous sommes intéressés à l’élaboration d’une nouvelle ap-
proche crédibiliste pour la fusion des images de télédétection hétérogènes à haute résolution

1



Résumé étendu

(HR). Son application a été consacrée à la cartographie de l’utilisation du sol en utilisant des
images optiques et radar.

Contributions

Une évaluation de la contribution potentielle des théories de l’évidence à la modélisation et
à la fusion de données de télédétection hétérogènes pour concevoir une classification jointe a
été faite dans ce travail de recherche. D’un point de vue méthodologique, nous avons étudié la
possibilité de mettre en place de nouvelles techniques intervenantes dans les différentes phases
de la réalisation du processus de fusion, telle que la modélisation, l’estimation et la combinai-
son des croyances. Cela nous a conduits à proposer trois contributions innovatrices, qui seront
résumées dans les points suivants :

- Les approches classiques et génériques pour la construction des fonctions de masse pré-
sentent généralement une complexité de calcul élevée ce qui constitue un obstacle majeur
à leur application dans le cas d’images à HR contenant un volume important de données à
traiter. Nous définissons alors une nouvelle méthode d’estimation des fonctions de masse à
partir des cartes de Kohonen pour rendre cette tâche extrêmement rapide. Cette proposition
a aussi l’avantage de définir des valeurs de fonctions de masse pour les différentes formes
d’éléments focaux (singletons, ainsi que leurs unions et intersections).

- Notre deuxième contribution porte sur l’adaptation de cette méthode en vue d’une fusion
des données hétérogènes radar et optiques acquises à partir d’un paysage agricole. Le cadre
crédibiliste introduit est capable de traiter des données optiques complètes et partielles (c.-
à-d. manquantes en raison de la présence de nuages).

- Finalement, nous nous sommes intéressés principalement à la façon dont la dépendance
entre les sources (observations hétérogènes) peut être prise en compte dans le processus de
fusion. Pour ce faire, nous définissons une combinaison des croyances distinctes basée sur
la théorie des copules.

Rappel sur la théorie des fonctions de croyance

La théorie de Dempster-Shafer [1, 2] (connue aussi par la théorie des fonctions de croyance
(TFC)) est un cadre mathématique robuste permettant le traitement des connaissances impré-
cises et incertaines à la fois. Ce formalisme repose principalement sur la représentation de la
croyance d’une source d’information à travers une fonction de masse m, définie sur l’ensemble
de tous les sous-ensembles du cadre de discernement Θ, noté 2Θ, et à valeurs dans [0, 1]. For-
mellement, m est donnée par :

∑

A⊆Θ

m(A) = 1. (1)

Le cadre de discernement Θ est l’ensemble des réponses possibles au problème de fusion
à traiter. Il est composé d’hypothèses exhaustives et exclusives : Θ = {θ1, θ2, . . . , θN} =
⋃N

i=1{θi}. À partir de ce cadre de discernement, on peut construire le power set 2Θ en incluant
toutes les disjonctions d’hypothèses θi tel que θi ∪ θj ou θi ∪ θj ∪ θk...

2



Il existe d’autres fonctions pour coder la même information contenue dans une fonction de
masse m. La fonction de crédibilité bel(A) (appelée aussi fonction de croyance) représente la
croyance totale en A. Elle est définie par :

bel(A) =
∑

B⊆A,B 6=∅

m(B), ∀A ⊆ Θ. (2)

La fonction de plausibilité pl(A) quantifie le degré maximal de croyance qui pourrait poten-
tiellement être donné à A. Elle est définie par :

pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Θ. (3)

L’utilisation du critère du maximum de croyance ou de plausibilité pour la prise de décision
correspond aux stratégies les plus simples lorsque nous privilégions une recherche pessimiste
ou optimiste d’une solution, respectivement. Le maximum de la probabilité pignistique proposé
par Smets est considéré comme une alternative plus prudente. La probabilité pignistique est
établie pour tout A ∈ 2Θ, avec A 6= ∅ comme suit :

BetP (A) =
∑

B∈2Θ,B 6=∅

|B ∩ A|
|B| m(B), ∀A ⊆ Θ. (4)

Dans le cadre de TFC, plusieurs règles de combinaison ont été introduites pour l’agrégation
des croyances dans un contexte multi-sources. Historiquement, la règle de Dempster est la plus
ancienne. Soit deux sources d’information S1 et S2 émettant des avis représentés respectivement
par les fonctions de masse distinctes m1 et m2. Le résultat de leur combinaison par cette règle,
notée mDS

1,2 , est donné par la formule suivante :

mDS
1,2 (A) =

1

1 −KKK

∑

B∩C=A

m1(B) m2(C), (5)

où KKK =
∑

B∩C=∅ m1(B) m2(C) mesure le degré de conflit entre les fonctions de masse m1

et m2. Cette règle est conçue pour satisfaire l’hypothèse du monde fermé (m(∅) = 0)). Afin de
considérer les problèmes dans l’hypothèse du monde ouvert, la règle conjonctive qui permet la
fusion de sources d’information fiables sans aucune normalisation (KKK 6= 0) peut être utilisée :

m1 ∩©2(A) =
∑

B∩C=A

m1(B) m2(C). (6)

Si au moins l’une des sources combinées est fiable, Dubois et Prade [3] proposent l’utilisa-
tion de la règle disjonctive définie comme suit :

m1 ∪©2(A) =
∑

B∪C=A

m1(B) m2(C). (7)

Dans [4, 5], Dezert et Smarandache proposent une généralisation de la théorie initiale de
Dempster-Shafer désignée par le terme anglais Dezert-Smarandache Theory (DSmT) . Dans

3



Résumé étendu

leur approche, un raisonnement paradoxal a été introduit en annulant les contraintes d’exclu-
sivité imposées aux hypothèses et la redistribution de la masse conflictuelle aux ensembles
non vides en utilisant la règle de normalisation. L’idée principale de DSmt est de travailler sur
l’hyper-power set DΘ du cadre de discernement au lieu de 2Θ. Cet ensemble est défini comme
le treillis de Dedekind construit à partir du Θ avec les opérateurs ∩ et ∪. L’attribution des
croyances dans DSmT se fait moyennant la fonction de masse généralisée m définie sur DΘ et
à valeurs dans [0, 1] :

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1. (8)

Comme dans TFC, différentes règles de combinaison ont été proposées dans DSmT. Les
lecteurs intéressés pourraient se référer à [4] pour plus de détails sur certaines de ces règles.
Pour la prise de décision, la probabilité pignistique généralisée peut être utilisée :

GPT (A) =
∑

E∈DΘ

CM(E ∩ A)

CM(E)
m(E), ∀A ∈ DΘ, (9)

où CM(E) est la cardinalité de E, définie par Dezert et Smarandache comme le nombre
de parties disjointes du diagramme de Venn incluses dans E. La décision est alors prise par le
maximum de GPT .

Estimation des fonctions de masse pour la classification des
images de télédétection de grande taille

Dans cette section, nous présentons notre nouvelle méthode d’estimation des fonctions de
masse.

Carte de Kohonen

Il existe plusieurs versions de la carte auto-organisatrice de Kohonen (Connu aussi par le terme
anglais self organizing map (SOM)). Cependant, la philosophie de base est très simple et ef-
ficace [6]. L’algorithme SOM permet d’effectuer une projection non linéaire de données de
grandes dimensions (définies dans ❘p par exemple) dans un tableau à deux dimensions de
M × N nœuds (voir Fig. 1) [7].

Un vecteur de référence, également appelé vecteur de pondération, w(i, j) ∈ ❘p est associé
au nœud de position (i, j) avec 1 6 i 6 M et 1 6 j 6 N . Un vecteur d’entrée x ∈ ❘

p

est comparé à chaque w(i, j). La meilleure correspondance est définie comme sortie du SOM :
ainsi, les données d’entrée x sont mappées sur le SOM à l’emplacement (ix, jx) où w(ix, jx) est
le neurone le plus proche de x selon une métrique donnée. En pratique, la distance euclidienne
est généralement utilisée pour comparer x et w(i, j). Le nœud qui minimise la distance entre
x et w(i, j) définit le nœud correspondant le mieux (ou le neurone gagnant), et est désigné par
l’indice wx :

‖x − wx‖ = min
16i6M
16j6N

‖x − w(i, j)‖. (10)
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FIGURE 1 – Un schéma représentatif de la carte auto-organisatrice de Kohonen.

On peut également dire que l’SOM réalise une quantification non uniforme qui transforme
x en wx en minimisant la métrique donnée. Néanmoins, grâce à la phase d’entraînement les
neurones w sont situés sur la carte en fonction de leur similarité. Alors, en considérant les
neurones w(i, j) situés pas trop loin du neurone gagnant wx, la distance dans ❘p entre x

et w(i, j) ne sont pas nettement différents de celle entre x et wx. Cela signifie que dans le
voisinage de wx sur la carte, se trouvent les neurones gagnants des voisins (dans ❘p) de x. Par
conséquent, une classe dans ❘p est projetée dans la carte au même endroit, restant homogène.
De plus, quelle que soit la forme initiale de la classe dans l’espace caractéristique ❘p, la classe
projetée est fortement susceptible d’être de forme isotrope sur la carte.

Construction des fonctions de masse

L’affectation intelligente des masses proposée necéssite l’entainement d’une carte de Kohonen à
partir des observations x ∈ ❘p à classer et une classification initiale pour définir leurs centres de
classe. Donc, deux types de connaissances sont manipulés (voir Fig. 2) pour la construction des
croyances : d’une part les observations initiales x et les centres de classe {C1, C2, . . . , CK} dans
❘

p et, d’autre part les neurones gagnants wx et les centres de classe projetés {wC1 , . . . , wCK
}.

• La masse de chaque hypothèse simple est définie directement sur la carte par :


















m(x ∈ θk) ≃ 1 si wx=wCk

m(x ∈ θk) ≃ dmap(wx, wCk
)−1

∑K
ℓ=1 dmap(wx, wCℓ

)−1
sinon,

(11)

où k = 1, 2, . . . , K et dmap(·, ·) représente la distance utilisée sur la carte de Kohonen.
Elle est principalement basée sur la norme euclidienne et elle utilise l’index qui localise
les deux vecteurs sur la carte :

dmap(w1, w2) =
√

(iw1 − iw2)2 + (jw1 − jw2)2
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C1

C2

C3

x

wC1

wC2

wC3

wx

Espace d’entrée ❘p {1, . . . , M} × {1, . . . , N} SOM

FIGURE 2 – Observations dans l’espace d’entrée et leurs projections dans la carte de Kohonen.
Notez que les neurones wx et wCk

peuvent être localisés sur la carte grâce à leur indice de
localisation (m, n) ou dans ❘p avec leur valeur p-composants.

si w1 (resp. w2) est situé à la position (iw1 , jw1) (resp. (iw2 , jw2)) dans la carte.

• Comme la définition des disjonctions d’hypothèses exprime l’absence de discrimination,
leur masse est donc définie directement dans l’espace d’entrée. Ensuite, elle est lié à un
effet d’échelle entre l’échantillon x à considérer et les deux classes apparentées θk et θℓ.

m(x ∈ θk ∪ θℓ) ≃ 1 − tanh(βz) (12)

avec

z =
d❘p(Ck, Cℓ)

d❘p(x, Ck) + d❘p(x, Cℓ)
0 < k, ℓ 6 K, k 6= ℓ.

où β est un paramètre qui représente le niveau d’ambiguïté et d❘p(·, ·) est la distance dans
❘

p. Elle peut être définie par la norme euclidienne L2 (❘p), mais aussi par une perspective
spectrale, telle que la cartographie par l’angle spectral (Spectral Angle Mapper (SAM))
ou la divergence d’information spectrale. Elle peut également être basée sur la divergence
de Kullback-Leibler ou l’information mutuelle, en traitant des données radar [8].

L’équation (12) peut être expliquée de cette maniére : si un exemple x est très proche de
son centre de classe associé Ck en comparaison avec tout autre centre de classe Cℓ, alors
il n’y a pas d’ambiguïté dans x appartenant à la classe θk. Si ce n’est pas le cas (c-à-d. si
les distances entre x et les centres de classes Ck et Cℓ sont de la même échelle), alors il
est difficile de discriminer x de la classe θk ou θℓ.

• La masse de l’ignorance totale est basée sur la distance d’un échantillon x à la carte. Nous
considérons que l’évaluation de la masse d’une observation tombe dans l’ignorance si sa
distance à la carte est beaucoup plus importante que la distance de son centre de classe
liée à la carte. Donc, elle peut être donnée par :

m(x ∈ Θ) ≃ 1 − min

(

d❘p(x, wx)

d❘p(Cx, wCx
)
,
d❘p(Cx, wCx

)

d❘p(x, wx)

)

(13)

où Cx est le centre de la classe de x et wCx
est sa projection sur la carte.
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• La fonction de masse finale doit respecter la contrainte de l’équation (1), donc une étape
de normalisation doit être appliquée.

La performance de notre approche de construction des masses est comparée à celle de EV-
CLUS [9] et de ECM [10] en utilisant l’ensemble de données d’UCI (University Californie
Irvine). Sept jeux de données (voir tableau 1) ont été pris en compte dans ce test. Comme le
montre le tableau 2, l’approche basée sur SOM donne des résultas similaires aux deux autres
algorithmes. On peut aussi noter que plus le nombre d’échantillons est élevé, plus elle est ra-
pide. Donc, elle semble être une alternative efficace pour gérer les grands volumes de données
pour des fins de classification. En fait, la distance dans ❘p est plus exigeante que dans ❘2. De
plus, la forme de la classe dans la SOM est plus isotrope, de sorte qu’aucune considération sur
la forme de la variété n’est à considérer. Au contraire, ECM doit se soucier de l’écart-type des
classes pour construire la distribution de masse.

TABLE 1 – Caractéristiques des bases de données UCI utilisés pour la comparaison.

Base de données Caractéristiques Classes Échantillons
Banknote authentication 4 2 1372
Pima Indians Diabetes 8 2 768

Seeds 7 3 210
Wine 13 3 170

Statlog (Landsat Satellite) 36 6 6435
Statlog (Image Segmentation) 19 7 2130

Synthetic control chart time series 60 6 600

TABLE 2 – Résultats de la classification avec une estimation des masses par EVCLUS, ECM
et l’approche proposée.

Base de données
Banknote

Pima
Seeds Wine

Statlog Statlog Synthetic control
Indians (Landsat (Image chart

authentication Diabetes Satellite) Segmentation) time series

EVCLUS
61,44 % 61,84 % 74,76 % 60,58 % 47,03 % 42,01 % 64,0 %

1172,2 sec 181,7 sec 34,3 sec 6,7 sec 5857 sec 3657 sec 370 sec

ECM
61,80 % 65,88 % 90,0 % 74,11 % 69,62 % 55,49 % 72,5 %
3,4 sec 3,2 sec 0,3 sec 0,9 sec 480 sec 161 sec 6,9 sec

Notre
approche

79,44 % 71,48 % 90,95 % 73,52 % 69,24 % 67,18 % 83,5 %
8,6 sec 6,7 sec 5,8 sec 5,9 sec 163 sec 84 sec 8,0 sec

Des comparaisons avec des méthodes proposées dans la littérature, détaillées dans la partie
écrite en anglais, montrent que notre approche permet de construire les fonctions de masse des
images de télédétection 150 fois plus rapidement avec des résultats équivalents.

Classification jointe des images de télédétection hétérogènes

De nos jours, les données satellitaires sont de plus en plus accessibles, ce qui nécessite l’élabo-
ration de nouvelles méthodes de traitement intelligent permettant d’extraire des connaissances
de haut niveau issues de ces diverses sources d’information. Dans ce contexte, la fusion a mainte
fois montré son intérêt dans la résolution de plusieurs problèmes du monde réel en permettant
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Résumé étendu

de profiter au mieux des avantages de chaque source d’information et de surmonter les limita-
tions individuelles de chacune d’elles. Malgré ces avantages, la fusion a été toujours considérée
comme une tâche très difficile pour plusieurs raisons y compris, mais non limitée à la complexité
du processus de combinaison et l’hétérogénéité des données à agréger. Ce travail introduit une
nouvelle approche crédibiliste pour la fusion des données dérivées de capteurs hétérogènes op-
tiques et radar qui est considérée comme l’un des problèmes les plus complexes dans le domaine
de la télédétection. Nous nous intéressons particulièrement à la classification jointe des images
acquises par les satellites SPOT-5 et RADARSAT-2 dans une zone agricole.

IMS

ISAR

IκSAR

CMS⊕κSAR

SOMMS SOMκSAR|MS

mMS mSAR

m′
MS m′

SAR

mMS⊕κSAR

max BetPMS⊕κSAR

FIGURE 3 – Le schéma général de l’approche proposée.

L’approche proposée décrite dans la figure 3 est principalement constituée des étapes sui-
vantes : premièrement, les descripteurs les plus représentatifs sont extraits à partir de chaque
type de donnée d’entrée afin de modéliser les sources d’information utilisées. Puisque nous ne
pouvons pas faire confiance à l’information provenant des pixels radar isolés de en raison de la
présence du bruit de chatoiement caractérisant ce type d’images, nous optons pour l’utilisation
de descripteurs locaux de texture. Notre vecteur de caractéristiques est composé des quatre pre-
miers cumulant (µ, σ, β1, β2), associés respectivement à (la moyenne, l’écart type, l’asymétrie
et l’aplatissement) et estimés à partir de l’image radar ISAR moyennant d’une fenêtre d’ana-
lyse. De plus, le moment inverse f5 et la somme moyenne f6 extraits en utilisant les mesures
de texture de Haralick ont été aussi utilisés pour analyser la relation spatiale entre les pixels
dans le même voisinage spatial. La combinaison de ces descripteurs génère une image IκSAR à
6 bandes, fournissant l’information locale notée κ = (µ, σ, β1, β2, f6, f5) qui sera considérée
comme l’observation extraite à partir de la source d’information radar. Les p bandes de l’image
multispectrale représente l’observation optique, notée IMS.

Étant donné que le processus de fusion est confronté à différents types de caractéristiques, la
classification jointe de données hétérogènes doit garantir que les classes sont définies de manière
homogène à partir des observations optiques et radar. Ainsi, une première classification jointe
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grossière CMS⊕κSAR est effectuée pour lier les signatures spectrales de IMS et les descripteurs de
texture radar de IκSAR . Dans cette étude, un simple classificateur K-moyennes est utilisé avec un
facteur pour ajuster la dynamique relative entre les deux observations.

Ensuite, le processus de fusion est appliqué à chaque pixel par la théorie de Dempster-
Shafer, qui nécessite l’estimation des fonctions de masse mMS et mSAR des sources d’infor-
mation considérées IMS et IκSAR , respectivement. Pour ce faire, l’approche basée sur Kohonen
(détaillé ci-dessus) est appliquée, car il a montré sa capacité à gérer les grandes données de
télédétection [11]. Les fonctions de masse provenant de l’information multispectrale sont esti-
mées en se basant uniquement sur l’information obtenue à partir du capteur optique (considéré
comme une source d’information fiable et complète) pour former SOMMS, tandis que celles
associées à la source radar sont estimées tout en tenant en considération l’information optique.
En effet, un entrainement hybride asservi de la carte de kohonen a été proposé pour construire
SOMκSAR|MS. Soit x = {x1, x2, . . . , xp} ∈ ❘p et y = {y1, y2, . . . , yq} ∈ ❘q les deux observa-
tions hétérogènes fournies par les deux capteurs IMS et IκSAR . Les échantillons d’entrée de la
carte auto-organisatrice hybride proposée sont effectués à partir des observations co-localisées
z = (x, y) avec lesquelles une distance doit être associée. Cette distance est une fusion des 2
métriques à appliquer sur chaque type de données initiales :

d(z, z′) = d❘p(x, x′) + αd❘q(y, y′), (14)

avec z = (x, y) et z′ = (x′, y′) étant 2 échantillons dans ❘p+q. Le paramètre α est un
facteur d’étalonnage croisé, qui tient compte de la dynamique relative entre x et y.

Selon cette définition d’un espace de caractéristiques hybride et ses métriques connexes, il
est possible d’effectuer un entrainement hybride asservi où les vecteurs de pondération sont dé-
finis avec wz = (wx, wy) ∈ ❘p+q. Cet entrainement commence par une formation SOM clas-
sique des données optiques uniquement, et donne SOMMS. Ensuite, les neurones de SOMMS sont
concaténés par des composants q pour s’adapter au❘p+q du traitement joint. L’entrainement de
cette carte hybride commence, mais seuls les derniers q-composants (dédiés aux données radar)
sont modifiés. Dans ce cas, la partie optique est conservée, tandis que la partie radar suit la
partie optique à l’emplacement des classes sur la carte (emplacements des neurones gagnants
wCk

).
Finalement, pour gérer l’incertitude causée par l’hétérogénéité des données utilisées, cer-

tains opérateurs d’affaiblissement sont appliqués avant l’étape de fusion pour donner m′
MS et

m′
SAR. La classification finale de la couverture terrestre est obtenue à partir de la fonction de

masse combinée mMS⊕κSAR en appliquant le maximum de la probabilité Pignistic BetPMS⊕κSAR .
L’approche proposée a été expérimentée sur une zone d’étude qui couvre une partie de la

région de la Beauce, située au sud-ouest de Paris, en France. Cette région est connue pour
sa productivité agricole élevée. Elle est aussi essentiellement caractérisée par ses très grands
champs dominés par le colza et la céréale (blé, orge, maïs). Une image multispectrale acquise
par le satellite français SPOT-5 lors de l’expérience Take-5 et une image radar acquise par le
satellite canadien RADARSAT-2 en mode ultra-fin ont été utilisées (les figures 4-(a) et 4-(b)).
Les deux images couvrent une superficie d’environ 11.5 × 9km2 et ont les caractéristiques
suivantes : l’image SPOT-5 est de taille 1145 × 903 pixels, une résolution spatiale de 10m, et
a quatre bandes (vert (G), rouge (R), Proche Infrarouge (NIR) et moyen Infrarouge (MIR)).
L’image RADARSAT-2 est composée de 3850 × 3010 pixels, avec chaque pixel ayant une
résolution spatiale de 3m. En ce qui concerne l’image radar, seuls les canaux qui correspondent
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Résumé étendu

aux polarisations HH et HV sont disponibles. Cependant, seule la polarisation HH a été utilisée
dans ce travail par ce qu’elle est mieux adaptée pour la caractérisation des régularités dans la
texture des régions agricoles que la polarisation HV.

(a) Composition colorée de l’image SPOT5 acquise le 20 avril
2015. c©CNES

(b) Image RADARSAT-2 acquise le 23 avril 2015. RADARSAT-2
de données et produits c©MacDONALD, DETTWILER et

ASSOCIATES LTD – Tous droits réservés

FIGURE 4 – L’image multispectrale (a) et l’image radar (b) acquises sur la région Beauce en
France.

Les résultats de la figure 5, dont l’analyse est détaillée dans la partie écrite en anglais,
montrent tout l’intérêt de notre approche.

FIGURE 5 – Résultats de la classification jointe calculés par l’application du maximum de la
probabilité pignistique sur toutes les classes simples.
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Fusion des fonctions de croyance consonantes basée sur les co-
pules

La fusion des données de télédétection optiques et radar est une tâche importante et difficile
pour de nombreuses applications telles que la classification multisources, non seulement en rai-
son de la nature très hétérogène des informations qu’ils contiennent, mais aussi des dépendances
(corrélation ou information mutuelle) existantes entre les observations. Dans cette partie, nous
nous sommes intéressés particulièrement aux problèmes liés à la fusion des sources d’informa-
tion dépendantes dans le cadre de la théorie de l’évidence en utilisant les copules [12] connus
par leur capacité de capturer et de modéliser les structures de dépendance des distributions
jointes. L’idée de base était de mettre en évidence la relation entre les ensembles aléatoires et
les croyances afin d’étudier la TFC dans le cadre de la théorie des probabilités, mais avec des
variables aléatoires ayant des ensembles comme valeurs.

Suite à cette étude, deux opérateurs de combinaison ont été introduits pour réaliser la fu-
sion conjonctive et disjonctive des croyances dépendantes codées par les fonctions de masse
consonantes1.

Combinaison conjonctive basée sur les copules

Soit m1 et m2 deux fonctions de masse consonantes et normalisées2 définies respectivement
dans les cadres de discernement Θ1 et Θ2, leur combinaison suivant la règle conjonctive basée
sur la copule (CRC) s’écrit de la manière suivante :

mCRC
1,2 (A) =

∑

A1∩A2=A

mC(A1, A2), ∀A1 ⊆ Θ1, A2 ⊆ Θ2, (15)

où mC(A1, A2) =
∑

B1⊆A1,B2⊆A2
(−1)|A1\B1|+|A2\B2|C(bel1(A1), bel2(A2)) est la masse jointe

calculée avec la fonction copule C qui résume le mieux la structure de dépendance existante
entre les croyances marginales.

Combinaison disjonctive basée sur les copules

Soit m1 et m2 deux fonctions de masse consonantes et normalisées définies respectivement dans
les cadres de discernement Θ1 et Θ2, leur combinaison suivant la règle disjonctive basée sur la
copule (DRDC) s’écrit de la manière suivante :

mDRDC
1,2 (A) =

∑

A1∪A2=A

mD(A1, A2), ∀A1 ⊆ Θ1, A2 ⊆ Θ2 (16)

où mD(A1, A2) =
∑

B1⊆A1,B2⊆A2
(−1)|A1\B1|+|A2\B2|bel1(A1)+bel2(A2)−C(bel1(A1), bel2(A2))

est la masse jointe calculée avec la fonction copule C qui résume le mieux la structure de dé-
pendance existante entre les croyances marginales.

1Une fonction de masse m est dite consonante si ces éléments focaux (A1 ⊆ Θ ayant une croyance non nulle)
sont emboités.

2Une fonction de masse m est dite normalisée si m(∅) = 0.
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Il reste donc maintenant à faire le bon choix de la copule C utiliée dans ces règles de fu-
sion. Habituellement, le choix de la copule dépend de données agrégées. En effet, une copule
particulière peut convenir mieux à un ensemble de données qu’à un autre. Au meilleur de nos
connaissances, il n’existe pas dans la littérature une méthode efficace pour sélectionner la co-
pule. Généralement, l’utilisation de la copule paramétrique est recommandée, car elle peut être
adaptée aux données existantes en estimant correctement ses paramètres. Néanmoins, rien ne
peut prouver que ce choix de paramètres garantit la convergence de la copule à la structure
réelle de la dépendance sous-jacente des données. Dans ce travail, nous avons choisi d’utiliser
la famille des copules archimédiennes qui sont capables de caractériser différentes gammes de
dépendances. Le choix de la copule archimédienne la plus adéquate aux observations fusionnées
a été fait avec l’interprétation du graphique Kendall plot [13].
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(a) Base de données 1 (τ = 0.2880)
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(b) Base de données 2 (τ = 0.5266)
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(c) Base de données 3 (τ = 0.4420)

FIGURE 6 – Base des données générées.

Les règles de fusion proposées ont été expérimentées sur trois ensembles de données géné-
rées (figure 6) avec différents vecteurs de moyennes et matrices de covariance pour faire varier
le degré de dépendance entre les données de test. Comme montré par les résultats du tableau 3
qui sont commentés avec plus de détaille dans la partie rédigé en anglais, les opérateurs de
fusion introduits présentent des résultats très prometteurs lorsque l’hypothèse d’indépendance
n’est pas vérifiée comparés avec des approches classiques.
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TABLE 3 – Résultats de la classification des données simulées.

Règle de Valeur de dépendance entre les sources
combinaison (Calculé avec le taux de Kendall [14])

τ = 0, 2880 τ = 0, 4423 τ = 0, 5309

CRC eq. (15) 88,38% 93,58% 92,56%
La règle prudente [15] 88,33% 93,36% 91,51%

La règle conjonctive eq. (6) 88,33% 93,36% 91,51%

DRDC eq. (16) 85,64% 89,31% 87,47%
La règle hardie [15] 74,16% 77,31% 76,58%

La règle disjonctive eq. (7) 74,56% 78,33% 75,04%

Conclusion et perspectives

Dans le cadre de cette thèse, nous avons développé, en premier lieu, une nouvelle méthode de
construction des fonctions de masse. L’approche proposée a la particularité de traiter le grand
volume de données caractérisant les images de télédétection acquise à haute résolution, ainsi
que les données acquises en utilisant d’autres types de capteurs. Une série de comparaisons
avec des approches classiques d’estimation des croyances montre que l’utilisation de la carte
de Kohonen dans ce type de problème produit des résultats similaires dans un temps plus rai-
sonnable. Ensuite, nous avons proposé une nouvelle méthode crédibiliste de fusion des données
hétérogènes avec comme application principale la classification jointe des données optiques et
radar. C’est une partie qui fait suite à notre technique d’estimation des fonctions de masse à
partir d’observations réelles. L’application de la technique proposée sur un couple d’images
SPOT5 et RADARSAT2 acquises à la même date et sur une zone de test qui se trouve dans une
région à prédominance agricole montre des résultats très prometteurs en termes de précision de
classification et de reconstruction des données optiques manquantes (couverture nuageuse).

De plus, nous avons également introduit deux opérateurs de fusion qui prennent en consi-
dération les dépendances (corrélation ou information mutuelle) existant entre les connaissances
à combiner. Les résultats dégagés lors de la classification des données synthétiques sont très
encourageants.

Comme perspective, l’amélioration des méthodes proposées est envisageable à plusieurs ni-
veaux. Par exemple, l’introduction de conjonctions entre classes au sein de DSmT lui confère
une richesse et une flexibilité particulières pour modéliser les imperfections et le paradoxe des
données. Ainsi, il sera intéressant d’adapter notre approche de fusion de données hétérogènes
au cadre du DSmT afin de bénéficier de la sémantique des conjonctions de classe dans la clas-
sification jointe des sources très hétérogènes présentant un fort conflit.

La combinaison de fonctions de masse consonantes issues de sources dépendantes porte
uniquement sur la fusion de deux sources d’information. L’extension à la fusion de 3 sources ou
plus apporte de nouveaux problèmes à résoudre. Aussi, il serait intéressant de l’expérimenter
dans le contexte de la classification jointe des données réelles de télédétection.
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1.1 Context and problem statement

Since the discovery that the Earth is round some 5 centuries ago, man has not stopped dream-
ing of photographing the Earth from space. But it was only in 1957 that he realized his dream
with the launch of the first artificial satellite that allowed him to acquire the first images of the
Earth. Since then, no fewer than 10,000 satellites have been launched into orbit in order to meet
scientific, military and economic needs... Earth observation is one of its important applications
and is considered as one of the most active fields of research which finds its interest in several
applications such as major disasters management, urban areas extent and tropical forests de-
forestation monitoring, to name a few. The wide variety of sensors installed on these satellites
(optical, radar and lidar) and the rapid improvement of their spatial and spectral characteristics
have resulted in extremely rich and accurate data with metric and sub-metric resolution, a level
of detail never reached before. However, due to the enormous amount of satellite data acquired
at this high resolution, increasingly redundant and complementary data are becoming available
which complicates their interpretation and extraction of useful information.

Despite the wide variety of existing sensors today, they can be grouped into two main fami-
lies: 1 - passive sensors capable of recording natural energy as the solar radiation reflected from
the earth’s surface (available only when the sun illuminates the Earth) 2 - active sensors which,
unlike passive sensors, have their own source of illumination and have the advantage of pene-
trating the clouds and therefore acquiring images in all weather conditions during the day or the
night. These different modes of observation are not sensitive to the same information and there-
fore provide complementary and completely heterogeneous knowledge. Indeed, radar sensors
provide information on the roughness and moisture content of the soil which are important pa-
rameters often imperceptible by optical sensors. On the other hand, optical sensors, incapable
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of penetrating through clouds, have the advantage of producing easy to interpret information
compared to radar images, which makes these two sensors two relevant and complementary
sources of information.

The use of satellite data in general and the data resulting from their fusion in particular is
increasingly propelled by the various applications of remote sensing. It aims at extracting more
complete information and truthfully reflecting reality using the different discriminatory ele-
ments of these sources of information. However, their joint treatment poses particular problems
and therefore requires specific fusion methods that take into consideration this heterogeneity.
This is mainly due to the imprecise, incomplete, and even erroneous nature of these data. More-
over, the noise present in these images arises principally from the complex process of satellite
images formation and the radiometric, geometric and atmospheric distortions that alter the con-
tent of these images, produces ambiguous and difficult to classify areas. This generates inaccu-
rate and uncertain data sources and makes the merging of these data a difficult task. It should
also be noted that with the increase in the spatial resolution of these sensors, the sensitivity to
the acquisition conditions becomes more acute and the acquired data becomes more and more
heterogeneous, which complicates the fusion process.

Several formalisms have been proposed in the literature to model the information provided
from a sensor in order to use it in the fusion process, among them we cite: probabilistic Bayesian
methods, fuzzy set theory [16], possibilities theory [17–19] and the belief function theory first
introduced by Dempster [1], then formalized by Shafer [2]. This last theory is particularly inter-
esting because it proved to have a significant advantage over all other probabilistic approaches
in terms of processing heterogeneous information both imprecise and/or uncertain stemming
from very varied sources. Furthermore, it can deal with epistemic or subjective uncertainty (i.e.,
uncertainty resulting from imperfect knowledge) as well as stochastic or objective uncertainty
(i.e., uncertainty resulting from data heterogeneity) [20]. The initial theory was modified and
ameliorated on several occasions, for example through the work of Dezert-Smarandache [5], a
paradoxical reasoning has been proposed.

It is in this context that this work aims at proposing a new evidential method for fusing
optical and radar heterogeneous data acquired as High Resolution (HR) remote sensing images
in order to improve the joint classification of the studied zones (agricultural areas in our case).
The described method must be able to deal with complete optical data as well as missing optical
data due to the presence of clouds and/or shadows.

1.2 Objectives and contributions

To meet the general objectives of this thesis, three main axis of research have been fixed:

- Model the different forms of imperfections (imprecision, uncertainty, ambiguity or hesita-
tion between classes) and paradoxes (mixed classes) in the context of remote sensing data
acquired using different modalities. Although several methods for estimating mass func-
tions already exist in the literature and are able to perform this task in part, their temporal
complexity remains a major obstacle to their application in the case of HR images that
contain a large volume of data to be processed.

16
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- Propose a joint classification method for the optical/radar data. The process in question
should benefit from the proposed estimation method to construct the mass functions of the
heterogeneous data provided by these two types of sensors.

- Model dependencies that can exist between the sources of information during the fusion
process. This step is very important to derive a meaningful result. Indeed, since we deal
with observations of the same scene, evidences should not be considered as statistically
independent.

Methodologically, each of these axes refers to one of the main contributions of our thesis.
In the first axis, we propose a new approach for constructing mass functions in a reasonable
time from large images. The innovative aspect of this method comes from the fact that we have
adopted a geometric viewpoint by projecting the initial representation space of the images into
a two-dimensional space, using Kohonen’s map in order to simplify the assignment operation
of masses for any possible conjunction and/or disjunction of hypotheses.

In the second axis, we propose an original method that aims at tackling the problem of data
fusion of heterogeneous sensors such as radar and optical images. Its application focuses on
the joint classification of farming landscape images. To this end, Kohonen’s unsupervised map
classification framework is first used to provide an effective way of handling heterogeneous
data, to restore missing parts of optical data and also to estimate the mass functions of these
sources of information. Then, some credal discounting techniques from the literature are ap-
plied for modelling and handling uncertainty at the pre-fusion phase, in a bid to account for the
reliability of the information sources used.

Several rules have been proposed to combine dependent sources of information in the belief
function theory. In the third axis, we are particularly interested in approaches which model the
dependence using copula theory. In this context, we propose new conjunctive and disjunctive
combination rules based on copulas to fuse consonant belief functions. Also, a novel technique
for choosing the copula that allows correctly this process is introduced.

The content of this thesis is mainly based on the published papers. Table 1.1 gives the
mapping between these publications and the thesis chapters.

1.3 Organization

After this introductory part, the rest of this dissertation is organized as follows:

- The first chapter presents a brief bibliographic overview of the credibilist theories. We
explain in particular the set of tools allowing representing and combining imperfect infor-
mation, as well as decision-making in the framework of belief functions and plausible and
paradoxical reasoning theories.

- The second chapter details our contribution regarding the estimation of mass functions us-
ing Kohonen’s map. The proposed method was compared with the state-of-the-art Basic
Belief Assignment (BBA) techniques on a benchmark database and was applied to re-
mote sensing data in the context of image classification. Experimentation shows that our
approach gives accurate and reliable results compared to other methods described in the
literature, with an ability to handle a large amount of data.
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Table 1.1: Contributions of this thesis.

Title Conference or Journal Reference Chapter

Kohonen’s map approach for
the belief mass modeling

IEEE Transactions on Neural
Networks and Learning Sys-
tems (TNNLS), 2016

[21] 3

The Kohonen map for credal
classification of large multi-
spectral images

IEEE International Geo-
science and Remote Sensing
Symposium (IGARSS), 2014

[22] 3

On the estimation of mass
functions using self organiz-
ing maps

Belief Functions: Theory and
Applications - Third Interna-
tional Conference (BELIEF) ,
2014

[11] 3

Kohonen-based credal fusion
of heterogeneous data: ap-
plication to optical and radar
joint classification with miss-
ing data

IEEE Transactions on Geo-
science and Remote Sensing
(TGRS), 2016

[23] 4

The Kohonen map for credal
fusion of heterogeneous data

IEEE International Geo-
science and Remote Sensing
Symposium (IGARSS), 2015

[24] 4

Copulas-based fusion of con-
sonant belief functions in-
duced by dependent sources
of evidences

Knowledge Based Systems,
2017

[25] 5
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1.3. Organization

- The third chapter details our contribution concerning the fusion of the optical and radar
heterogeneous remote sensing data. The experimental section was dedicated to the land
cover classification of the Beauce region in France.

- The fourth chapter is devoted to modelling evidence dependency through the copula theory
during the knowledge fusion step. We first describe how copula can be extended in belief
function theory and then we introduce our new copula-based rules. To prove the advan-
tage of the latter, a comprehensive experimental study is finally carried out using some
benchmark database and simulated Gaussian data.

- A general overview of the work proposed in this thesis and some prospects scheduled for
our future works will be exposed in the last chapter.
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2.1 Introduction

When it comes to exploit the redundancy and the complementarity of knowledge stemming from
very varied sources to give a unique representative information, Dempster-Shafer Theory [1,2],
also known as evidence theory or belief function theory, is considered as an appealing formalism
in information fusion domain. Indeed, it offers a robust mathematical framework that allows
the processing of both imprecise and uncertain knowledge. Recently, a series of modifications
of this theory was suggested, for example through the work of Dezert-Smarandache [4, 5], a
paradoxical reasoning has been proposed for dealing with conflicting data sources. The basic
concepts of these two credibilist theories are presented in this chapter. The aim is not to give an
exhaustive description but to explain some notions in order to lay a foundation for the following
chapters.

The remaining of this chapter is structured in two main sections. The first section 2.2 de-
scribes the mathematical foundations allowing the representation of imperfect information, their
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Chapter 2. Credibilist fusion frameworks

manipulation and decision-making in belief function theory. It also recalls the limits of this for-
malism. The second section 2.3, presents a short introduction to Dezert-Smarandache theory.

2.2 Basic concepts of Dempster-Shafer Theory (DST)

This section reviews the basic concepts of belief function theory that contributed to the devel-
opment of the work presented in this thesis.

2.2.1 Representation of information

2.2.1.1 Frame of discernment

Modelling a fusion problem by DST is mainly based on the definition of the frame of discern-
ment. In general, this frame is denoted by Θ = {θ1, θ2, . . . , θN} =

⋃N
i=1{θi} and it is consisting

of N elements interpreted as hypotheses or propositions. Those elements represent the set of
possible answers of the fusion problem under concern and must be:

- Exhaustive: i.e., at least one of the answers θi has to be true.

- Exclusive: i.e., the true answer is necessarily unique, θi ∩ θj = ∅, ∀i 6= j.

The constraint of exhaustiveness guarantees that the frame of discernment contains all the
possible solutions and is called, in Shafer’s model, the closed-world assumption [26]. However,
if this condition is not met, Θ is assumed to be incomplete. In such case, we speak about the
open-world assumption [27].

From the frame of discernment, a power set denoted 2Θ can be built, it includes all the
subsets A of Θ, more precisely, one has:

2Θ = {A, A ⊆ Θ} = {∅, θ1, θ2, . . . , θN , θ1 ∪ θ2, . . . , Θ}.

This set serves to allocate parts of belief not only to singleton hypothesis of Θ but also for
all possible disjunctions of these hypotheses. This belief can be presented through the mass
function defined in the following section.

2.2.1.2 Mass function

The belief of a given source of information (sensor, agent, expert, classifier ...) on imperfect
observation is represented as a mass function m, also called Basic Belief Assignment (BBA).
Formally, m is the mapping from the power set of Θ to the interval [0, 1] such that:

∑

A⊆Θ

m(A) = 1. (2.1)

The mass of A, denoted m(A), expresses the degrees of belief committed specifically to A
that cannot be assigned to any strict subset of A, given the current state of knowledge. Subsets
A of Θ verifying m(A) > 0 are called focal sets of m. It should be noted that if ∅ is not a focal
set, m is said to be normalized. This condition was originally imposed in the initial Shafer’s
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model [2], but it may be relaxed in the transferable belief model introduced by Smets in [27]. In
such a case, the mass m(∅) is used for representing the conflict between sources. For instance,
the case m(∅) = 1 corresponds to a total conflict [28].

2.2.1.3 Special classes of mass functions

Definitions of mass functions that benefit from specific denominations in the framework of
belief function theory are given in this section. Table 2.1 gives an example of each men-
tioned particular mass functions on a frame of discernment composed of three hypotheses
Θ = {θ1, θ2, θ3}.

Definition 1. Subnormal mass function

A subnormal mass function is a function such that ∅ is a focal set, i.e., m(∅) > 0.

Definition 2. Vacuous mass function

A mass function is said to be vacuous or of total ignorance if Θ is the only focal set, i.e.,
m(Θ) = 1.

Definition 3. Dogmatic mass function

A mass function is said to be dogmatic if Θ is not a focal set, i.e., m(Θ) = 0.

Definition 4. Categorical mass function

The categorial mass function is a non-vacuous mass function that has only one focal set

A ⊆ Θ, i.e., m(A) = 1 and m(B) = 0, ∀B 6= A.

- If A is one of the singletons θi of Θ, the knowledge is said to be certain and precise.

- Otherwise (i.e., A is a disjunction of hypotheses), the knowledge is said to be certain and

imprecise.

Definition 5. Bayesian mass function

A mass function is said to be bayesian if all its focal sets are singletons of Θ:







m(θi) ≥ 0, ∀θi ∈ Θ,

m(A) = 0, ∀A ∈ 2Θ \ θi.

In such case the mass function m is equivalent to a probability distribution.

Definition 6. Consonant mass function

The consonant mass function is a function that have nested focal sets.

Definition 7. Simple mass function

A mass function is said to be simple if it has at most two focal sets and, Θ being included:















m(A) = 1 − w, ∀A ⊂ Θ,

m(Θ) = w,

m(B) = 0, ∀B ∈ 2Θ \ {A, Θ},

where w ∈ [0, 1] represents the weight of the ignorance of the simple mass m. Commonly, this

mass is denoted Aw.
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Definition 8. The negation of a mass function

The negation m of a mass function m is defined as the BBA verifying m(A) = m(A),
∀A ⊆ Θ where A = Θ \ A being the complement of A in Θ.

Table 2.1: Example of some special classes of mass functions where the conditions imposed
by their definitions are putted in boldface.

Mass function ∅ θ1 θ2 θ1 ∪ θ2 θ3 θ1 ∪ θ3 θ2 ∪ θ3 Θ

Subnormal 0.44 0.22 0.08 0.05 0.05 0.02 0.04 0.1

Dogmatic 0.11 0.22 0.1 0.1 0.37 0.07 0.03 0

Vacuous 0 0 0 0 0 0 0 1

Categorical 0 0 0 0 0 1 0 0

Bayesian 0 0.4 0.2 0 0.4 0 0 0

Consonant 0 0 0.8 0.1 0 0 0 0.1

Simple 0 0.4 0 0 0 0 0 0.6

2.2.1.4 Other functions to represent information

There exists other equivalent representations or formulations of the information encoded by the
mass function m. These are the notions of belief bel (also known as credibility), plausibility pl,
commonality q and implicability b.

Credibility function

The belief bel(A) represents the total support that can move into the proposition A without
any ambiguity and is defined as the sum of the masses of all subsets of A different from ∅:

bel(A) =
∑

B⊆A,B 6=∅

m(B), ∀A ⊆ Θ. (2.2)

Plausibility function

The plausibility of A quantifies the maximal degree of belief that could be potentially given
to A and is defined as the sum of the masses of all the subsets of Θ that have non-zero intersec-
tion with A:

pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Θ. (2.3)
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If all focal sets of the mass function m are non-empty (i.e., m is normalized), the functions
bel and pl are dual with means that pl(A) = 1 − bel(A). Furthermore, clearly one has bel(A) 6
pl(A), for all A ⊆ Θ. The functions pl(A) and bel(A) have the following special properties:

1. bel(∅) = 0 and pl(∅) = 0.

2. bel(Θ) = 1 and pl(Θ) = 1.

3. The function bel is completely monotone (or monotone of infinite order) i.e.,

bel(
⋃

i=1,...,n

Ai) ≥
∑

∅6=I⊆{ 1,...,n}

(−1)|I|+1bel(
⋂

i∈I

Ai), (2.4)

and by duality, pl is completely alternating (or alternating of infinite order), i.e.,

pl(
⋂

i=1,...,n

Ai) ≥
∑

∅6=I⊆{ 1,...,n}

(−1)|I|+1pl(
⋃

i∈I

Ai). (2.5)

Note that for bayesian mass function, equality holds in equations (2.4) and (2.5).

Commonality function

The commonality q(A) quantifies the sum of the masses allocated to supersets of A and it
is defined as the sum of the masses of the sets in which A is included:

q(A) =
∑

B⊇A

m(B), ∀A ⊆ Θ. (2.6)

Implicability function

The quantity b(A) is the sum of masses allocated to subsets of A including the mass of the
empty set and it is defined as:

b(A) =
∑

B⊆A

m(B) = bel(A) + m(∅), ∀A ⊆ Θ. (2.7)

These two last functions are essentially used in the simplification of calculations at the
combination level and they verify the following properties:

1. b(∅) = m(∅) and b(Θ) = 1.

2. q(∅) = 1 and q(Θ) = m(Θ).

3. b(A) = q(A), ∀A ⊆ Θ.

25



Chapter 2. Credibilist fusion frameworks

The functions m, bel, pl, q and b are in one to one correspondence. For instance, the func-
tions of belief, plausibility and commonality can be recovered from the mass function using the
so-called Möbius transformation [29, 30] as follows:

m(A) =
∑

B⊆A

(−1)|A\B|bel(B), (2.8)

m(A) =
∑

B⊆A

(−1)|A|−|B|−1pl(B), (2.9)

m(A) =
∑

B⊇A

(−1)|A|−|B|q(B), (2.10)

where |B| represents the cardinality of B ⊆ Θ (|θi| = 1, |θi ∪ θi| = 2, . . . , |Θ| = N).

2.2.2 Combination of evidence

2.2.2.1 Combination rules of independent evidence

The combination rules are used to fuse several belief functions provided by multiple sources of
information in order to synthesize a more reliable global knowledge. Within the framework of
DST, several operators have been introduced to aggregate independent evidence. However, the
majority of those rules are mainly based on the conjunctive and disjunctive forms of combina-
tion which we recall here.

Conjunctive rule

Let us consider two distinct data sources through their mass functions m1 and m2 defined
on the same frame of discernment Θ. The mass mCR

1,2 resulting from their combination using
the Conjunctive Rule (CR) is defined as:

mCR
1,2 (A) = m1 ∩©2(A) =

∑

B∩C=A

m1(B) m2(C), ∀A ⊆ Θ. (2.11)

It can be expressed very simply in terms of commonality functions defined by equation (2.6).
Let q1 and q2 be the commonality functions associated respectively to m1 and m2. The result of
their combination, denoted q1 ∩©2, is expressed as:

q1 ∩©2(A) = q1(B) q2(C), ∀A ⊆ Θ. (2.12)

In the form of the equation (2.11), the conjunctive combination can generate a subnormal
mass function. In order to satisfy the closed world assumption (i.e., m(∅) = 0), a normalized
version of this rule has been proposed [1]. It corresponds to Dempster’s rule given by:

mDS
1,2 (A) = m1⊕2(A) =

1

1 − K
m1 ∩©2(A), ∀A ⊆ Θ, (2.13)

where K =
∑

B∩C=∅ m1(B) m2(C) measures the degree of conflict between m1 and m2.
This operator is commutative, associative and it admits as neutral element the vacuous mass
function. Despite these interesting and advantageous properties, many authors [31–33] show
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that this rule cannot be applied to combine highly conflicting input sources since its normal-
ization procedure provides unsatisfactory performances and strange behaviours. As a result,
several interesting alternatives to Dempster’s rule have been proposed in literature in order to
differently redistribute the conflict mass. Interested readers could refer to [3, 34–37] for more
details about some of these rules. Here, we present only the PCR6 rule proposed by Martin and
Osswald in [38, 39]. This rule allows the redistribution of the conflicting mass only to those
elements that are involved in the conflict and proportionally to their individual masses. It is
defined by: mP CR6(∅) = 0 and for all A 6= ∅ ∈ 2Θ

mP CR6(A) = m1 ∩©2(A) +
∑

B∈2Θ\{A},
A∩B=∅

[
m1(A)2 · m2(B)

m1(A) + m2(B)
+

m2(A)2 · m1(B)

m2(A) + m1(B)
], (2.14)

where all sets involved in the equation are in canonical form and where all fraction having
denominators equal to zero is discarded. The PCR6 is commutative and not associative but
quasi-associative.

Disjunctive rule

Generally, the conjunctive forms of combination are reserved for the fusion of reliable data
sources. If at least one of the combined sources is reliable, Dubois and Prade [3] propose to use
its dual, the Disjunctive Rule (DR). The combination of m1 and m2 by this rule gives the new
mass function mDR

1,2 defined as follows:

mDR
1,2 (A) = m1 ∪©2(A) =

∑

B∪C=A

m1(B) m2(C), ∀A ⊆ Θ. (2.15)

Similarly the implicability functions can be useful to simplify the calculation of this dis-
junctive form of combination, since:

b1 ∪©2(A) = b1(B) b2(C), ∀A ⊆ Θ. (2.16)

DR has the same properties as CR and Dempster’s rule.

2.2.2.2 Combination rules of dependent evidence

If the independence assumption of sources is not reasonable, other operators of aggregation are
recommended to utilize. In the literature, the cautious and the bold rule of Denœux [15] as well
as Kallel’s and Le Hégarat-Mascle’s rule [40] are most often used.

The canonical decomposition

The conjunctive canonical decomposition consists in decomposing the mass function m,
under certain conditions, into a set of simple masses Aw(A) combined by the operator ∩©:

m = ∩©A⊂ΩAw(A), (2.17)
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where w(A) ∈]0, +∞[ is the weight function computed for each A ∈ 2Θ \ {Θ} as follows:

ln(w(A)) = −
∑

B⊇A

(−1)|B|−|A| ln(q(B)), ∀A ⊂ Θ. (2.18)

All m having the representation of equation (2.17) are said to be separable belief functions
and if m is a non dogmatic, this representation is unique.

The disjunctive canonical decomposition consists in decomposing a subnormal mass func-
tion m into a set of complementary simple masses Av(A) combined by the operator ∪©:

m = ∪©A6=∅Av(A), (2.19)

where Av(A) is given by:















Av(A)(A) = 1 − v(A),

Av(A)(∅) = v(A),

Av(A)(B) = 0, ∀B ∈ 2Θ \ {A, ∅},

and v(A) ∈ [0, +∞[ is the weight function computed for each A ∈ 2Θ \ {∅} as follows:

ln(v(A)) = −
∑

B⊆A

(−1)|B|−|A| ln(Bel(B)), ∀A ⊆ Θ. (2.20)

Cautious conjunctive rule

To combine mass functions coming from dependent sources, Denœux (inspired by Smets)
proposed the Cautious Conjunctive Rule (CCR) [15]. This rule is based on the principle of
least commitment defined by the following reasoning: Let m1 and m2 be two mass functions
obtained from reliable sources of information and m1,2 their combined belief function. This
principle requires the following constraint: m1,2 should be more informative than m1 and m2.
Let Sw(m1), (resp. Sw(m2)) be the set of mass functions richer than m1 (resp. m2) in the sense
of ⊑w

1, then m1,2 must belong to the intersection Sw(m1) and Sw(m2), so that:

m1,2 ∈
(

Sw(m1) ∩ Sw(m2)
)

. (2.21)

The cautious rule consists in determining the less rich mass function searched within the mean-
ing of the partial order ⊑w.

Thus, if Aw1(A) and Aw2(A) are two simple mass functions, their combination by the cautious
conjunctive rule is the simple mass function Aw1(A)∧w2(A). Thereby, the BBA m1,2 resulting
from the combination of the non dogmatic belief functions m1 = ∩©A⊂ΩAw1(A) and m2 =
∩©A⊂ΩAw2(A) is then defined as follows:

mCCR
1,2 = m1 ∧©2 = ∩©A⊂ΘAw1(A)∧w2(A). (2.22)

The properties of this rule result from those of the minimum operator (denoted ∧): commuta-
tivity, associativity, idempotence (i.e., m1 ∧©1 = m1) and distributivity of CR with respect to
CCR.

1m1,2 is more informative than m1 and m2 in the sense of ⊑w if and only if w1(A) 6 w2(A), ∀A ⊂ Θ
(assuming that m1 and m2 are non dogmatic).
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Bold rule

The bold rule, denoted mBR
1,2 , is based on the principle of maximum commitment that results

in the following constraint: the resulting mass m1,2 should be less informative than masses to
combine m1 and m2. Let Av1 and Av2 be two complementary simple mass functions, their
combination by Bold Rule (BR) [15] is given by:

mBR
1,2 = m1 ∨©2 = ∪©A6=∅Av1(A)∧v2(A). (2.23)

This rule has the following properties: commutativity, associativity, idempotence and distribu-
tivity of DR with respect to BR.

Kallel’s and Le Hégarat-Mascle’s rule

In [40], Kallel and Le Hégarat-Mascle propose a variant of the cautious rule, so-called
cautious-adaptive rule, that is able to take into account the actual degree of non-distinctness of
source through a discounting level. Thus, this new rule varies between the conjunctive rule and
the cautious one, depending on the degree of correlation between sources.

Recall that Smet [41] defines the correlation (defined by the commonality factor q0 associ-
ated with a BBA m0) between two BBAs m1 and m2 as:

q0(A) =
q1(A)q2(A)

q1∧2(A)
=

q1(A)q2(A)

min (q1(A), q2(A))
, ∀A ⊆ Θ, (2.24)

with q1, q2, q1∧2 are the commonality functions of the joint conjunctive belief structure under-
lying, respectively, m1, m2 and m1∧2.

Contrary to Smets that requires an in-depth comparison of the origin of the pieces of evi-
dence that have induced m1 and m2 when it comes to construct m0 without knowing m1∧2, the
authors propose to compute m0 by simply replacing the BBA m1∧2 in equation (2.24) respec-
tively by the BBA given by Denœux’s cautious rule when m1, m2 are not consonant and by the
result of the minimum possibilistic rule when they are consonant. Let ρ ∈ [0, 1] be the factor
that parameterizes the non-distinctness of source with ρ = 1 (respectively, ρ = 0) means that
the evidences are non-distinct (respectively, distinct). The discounting of the correlation m0

according to ρ is given by:
(ρw)m0 = ∩©A⊂ΘA

(ρA)w,

with (ρA)w = (1 − ρA)w + ρA.
Then, based on equation (2.24), the authors define the rule ρ∧ as follows:

q1ρ∧2(A) =
q1(A)q2(A)

(ρw)q0(A)
, ∀A ⊆ Θ. (2.25)

The limitation of this approach comes from the exploitation of the correlation information com-
puted from the w-least committed joint structure in further computations that is disputable if no
evidence is available.
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2.2.3 Discounting techniques

Discounting operations have the advantage of alleviating the contradiction existing between the
sources and diminishing the influence of unreliable sources during the fusion stage. This always
leads to the suppression of the conflict and helps thus to the extraction of the trusted proposition
from a set of information sources. Here, some frequently used credal discounting techniques
are presented.

Shafer’s classical discounting approach

The classical discounting technique introduced by Shafer in [2] consists in proportionally
moving part of the belief mass assigned to the focal elements to the set Θ representing the
uncertainty. Thus, after quantifying the reliability of the source denoted α, 0 ≤ α ≤ 1, its
associated mass functions can be discounted as follows:

mα(Θ) = (1 − α) · m(Θ) + α,

mα(A) = (1 − α) · m(A), ∀A ⊆ Θ. (2.26)

In the case where α = 1, the source is said to be unreliable, which implies a total transfer
of the mass to ignorance Θ. Otherwise (i.e., α = 0), the source is said to be completely reliable
and all the information it provides is accepted.

Priority discounting approach

Let 0 6 β 6 1 be the priority of an evidence source calculated using prior knowledge
or attributed by an expert or designer fusion. Whereby β = 1 represents the highest priority
assigned to a source and β = 0 the minimum. The priority discounting approach, as defined
in [42], consists in proportionally transferring a part of the masses of focal elements to the
empty set ∅, compared to Θ used in the discounting approach of Shafer, as follows:

mβ(∅) = β · m(∅) + (1 − β),

mβ(A) = β · m(A), ∀A ⊆ Θ, A 6= ∅. (2.27)

This technique allows the correction (i.e., adjustment) of the initial BBA of the source by con-
sidering only its priority. That is how a BBA with sure knowledge retains its full importance in
the fusion process.

Contextual discounting approach

Based on the idea that the credibility of the source of information can change depending on
the proposition or the object to identify, a contextual discounting has been proposed by Mercier
in [43]. This process allows to revise a piece of information represented by a mass function
taking into account the reliability of each simple hypothesis θi ∈ Θ, i ∈ {1, . . . , N}. Let m
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be the mass function provided by the source of information, the contextual discounting of this
BBA on the context θi is given by:

mλ = m ∪©mθi,λ, (2.28)

where mθi,λ represents the reliability attributed to the simple hypothesis θi of the partition Θ.
Its mass is defined as:

mθi,λ(A) =















λ if A = ∅,

1 − λ if A = θi,

0 elsewhere.

2.2.4 Distance measures of evidence

Distance measurements have been mainly studied in the framework of DST in order to quan-
tify the degree of dissimilarity between different evidences. They play an important role in
many applications such as optimization, clustering analysis, conflict management, etc. In [44],
Jousselme and Maupin give a survey of the most available definitions on distance measures of
evidence. Extensions of the Euclidean and Bhattacharyya distances are given, respectively, by
Cuzzolin [45] and Ristic et al. [46, 47]. Tessem [48] propose to calculate the distance measure
between the pignistic probabilities associated to mass functions in question. Some distances are
directly defined between different mass functions such as Jousselme’s distance [49] that has the
advantage of taking into account the cardinality of focal sets. Other distances were studied to
define dissimilarity between two BBAs using belief intervals [50]. In the rest of this section, we
detail those having been widely used in DST based applications.

Tessem’s distance

From a mass function m, such that m(∅) < 1, the pignistic probability transformation,
denoted BetP [51], can be established as follows:

BetP (A) =
∑

B∈2Θ,B 6=∅

|B ∩ A|
|B| m(B), ∀A ⊆ Θ. (2.29)

The idea is to equally distribute the mass assigned to a set A to its elements.

Following [48], Tessem’s distance called also, the betting commitment distance is formal-
ized as:

dT (m1, m2) = maxA⊆Θ|BetP1(A) − BetP2(A)|. (2.30)

Jousselme’s distance

Jousseleme’s distance [49] complies with the metric axioms and the structural property [44].
Furthermore, it is considered as an appropriate measure of disagreement between evidences and
it is calculated between two BBAs as follows:
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dJ(m1, m2) =

√

1

2
· (m1 − m2)t · D · (m1 − m2), (2.31)

where D is a symmetric matrix 2|Θ| × 2|Θ| defined by:

D(A, B) =











1 ifA = B = ∅,

|A∩B|
|A∪B|

ifA, B ⊆ 2Θ.

Euclidean belief interval distance

Let m1 and m2 be two BBAs defined on the same frame of discernment Θ. For each focal set
A ∈ Θ one can calculate the belief interval of A for m1 and m2 respectively, which are denoted
by BI1 = [bel1(A), pl1(A)] = [a1, b1] and BI2 = [bel2(A), pl2(A)] = [a2, b2]. The distance
between these two belief intervals is computed by the Wasserstein distance [52] defined by:

dI([a1, b1], [a2, b2]) =

√

√

√

√

[

a1 + b1

2
− a2 + b2

2

]2

+
1

3

[

b1 − a1

2
− b2 − a2

2

]2

. (2.32)

In [50], the authors propose a new distance measure of evidence using the belief interval
distance described above. This distance is formalized as:

dBI(m1, m2) =
√

Nc

∑

A∈2Θ

[dI(BI1(A), BI2(A))]2, (2.33)

where Nc = 1
2n−1 is a normalization factor.

2.2.5 Decision making

Decision-making is an essential step in belief function theory, as it operates in an uncertain
context. It consists in choosing, among a finite set of potential solutions (choices), the one
that best meets the problem under consideration. The maximum of belief or plausibility are
the two simplest strategies when we prefer to adopt a pessimistic (prudent) or optimistic (less
prudent) attitude of choices, respectively. Another frequently used strategy is the maximum of
pignistic probability transformation. It is considered as a balanced strategy between the last two
techniques. In this case, the predicted element A0 is the most probable one:

A0 = arg maxA∈Θ BetP (A) (2.34)

As a result of the conversion step of the initial mass function to a credibility, plausibility or
probability function with respect to the used decision technique, all the information contained
in the original BBA will not be fully used. Indeed several mass functions can lead to the same
pignistic probability. In order to avoid this problem, Dezert et al. [53] propose to use a decision
rule based on a distance measure [54]. This approach consist in calculating the Euclidean belief
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interval distance between the mass function m under test and all the categorical mass functions
focusing on each of its focal elements in order to choose the one that minimizes this distance:

A0 = arg minX∈2Θ\{∅} dBI(m, mX), (2.35)

where m(X) = 1, X ∈ 2Θ is the categorical BBA and dBI is the Euclidean belief interval
distance. This decision-making technique has the advantage to make decision on singleton
elements as well as any other type of elements of the frame of reasoning. For more information
about decision-making, interested readers are invited to consult reference [55].

2.2.6 Limits of DST

Although the theory of belief functions seems very attractive in terms of the various basic tools
that it offers for the rich and flexible modelling of uncertain and imprecise information, nev-
ertheless two major limitations have been observed in its applicability in real fusion problems.
The first defect of this theory is its framework of reasoning Θ whose refinement becomes inac-
cessible in some problems because of the vague, relative and imprecise nature of its elements.
In such case, DST cannot be applied since its formalism does not take into account the para-
doxical (conflicting) nature of the information to be treated. The second defect is Dempster’s
rule of combination, which is often questionable in the literature because of:

- Its lack of complete theoretical justification. The debate about this point has emerged in
many research works [56–58], but, to the best of our knowledge, none of these justifications
is convincing since it can be hard to verify the condition of independence of sources, and,
then to give a unique meaning of "independence" here.

- These weaknesses revealed with Zadeh’s famous example [31] when the source reliability
assumption is not correct. Indeed, it has been demonstrated that this rule has a counter-
intuitive behaviour when the conflict between the sources is high as well if it is weak [33].

To remedy these shortcomings, a series of modifications of the normalization step of Dempster’s
rule was suggested and thereafter several interesting and valuable alternative rules of combina-
tion were created for dealing with highly conflicting sources of evidences. Among them we can
mention, without being exhaustive, Yager’s rule [35], Dubois and Prade’s rule [3] and Smet’s
rule [26]. Lefevre et al. have proposed, in [37], a way to unify these different approaches of
combination using a weight operator that allows the redistribution of the conflict. This approach
of unification makes it possible also to define other new rules of combinations responding to a
specific objective. Dezert-Smarandache theory framework is also considered as a serious alter-
native to overcome the limitations of the belief function theory. This framework provides new
foundations for the plausible and paradoxical reasoning and proposes new combination rules,
as it will be shown in the next section.

2.3 An extension of DST: Towards Dezert-Smarandache The-
ory (DSmT)

DSmT formalism was firstly proposed by Dezert [5] as a generalization of the classical Dempster-
Shafer theory. It constitutes a rigorous mathematical framework to deal with the fusion of
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uncertain, highly conflicting and imprecise sources. Indeed, it provides a new interesting com-
bination mechanism that can solve static, complex or dynamic fusion problems. The basic idea
is to allow elements of the frame of discernment to overlap. Thus, the mutual exclusivity con-
straint imposed upon the hypotheses in DST is not assumed in general. In this section, the
basic foundations of DSmT, its models of fusion and its most important rules of combination
are reviewed.

2.3.1 Basic foundations

Let Θ = {θ1, θ2, . . . , θN} be the frame of discernment composed of finite sets of hypotheses
which are exhaustive but not necessarily exclusive. DSmT works on the hyper-power set DΘ of
this frame defined as the set of all composite possibilities built from Θ which ∩ and ∪ operators
such that:

1. ∅, θ1, . . . , θN ∈ D.

2. ∀E ∈ DΘ, F ∈ DΘ, (E ∪ F ) ∈ DΘ, (E ∩ F ) ∈ DΘ.

3. No other elements belong to DΘ, except those, obtained by using rules 1 or 2.

The following example gives an idea of the construction of the hyper-power set for dimen-
sions of Θ equal or less than 3.

Example:

• If Θ = {θ1}, then one has DΘ = {α0 , ∅, α1 , θ1}.

• If Θ = {θ1, θ2}, then one has DΘ = {α0 , ∅, α1 , θ1 ∩ θ2, α2 , θ1, α3 , θ2, α4 ,
θ1 ∪ θ2}.

• If Θ = {θ1, θ2, θ3}, then one has DΘ = {α0, α1, . . . , α18} where

α0 , ∅
α1 , θ1 ∩ θ2 ∩ θ3 α10 , θ2

α2 , θ1 ∩ θ2 α11 , θ3

α3 , θ1 ∩ θ3 α12 , (θ1 ∩ θ2) ∪ θ3

α4 , θ2 ∩ θ3 α13 , (θ1 ∩ θ3) ∪ θ2

α5 , (θ1 ∪ θ2) ∩ θ3 α14 , (θ2 ∩ θ3) ∪ θ1

α6 , (θ1 ∪ θ3) ∩ θ2 α15 , θ1 ∪ θ2

α7 , (θ2 ∪ θ3) ∩ θ1 α16 , θ1 ∪ θ3

α8 , (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 , θ2 ∪ θ3

α9 , θ1 α18 , θ1 ∪ θ2 ∪ θ3.
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Contrary to DST, we note that DSmT also allows assigning beliefs to all unions and inter-
sections of hypotheses.

The cardinality of the hyper-power set conjointly increases with the cardinality of the frame
of discernment Θ on which it is based and it is generally majored by 22N

, where N denotes the
cardinality of Θ. The problem of determining the cardinality of DΘ is similar in nature with
the famous Dedekind’s problem [59, 60] on computing the number of isotone Boolean func-
tions. Indeed, we use the sequence of Dedekind’s numbers to find the sequence of cardinalities.
Table 2.2 gives the Dedekind’s sequence according to the cardinality of Θ.

Table 2.2: The sequence of Dedekind’s numbers.

Cardinality of Θ 0 1 2 3 4 5 6 7 8

cardinality of DΘ 1 2 5 19 167 7580 7828353 241 ∗ 1010 561 ∗ 1020

In order to enumerate the various elements constituting the hyper-power set and to simplify
the implementation of most useful operations in DSmT, some codifications of Venn diagram
have been proposed. If |Θ| = n, the one proposed by Smarandache [4] allows to codify the
2n − 1 distinct parts of this diagram as follows:

- Each < i > represents the part of θi without overlap with the others θj , i 6= j

- Each < ij >, or < ijk > represents respectively the intersection of the part < i > and
< j > only, or < i > and < j > and < k >, etc.

Figure 2.1 represents an illustration of this codification for the case of the frame of discern-
ment of 3 dimensions. For instance, for θ1 and θ1 ∩ θ2, Smarandache’s codification gives re-
spectively {< 1 >, < 12 >, < 13 >, < 123 >} and {< 12 >, < 123 >}. Although his method
works well, the authors raise a problem if the cardinality size of the frame of discernment is
equal or more than 10. In [61], Martin introduces a simpler and more practical codification
which consists in attributing only one integer number of [1 : 2n − 1] to each disjoint parts of
this diagram.

1 2

3

12

13

θ θ

θ

23

123

Figure 2.1: Venn diagram of a free model for a 3D frame.

The vector dn of all the elements of DΘ can be obtained then by solving the following
system of simple linear equations:

dn = Dn.un, (2.36)
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where Dn is the binary matrix of Dedekind and un is the chosen codification basis. The
following example shows how those element are constructed using Smarandache’s codification.
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The attribution of beliefs in DSmT is analogous to the classical Dempster-Shafer theory, but
it is done on hyper-power set DΘ, instead of the power set Θ of the basic frame of reasoning.
For instance, the generalized mass function m, also called Generalized Basic Belief Assignment
(GBBA) is defined as the mapping from the hyper-power set DΘ to the interval [0, 1] such that:

m(∅) = 0 and
∑

A∈DΘ

m(A) = 1. (2.37)

For decision-making from the combined GBBA, the generalized pignistic transformation [4]
can be used:

GPT (A) =
∑

E∈DΘ

CM(E ∩ A)

CM(E)
m(E), ∀A ∈ DΘ (2.38)

where CM(E) is the cardinality of E, defined within DSmT framework as the number of the
disjoint parts of Venn diagram included in E. The decision is then taken by the maximum of
GPT .
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2.3.2 DSm models of fusion

DSmT offers the possibility of working with three different fusion models depending on the
intrinsic nature of hypotheses of the fusion problem under consideration. Here we give a brief
definition of each of these models.

1 2

3

12

13

θ θ

θ

Figure 2.2: Venn diagram of a hybrid model for a 3D frame.

• Free model:

The free DSm model, denoted Mf (Θ), represents the situation where the whole hyper-
power set DΘ is considered. As shown in Table 2.3, the main drawback of this model
is its complexity of implementation due to the high memory size required for storing the
elements of DΘ. Indeed, it is almost impossible for our current computers to store all the
elements of Mf (Θ) when |Θ| > 6.

Table 2.3: Memory size requirements for DΘ.

|Θ| 2 3 4 5 6 7

Sise of θi 1 bytes 1 bytes 2 bytes 4 bytes 8 bytes 16 bytes

Number of elements 4 18 166 7579 7828352 ≈ 2.4 ∗ 1012

Size of DΘ 4 bytes 18 bytes 0.32 Kb 30 Kb 59 Mb 3.6 ∗ 104 GB

• Hybrid model:

The hybrid DSm model, denoted M(Θ), represents the situation where some sets of the
hyper-power set DΘ are not possible due to one or more integrity constraints. There exists
three types of these constraints:

1. Exclusivity constraint: the exclusivity constraint arises when we force certain inter-
sections of Θ to be empty.

2. Non-existential constraint: the non-existential constraint arises when we force cer-
tain unions of Θ to be empty.

3. Hybrid constraint: the hybrid constraint is a combination of constraints 1 or 2.
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Figure 2.2 shows the Venn diagram of the hybrid model given for the constraint θ2∩θ3 = ∅
and Θ composed of three hypotheses. As we can notice, this model is a restricted set that
contains fewer elements than in the hyper-power set case. It is generally the most suitable
and faithful model to the real problem of fusion.

• Shafer’s model:

The Shafer’s model, denoted M0(Θ), represents the situation where all the exclusivity
constraints are imposed. In such case, the hyper-power set DΘ is reduced to the classical
power set 2Θ used in DST.

2.3.3 DSm rules of combination

In this section, we detail the two most commonly used combination rules in the framework of
DSmT.

2.3.3.1 The classic DSm rule of combination

Let us consider two distinct paradoxical or rational sources of information through their mass
functions m1 and m2 defined on the same frame of discernment. The classic DSm rule of
combination, also called Dezert-Smarandache’s rule, corresponds to the conjunctive consensus
of these sources operating under DΘ and it is given by:

mM{(×)(C) ≡ m(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B), ∀C ∈ DΘ. (2.39)

This rule of combination is commutative and associative.

2.3.3.2 The hybrid DSm rule of combination

The combination DSm Hybrid rule is designed to take into account all possible integrity con-
straints of the chosen fusion problem. So, it can work for all fusion models. This rule is given
for two independent sources of information by:

mDSmH(A) = mM(Θ)(A) , φ(A)
[

S1(A) + S2(A) + S3(A)
]

, (2.40)

where the function φ(A) is a binary function equal to 1 if A is a non-empty set and 0 otherwise.

S1(A) =
∑

X1,X2∈DΘ

X1∩X2=A

m1(X1).m2(X2), (2.41)

S2(A) =
∑

X1,X2∈∅
[U(X1)∩U(X2)=A]∨[(U(X1)∩U(X2)∈∅)∧(A=It)]

m1(X1).m2(X2), (2.42)

S3(A) =
∑

X1,X2∈DΘ

X1∪X2=A
X1∩X2∈∅

m1(X1).m2(X2). (2.43)
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2.4. Conclusion

In equation (2.42), U(X) represents the union of all θi that compose X , It represents the
total ignorance and S2(A) represents the mass of all sets of ∅ assigned to ignorance. S1(A) of
equation (2.41) corresponds to the classic DSm rule defined in the previous section and S3(A)
of equation (2.43) transfers the sum of the sets of ∅ to the non-empty sets.

2.4 Conclusion

In this chapter, the main concepts of DST are presented as well as its extension (i.e., DSmT).
This theory seems to be very attractive as it offers very strong properties and functions allowing
the representation and combination of imperfect data. It also offers several measures to model
all forms of uncertainty (outliers, conflicting data, reliability of sources, etc.). However, the
estimation of basic belief assignments has always been a difficulty for applying belief function
theory efficiently in real-world applications. Although the different approaches presented in
literature has received substantial attention in several research disciplines, their uses in remote
sensing applications present some limits when processing large remote sensing images due to
the unreasonable execution time. This point will be addressed in the next chapter, in which, an
overview of some state-of-art approaches is given. Then, our proposed method in the case of
representing knowledge of large quantity of multi-variate data is presented.
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3.1 Introduction

Despite, the fact that belief function theory excels in extracting the most truthful proposition
from a multisource context, the estimation of basic belief assignments has always been a dif-
ficulty for applying belief functions efficiently in applications. In this chapter, we propose to
define a new approach for estimating mass functions in the case of representing knowledge in
complex systems, where the quantity of information is important (i.e., a complex feature space
❘

p). The construction of mass function can be done through Kohonen’s map [6] that allows to
approximate the feature space dimension into a projected 2D space (so called map). Thus, the
use of Kohonen’s map simplifies the process of assigning mass functions on conjunctions and
disjunction of hypotheses when considering the relative distance of an observation to the map.
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In the feature space (in ❘p), operations on basic belief assignment can be much more complex
and may not be feasible due to computing time or accuracy consideration.

This chapter is organized as follows. The second section 3.2 briefly survey some existing
methods for estimating mass functions. Then section 3.3 introduces the main ideas of the pro-
posed approach and explains the underlying methodology. Section 3.4 provides simple exam-
ples to illustrate the methodology. In section 3.5, the results obtained by the proposed approach
are compared to some state-of-the art methods on a set of benchmark database. Then, sec-
tion 3.6 presents a deeper analysis of the classification results on a large SPOT image. Finally,
section 4.5 concludes.

3.2 Estimation of mass functions in evidence theory

The development of an effective and operational decision-making system necessarily involves
the correct modelling of mass functions, which in turn reflects the belief of a given source of
information. The more reliable the modelling, the closer the decision is to reality and vice
versa. Several methods have been proposed in the literature, and their choice must be made
depending on the nature of data and the application. In general, we distinguish two main family
approaches. Likelihood based approaches [2, 62], require the knowledge, or the estimation,
of the conditional probability density for each class. The second family is the distance based
approaches [9, 10, 63–65]. However, these two types of estimation present some limits: among
them we can mention the need of the a priori knowledge on the hypotheses which is not always
easy to know, especially, for compound hypotheses. In this section some approaches of these
categories are browsed in detail.

3.2.1 Distance-based approaches

The distances-based approaches correspond to models where masses relative to data depend
on distances calculated in the feature space. Here, the three most-known models in the liter-
ature are presented. One is based on the algorithm of K-Nearest Neighbor (K-NN) [63], the
other is based on the clustering method C-means [10], and finally the EVCLUS (EVidential
CLUSstering) [9] algorithm of proximity data that assigns a BBA to each object from the ma-
trix of dissimilarities between objects. In the rest of this chapter, we use the notation m(x ∈ A)
that stands for m(A) when there is no ambiguity.

3.2.1.1 The evidential classification algorithms

BBA with a K-NN algorithm In this estimation approach, only the singleton θn and the
whole frame of discernment Θ are considered. Focal elements and the mass functions are
estimated from a learning set L = {x1, x2, . . . , xL} for which their corresponding class is
known: xℓ is assigned to class θxℓ

among {θ1, θ2, . . . , θN}. For each instance x to be classified,
the K-NN is used to retain only the closest vectors of x. Let NK(x) be the set of the K-nearest
neighbors of x in L. This set can be considered to pieces of evidence regarding the class of x.
For each element xk in NK(x) (xk being assigned to class θxk

), the strength of this evidence
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decreases with the distance d(x, xk). The BBAs are then given by the following expression:






mk(x ∈ θxk
) = αϕθxk

(d(x, xk)),

mk(x ∈ Θ) = 1 − αϕθxk
(d(x, xk)),

(3.1)

where 0 < α < 1 is a constant and d(x, xk) being the distance between the vector xk and x.
ϕθn

is a decreasing function verifying ϕθn
(0) = 1 and limd→∞ ϕθn

(d) = 0. The ϕθn
function

might be an exponential function following this form:

ϕθn
(d) = exp(−γnd2), (3.2)

where γn is a positive parameter determined separately for each class θn ∈ {θ1, θ2, . . . , θN}.
Typically in DST framework, the combined belief function m is obtained by the application of
Dempster combination operator on each sources of evidence (i.e., partial information) mk.

m = ⊕k∈[1,...,K]mk, (3.3)

The described method defines the Distance Classifier (DC) [63]. Despite its promising
results, this approach has a major shortcoming because it cannot deal with new (exploratory)
data. This point may be explained by the cost of this algorithm which is quite high because it
has to calculate the Euclidean distance to each of the neighbors, and sort them to find the nearest
K. This task has a computational complexity of O(L × p) for each new BBA, where p is the
space dimension.

3.2.1.2 The evidential clustering algorithms

BBA with ECM algorithm In [10], Denœux and Masson propose a new automatic classifi-
cation method called ECM (Evidential C-Means). Let L = {x1, x2, . . . , xL} be a collection
of vectors in ❘p describing the L observations. Let K be the desired number of classes. Each
cluster is represented by a prototype or a center vk ∈ ❘p. Let V denotes a matrix of size (K×p)
composed of the coordinates of the cluster centers such that Vk,q is the qth component of the
cluster center vk. ECM looks for matrices M = (mℓ,k) (mass functions matrix of dimension
(L × K) with elements mℓ,k = m(xℓ ∈ θk)) and V by minimizing the following objective
function:

JECM(M, V ) =
L
∑

ℓ=1

K
∑

k=1
θk⊆Θ,θk 6=∅

cα
k mβ

ℓ,kd2(xℓ, vk) +
L
∑

ℓ=1

δ2mβ
k,∅, (3.4)

subject to the constraint:
K
∑

k=1
θk⊆Θ,θk 6=∅

mℓ,k + mℓ,∅ = 1, ∀ℓ ∈ {1, . . . , L}, (3.5)

where mℓ,∅ stands for m(xℓ ∈ ∅), δ controls the amount of data considered as outliers, β is
a weighting exponent that controls the imprecision of the partition and α is a parameter to
control the degree of penalization. The cα

k coefficient is a penalty factor that prevents from high
cardinality class.

This algorithm holds a great importance in processing complex and imprecise data since it
allows the allocation of the masses to the different subsets of the frame of discernment. Unfortu-
nately, it has an exponential complexity relative to the number of classes and linear complexity
relative to the number of samples.
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BBA with EVCLUS algorithm Let us consider two BBAs mi and mj regarding the class
membership of two observations xi and xj . The aim of EVCLUS BBA estimation is: the more
similar the observations, the lower the degree of conflict between their mass function and the
higher plausible that they belong to the same class. As shown in [9], this idea can be explained
as follows. Let Rij be the following proposition samples xi and xj belong to the same class
corresponding to the following subset of the Cartesian product Θ2 = Θ × Θ:

Rij = {(θ1, θ1), (θ2, θ2), . . . , (θK , θK)}.

The plausibility Pli×j of the proposition Rij can be shown to be equal to:

Pli×j(Rij) =
∑

A×B∈Θ2

(A×B)∩Rij 6=∅

mi×j(A × B)

=
∑

A∩B 6=∅

mi(A)mj(B)

= 1 −
∑

A∩B=∅

mi(A)mj(B) = 1 − Kij,

where mi×j(A × B) is the BBA that describes ones beliefs regarding the class membership of
both samples and Kij is the degree of conflict between mi and mj .

Let us assume that the available data consist of a L × L dissimilarity matrix D = (dij),
EVCLUS looks for M = (m1, m2, . . . , mL) the credal partition of L = {x1, x2, . . . , xL}
a set of L observations to be classified in Θ by minimizing an stress function inspired from
multidimensional scaling (MDS) methods [66] such that the degree of conflict Kij represents a
form of distance between the observations and reflects the dissimilarities dij . The stress function
to be minimized is given by:

JEVCLUS(M, a, b) =
1

Ct

∑

i<j

(aKij + b − dij)
2

dij

, (3.6)

where a and b are two coefficients, dij is the dissimilarity between xi and xj and Ct is a constant
defined for normalization as:

Ct =
∑

i<j

dij.

Thus, EVCLUS can be thought of as an iterative optimization, with respect to M , a and b, under
the criterion of equation (3.6) to be minimized by using a gradient-based procedure. The major
drawback of this algorithm is its computational complexity, and thus, it is limited to data sets of
a few thousand elements and less than 20 classes.

3.2.2 Likelihood-based approaches

Among the several probabilistic models that have been proposed in the literature, we present
here the Appriou’s approach [67] that considers each class k with k ∈ {1, ..., K} as a particular
source of information. The mass is defined through the transfer of the bayesian probability func-
tion to the total ignorance and the complementary class. The BBA associated to the hypothesis
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θk is then defined through the source of information Sk with the following mass:


















mk(x ∈ θk) = αk
Rp(x∈θk)

1+Rp(x∈θk)
,

mk(x ∈ θk) = αk
1

1+Rp(x∈θk)
,

mk(x ∈ Θ) = 1 − αk,

(3.7)

where αk with values in [0, 1] is a discounting factor associated with the reliability of the
model to the class θk and R = 1/ maxk p(x ∈ θk) is a positive normalized coefficient less or
equal to 1. The classes θk are defined in 2Θ such as θk ∩ θc

k = ∅. From these K belief functions,
each elementary sources are fused by using the orthogonal sum given in equation (3.3), yielding
a complete BBA on 2Θ. In [68] a transfer model is introduced to distribute the initial masses
over the compound hypotheses (disjunction of classes).

3.3 New method to build mass functions

To estimate the mass functions, we adopt an essentially geometrical viewpoint by projection of
the initial representation space of the data to a two-dimensional space only, using a Kohonen’s
map. These geometric considerations allow a smart mass belief assignment, not only for simple
hypotheses but also for disjunctions and conjunctions of hypotheses. Thus, it can model at the
same time ignorance, imprecision, and paradox. In the rest of this section, first we give an
overview on Kohonen’s map, also called Self Organizing Map (SOM). Then, we present the
feature space that is defined to help the estimation of mass functions. The BBA itself is detailed
in Subsection 3.3.3.

3.3.1 Overview on Kohonen’s map

There exist many versions of the SOM. However, the basic philosophy is very simple and al-
ready effective [6]. A SOM defines a mapping from the input feature space (say ❘p) onto a
regular array of M × N nodes (see Figure 3.1) [7].

A reference vector, also called weight vector, w(i, j) ∈ ❘p is associated to the node at each
position (i, j) with 1 6 i 6 M and 1 6 j 6 N . An input vector x ∈ ❘p is compared to each
w(i, j). The best match is defined as output of the SOM: thus, the input data x is mapped onto
the SOM at location (ix, jx) where w(ix, jx) is the neuron the most similar to x according to
a given metric. The SOM performs a non linear projection of the probability density function
p(x) from the high-dimensional input data onto the 2-D array.

In practical applications, the Euclidean distance is usually used to compare x and w(i, j) in
❘

p, so that d(x, w(i, j)) = ‖x − wx‖. The node that minimizes the distance between x and
w(i, j) defines the best-matching node (or the so-called winning neuron), and is denoted by the
subscript wx:

d(x, wx) = ‖x − wx‖ = min
16i6M
16j6N

‖x − w(i, j)‖. (3.8)

An optimal mapping would be the one that maps the probability density function p(x) in the
most faithful fashion, preserving at least the local structures of p(x).

It can be considered also that the SOM achieves a non-uniform quantization that transforms
x to wx by minimizing the given metric. Nevertheless, thanks to the training phase (detailed
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below) the neurons w are located on the map according to their similarity. Then, when consider-
ing neurons w(i, j) located not too far from the winning neuron wx, the distance in❘p between
x and w(i, j) is not dramatically different from the one between x and wx. That means that in
the neighborhood of wx on the map (i.e., with closed location i and j), are located the winning
neurons of the neighbors of x in ❘p. Hence, a class in the feature space ❘p is projected into
the map at the same area, remaining homogeneous. Moreover, whatever the initial shape of the
class in the ❘p feature space, the projected class is highly likely to be of isotropic shape in the
map.

3.3.1.1 Training Phase

The learning phase may be thought of as a classification phase, such as a K-means classification
algorithm. Neurons are first sampled (in ❘p) randomly and then, iteratively in a similar way
as in the K-means algorithm, they are modified to fit a training sample L = {x1, x2, . . . , xL}.
One of the main differences from the K-means algorithm is that the nodes which are close to
the best-matching node in the map will learn from the same input x also.

While the initial values of the w may be set randomly, they will converge to a stable value
at the end of the training process, by using equation (3.9):

w(t + 1) = w(t) + hw,wx
(t) (x − w(t)) , (3.9)

where t is the iteration index.
During one iteration of the training phase, every input xℓ, taken from the training set L, is

processed according to equation (3.9). hw,wx
(t) is called neighborhood kernel: it is a function

defined over the lattice points of Kohonen’s map, usually hw,wx
(t) = h(d(w, wx), t) where

d(w, wx) stands for the distance between the location of w and wx on the map. While increas-
ing d(w, wx), or increasing t, hw,wx

(t) decreases monotonically to 0. The average width and
the form of hw,wx

(t), defines the stiffness of the elastic surface to be fitted to the data set. Let

wx Nwx
(t3)

Nwx
(t2)

Nwx
(t1)

Figure 3.1: Schematic of a 11 × 11 Kohonen’s map. Several topological neighborhood Nwx
(ti)

of the winning neuron wx are drawn. The size is decreasing with the number of iterations
(t1 < t2 < t3) during the training phase, according to (3.10).
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their index in the neighborhood of wx be denoted by the set Nwx
(t) (see Figure 3.1).

hw,wx
(t) =







α(t) exp(−d(w,wx)
2σ2(t)

) if w ∈ Nwx
(t),

0 if w /∈ Nwx
(t).

(3.10)

The value of α(t) is then identified with a learning-rate factor (0 < α(t) < 1). Both α(t) and
the support of Nwx

(t) are usually decreasing monotonically in time (during the ordering pro-
cess). σ(t) is the width of the neighborhood that corresponds to the radius of the neighborhood
of wx in Nwx

(t). In practice, α(t) and σ(t) vanish with time. Typically, linearly decreasing
functions are defined such as: α(t) = α0 × T −t

T
and σ(t) = σ0 × T −t

T
, where T stands for the

number of iterations.

3.3.1.2 Projection

Once the SOM has been trained, it acts as a similar way to as a set of clusters yielded by a
K-means algorithms. Here, the index of each w is defined in 2-D, and each w located in the
same area of the map has similar value in ❘p.

For each sample x to be processed, it is projected on the map by using equation (3.8) to find
its corresponding neuron wx. The SOM may be considered to as a nonuniform quantization
of the feature space [69]. This nonuniform quantization performed by Kohonen’s map has the
advantage to make the class definition on the map (i.e., through the quantization index) more
isotropic than in❘p. Then, the map may be considered to as an approximation in {1, . . . , M}×
{1, . . . , N} of the initial manifold of ❘p, while preserving its topology.

3.3.2 Feature space for smart basic belief assignment

The proposed smart BBA intends to evaluate the mass of each class in 2Θ or DΘ according to
the topology of the observed manifold. Then, two sets of data may be handled (see Figure 3.2):
on the first hand the initial observations x and class centers {C1, C2, . . . , CK} in❘p and, on the
other hand the so-called winning neurons wx and the projected class centers wCk

. It is worth
noting that there is no link between the training of the classifier that defines {C1, C2, . . . , CK}
in ❘p and the SOM that defines the set of neurons w(i, j) in ❘p, 1 6 i 6 M, 1 6 j 6 N ,
except that both are trained by using the same training samples (or a part of those).

wx is determined following equation (3.8) and for k ∈ {1, . . . , K}, wCk
is determined in a

similar way as stated in the following equation:

wCk
= arg min

w(i,j)
16i6M,16j6N

‖Ck − w(i, j)‖. (3.11)

Then, Kohonen’s map can be used to build easily BBA and to balance between conjunction
and disjunction when considering relative distance of an observation to the map. Moreover,
the use of Kohonen’s map simplifies the evaluation of the masses since operations on the maps
require calculation on index only, while operations on the feature space (in ❘p) may be much
more complex (when dealing with stochastic divergence for instance). So two kinds of distances
will be considered and their related difference will induce uncertainty.
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1. d❘p(·, ·) which is the distance in ❘p. It can be defined through the Euclidean norm
L2 (❘p) but also through a spectral point of view such as the spectral angle mapper or the
spectral information divergence [70]. It may also be based on the Kullback-Leibler diver-
gence or the mutual information when dealing with Synthetic Aperture Radar (SAR) [8].

2. dmap(·, ·) which is the distance along Kohonen’s map. It is mainly based on the Eu-
clidean norm and uses the index that locates the two vectors on the map: dmap(w1, w2) =
√

(m1 − m2)
2 + (n1 − n2)

2 if w1 (resp. w2) is located at position (m1, n1) (resp. (m2, n2))
on the map.

3.3.3 Mass function construction

This section details our proposed method for building a BBA by using Kohonen’s map and an
initial classifier on ❘p.

3.3.3.1 Mass of simple hypotheses

The definition of masses of focal elements could be based on the distance on the feature space.
Nevertheless, an appropriated definition should take into account the variance of the classes to
weight each of them, as it is the case in a likelihood point of view. This weighting is already
performed by the projection onto Kohonen’s map so that, the mass of focal class is defined as:



















m(x ∈ θk) ≃ 1 if wx=wCk
,

m(x ∈ θk) ≃ dmap(wx, wCk
)−1

∑K
ℓ=1 dmap(wx, wCℓ

)−1
, otherwise,

(3.12)

where k = 1, 2, . . . , K, wCk
is the projected class, wx is the winning neurons.

According to equation (3.12), we consider that the more the distance dmap(wx, wCk
) (rela-

tively to the other distances between x and Cℓ on the map) the less the mass m(x ∈ θk).

C1

C2

C3

x

wC1

wC2

wC3

wx

Feature space ❘p {1, . . . , M} × {1, . . . , N} SOM

Figure 3.2: Observations in the feature space and their projections into Kohonen’s map. Note
that the neurons wx and wCk

can be located on the map through their location index (m, n) or
in ❘p with their p-component value.
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3.3.3.2 Mass of the full ignorance

From the feature space, we consider that the mass evaluation of an observation falls into ig-
norance if its distance to the map is much more important that the distance of its related class
center to the map. Then, it can be expressed as follows:

m(x ∈ Θ) ≃ 1 − min

(

d❘p(x, wx)

d❘p(Cx, wCx
)
,
d❘p(Cx, wCx

)

d❘p(x, wx)

)

, (3.13)

where Cx is the class center of x, wCx
is its projection on the map.

3.3.3.3 Mass of the conjunction between two classes

In the set DΘ, the conjunction between two classes may be defined into the feature space as the
space in-between the two classes. But, one has to account for the variance of each classes that
increases the complexity of this measure. Once again, it is much more convenient to define the
θk ∩ θℓ mass directly into Kohonen’s map, as:

m(x ∈ θk ∩ θℓ) ≃ e−γ(z−1)2

, (3.14)

with

z = dmap(wx,
wCk

+ wCℓ

2
) 0 < k, ℓ 6 K, ℓ 6= k.

Equation (3.14) stipulates that the value of m(x ∈ θk∩θℓ) becomes maximal when x reaches the
middle of [wCk

, wCℓ
] segment. Equation (3.14) yields a value of m(x ∈ θk∩θℓ) closed to 1 in the

middle. Moreover, m(x ∈ θk ∩ θℓ) vanishes when x is far away from the [wCℓ
, wCk

] segment.
The γ parameter tunes this vanishing behavior. For example, if we want equation (3.14) be
over 1

2
between the 1st and the 3rd quartile of [wCk

, wCℓ
] segment, then γ should be equal to

2
√

2. For a smaller domain around the median of [wCk
, wCℓ

] segment, γ should be greater (see
Figure 3.4).
This conjunctive mass estimation does not apply in the classical Dempster-Shafer framework
(i.e., when working in 2Θ only assuming Shafer’s model of the frame Θ).

wC1

wC2

wC3

wCk
+wCℓ

2 wx

Figure 3.3: Simple case of conjunction between two class in the map.
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x

m(x)

γ = 2
γ = 6
γ = 12Ck Cℓ

1

Figure 3.4: Behavior of m(x ∈ θk ∩ θℓ) with γ, according to equation (3.14).

3.3.3.4 Mass of disjunction between two classes

The ignorance in the decision-making between two classes Ck and Cℓ may be considered as the
dual of equation (3.14), but here by considering distances in the feature space. When a sample
x is not too far from class Ck or Cℓ, it is not too difficult to decide if it has too be associated to
the class k or ℓ. But if x is far from Ck and Cℓ, it comes the disjunction as related in Figure 3.5.
That corresponds to a context where the distances between x and the classes are of the same
scale: d❘p(x, Ck) ≈ d❘p(x, Cℓ). But such criteria is not enough since it includes also the case
where x is located in-between Ck and Cℓ. So it has to be weighted by the distance between
the two classes d❘p(Ck, Cℓ). If d❘p(Ck, Cℓ) ≪ d❘p(x, Ck) and d❘p(Ck, Cℓ) ≪ d❘p(x, Cℓ), x

falls in the disjunctive case since x is considered far to Ck and Cℓ. Then, the criteria defined in
equation (3.15) is based on the ratio between d❘p(Ck, Cℓ) and d❘p(x, Ck) + d❘p(x, Cℓ).

C1

C2

x

(a)

C1

C2

x

(b)

Figure 3.5: Disjunction between two class: (a) non ambiguous case, (b) ambiguous case.

Then, the mass of the disjunction θk ∪ θℓ is modeled by:

m(x ∈ θk ∪ θℓ) ≃ 1 − tanh(βz), (3.15)

with

z =
d❘p(Ck, Cℓ)

d❘p(x, Ck) + d❘p(x, Cℓ)
0 < k, ℓ 6 K, k 6= ℓ.

Here, the β parameter stands for the level of ambiguity. When x is close, in ❘p, to the segment
[Ck, Cℓ], d(Ck, Cℓ) ≃ d❘p(x, Ck) + d❘p(x, Cℓ) so that z is close to 1, and m(x ∈ θk ∪ θℓ) has to
vanish. Then, the areas where equation (3.15) vanishes are shown on curves of Figure 3.6. The
more the β, the less the ambiguous mass.

3.3.3.5 Conjunction and disjunction for more than 2 classes

This construction that takes into consideration the ratio of distance between 2 classes or the
distance to the middle of 2 classes can be extended to more than 2 classes. For instance, equa-
tion (3.14) can be based on the centroid of more than 2 class. Equation (3.15) can be generalized
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z
0 < z < 1

Ck

z = 1

Cℓ

0 < z < 1

m(z)

β = 1
β = 2

Figure 3.6: Shape of equation (3.15) for some value of β.

by the composition of one against one class from a set of K classes, divided by the sum of dis-
tance of x to each of the K class centers. Nevertheless, this method of construction has not
been deeper investigated since those compositions should not have significative impact on the
fusion or the classification results.

3.3.3.6 Normalized BBA

The complete BBA has to respect constraint of equation (2.1) in DST and of equation (2.37) in
DSmT so that is it necessary to apply a normalization step to the unnormalized BBA obtained
by separately calculating the belief masses on simple and compound hypotheses, presented in
sections 3.3.3.1–3.3.3.4.

3.3.3.7 Determination of parameters β and γ

The determination of the parameters β and γ can be found automatically by minimizing the
following constraints, defined in [63, 71]:

E =
NS
∑

i=1

N
∑

n=1

(BetP (xi ∈ θn) − Υ(xi ∈ θn))2

where NS is the number of samples, BetP (xi ∈ θn) stands for the pignistic probability of xi

(vector to classify) according to the simple hypothesis θn and Υ(xi ∈ θn) is a function that is
equal to 1 if the sample xi does belong to the simple hypothesis θn (as stated a priori from the
learning base), and 0 otherwise.

3.4 Simple simulation

This section presents a simulation dedicated to a simple 4-class problem. Although the SOM
is more appropriated to be used to perform a non linear projection from ❘

p to {1, . . . , M} ×
{1, . . . , N} with p > 2, this naive case of study has been defined in❘2 for a better visualisation.
Figure 3.7 shows, with black circles, a data set in ❘2 that is decomposed into 4 clusters. Each
of those clusters have a Gaussian shape with different covariance matrices.

The classification yielded by a K-means gives 4 clusters C1 to C4, which appear in Fig-
ure 3.7 (green bullets). Their locations are approximatively: C1: (0.18, 0.18), C2: (0.6, 0.18),
C3: (0.25, 0.4) and C4: (0.45, 0.5) which corresponds to the center of each Gaussian sampling.

When performing a Kohonen’s map of size 8 × 8, it yields the map characterized in Fig-
ure 3.7 (red bullets). As drawn in the ❘2 feature space, the map is seen dramatically deformed
according to the density of data samples. The more the density of samples (in black circles), the
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more the density of the neurons (in red bullets), which is a characteristic of a non-uniform quan-
tization. The location of the red bullets corresponds of the value of the weight of the neurons in
❘

2.

Then, when a sample (black circle) is projected into the map, it is associated to its winning
neuron according to equation (3.8), i.e., associated to the closest red bullet according to the
Euclidean distance in❘2. Figure 3.8-(a) shows the same figure as Figure 3.7 highlighting some
areas. The ellipses in blue highlight the areas between the different clusters, while the red ellipse
at the top right of the figure points out an outlier. On Figure 3.8-(b) is shown Kohonen’s map into
its natural geometry in {1, . . . , N} × {1, . . . , M}: the distance between neurons corresponds
to the distance along the edges of the map, i.e., considering the indexes. The green bullets in
this map shows the winning neurons wCk

of the class centers Ck. The neurons shown in blue
correspond to the neurons rounded in Figure 3.8-(a)(blue ellipses). Those neurons are located
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Figure 3.7: Simple simulation of a four-class manifold with an outlier. Black circles: samples
of the data set in❘2. Red bullets: locations of the neurons of Kohonen’s map. Blue lines: SOM
projected in the feature space. Green bullets: K-means class centers.
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wC1

wC2

wC3 wC4

(a) Feature space❘2 (b) {1, . . . , 8} × {1, . . . , 8} SOM

Figure 3.8: Simple simulation of Figure 3.7 with its equivalent in the SOM geometry. Green
bullets on the map correspond to the winning neurons wCk

of the class centers Ck, blue bullets,
on the map in (b), correspond to the location of the neurons that are located in between classes
in ❘2. The black neuron at the top left of the map corresponds to the winning neuron of the
sample rounded with a brown ellipse at location (0.2, 0.6).

between classes in❘2 and also between the corresponding class centers wCk
and wCℓ

. This point
illustrates the topological preservation of Kohonen’s map.

Let us focus on the sample at location (0.2, 0.6), which is rounded with a brown ellipse.
A first look at Figure 3.8-(a) points out that this sample is located very near class C3 but a
little bit outside the main concentration of the data set. The winning neuron associated to this
sample is drawn in Figure 3.8-(b)(black bullet), at the top left of the map (with index location
(1, 8)). It is clear that this neurons is closed to wC3 and far from the winning neurons of the
other classes. Then, the second maximum of the BBA reaches the mass m(x ∈ θ3 ∩ θ4) (with a
value of 0.1135) and the third is devoted to m(x ∈ Θ) (at 0.1005). Considering equation (3.15)
Following equation (3.13), it appears that d❘p(x, wx) is of significant value in comparison of
d❘p(C3, wC3) so that m(x ∈ Θ) has also a significant value.

Let us focus on the outlier located at (0.95, 0.95) in Figure 3.7 (top right). This sample
is located in Figure 3.8-(a)(top right). It is far from the rest of the data set and also far from
Kohonen’s map. Its winning neuron is located at position (8, 8) (i.e., at the top right of the map
in Figure 3.8-(b)). Since this neuron is closed to wC4 it is expected that the mass m(x ∈ θ4) be
significant. It is the case with a value of 0.1798. Nevertheless, the maximum value of the BBA
is reached with m(x ∈ Θ) with 0.2660 which underlines the outlier behavior of this sample.
The resulting BBA is very informative because the rest of the masses vanish below 0.09.

Let us focus now in a sample located at position (0.2, 0.3) in Figure 3.8-(a). This point
is in the middle of two classes C1 and C3. A little bit closer to class C1. Its winning neuron
falls in Figure 3.8-(b) (blue bullets) at location (3, 4). Then the mass of m(x ∈ θ1 ∩ θ3) traps
a significant value as high as 0.1313. Nevertheless, the second highest value of this BBA is
reached by m(x ∈ θ1 ∩ θ4) with 0.1102. The fact is that, considering the location of the
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winning neuron in Kohonen’s map, it is near to the middle of wC1 , wC2 and wC4 . The third
maximum falls to m(x ∈ θ2 ∪ θ4) (value 0.0831).

This simple example shows that the aim of this BBA modeling technique that induces simple
consideration on the distance from samples to clusters in the feature space❘p and in Kohonen’s
map {1, . . . , N} × {1, . . . , M}.

3.5 Experiments on benchmark data set

In order to highlight some advantages and possible drawbacks of the proposed SOM-based BBA
modeling, the performance of the SOM-based BBA is compared to EVCLUS and ECM ones
by using data set provided by the University of California - Irvine (UCI) Machine Learning
Repository. Seven data sets out of 270 have been taken into consideration with various amount
of features (that corresponds to the feature space dimension ❘p) and number of classes (from 2
to 7) as detailed in Table 3.1.

Table 3.1: Characteristics of the UCI data sets used for comparison.

Data set Features classes samples

Banknote authentication 4 2 1372

Pima Indians Diabetes 8 2 768

Seeds 7 3 210

Wine 13 3 170

Statlog (Landsat Satellite) 36 6 6435

Statlog (Image Segmentation) 19 7 2130

Synthetic control chart time series 60 6 600

In this section, the experimental results are based on the classical Dempster-Shafer frame-
work (i.e., we work with 2Θ only). Indeed, ECM, EVCLUS are only working in this framework.

It is worth noting that the Matlab programs of ECM and EVCLUS have been downloaded
from the official webpage page of Thierry Denœux for those experiments1. Most of the internal
parameters have been let to their default value. The distance δ to the empty set has been changed
to 100 in ECM and the regularization parameter has been changed to 0.5 in EVCLUS. The
number of clusters in ECM and EVCLUS has been fixed according to Table 3.1, depending on
the data set.

Kohonen’s map has been trained with the following parameters: a size of 20 × 20 neurons
(except for Seeds and Wine a size of 10 × 10 neurons), trained with 200 iterations. An initial
neighborhood size Nw(t0) of 10 neurons and a learning rate α(t0) of 0.9. These values were
carefully selected in order to guarantee convergence of the map with appropriate number of

1Thierry Denœux’s webpage is available at https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/
software.
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3.5. Experiments on benchmark data set

neurons to well balance the tradeoff between quantization error and manifold approximation,
so as to improve results. The quantization error through the Root Mean Squared Error (RMSE)
is used here as criterion to evaluate the quality of Kohonen convergence

EQM =





1

NS

NS
∑

ℓ=1

‖xℓ − wxℓ
‖2





1
2

.

Table 3.2: Classification results of SOM-based BBA in 2Θ for different value of β.

Data set β = 1 β = 2 β = 6

Seeds 87.6190% 90.9524% 89.0476 %

Wine 71.1765% 73.5294 % 71.7647%

In this section, the values of the parameter β has been selected based on the results shown
in Table 3.2. In this experiment, β = 2 yields the best classifications results. Also, it can be
noticed that the proposed method is not so sensitive to the value of β.

Table 3.3: Classification results in 2Θ of EVCLUS, ECM and SOM-based BBA with decision
by the maximum of pignistic probability.

Data set
Banknote

Pima

Seeds Wine

Statlog Statlog Synthetic control

Indians (Landsat (Image chart

authentication Diabetes Satellite) Segmentation) time series

EVCLUS

843 475 157 103 3027 895 384

61.44 % 61.84 % 74.76 % 60.58 % 47.03 % 42.01 % 64.0 %

1172.2sec 181.7sec 34.3sec 6.7 sec 5857 sec 3657 sec 370 sec

ECM

848 506 189 126 4480 1282 453

61.80 % 65.88 % 90.0 % 74.11 % 69.62 % 55.49 % 72.5 %

3.4sec 3.2sec 0.3sec 0.9sec 480sec 161sec 6.9sec

SOM-
based

1090 549 191 125 4456 1431 501

79.44 % 71.48 % 90.95 % 73.52 % 69.24 % 67.18 % 83.5 %

8.6sec 6.7sec 5.8sec 5.9sec 163sec 84sec 8.0sec

It appears that the SOM-based BBA yields most of the time the highest classifications results
(put in boldface in the results of Table 3.3). In each row of Table 3.3, the first line corresponds
to the number of correctly classified samples, the second line corresponds to the proportion of
samples correctly classified, and the last line shows the computation time. It is worth noting that
when ECM performs better, the SOM-based approach is close to the best accuracy (73.52 %
versus 74.11 % for the benefit of ECM with the Wine database, and 69.24 % versus 69.62 %
with the Statlog Landsat satellite images database). Equivalent results prove that SOM-based
BBA is just a simplified (i.e., quantized) version of the feature space ECM work with. Better
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Figure 3.9: Computation time depending on the feature space dimension. SOM-based approach
is more appropriated for processing large amount of data than ECM.

results are due to the fact that distances on the map (in 2D) are more appropriated for complex
(or non isotropic) class (in pD). EVCLUS is always below. It seems that the performance
ranking between ECM and SOM-based BBA is not depending on the feature space dimension
nor the number of classes since the Wine and Statlog Landsat satellite image data bases are
very different to each other. Since the SOM-based approach considers a projected feature space
of dimension 2, it may induce on those cases a too coarse approximation of the manifold in
comparison to ECM. Nevertheless, it is worth noting that the benefit in using a SOM-based
approach for BBA is related to the number of samples to be handled. Figure 3.9 shows that
the more the number of sample the fastest the SOM-based approach in comparison to the ECM
while yielding the same level of accuracy. Then the SOM-based approach appears to be a
valuable alternative to handle large data set such as real images for classification purpose. In
fact, distance in❘p is more computational demanding than in❘2. Indeed, the form of the class
in the SOM is more isotropic, so that no consideration on the shape of the manifold is to be
considered. On the contrary, ECM has to care of the standard deviation of the classes to build
the mass distribution. Then the SOM-based approach appears to be a valuable alternative to
handle large data set such as real images for classification purpose.

3.6 Experiments on a real satellite image

The proposed methodology is now applied on a SPOT image (1318 × 2359 = 3 Mega pixels)
taken in 2000 for classification purpose. From the variety of objects constituting this image,
five clusters may be distinguished: Covered Fields (CF) light-red area, Bare soil (BS) red area,
Wooded Area (WA) dark-red area, Water or Wet area (WWA) green area and Bare Soil and
Wet Area (BSWA) bright-green area (see Figure 3.10). Those five classes will constitute our
frame of discernment Θ = {CF, BS, WA, WWA, BSWA}. This 3-band multispectral image
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Figure 3.10: False color composite of the SPOT image. c©CNES.

represents a single source of information in ❘3, so that there is no fusion process within the
components of each pixel for BBA (except DC which uses equation (3.3) to perform a fusion
rule class by class). In this experiment, DC, ECM and the SOM-based methods are tested.
Kohonen’s map has been trained with the same parameters as in Section 3.5.

3.6.1 The classification results in 2Θ

In order to generate mass function on the disjunction of hypotheses in DC, Dempster’s com-
bination rule given by equation (3.3) has been replaced by the disjunctive rule given by equa-
tion (2.15). Figure 3.11 shows the classification of the original image with DC approach and the
proposed approach by using the criterion of the maximum of pignistic probability for decision-
making on simple hypotheses (classes). Figure 3.12 shows the classification results all over
simple classes and all disjunctions of classes. The performance of DC and SOM-based classi-
fiers is shown through the confusion matrices form in Table 3.5 and Table 3.6, respectively. The
test has been done over 16692 pixels where 3273 represent Covered Fields, 2273 Wooded Area,
3013 Bare Soil, 6005 Water or Wet area and 10 Bare Soil and Wet Area. The legend (colors of
decision classes in the images classification), is given in Table 3.4.
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(a) (b)

Figure 3.11: Classification results in 2Θ with decision by maximum of pignistic probability over
all simples hypotheses: (a) SOM-based BBA. (b) DC results.

Table 3.4: DST legend used on classification results of Figure 3.12.

WWA BSWA ∪ BS BSWA ∪ CF

BSWA BSWA ∪ WA BS ∪ WWA

BS BS ∪ WA BS ∪ CF

WA WWA ∪ WA WWA ∪ CF

CF BSWA ∪ WWA WA ∪ CF

As Table 3.6 shows, the SOM-based approach presents promising results. Indeed by com-
paring our approach to the DC approach (see Table 3.5), it can be noticed that class detection
has been improved. In Figure 3.11-(a), the river is well discriminated in comparison to other
classes while in Figure 3.11-(b) a great conflict appears when those classes WW and BSW have
to be discriminated. Figure 3.12 demonstrates that our approach reduces the number of decision
class (8 classes), whereas DC approach yields multiple classes. For example the whole river is
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(a) (b)

Figure 3.12: Classification results in 2Θ with decision by maximum of pignistic probability over
all simples hypotheses and all disjunctions of hypotheses: (a) SOM-based BBA. (b) DC results.

Table 3.5: Quantitative results in 2Θ obtained using the confusion matrix for DC approach.

BSWA BS WWA CF WA

BSWA 2102 0 0 0 26

BS 87 2106 397 3 420

WWA 2393 326 3092 194 0

CF 180 206 819 1068 0

WA 4 614 155 45 2455

almost attributed to a single class; this reflects more what we have in the reality, while with the
other approaches the river is classified into various class.
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Table 3.6: Quantitative results in 2Θ obtained using the confusion matrix for the proposed
SOM-based approach.

BSWA BS WWA CF WA

BSWA 1631 282 215 0 0

BS 206 2423 16 93 215

WWA 0 45 5359 601 0

CF 0 103 53 2117 0

WA 165 86 3 1 3018

After having exploring the performance of the SOM-based approach, this part focuses on the
ability of the SOM-based approach to deal with a large amount of multi-variate data. To evaluate
this, the unsupervised clustering method ECM has been used for its simplicity in generating
the BBA in the case of exploratory data analysis. This algorithm requires a great amount of
computing time for processing the large images. Here, a crop of the original image (300 by 220
pixels) has been processed so that the computation time remains acceptable. The classification
results (see Figure 3.13) show that the SOM-based method gives higher performances than
the ECM algorithm, while remarkably reducing the computational cost. Indeed, SOM-based
method has a linear computational complexity depending to the number of classes for each
new calculated BBA. These results prove that the proposed approach provides a very significant
advantage in the case of processing large images.

All the algorithms in the experiments were coded in MATLABTM without specific optimiza-
tion and run on a machine with 3.4 GHz Intel Core i7-3770M processor and 8 GB memory
running the Windows 7 Server operating system. The execution times for these algorithms are:
20 minutes and 12 seconds for the SOM-based BBA shown in Figure 3.13-(a), and 2 days and
6 hours and 45 seconds for the ECM algorithm shown in Figure 3.13-(b). It corresponds to an
increase in computation speed of 150.

(a) (b)

Figure 3.13: Classification results in 2Θ with decision by maximum of pignistic probability: (a)
SOM-based approach. (b) ECM.
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The computation of the complete scene at Figure 3.11-(a) took 4 hours and 21 minutes and
36 seconds.

3.6.2 The classification results in DΘ

In this experiment, the result of DC is given by replacing Dempster’s combination rule given
by equation (3.3) by the conjunctive rule given by equation (2.11). Figure 3.14 shows the
classification of the original image by using maximum of generalized pignistic probability over
all simples classes and all conjunctions of classes. The performance of DC and SOM-based
classifiers is shown through the confusion matrices form in Table 3.8 and Table 3.9, respectively.
Table 3.7 represents the colors assigned to each conjunctions of classes in classification. The
colors assigned to simple classes and to disjunctions of classes are the same as those defined in
Table 3.4.

(a) (b)

Figure 3.14: Classification results in DΘ with decision by maximum of generalized pignistic
probability over all simples hypotheses and all conjunctions of hypotheses: (a) SOM-based
approach. (b) DC results.

As shown in Table 3.8, the generation of the masses on the conjunctions of hypotheses has
degraded remarkably the DC result. This is due to the conflicting nature of the conjunctive rule
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Table 3.7: Legend used for classification DΘ shown in Figure 3.14.

BSWA ∩ BS BSWA ∩ CF

BSWA ∩ WA BSA ∩ WWA

BSA ∩ WA BSA ∩ CF

WWA ∩ WA WWA ∩ CF

BSWA ∩ WWA WA ∩ CF

Table 3.8: Quantitative results in DΘ obtained using the confusion matrix for DC approach.

BSWA BS WWA CF WA

BSWA 0 1053 317 382 376

BS 2056 90 86 6 255

WWA 2249 2 2081 24 1649

CF 1536 0 0 737 0

WA 1733 1 151 45 1334

Table 3.9: Quantitative results in DΘ obtained using the confusion matrix for the proposed
SOM-based approach.

BSWA BS WWA CF WA

BSWA 1913 0 215 0 0

BS 2080 1507 368 313 545

WWA 0 0 5404 601 0

CF 0 1 2272 0 0

WA 165 29 8 3 30068

when unreliable sources are combined. The SOM-based approach (see Table 3.9) can overcome
this problem by calculating the masses of conjunctions from Kohonen’s map.

Figure 3.15 shows the classification of the original image by using maximum of generalized
pignistic probability over all simples classes, all conjunctions of classes and all disjunctions
of classes. As seen in DST-based experiment, it appears that the SOM-based approach yields
promising results with a very reasonable computation time in such situations even with large
number of classes.
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Figure 3.15: Credal classification results in DΘ through the SOM-based approach: maximum
of generalized pignistic probability.

3.7 Conclusion

The interest of evidence theory came from its ability to deal with uncertain and paradox data
through the mass functions. Nevertheless, to the best of our knowledge, rare are the estimating
mass functions approaches that consider the belief masses on compound hypotheses directly.
In this chapter, a new method for mass function construction through Kohonen’s map has been
proposed, and some experiments of the proposed method has been dedicated to image classifi-
cation. The comparison with state-of-the art UCI database showed the accuracy of the SOM-
based approach and its capability to deal with large amount of data. A further advantage can
be added which is the possibility to perform the assignment of belief masses on the conjunctive
and disjunctive hypotheses directly.

In this part of our research work, we focus on the application of the proposed Kohonen’s
map based BBA on SPOT images only, which is based on a quadratic distance evaluation. The
extension to the problem of optical and SAR remote sensing images for joint classification will
be investigated in the following chapter.
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4.1 Introduction

Today, data is becoming even more available and accessible, which in turn calls for a smart pro-
cessing regime allowing complete and useful information to be extracted from various sources.
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However, optimizing the decision step in this regime through an efficient fusion process is a
challenging task, especially in terms of merging data available from heterogeneous sensors.
The aim of this chapter is to introduce a new credal algorithm to fuse data derived from het-
erogeneous sensors, such as optical and radar data, which represents one of the most important
issues faced in the field of remote sensing. SAR (Synthetic Aperture Radar)/optical information
fusion is investigated in this study for joint classification of agricultural areas with missing data.

This chapter is organized as follows: Section 4.2 presents an overview of data fusion in the
field of remote sensing. Section 4.3 introduces the proposed credal algorithm for merging op-
tical and SAR information. The results obtained and the experimental validation are presented
in section 4.4. And finally, section 4.5 concludes.

4.2 Generality on data fusion in remote sensing field

Having appeared initially in the military domain to manage very large amounts of informa-
tion, data fusion has today become an important field of research in multiple domains such as
robotics, biomedicine and image analysis, to name a few. The objective of this section is to
provide a general overview of the basic concepts of data fusion as well as its use particularly in
the field of remote sensing for interpreting optical and radar data.

4.2.1 Definition of data fusion

It is difficult to formulate a precise and a consensual definition of the term "data fusion". Con-
sequently, several definitions have been proposed (for review and discussion of many of these
definitions, reference [72] is recommended) and each of them reflects the perception of the do-
main which varies from one scientist to another according to his research discipline. In the
following, we present some of the most used definitions in the field of remote sensing:

"Data fusion is the joint use of heterogeneous information for the assistance with
the decision-making." [73]

"Data fusion is the set of methods, tools, means using data coming from various
sources of different nature, in order to increase the quality (in a broad sense) of the
requested information." [74]

"Data fusion is a formal framework in which are expressed means and tools for the
alliance of data of the same scene originating from different sources. It aims at
obtaining information of greater quality; the exact definition of greater quality will
depend upon the application." [75]

"Fusion consists of combining information originating from several sources in order
to improve decision-making." [76]

Independently of the formal framework or not in which data fusion is defined, we note that
these definitions emphasize the simple principle of fusion by focusing on these two interesting
points: 1) the fusion process operates on heterogeneous data from different sources. Therefore,
the information provided is either of different natures (multisource fusion), or of the same na-
tures, but taken at different conditions to provide additional knowledge (multidate fusion). 2)
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the merge process aims to improve the quality of the resulting information for better decision-
making. Indeed, it makes it possible to remedy the imperfections of the information collected by
exploiting their redundancy and/or their complementarity. These imperfections can be of sev-
eral natures [3], such as uncertainty and imprecision, incompleteness and ambiguity, conflict
and contradiction, etc.

4.2.2 Data fusion levels

In general, fusion information in the remote sensing field can be performed at three different
levels [77]: pixel, object possessing characteristics or attributes and decision level. The decision
level [78] operates directly on individual decisions found by applying a proper processing for
each image. Although this level is considered the most robust among the three, its solution is
not globally optimal, since it seeks to optimize each source individually. The object level [79]
is mainly based on the extraction of one or more characteristic maps by computing the relevant
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Figure 4.1: Data fusion levels (a) Low-level fusion or pixel fusion (b) Attributes fusion (c)
High-level fusion or decision fusion.

descriptors from an input image. As in the case of high level fusion, this approach induces a
loss of information inherent to the replacement of original data by the attributes extracted in
subsequent processing. Ideally, all the data should be merged at the lowest level or the pixel
level [80], in which raw data extracted from each pixel, such as spectral or temporal information
of the considered sources, are used. However, it should be noted that the design of an appropri-
ate approach is very difficult due to the complexity of joint processing of heterogeneous data,
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such as optical and radar data. This pixel-based heterogeneous fusion requires the use of accu-
rate co-registered images that are often derived from a resampling process in a pre-processing
step. Figure 4.1 gives an idea about those three different levels of fusion.

4.2.3 Fusion of optical and radar data for land cover classification

Continuous development of acquisition techniques of satellite images has led to the emergence
of new challenges in the field of remote sensing. One of the most discussed challenges is related
to the joint interpretation of optical and radar data for land cover classification [81]. Although
the use of optical data has been the subject of several in-depth studies and has produced very
promising results in this field [82–85], their high sensitivity to certain atmospheric conditions,
such as cloudy weather, has prompted researchers to integrate other types of data.

Radar sensors make it possible to provide complementary information to those generated
using optical sensors, which make them a very interesting alternative. Indeed, in optical sen-
sors, the information is mainly influenced by the reflectance properties of the mapped object
surface. Their response is thus related to the chemical, physical and biological characteristics
of the target. While, radar sensors detect the backscattered signal, which is essentially, con-
ditioned by the structural (e.g., the size, shape and orientation) and dielectric properties of the
target. This variety of information provided offers a great discriminatory potential in land cover
classification [86]. Several studies have shown the benefits of fusing optical and radar data to
improve the accuracy of the applied classification techniques [87–90].

The work of Joshi et al. [81] presents a bibliography of nearly 112 references on the fusion
of optical and radar data, the majority of which are related to our problem. These studies usually
follow a methodology mainly composed of two phases: 1- Extract relevant features from the
optical and the radar image; 2- Fuse the resulting features using supervised or unsupervised
classifiers. Maximum-likelihood decision rule was used by Idol et al. in [91] to determine
if radar texture measures combined to optical imagery influence land-cover/use classification
accuracies. The described approach is mainly based on a maximum-likelihood decision rule
for the classifications of spectral signatures obtained from multiple landscape features. They
found that Sensor fusion of optical and radar obtained an accuracy of 93% compared to the
optical ASTER overall accuracy of 81%, and combining the original radar and a variance texture
measure increased the Radarsat-2 overall accuracy to 78% and PALSAR to 80%.

Artificial Neural Network (ANN) and Support Vector Machine (SVM) have also been suc-
cessfully used for the classification of multimodal data sets [92] and [93]. In [93], the problem
of multitemporal synthetic aperture radar data and optical imagery is addressed. Each data
source is classified separately using a SVM, after that, the original outputs of each SVM dis-
criminant function are fused using another SVM, which is trained on the a priori outputs. A
multilayer feedforward networks devoted to multisensor remote-sensing image classification is
applied on [94]. The obtained results show the efficiency of ANN compared to traditional statis-
tical parametric methods such as maximum likelihood. However, some well-known drawbacks
such as how to define the network architecture or how to fix the number of hidden layers persist.

The work of [95] also shows the advantage of using ANN in general and Convolutional
Neural Networks (CNN) in particular for the fusion of heterogeneous data. The authors applied
a deep learning algorithm mainly based on automatically extracted features to generate a map
indicating the changes between the two optical and radar images. This algorithm gives good
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performances compared to techniques already proposed in the literature but the problem of con-
siderable learning time of this family of classifiers makes their use very difficult especially in
presence of a small satellite image database. A more recent technique for fusing RADARSAR-2
data and optical multispectral data for Land Use Land Cover extraction from a tropical agricul-
tural zone is described in [96]. In this work, several fusion strategies including the Brovey
transform, the wavelet transform, Ehlers and Layer Stacking have been applied to merge the
results of a pixel wise classification with an object-based classification. The obtained classifi-
cation errors especially in built-up area and bare ground are justified by the fact that the optical
and radar data used in the experimentation were acquired at two different periods of the year.

The usefulness of using radar data to fill missing data in optical data due to the presence of
clouds that cover the mapped agricultural area is explored by Betbeder et al. in [97]. These au-
thors combine the results of a polarimetric decomposition obtained from a series of TerraSAR-X
images and several indices extracted from Spot 4 images: the Leaf Area Index, the Fraction of
Vegetation Cover and the Fraction of Absorbed Photosynthetically Active Radiation. The the-
ory of belief functions has been thereafter used as a fusion operator, but the article lacks details
about the applied operator and the technique used to manage the conflict between the different
sources of information. Instead of focusing on the choice of the applied fusion method or the ex-
tracted features, other works have concentrated on the impacts of feature normalization on radar
and optical data fusion. Zhang et al. [98] propose a novel approach for feature normalization
suitable for optical and SAR fusion. They resolve this problem by normalizing the extracted
features into three different scales [−1, 1], [0, 255], and [0, 1] to handle negative values of HH
and HV backscattering coefficients. They conclude that distribution-dependent classifiers (e.g.,
a maximum likelihood classifier) are independent of feature normalization; moreover, advanced
classifiers (e.g., a support vector machine) with built-in normalization are also not influenced
by feature normalization. In contrast, a minimum distance classifier and an artificial neural net-
work (ANN) depend on the input values of optical and SAR features and thus can be influenced
by feature normalization.

4.3 The proposed method

4.3.1 Fusion scenario preview

An overview of the fusion of heterogeneous data for joint classification purposes may be given
as follows. Without a lack of generality, the description focuses on the optical and the radar
image fusion problem, and the overall analysis is dedicated to land cover classification in a
farming area. Fusion of heterogeneous data flowchart is given in Figure 4.2.

Two kinds of images are considered: a first optical image IMS, which is multispectral with
p spectral bands, is considered, as well as a SAR image ISAR. The optical image may be
considered to as a reliable observation as soon as no clouds or shadows affect the data. The SAR
image is characterized by the speckle noise [99]. Moreover, with no polarimetric capability
(which is the case in this study), the information that can be extracted from this SAR image is
much less reliable than the one from the optical data.

Since no confidence may be given to a single SAR pixel due to the presence of speckle
noise on a homogeneous area, a local texture descriptor is used. The descriptor is based on the
first four cumulants (µ, σ, β1, β2), namely (mean, standard deviation, skewness and kurtosis)
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IMS

ISAR

IκSAR

CMS⊕κSAR

SOMMS SOMκSAR|MS

mMS mSAR
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MS m′

SAR

mMS⊕κSAR

max BetPMS⊕κSAR

Figure 4.2: Credal fusion framework between a reliable optical multispectral image and a SAR
observation. A first coarse joint classification is performed, yielding CMS⊕κSAR which guarantees
class homogeneity between the 2 sensors. Kohonen’s map is trained from optical multispectral
data IMS to yield SOMMS, and then from parameters extracted from the radar data with an
enslaved constraint on the location of the neurons of SOMκSAR|MS. From Kohonen’s maps, BBA
is performed and then specific discounting operators are applied on the mass depending on their
reliability (that yields m′

MS and m′
SAR). Fusion is performed by PCR6 rule and decision-making

is ensured with the maximum of Pignistic probability to yield a joint land cover classification.

estimated from ISAR with a sliding window [100]. In addition, some parameters extracted from
the Haralick texture analysis [101] (the sum average f6 and the inverse different moment f5)
are used to account for the co-occurrence of the pixels in a neighborhood. The next subsection
gives in detail the definitions of all used texture parameters.

They yield a 6-band image IκSAR , holding local parameters κ = (µ, σ, β1, β2, f6, f5) that
will be considered as the SAR information for the rest of the chapter. The p-band multispectral
image represents the spectral information. The fusion process is carried out, in each pixel,
between the BBA calculated from the two sources of information considered.

Given that the fusion process is facing different kinds of features, the joint classification of
heterogeneous data needs to guarantee that the classes are defined in a homogeneous fashion
both from the optical and from the SAR observations. Thus, a first joint classification CMS⊕κSAR

is performed to link the spectral signatures of IMS and the SAR texture descriptors of IκSAR . In
this study, a simple K-means classifier is used with an appropriate distance that accounts for the
heterogeneity of the joint observation and cross-calibration factor, which in turn accounts for
the relative dynamics between the two observations.

Then, the fusion of heterogeneous data is performed through belief function theory, which
requires a BBA for each information source (mMS and mSAR). A Kohonen-based BBA [11] is
applied since it has shown its capacity to handle large remote sensing data. mMS is estimated by
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considering only the optical information (it is considered to be a reliable source of information),
while mSAR is enslaved to the framework of the optical information.

Once the BBA of these two sources of information is established, belief function theory is
applied to combine the two pieces of information, which explains the uncertainty caused by
the data heterogeneity; this in turn involves different degrees of reliability of sources and data
imperfection. The final classification is obtained by the maximum of the Pignistic probability,
as detailed in the following sections.

4.3.2 Evaluated features

In general, features used in remote sensing images classification are based on spectral, statisti-
cal, temporal or textural information contained in a pixel or a group of pixels. This latter type
is particularly the most important in the interpretation and the analysis of SAR data [102, 103].
In this work, two families of texture features are used for the SAR descriptor: Haralick texture
measurements and statistical moments computed in a neighboring of each pixel. For the opti-
cal data, only spectral features are used. These features include the surface reflectance of the
different bands that compose the used image.

Haralick texture measurements

As introduced by Haralik [101], the Gray Level Cooccurrence Matrix (GLCM) gives the
occurrences number of the relationship of a reference pixel with its neighboring pixel located at
a given displacement d and according to the direction ϑ. Four orientations can be considered:
0◦, 45◦, 90◦ and 135◦ degrees. GLCM is of size Ng ×Ng, where Ng is the number of gray levels
in the analyzed image. Each element (i, j) of this matrix is defined by the number of pixels
with gray level j located at d of a pixel with gray level i. Several characters descriptive of the
textures can be calculated from this matrix. As indicated above, we only use in this work the
sum average and the inverse different moments. Table 4.1 gives the definitions of these chosen
texture measures.

Table 4.1: Haralik features computed from the SAR image.

Texture name Equation Description

F5: Inverse difference moment

∑Ng

i=1

∑Ng

j=1
1

1+(i−j)2 p(i, j) It is a measure of local similarity in the image.

P (i, j) is the value in the cell (i, j) in the matrix.

F6: Sum average

∑2Ng

i=2 ipx+y(i)

where x and y are the coordinates (row and column)

of an element in the cooccurence matrix and px+y(i)

is the probability summing x + y.

Statistical moments

First order statistics are generally used to describe the randomness aspect of texture, i.e.,
without taking into consideration the spatial dependence between pixels. They include the first
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four statistical moments: mean, standard deviation, skewness and kurtosis. The computations
of these characteristics are carried out on a region of interest based on its probability distribution
(histogram h) of the luminance. In our case, the local histogram extracted according to a sliding
window of odd size w × w, is modelled using Edgeworth expansion [8].

Let p(i) be the probability density of the intensity levels occurrence, calculated by dividing
the values h(i) in the total number of pixels in the sliding window:

p(i) = h(i)/w.w, i = {0, 1, ..., Ng − 1} (4.1)

The definitions and the descriptions of the computed local moments are given in Table 4.2.

Table 4.2: Local moments measures computed from the SAR image.

Texture name Equation Description

Mean µ =
∑Ng−1

i=0 ip(i) It defines the average level of intensity of the region or texture.

Variance σ2 =
∑Ng−1

i=0 (i − µ)2p(i) It describes the variation of intensity around the mean.

Skewness µ3 = σ−3∑Ng−1
i=0 (i − µ)3p(i) It describes how symmetric the intensity distribution is about the mean.

Kurtosis µ4 = σ−4∑Ng−1
i=0 ((i − µ)4p(i)) − 3 It measures of the flatness of the distribution.

4.3.3 Basic Belief Assignments for Heterogeneous Data

The core of this study arises in the belief mass assignment in a heterogeneous context with or
without missing information using our SOM-based BBA approach introduced in the previous
chapter.

4.3.3.1 Enslaved Kohonen-based BBA

This section describes how to establish a BBA from a non-reliable source of information (i.e.,
a SAR image) in the perspective of fusion with a heterogeneous reliable piece of data (i.e., an
optical image). To this aim, a hybrid SOM is defined through a hybrid neuron definition that
takes the spectral signature of the optical data (in❘p, p being the number of spectral bands) and
the texture descriptor of the SAR data (in ❘q, here q = 6, to hold the first 4 cumulants and 2
Haralick parameters).

Let x = {x1, x2, . . . , xp} ∈ ❘p and y = {y1, y2, . . . , yq} ∈ ❘q be the two heterogeneous
observations provided by two heterogeneous sensors. The input samples of the proposed hybrid
SOM are done through the co-located observations z = (x, y) with which a distance must be
associated. This distance is a fusion of the 2 metrics that are to be applied on each type of initial
data:

d(z, z′) = d❘p(x, x′) + αd❘q(y, y′), (4.2)

with z = (x, y) and z′ = (x′, y′) being 2 samples in ❘p+q. The parameter α is a cross-
calibration factor, that accounts for the relative dynamics between x and y.

According to this definition of a hybrid feature space and its related metrics, it is possible
to perform a training of a joint SOM where the weighting vectors are defined with wz =
(wx, wy) ∈ ❘

p+q. Nevertheless, this joint processing of our heterogeneous data does not
account for source reliability. Optical and SAR data interfere in the same manner in the location
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of each class center on the map (the class center of winning neurons wCk
, k ∈ {1, 2, . . . , K}),

while SAR data is much less reliable than optical data in the land cover classification accuracy.
Then, instead of a joint processing, an enslaved processing is set up to perform SOM training
and a SOM-based BBA of the SAR data only.

Enslaved SOM training starts with a classical SOM training of the optical data only, and
yields SOMMS. Then, the neurons of SOMMS are concatenated by q components to fit the ❘p+q

of the joint processing. The training of this hybrid map begins, but only the last q-components
(dedicated to the SAR data) are modified. In this case, the optical part is preserved, while the
SAR part follows the optical part in the location of classes on the map (locations of the winning
neurons wCk

). This defines SOMκSAR|MS and then mSAR, as shown in Figure 4.2.

4.3.3.2 Joint Kohonen-based BBA for missing data

When the optical sensor acquires a scene in the presence of clouds, two kinds of missing data
must be considered: the parts of the data that are hidden by the clouds themselves, and the parts
that are affected by the shadow of the clouds. A mask allows the training of Kohonen’s map
with valid data only.

In order to process the images with missing data, two perspectives may be adopted when
the optical pixels are affected by clouds and shadows, and are considered to be missing.
1) When no information is brought by the optical part, its related mass function may express a

total ignorance:

∀θ ∈ 2Θ, θ 6= Θ mMS(θ) = 0,

mMS(Θ) = 1. (4.3)

This first point of view does not however take into consideration the joint observation be-
tween optical and radar sensors.

2) The optical pixel may be recovered by using the joint Kohonen’s map SOMκSAR|MS which
models the links between optical and radar parts in the observation.
When a pixel xMS is considered missing in the optical image due to the presence of clouds
or shadow, the co-located radar observation ySAR is considered. Its winning neuron in the
radar restriction of SOMκSAR|MS allows us to consider the optical part of Kohonen’s map.
This spectral signature is substituted for xMS to recover the missing information.

4.3.4 Adopted scheme for heterogeneous data fusion

Once the problem of mass construction of heterogeneous data is resolved, the purpose of this
section is to discuss the strategy adopted for combining these different pieces of evidence.

4.3.4.1 Uncertainty management

After computing the masses of evidence mSAR and mMS of our heterogeneous sensors data,
some existing discounting techniques are firstly applied to manage the uncertainty before the
fusion process. On the one hand, the contextual discounting described by equation (2.28) is
applied on mMS to render the modelling very flexible by transferring a part of the mass of simple
hypotheses to the masses of the appropriate disjunctions of hypotheses. On the other hand, the
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priority discounting approach described by equation (2.27) is applied on mSAR, in order to prune
the radar source (considered, here to be of lower quality than the optical source). This technique
is generally used to rank pieces of evidence according to their priority using prior knowledge
obtained from a fusion designer. Section 4.4.2 provides the means of estimating the contextual
discounting weighting λi of each context and the priority discounting weighting β.

4.3.4.2 Knowledge fusion

Once the mass functions of each source are updated, a fusion step is required in order to syn-
thesize the final information that describes belonging to the set of possible classes. However,
as a priority discounting is applied, Dempster’s rule of combination cannot be applied since it
doesn’t respond to the discounting of sources towards the empty set [42]. So, only combination
rules allowing the redistribution of conflict should be considered. The PCR6 [38, 39], given by
equation (2.14), is applied here to calculate mMS⊕κSAR . Indeed, it allows the redistribution of
the possible conflict between the information brought by the optical sensor or the radar sensor.
From this combined mass function, the joint classification must be done based on the maximum
of the pignistic probability as decision criteria.

4.4 Experimental results

In order to assess the performance of the proposed heterogeneous data fusion algorithm, some
experimental studies on a SPOT-5 and RADARSAT-2 images are carried out in this section.
After a presentation of the study area in section 4.4.1, results of optical and radar joint classifi-
cation with complete data, along with a validation step, are presented in section 4.4.2. Finally,
section 4.4.3, focuses on the effectiveness of the proposed approach in dealing with (simulated)
missing data.

4.4.1 Study area and data description

Our study area covers a part of the Beauce region, located in the south-west of Paris, France.
This region is known for its high agricultural productivity. It is also essentially characterized by
its very large fields dominated by rape and cereal (wheat, barley, corn) crops. A multispectral
image acquired by the SPOT-5 French satellite during the Take-5 experiment and a radar image
acquired by the RADARSAT-2 Canadian satellite in Ultra-Fine mode are used in this exper-
iment. The two images cover an area of approximately 11.5 × 9km2 and have the following
features: the crop of the SPOT-5 image is characterized by a size of 1145 × 903 pixels, a spatial
resolution of 10m, and has four bands (Green (G), Red (R), Near InfraRed (NIR) and Medium
InfraRed (MIR)). The RADARSAT-2 image is composed of 3850×3010 pixels, with each pixel
having a spatial resolution of 3m. Regarding the radar image, only HH (horizontal transmit and
horizontal receive) and HV ((horizontal transmit and vertical receive) polarization channels are
available. However, HH-polarization was only used since it interacts more efficiently than HV-
polarization with agricultural crops. Figure 4.3-(a) and Figure 4.3-(b) show, respectively, the
false color composite of the SPOT image and its registered radar image.
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(a) SPOT5/Take5 data acquired on April 20th, 2015. False color
composite: RGB = (NIR, R, G) c©CNES

(b) Registered RADARSAT-2 HH F5 mode Ascending acquired on
April 23rd, 2015. RADARSAT-2 Data and Products

c©MacDONALD, DETTWILER and ASSOCIATES LTD – All
Rights Reserved

Figure 4.3: Multispectal (a) and radar (b) images acquired over Beauce, France, used in the
experiments.

4.4.2 Results for joint classification

The fusion process is achieved at the coarser resolution of both images, that is, at a resolution of
10m, which is that of the SPOT image. To this end, the RADARSAT-2 image is first processed
in order to extract the local statistical parameters (µ, σ, β1, β2, f6, f5)); the processing is done
through a sliding window of 51 × 51 for (µ, σ, β1, β2) and 15 × 15 for the Haralick texture
parameters (f6, f5) estimation.

In order to prevent bordering effects between parcels, a naive map extracted from the multi-
spectral image serves as a mask in the local parameter estimation of radar data. This guarantees
a parameter estimation on effective homogeneous areas and preserves the borders of each parcel.
The choice of analysis window size is based on our object dimensions of interest. Therefore,
our analysis windows size is proportional to those field dimensions. The 3m-resolution feature
image is then downsampled to a 10m-image, and then registered to the SPOT geometry. Fig-
ure 4.4 shows a false color composition of the radar information at a 10m resolution. The color
composition is shown with RGB=(µ, σ, β1).

In order to merge the belief degrees associated with each pixel from the two input images,
a unified frame of discernment is required. The simple classes of this frame are defined using
the K-means unsupervised classifier, where the parameter K is set to 5. It is applied to a stack
image collecting the spectral information of the SPOT image and the texture information of
the SAR image: IMS ⊕ κSAR image. The weight factor of equation (4.2) is set to α = 5.10−3

which corresponds to the average ratio between the mean value of the optical and radar data.
Five different land cover types are identified:
C1 A brown class in Figure 4.3-(a) and yellow areas in Figure 4.4, which correspond to wooded

areas;
C2 Dark red fields in Figure 4.3-(a), which do not have an explicit signature in the radar image,

and which correspond mainly to durum wheat (planted in winter);
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Figure 4.4: IκSAR image corresponding to the SAR texture information with false color compo-
sition: RGB=(µ, σ, β1).

C3 Light red fields in Figure 4.3-(a) and light brown fields in Figure 4.4, which correspond
mainly to rape;

C4 Cyan fields in Figure 4.3-(a) which correspond to bare soils and appear dark in Figure 4.3-
(b). In fact, they correspond mainly to corn and cereal seedling;

C5 Grey fields in Figure 4.3-(a) which have no significant signature in the radar image, and
which correspond mainly to barley (planted in early spring).
Ground truth was collected in July, while the data were acquired in April, and as a result,

any ambiguity between different kinds of crops could not be resolved, as many fields were still
in the seedling state. Hence, it was decided that only 5 classes could be discriminated. The
results of the joint classification are shown in Figure 4.5. This classification is used as reference
data in the following.

Figure 4.6 presents the results of the two Kohonen maps trained with the optical and the
SAR information. The 65 × 65 neuron maps were trained with 5000 samples per class. The
initial learning rate and neighborhood size were set respectively to 1 and 60.

The multispectral map, in Figure 4.6-(a), shows the distribution of spectral signatures repre-
senting cover soils and bare soils in this farming area. In the marginal zone between these two
types of spectral signatures, there is a location dedicated to man-made structures (buildings and
roads) and a forest area (dark, at the bottom left area of the map). The enslaved map, dedicated
to radar data in Figure 4.6-(b), shows the same kind of neurons at the same location on the map,
viewed by the textural parameters extracted from SAR data. It can be seen that the area in the
middle of the map, SOMκSAR|MS, extending from the right to the left, appears homogeneous,
while we have 2 different areas in SOMMS. This illustrates the fact that the optical sensor is
mainly sensitive to the presence of chlorophyll in this farming area, while the radar is sensi-
tive to the surface roughness. However, surface roughness may appear similar, from a radar
observation, in bare soil and also in cover fields, depending on the plantation. Nevertheless, the
wooded area is clearly discriminated from SAR sensor. The wooded area appears in brown-
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Figure 4.5: Unsupervised K-means classification results (with K = 5 classes) applied jointly
on multispectral and SAR information.

(a) SOMMS
RGB=(NIR, R, G)

(b) SOM
κSAR|MS

RGB=(µ, σ, β1)

Figure 4.6: SOM maps of size 65 × 65 neurons. The map (a) has been trained with the optical
data only, while the map (b) has been enslaved to map (a) and trained with radar data. Hence,
co-located neurons bring the same ground information between the 2 maps.

yellow on the image in Figure 4.4 and at the bottom left of SOMκSAR|MS in Figure 4.6-(b). The
SAR sensor does not help in the discrimination between bare soil and cover soil; nevertheless,
it easily discriminates the 2 kinds of cover fields that appear in red from a SPOT point of view
(e.g., Figure 4.5), as an area at the top left of the SOMκSAR|MS map appears in brown. It helps to
do discriminate between corn seed in winter and in early spring. The use of the enslaved radar
part of SOMκSAR|MS allows the Credal classification to tackle this ambiguity in order to improve
the final joint classification.

By using Kohonen’s maps and the joint classification, the estimation of BBA is performed
next [21]. Then, two different discounting techniques are integrated within the fusion system in
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Figure 4.7: Joint classification results with decision by maximum of pignistic probability over
all simples hypotheses.

order to manage the uncertainty and the contradiction (conflict) of our sources. Regarding the
mMS evidence, the contextual discounting weights, λ of equation (2.28), were calculated using
results given by the confusion matrix [104] derived from the cross decisions given by the optical
source and the decisions of the reference data only. In our case, the simple hypotheses (classes)
are the contexts. Each weight is calculated using the percentage of correct classifications of the
target class. The contextual reliability factors for the five classes are: λ1 = 0.85, λ2 = 0.86,
λ3 = 0.52, λ4 = 0.9, λ5 = 0.87. Regarding the mSAR evidence, as the SAR source has a lower
priority than the optical source in our proposed fusion method, the priority discounting factor,
β of equation (2.27), must be less than 1, and the higher its value, the more the information it
provides is taken into consideration. Later, this is set to 0.4 in this work, based on the subjective
attribute of this source.

Figure 4.7 illustrates the classification resulting from the fusion of optical and SAR infor-
mation using the PCR6 rule. The decision criteria are based on the maximum of the pignistic
probability BetP defined in equation (2.29). The validation step is carried out through the con-
fusion matrix shown in Table 4.3. It is worth noting that the proposed approach provides an
interesting accuracy with a Correct Classification Rate (CCR) of 77.25% and an Index Kappa
of 0.74. These rates were computed over all pixels belonging to the ground truth.

The overall classification is quite similar to the reference one in Figure 4.5. Nevertheless,
the accounting for source reliability for each class allows the decision-making to mitigate am-
biguous fields such as those which are slightly covered, but may still be considered to be bared,
or the seedling fields which may not have the same surface roughness. This impacts mainly
the class C5 fields (mainly barley), which can be relocated to class C2 or C3, depending on the
roughness signature and density of chlorophyll.
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Table 4.3: Quantitative results obtained using the confusion matrix.

C1 C2 C3 C4 C5

C1 95.35 0.00 1.94 2.69 0.02

C2 0.02 60.65 34.83 0.11 4.39

C5 0.00 4.87 95.13 0.00 0.00

C4 4.59 0.00 0.04 95.36 0.01

C3 1.75 9.04 17.88 31.55 39.78

4.4.3 Results for joint classification with missing data

In order to evaluate the effectiveness of the proposed method in the case of missing data from the
optical sensor, some cloud-free regions belonging to the initial data set are manually masked.
Two masked regions, namely, zone 1 and zone 2, were selected in order to hide different kinds
of ground cover. The mask of zone 1 mainly covers a non-agricultural area composed of 18,056
pixels, while the mask of zone 2 covers some covered and some bare soils composed of 6,300
pixels, as shown in Figure 4.8.

Figure 4.8-(b) shows the results of the joint classification obtained by applying simulated
cloud cover. For better visualization, Figure 4.9 gives a more detailed view of this classifica-
tion. It is in fact the Credal classification yielded by the SAR observation only. A quantitative
analysis gives an overall classification accuracy of 73.94 % which is very close to the accuracy
yielded by the complete MS ⊕ κSAR data.

(a) The original SPOT image with missing data at the location of the
mask.

(b) Classification of the heterogeneous data with missing data.

Figure 4.8: Results for joint classification with simulated cloud cover. The decision is per-
formed by the maximum of pignistic probability over all simples hypotheses.

The classification errors that can be found in Figure 4.9 result from the lack of information
due to radar observations in spring for fields classification. The wooded area bears a specific
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signature from the radar image such that almost no errors are to be found, for this class, between
the images of Figures 4.9-(a) and (b). The difference in resolution between the SPOT image
and the SAR-based texture information image explains the missing of chlorophyll-type patches
in Figure 4.9-(b). Nevertheless, the fields at the top of Figure 4.9-(a), which are likely to be bare
soil and durum wheat, are not discriminated from the SAR observation. Ground truth collected
in July shows that the bare soils are being prepared for vegetable seedlings, and as such, the
band-C surface roughness is not discriminated. The same remark may be made regarding the
results of Figures 4.9-(c) and (d). Here the bare soil, in (c), is estimated, in (d), with grey and
red pixels which correspond to rape and barley signatures. Ground truth shows that peas have
been planted on this strip of land, and beans on the rest. Although still looking at bare soil,
the SAR observation discriminated two kinds of land cover. Then, despite noise, the estimated
classification with missing data remains consistent.

(a) Zone 1, original classi-
fication

(b) Zone 1, estimated clas-
sification

(c) Zone 2, original classi-
fication

(d) Zone 2, estimated clas-
sification

Figure 4.9: Zoom of Figure 4.8-(b). Correct Classification Rate (CCR) of 72.28 % for masked
zone 1 and 75.60% for masked zone 2.
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4.5 Conclusion

In this chapter, a new credal fusion algorithm has been proposed that aims at integrating comple-
mentary information derived from optical and radar remote sensing data for land cover mapping
in agricultural areas. The proposed approach refers to the direct combination of heterogeneous
data at the pixel level and considers the image registration problems as resolved. The aim of
this strategy is mainly based on hybrid training of Kohonen’s map using heterogeneous data
for mass functions estimation. This step helps to deal with the heterogeneity of data sources by
representing those in the same semantic meaning through co-located observations. The method-
ology benefits from this joint training of heterogeneous data to restore missing parts of optical
data. It is worth noting that the enslaved processing, described in this chapter, is relevant when
one of two sources of information is considered to be more accurate than the other. If the cloud
coverage is becoming too significant, the related source of information may no longer be con-
sidered accurate. In that case, a joint processing should be preferred in order to recover missing
data.

The experimental part of this study showed the benefit of heterogeneous joint processing in
the analysis of a complex farming area, even in the case of missing data.
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5.1 Introduction

Conventionally, Bayes and Dempster-Shafer reasoning frameworks are considered as the two
most important approaches that deal with uncertainty representation. Although both theories
have many similarities since they have their origins in the probability theory, they have some
differences, the most important is the rule of aggregation. Dempster’s rule assumes that the
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sources of evidence to combine are independent which is always questionable in the practice. In
this chapter, we focus on this insufficiency and we propose a new strategy to combine dependent
consonant belief functions thanks to statistical copulas analysis [12]. Our approach consists
in identifying the copula that best summarizes the existing dependency structure between the
sources and then to combine the marginal belief functions accordingly.

The present chapter is organized as follows. The second section gives an overview of ap-
proaches allowing the combination of dependent evidences. Section 5.3 recalls basics of copula
theory. In section 5.4, we explain how copulas can be investigated in DST to combine in a
conjunctive way the beliefs. Section 5.5 introduces our new copulas-based disjunctive rule.
Section 5.6 gives our strategy to pick the copula that best fits the problem at hand. Section 5.7
illustrates the effectiveness of the proposed method. Finally, section 5.8 concludes.

5.2 Overview on combination rules of dependent belief func-
tions

DST formalism is often presented as a generalization of a Bayesian model because it can handle
the distinction between uncertainty and ignorance. This point of view is, however, disputable as
soon as Dempster’s rule is under concern as pointed out by several authors [31–33, 105–109].
Dempster’s rule presents the advantages to be commutative and associative, but also it has
two main limitations: 1) its normalization procedure provides unsatisfactory performances and
strange behaviours even in low conflicting cases [109], and 2) it requires the independency of
sources of evidence to combine which is rarely satisfied in the real-world applications. This
second limitation has encouraged researchers to work on it and if we take a look at the various
solutions (operators) they propose for combining dependent evidence, we can classify them into
three families of approaches:

- The first family seeks to satisfy the idempotence assumption of the combination rule. This
propriety ensures that our belief on imperfect observation is not modified if the two used
dependent sources of information provide the same knowledge. Thus, some authors [110,
111] have proposed to extend some existing idempotent rules coming from other theories
of uncertainty to the evidence theory.

- The second family of methods uses the least commitment principle in the choice of the
combination operators [15, 112]. As well as idempotent rules, this kind of merging rules
seek to minimize the conflict by adopting a cautious attitude (which is guaranteed by their
ability to handle the redundancy between evidences) when dependence between sources is
doubtful. The weakness of these rules appears in their similar treatment for any degree of
dependence between beliefs.

- The third family [40, 41, 113] consists in combining the marginal belief structures where
the dependence structure is assumed to be known or to identify.

Subsection 2.2.2.2 details the main rules of those families. In the following, we focus on the
third category of approaches and we are interested specially on rules allowing the combination
of dependent evidence using copulas [12] that have been successfully used to model depen-
dency for multivariate distributions in the framework of probability theory. Although several
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studies [114–116] on the feasibility of its adaptation in the belief functions framework exists, to
the best of our knowledge, they are rare that deals with the copula choice problem.

5.3 Copulas

Copulas represent the most attractive tools for characterizing any joint random variables. They
were firstly introduced by Sklar [117, 118]. However, an analogous concept for capturing and
modelling the dependency structures of joint distributions had independently previously ap-
peared in the works of Hoeffding [119, 120]. In this section, we review the most important
concepts of bivariate copulas.

5.3.1 Reminders and notations

We recall here the definition of the univariate distribution function of a uniform random variable
on [0, 1] which is closely linked to copulas.

Let F (x) = P (X 6 x) be the cumulative distribution function (cdf) of the random variable
X . By convention, its generalized inverse is defined by F −1(y) = inf(x|F (x) ≥ y). The
variable U = F (x) is then of uniform law on [0, 1], since it distribution function is given by:

Pr(U 6 u) = P (X 6 F −1(u)) =















0 if u 6 0,

u if 0 6 u 6 1,

1 if 1 6 u.

5.3.2 Copulas as conjunctive aggregation functions

Informally, an aggregation operator is a mathematical tool that gives a unique representative
object belonging to a given type from multiple objects of the same type, simply we speak
about combination of information. For example, in the mathematical framework, aggregation
operators handle only numbers.

Definition 9. (from [121]) An aggregation operator is a function

Ag : [0, 1]n → [0, 1]

that satisfies:

1. Ag(0, . . . , 0) = 0 and Ag(1, . . . , 1) = 1.

2. Ag(x1, . . . , xn) 6 Ag(y1, . . . , yn)
if (x1, . . . , xn) 6 (y1, . . . , yn).

Dubois and Prade [122] distinguish four main aggregation function family approaches:

• Conjunctive aggregation function: all Ag that verifies Ag 6 min(x1, . . . , xn).

• Disjunctive aggregation function: all Ag that verifies Ag > max(x1, . . . , xn).
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• Average aggregation function: any idempotent Ag.

• Mixed aggregation function: a particular combination of previous ones.

Particular kinds of aggregation functions are copulas. In fact, all conjunctive aggregation
functions Ag that fulfill the n-increasing condition1 are copulas. A copula [12] is a function
which joins univariate marginal distribution functions to their multivariate distribution function.
As n-dimensional copulas are notoriously hard to estimate except some specific cases (e.g.,
Gaussian copulas) and may pose some issues, we will only consider in the following the case
of bivariate copulas which will be used later. Formally, a 2-dimensional copula is a function C
from [0, 1]2 to [0, 1] such that:

1. C is grounded, i.e., C(u1, 0) = C(0, u2) = 0 for all u1 and u2 ∈ [0, 1].

2. The one-dimensional margins are uniform, i.e., C(u1, 1) = u1 and C(1, u2) = u2 for all
u1 and u2 ∈ [0, 1].

3. C is 2-increasing, i.e., the following inequality holds for all (u1, u2), (v1, v2) ∈ [0, 1]2

such that 0 6 u1 6 v1 6 1 and 0 6 u2 6 v2 6 1:

C(u1, u2) + C(v1, v2) > C(u1, v2) + C(v1, u2). (5.1)

Important examples of the copula are:

• The product copula that characterizes totally independence

C⊥(u1, u2) = u1u2. (5.2)

• The comonotonicity copula that characterizes the complete positive dependence

C−(u1, u2) = min(u1, u2). (5.3)

• The countermonotonicity copula that characterizes the complete negative dependence

C+(u1, u2) = max(u1 + u2 − 1, 0). (5.4)

The copulas C− and C+ represent the lower bound (respectively the upper bound) of Fréchet-
Hoeffding. So we have for each copula C that C− 6 C 6 C+. In addition, every copula C
almost everywhere admits partial derivatives ∂C/∂u1 and ∂C/∂u2 [12]. Moreover, the den-
sity of the copula (which corresponds to the density of probability) is given by: ∂2C/∂u1∂u2.
Sklar’s theorem [117] represents the cornerstone of the copulas theory; indeed it offers a link
between the joint distribution of random variable and copula.

1i.e., taking the case n = 2 it holds that for all x1, x2, y1, y2 ∈ [0, 1], with 0 6 x1 6 y1 6 1 and 0 6 x2 6
y2 6 1, we have Ag(x1, x2) + Ag(y1, y2) > Ag(x1, y2) + Ag(y1, x2).
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Theorem 1. Consider two arbitrary random variable X1 and X2 with marginal cdfs F1, F2 and

joint cumulative distribution function (j-cdf) F , then there exists a copula C such that:

F (x1, x2) = C
(

F1(x1), F2(x2)
)

. (5.5)

Let R(x) denotes the range of the cdf x, C is uniquely determined on R(F1) × R(F2) if F1 and

F2 are continuous [123].

One can also rewrite equation (5.5) for (u1, u2) ∈ [0, 1]2 as

C(u1, u2) = F (F −1
1 (u1), F −1

2 (u2)). (5.6)

5.3.3 K-plot graphical representation

Kendall plot, also called K-plot, is a goodness-of-fit technique for copulas introduced recently
by Genest and Boies in [13]. It is a rank-based graphical tool inspired by the underlying
concept of Q-Q plot (so called Quantile-Quantile plot) for detecting dependencies in a bi-
variate data. Let {(x1,1, x2,1), (x1,2, x2,2), . . . , (x1,N , x2,N)} be a set of observations of the
joint random variables X1 and X2, this method consists in transforming this pair of data into
{(Wl:N , Hl), . . . , (WN :N , HN)} by following these steps.

1. For all i in {1, . . . , N}, calculate Hi as follows:

Hi =
1

N − 1
card{j 6= i : x1,j 6 x1,i, x2,j 6 x2,i}. (5.7)

2. Sort the Hi, such that H(1) 6 H(2) 6 . . . 6 H(N) to obtain the rank statistics of the
observations that corresponds to the quantile-sample.

3. Calculate the theoretical quantiles Wi:N that corresponds to the expectation of the i-th
order statistics of a sampling of a random variable of cdf FX1,X2(X1, X2), considered to
be equal to FX1(X1)FX2(X2). That is to say (X1, X2) are considered to be independent.
Then, its order statistics is given for all 1 6 i 6 N by:

Wi:N = N







N − 1

i − 1







∫ 1

0
t(K(t))i−1(1 − K(t))N−idK(t) (5.8)

where K(t) = Pr(X1X2 6 t) = Pr(UV 6 t) = t − t log(t).

Finally, K-plot is obtained by plotting the pair (Wi:N , Hi). Two important particular cases that
can be identified from this graphic: the case of positive dependency if the points are located
above the diagonal K(t) = t (which corresponds to the perfect independency case) and vice
versa for negative dependency.
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5.4 DST and Copulas

As previously mentioned, the belief function theory is well-known for its ability to model uncer-
tainty and imprecision. A comprehensive study on the feasibility of adapting copulas as part of
the belief function theory to combine dependent evidence was done separately by Nguyen [124]
and Schmelzer [116, 125]. The basic idea is to point out the relation between random set and
evidence in order to study DST within the framework of probability theory but with random
variables having sets as values. In the following of this part, the most important results of this
extension as well as the copulas-based conjunctive rule for the combination of consonant belief
functions induced by dependent sources of evidences are presented.

5.4.1 Random sets and DST

Let (Ω, A, P) be a probability space and let (U, U) be a measurable space where U is the power
set of Θ. One can define a finite random set S : Ω → U = 2Θ, with the probability distribution
function given by f : 2Θ → [0, 1] such that:

f(A) = P [S = A], ∀A ∈ 2Θ. (5.9)

Although this probability distribution fully characterizes the finite random set S, sometimes,
it is more convenient to determine its distribution using the containment functional [126] defined
as follows:

F (A) = P [S ⊆ A] =
∑

B⊆A

f(B), ∀A ∈ 2Θ. (5.10)

This set function can be considered as the counterpart of the cumulative distribution function
P (X 6 x) of a random variable X , where 6 on ❘ is replaced by the inclusion relation ⊆ with
which U is partially ordered. Note also that one can obtain the function f from F using the
so-called Möbius inversion formula:

f(A) =
∑

B⊆A

(−1)|A\B|F (B). (5.11)

If f(∅) = 0, i.e., S is a non empty finite random set, then F is mathematically isomorphic
to belief function. As a result, a close link can be established between Dempster-Shafer theory
and random sets theory [127, 128]: any Basic Probability Assignment (BPA) m can be then
represented by a finite random set S characterized by the couples (Ai, m(Ai)) such that Ai ∈ 2Θ

and whose distribution is given by the belief function.

5.4.2 Conjunctive combination of dependent consonant belief functions
using copula

Traditionally, in order to combine two BPAs m1 and m2 defined respectively in the frames
of discernment Θ1 and Θ2, we must firstly find their joint basic probability assignment m :
2Θ1 ×2Θ2 → [0, 1] that encode the dependency present between both. In [124], Nguyen presents
results for modelling this dependency using copula. In addition, he proves that given a joint
basic probability assignment m there exists a copula linking m to its margins as follows:
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m1(.) =
∑

A2∈2Θ2

m(., A2) and m2(.) =
∑

A1∈2Θ1

m(A1, .). (5.12)

Its approach benefits from the canonical random set representations of belief functions. Let
A1

i , A2
i , ..., Ani

i be the enumeration of the power set 2Θi , i = 1, 2, this representation consists in
subdividing the probability spaces (0, 1] into ni subintervals whose lengths correspond to prob-
ability weights of mi, i = 1, 2. See Alvarez [114] for further details. The marginal distribution
functions can be then defined on ❘ using the above enumerations as follows:

F1(x1) =
∑

j16x1

m1(A
j1
1 ) and F2(x2) =

∑

j26x2

m2(A
j2
2 ). (5.13)

These functions are piecewise constant functions increasing by mi(A
ji

i ) at xi = ji where
i = 1, 2. As well, the joint distribution function can be given by:

F (x1, x2) =
∑

j16x1,j26x2

m(Aj1
1 , Aj2

2 ). (5.14)

By Sklar’s theorem, there exists a copula C ′ such that F (x1, x2) = C ′(F1(x1), F2(x2)).
However, as different orderings of the power set 2Θi , i = 1, 2 can be found, the joint distribution
function and thus also the copula C ′ depends on the used pair of enumerations.

Nguyen proves that the joint density m can be expressed in terms of the copula C ′:

mC′(A1, A2) = µC′((F1(k1 − 1), F1(k1)] × (F2(k2 − 1), F2(k2)], (5.15)

where k1 and k2 are the indices for which A1 = Ak1
1 and A2 = Ak2

2 , respectively, and µC′ is
the C-volume of the rectangular event [u1, v1] × [u2, v2] ∈ [0, 1]2, ui 6 vi, i = 1, 2 associated to
the joint focal element (A1, A2)

µC′((u1, v1] × (u2, v2]) = C ′(v1, v2) − C ′(v1, u2) − C ′(u1, v2) + C ′(u1, u2). (5.16)

In order to select a single copula, Nguyen proposes to choose among all the pairs of enu-
meration the one who maximizes the entropy. In [125], Schmelzer proves that if the marginal
belief functions bel1 and bel2 are minitive (i.e., their associated random sets are consonant), the
joint belief function

bel12(A1, A2) =
∑

B1⊆A1,B2⊆A2

m(B1, B2) (5.17)

is then biminitive2, and there exists a single copula C such that for all A1 ⊆ Θ1, A2 ⊆ Θ2 it
holds that

bel12(A1, A2) = C(bel1(A1), bel2(A2)). (5.18)

2(from [125]) A function bel is called biminitive or minitive in each component if for all A1, B1 ∈ 2Θ1

and A2, B2 ∈ 2Θ2 such that A1 ∩ B1 ∈ 2Θ1 and A2 ∩ B2 ∈ 2Θ2 it holds that bel(A1 ∩ B1, A2 ∩ B2) =
min{bel(A1, A2), bel(A1, B2), bel(B1, A2), bel(B1, B2)}.
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Following equations (5.18) and (5.15), two copulas C ′ and C can be used to describe the
relation between the marginal and the joint probabilistic information. In the case of consonant
belief functions, this two latter coincide only if the enumerations 2Θ1 = {A1

1, A2
1, ..., An1

1 } and
2Θ2 = {A1

2, A2
2, ..., An2

2 }, are chosen in such a way that the focal sets of the marginal belief
functions are ordered in increasing order (with respect to set inclusion). In the sequel, we
are interested, in particular, to the problem of choosing copula in the fusion process of such
belief functions. Suppose that there are two sources of information S1 and S2 and one has an
information that quantifies the dependency relation between their consonant beliefs functions
m1 and m2. Then the joint basic probability assignment can be defined by:

mC(A1, A2) =
∑

B1⊆A1,B2⊆A2

(−1)|A1\B1|+|A2\B2|C(bel1(A1), bel2(A2)), (5.19)

Using this definition, the Conjunctive Rule based on Copula, denoted CRC, can be given in
the following manner:

mCRC
1,2 (A) =

∑

A1∩A2=A

mC(A1, A2), (5.20)

According to the choice of the copula, the CRC rule allows to combine dependent beliefs,
independent beliefs and intermediate cases. For example, by applying the product copula in
equation (5.20), we find the conjunctive rule equation (2.11). Thus, some conjunctive-based fu-
sion rules (such as Yager’s rule [35] and Dempster’s rule) may be rewritten with such dependent
formalism. Dempster’s rule for independent evidence is given by:

mDS
1,2 (A) =

1

1 − K
m1 ∩©2(A), as stated in equation (2.13),

=
1

1 − K

∑

A1∩A2=A

m1(A1) × m2(A2)

=
1

1 − K

∑

A1∩A2=A

mC⊥(A1, A2), (5.21)

where K is defined as:

K = m1 ∩©2(∅)

=
∑

A1∩A2=∅

m1(A1) × m2(A2)

=
∑

A1∩A2=∅

mC⊥(A1, A2). (5.22)

5.5 Credal dependent fusion: disjunctive aggregation rule

As it is conceived, the evidential disjunctive rule allows the preserving of the set of beliefs
of each source independently to its reliability. Like most combination rules, this rule does
not allow aggregation of dependent sources of information. Several alternatives [129] have
been proposed to overcome this deficiency by ensuring a prudent attitude and condone the real
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dependence modelling. The aim of this section is to define a new aggregation rule that keeps
the disjunctive behaviour for various values of dependency.

Recall that in aggregation domains [130], a typical relationship between disjunctive aggre-
gation functions Di and conjunctive aggregation functions Co are by means of order reversing
mapping (negative function) N such that

Di(x1, ..., xn) = N
(

Co
(

N(x1), . . . , N(xn)
)

)

(5.23)

This relation is called duality and will be used here to define the dual aggregation operator
to copula that offers our solution for capturing dependence relationship between sources of
information to be combined disjunctively. Usually a strong negation N(x) = 1−x, x ∈ [0, 1]
is used to define such an operator:

Di(u, v) = 1 − C(1 − u, 1 − v) (5.24)

In the framework of copula theory [12], the dual copula D is not defined in the sense of
equation (5.24). Let U , V be two random variables uniformly distributed over [0,1], if they are
linked by a copula C, C(u, v) = Pr(U 6 u, V 6 v) = Pr({(U 6 u) ∩ (V 6 v)}), then the
corresponding D is given by the following formula:

D(u, v) = u + v − C(u, v)

= Pr({(U 6 u) ∪ (V 6 v)})
(5.25)

For certain copulas, D coincides with Di (see section 5.6). In this case, we can say that
D allows the disjunctive aggregation of dependent marginal u, v and we can define the Dis-
junctive Rule based on Dual Copula (DRDC) in the following manner: Suppose that, there are
two sources of information S1 and S2 and we have information that quantifies the dependence
relation between their belief functions m1 and m2. Then DRDC is given by:

mDRDC
1,2 (A) =

∑

A1∪A2=A

mD(A1, A2), (5.26)

where

mD(A1, A2) =
∑

B1⊆A1,B2⊆A2
(−1)|A1\B1|+|A2\B2|D(bel1(A1), bel2(A2))

=
∑

B1⊆A1,B2⊆A2
(−1)|A1\B1|+|A2\B2|bel1(A1) + bel2(A2)

−C(bel1(A1), bel2(A2)).

(5.27)

5.6 The choice of the family of copulas

As we have shown in the foregoing section, the copula fits to Dempster-Shafer framework in the
case of combining non distinct consonant belief functions. So it remains now to make the right
choice of the copula in the credal fusion process from the various existing copulas. Usually,
the choice of the copula depends on the data set used. Indeed, a particular copula may be fits
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better for one data set than for another. To the best of our knowledge, there does not exist in the
literature an efficient method for selecting copula. Generally, the use of parametric copula is
recommended because it can be adapted to existing data by estimating its parameters properly.
Nevertheless, nothing can prove that this choice of parameters guarantees the convergence of
copula to the real structure of the underlying dependency of the data. In this work, we choose
to use the family of Archimedean copulas defined as follows:

C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) , (5.28)

where ϕ : [0, 1] → [0, +∞) is a continuous, strictly decreasing function with ϕ(1) = 0.
In [131], Alsina et al. consider that any commutative associative copulas are t-norms; or

equivalently any t-norms which satisfy the 1-Lipschitz condition3 are copulas. So it is clear that
Archimedean copulas are also t-norms since they belong to the overlap of copulas and t-norms
(see Figure 5.1). As a result, it is easy to demonstrate that CRC shares all interesting properties
of t-norms, including associativity. This point constitutes the first reason for choosing this
family of copulas.

conjunctive aggregation function

Copulas

T-norms

Figure 5.1: Copulas and t-norms as aggregation functions.

Furthermore, Archimedean copulas are able of capturing and modelling various ranges of
dependencies. Indeed, depending on their generating functions (see for instance an overview
in [12]), several copulas can be easily derived. Here, we recall only those bi-dimensional of
Frank, Clayton ad Gumbel which are the most widely used in applications.

• Gumbel copula (1960) is an Archimedean copula which exhibits greater dependence in
the positive tail than in the negative so it represents an appropriate choice to modelling
strongly correlated marginal at high values but less correlated at low values. Gumbel
copula is given by it generator function

ϕr(t) = (− ln(t))r (5.29)

to yield
CG

r (u, v) = exp
[

− ((− ln(u)r) + (− ln(v)r))
1
r

]

, (5.30)

3i.e., for any (u1, u2, v1, v2) ∈ [0, 1]4 it holds that C(u1, v1) − C(u2, v2) ≤ |u1 − u2| + |v1 − v2|.
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where r ∈ [1, +∞) is the parameter of the copula. The value r = 1 reflects the perfect
independency between the marginal of the distribution and the great values of r reflects
that Gumbel copula approaches Fréchet-Hoeffding upper bound [12].

• Clayton copula (1978) [132] is well known for its ability to capture lower tail dependency.
This copula is given by its generator

ϕr(t) =
1

r
(t−r − 1) (5.31)

to yield

CC
r (u, v) =

uv

1 − r(1 − u)(1 − v)
, (5.32)

where r ∈ [0, +∞) is the parameter of the copula. r = 0 occurs when the marginal
distributions are independent. r −→ +∞ makes Clayton copula approximating Fréchet-
Hoeffding upper bound.

• Frank copula (1979), introduced in [133], plays a particular role in the evaluation of
conjunctions under dependency between marginal and it is defined with

ϕr(t) = − ln

(

exp(−rt) − 1

exp(−r) − 1

)

as follows:

CF
r (u, v) =

−1

r
ln

(

1 +
(exp(−ru) − 1)(exp(−rv) − 1)

exp(−r) − 1

)

, (5.33)

where r ∈ (−1, +∞). The value r = 0 reflects the perfect dependency, the great values
of r reflects opposite dependency and independency corresponds to the value r = 1.

The link between Kendall’s τ and the parameter of any Archimedean copula of generator
function ϕ is given by:

τ = 1 + 4
∫ 1

0

ϕ(u)

ϕ′(u)
du.

For the DRDC, only Frank copula can be used to retain the property of a t-conorm. In fact,
it has been demonstrated in [133] that is the only one that verifies the matching between the
dual copula and the dual aggregation operator to copula for Archimedean class of copulas.

5.7 Experiments

In order to prove the effectiveness of using copula in combining dependent consonant belief
functions, a credal classification problem is used here. The experiments have been done on
benchmark and generated data sets. The benchmark data set is provided by the University
of California - Irvine (UCI) Machine Learning Repository4. The simulated data set consists
of three overlapped Gaussian distributions. For each data set, only two features (i.e., sources

4The data set is available at http://archive.ics.uci.edu/ml.

93



Chapter 5. Copulas-based fusion of consonant belief functions induced by dependent sources
of evidences

of information) are used to discriminate its classes. The first part of this section explains the
strategy to be followed for estimating consonant belief functions from the used data sets and the
second part is devoted to the results of the application of the appropriated copula in the fusion
process, as well as to their interpretation.

5.7.1 Consonant mass functions estimation

Let Θ be a referential and π be a possibility distribution, which assigns to each singleton θ ∈ Θ
a possibility degree of its occurrence π(θ) ∈ [0, 1] with:

- π(θ) = 0 means that θ is rejected; it is totally impossible;

- π(θ) = 1 means that θ is completely possible.

From this distribution, a possibility Π and necessity N measures can be defined as follows:

Π(A) = maxθ∈A π(θ)

N(A) = 1 − Π(A)

In [134], Dubois and Prade pointed out that π can be modelled as a consonant random set,
since the measure N is a special case of the credibility measure. Let π1 = 1 > π2 > ... > πN

be the distinct values taken by π and by convention πN+1 = 0. Let Ai denote the πi-cut of the
possibility distribution π. Then, we have, for any non-empty subset A of Θ:

m(A) =







πi − πi+1, if A = Ai, i = 1, ..., r

0, otherwise

Now, the problem of estimating consonant mass function can be reduced to the estimation
of a possibility distribution to which we apply this transformation.

5.7.2 Results and discussion

5.7.2.1 Benchmark data set

In this work, the dependence between sources is assumed to be the dependence between their
data. Let (x1,1, x2,1), (x1,2, x2,2), . . . , (x1,N , x2,N) be a set of observations of the joint random
variables (RV) X1 and X2 that characterize respectively the sources S1 and S2 where each ob-
servation represents the object to be classified in the data set. The dependence between sources
can be computed using Kendall’s rank correlation coefficient [14] defined as a concordance
versus discordance measure of order statistics:

τ = Pr((X1 − X∗
1 )(X2 − X∗

2 ) > 0) − Pr((X1 − X∗
1 )(X2 − X∗

2 ) < 0) (5.34)

where X∗
1 and X∗

2 are 2 RVs following the same laws as X1 and X2 (respectively) but considered
as independent. An empirical estimator exists for Kendall’s τ from a set of N joint observations
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of X1 and X2:

τ =

∑N−1
i=1

∑N−1
j=i+1 x1,ijx2,ij






N

2







(5.35)

with

x1,ij =







1, if x1,i 6 x1,j

−1, otherwise
x2,ij =







1, if x2,i 6 x2,j

−1, otherwise.

After having calculated Kendall’s τ needed in the estimation of the parameter of the cop-
ula. Now it remains to determine the best-fitting copula for the corresponding data set. This
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Figure 5.2: K-Plot in a quasi-independent case. Sample from the seeds training base, with
τ = 0.0097, are shown in grey, simulated models with τ = 0.0097 is shown in blue for Frank
copula, in red for Clayton copula and Green for Gumbel copula. Best goodness-of-fit is given
by Frank copula.

goodness-of-fit is implemented via K-plot graphical method [13]. It consists of plotting two
rank statistics in a similar way as the Quantile-to-Quantile plot which is known for 1D distri-
bution model validation. Here, rank statistics are computed from the sample of the data set
(y-axis H of the graph) and compared to the rank statistics of the joint observation but with an
independent hypothesis (x-axis Wi:n of the graph).

Some comparisons may be performed by simulating data set with the same dependency
parameter (here the same Kendall’s τ ) by using a specific copula model. Here, Frank, Clayton
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and Gumbel copulas have been investigated. The copula whose plot best fits the sample plot is
considered to be the one that describes the best the mutual dependency of the two considered
sources. Frank, Clayton and Gumbel copulas come from the same family for Archimedean
copulas and are described in section 5.6. The following two examples are extracted from the
seeds training base5.
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Figure 5.3: K-Plot in a more dependent case. Sample from the seeds training base, with τ =
0.7132, are shown in grey, simulated models with τ = 0.7132 is shown in blue for Frank
copula, in red for Clayton copula and Green for Gumbel copula. Best goodness-of-fit is given
by Gumbel copula.

Figure 5.2 shows an example of a K-plot that characterizes the dependency between 2
sources by comparing its joint order statistics to the equivalent order statistics through an inde-
pendent hypothesis. The case shown in Figure 5.2 corresponds to an almost independent case,
as τ = 0.0097 (the case τ = 0 stands for perfect independency). The sample of this K-plot
follows the diagonal that characterizes the area of independent sources. With this low value
of τ , all the considered copulas also follow the diagonal line as those copulas can handle the
independent case. Nevertheless, the numerical distance between the curve of the considered
data set and the copula-based simulated sample shows that Gumbel copula achieves the best
goodness-of-fit (distance to sample equals 0.0017 for Gumbel copula, 0.0028 for Frank copula
and 0.0048 for Clayton copula, with parameter adjusted for τ = 0.0097).

In Figure 5.3, a more dependent case is shown with τ = 0.7132. Here, Frank copula shows
the best goodness-of-fit (distance to sample of 0.0024 for Frank copula, 0.0038 for Clayton

5The seeds database is available at http://archive.ics.uci.edu/ml/datasets/seeds.
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(a) Weak dependent case in seeds base(cf. Fig. 5.2).
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(b) High dependent case in seeds base (cf. Fig. 5.3).

Figure 5.4: Reference data.

copula and 0.0057 for Gumbel copula) which shows that the dependency structure does not
have the same behaviour as the one of Figure 5.2. In Figure 5.3, the plot of observations and
all investigated Archimedean models of dependency are located on the upper curve that repre-
sents the case of perfect dependency. In this example, the so-called Gumbel Copula (defined
in equation (5.30)) has been found to fit the best dependence between dependent sources of
information.

Figures 5.5 and 5.6 illustrate the classification results for the different elements of seeds
training base studied according respectively to the weak dependent sources with τ = 0.0097
and to the high dependent sources with τ = 0.7132. Figure 5.4 shows the reference data for
each of those cases. The method for estimating the possibility distribution transformed to mass
functions used in this section is the one described by Klir in [135]. For decision making on
simple classes the criterion of the maximum of pignistic probability is used.

For the weak dependent case, we notice that the results of the classification of the copulas-
based fusion rules CRC and DRDC are identical to those given by CR and DR, respectively.
This is expected because the behaviour of Archimedean copulas for the weak dependency tends
to the one of the product copula (so that for example equation (5.20) is becoming similar to
equation (2.11). The Bold rule [129] presents major differences from the two other disjunctive
rules. Indeed, we can notice in Figure 5.5-(e) that it has the highest false classification. Ob-
viously, such a result is a logical consequence of the non-specific treatment of the dependence
structure between the sources.

For the high dependent case, the best accuracy is given by the proposed combination rules as
well as the other employed rules. However, it seems that the nature of disjoint classes (see Fig-
ure 5.4-(b)) used in this test do not appear the advantage of expressing or modelling dependence
in the fusion step. It is on this point that the second test, given below, was designed.

5.7.2.2 Generated data set

In this second test, three data sets as shown by Figure 5.7 are applied. Each one of them corre-
sponds to a three 2D overlapped Gaussian distributions Θ = {θ1, θ2, θ3}. Table 5.1 displays the
different means vectors and covariance matrices used in order to vary the dependence degree of
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(b) Disjunctive rule.
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(c) Cautious rule.
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(d) Bold rule.
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(e) CRC rule.
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(f) DRDC rule.

Figure 5.5: Classification results for the weak dependent case in seeds base (cf. Figure 5.2). X
stands for the “asymmetry coefficient” and Y for the “length of kernel groove” components of
the seeds database.

data. We have generated 1500 random samples for each of the three classes θ1, θ2 and θ3.
As in the first test, a credal classification problem is considered in order to evaluate the pro-

posed copula-based strategy of fusion. The rates of correct classification are given in Table 5.2
using the confusion matrix. As we can see, CRC and DRDC present promising results. Indeed
by comparing our CRC rule to the cautious and the conjunctive rules, it can be noticed that all
class detections have been improved (see in bold the first line of this table). Moreover, it is
worth noting that the more the value of dependency, the more the improvement of the results
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(b) Disjunctive rule.
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(c) Cautious rule.
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(d) Bold rule.
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(e) CRC rule.
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(f) DRDC rule.

Figure 5.6: Classification results for the high dependent case in seeds base (cf. Figure 5.3). X
stands for the “length of kernel” and Y for the “length of kernel groove” components of the
seeds database.

of CRC and DRDC rules. The cautious rule is always below and it gives the same result of CR
even if the independence hypothesis is not verified.

Similarly, the DRDC appears always better than the bold and the disjunctive rules. In addi-
tion, it seems that BR degrade the accuracy of the classification independently of the degree of
dependence (74.16% versus 74.56% for the data set 1 (τ = 0.2880) and 77.31% versus 78.33%
for the data set 3 (τ = 0.4423)).
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Table 5.1: Means and covariances of generated data sets.

Class
Data set 1 Data set 2 Data set 3

µ Σ µ Σ µ Σ

θ1 [5.5 7] 1.92*[1 0; 0 1] [5.5 7] 1.92*[1 0.9; 0.9 1] [5.5 7] 1.92*[1 0; 0 1]

θ2 [10 15] 2.12*[1 0; 0 1] [10 15] 2.12*[1 0.8; 0.8 1] [10 15] 2.12*[1 0.8; 0.8 1]

θ3 [12 11] 2.12*[1 0; 0 1] [12 11] 2.12*[1 0.8; 0.8 1] [12 11] 2.12*[1 0.8; 0.8 1]
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(a) Data set 1 (τ = 0.2880)
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(b) Data set 2 (τ = 0.5266)
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(c) Data set 3 (τ = 0.4420)

Figure 5.7: Generated data sets.

5.8 Conclusion

Evidence theory has often been interpreted as a generalization of probability theory thanks to
the introduction of belief functions. This point of view has been widely disputed in the literature
because of certain differences, the most important of which is Dempster’s popular aggregation
rule that assumes the distinction between beliefs to be combined. In this paper, we are interested
in the extension of the copula that provides an efficient means for the dependency modelling
to the framework of belief functions. One of the biggest challenges that we encountered in
the works present in the literature is the choice of the copula. The work presented in this
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Table 5.2: Classification results.

Combination Dependency value between sources

rules τ = 0.2880 τ = 0.4423 τ = 0.5309

CRC eq. (5.20) 88.38% 93.58% 92.56%

Cautious Rule eq. (2.22) 88.33% 93.36% 91.51%

CR eq. (2.11) 88.33% 93.36% 91.51%

DRDC eq. (5.26) 85.64% 89.31% 87.47%

Bold Rule eq. (2.23) 74.16% 77.31% 76.58%

DR eq. (2.15) 74.56% 78.33% 75.04%

study provides a solution for the disjunctive and conjunctive combination in the case where
the information assessed by a source of information is encoded in the form of consonant mass
functions. From the experiments performed on benchmark and generated data sets, we have
shown the efficiency of our copulas-based combination rules. Indeed they give more coherent
results than the ones given by the other rules.
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General conclusion

In this thesis, we were interested in evaluating the potential contribution of the credibility theory
to the modelling and fusion of heterogeneous remote sensing data. More precisely, our objective
is to combine the information provided by high spatial resolution optical and radar images in
order to achieve a joint classification. From a methodological point of view, we studied the
possibility of setting up new techniques intervening in the different phases of this fusion process
realization, such as the modelling, the estimation and the combination of beliefs. This led us to
propose three original contributions, which will be summarized in the following.

Synthesis of the works undertaken

As a first step, namely in chapter 3, a novel method dedicated to the estimation of mass
functions is introduced. The proposed approach has the particularity of processing the large
volume of data characterizing high-resolution remote sensing images, as well as data acquired
using other types of sensors. Based on the Kohonen map, a simplification of the input space
was applied to intelligently manage the assignment of the masses. Contrary to existing ap-
proaches, our method exploits the whole conceptual power of credibilist theories by allowing
to deal with uncertain and paradoxical data. Indeed, it calculates the supports of confidence
for the singletons, conjunctive and disjunctive classes. In this way, we guarantee accurate and
faithful modelling of the imperfect data used for the interpretation of the observed scene. The
effectiveness and accuracy of the proposed method were confirmed by a series of comparisons
with literature methods on benchmark databases and satellite data.

Then, chapter 4 is dedicated to discuss the problem of the fusion of data derived from
optical and radar sensors. The SAR /optical information fusion is explored in this study for
the joint classification of agricultural areas. The developed method is mainly based on the
adaptation of the assignment of mass functions already introduced in the previous chapter to
handle heterogeneous data. Indeed, a hybrid training of the Kohonen map is proposed. We have
constructed two variants of this approach to treat missing data due to the presence of clouds and
shadows as well as cloudless optical data. A pair of SPOT-5 and RADARSAT-2 images is used
in the experimentation and the application of the proposed technique on the Beauce region in
France shows very promising results in terms of classification precision and reconstruction data
that miss the optical images.
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Chapter 6. General conclusion

Finally, in chapter 5, we have tackled the problem of combining information induced by
belief functions in the case where their sources of information do not necessarily satisfy the
independence hypothesis. To achieve this purpose, we propose to calculate the joint mass func-
tion using the copula that best describes the dependence structure between the two marginal
mass functions to be combined. Then, two combination operators have been constructed by
taking into account this information about the existing dependence (i.e., the joint mass) to fuse
the dependent beliefs encoded by consonant belief functions in a conjunctive and disjunctive
way. The use of the proposed rules in a classification problem show a significant increase in
precision compared to the prudent and the bold rules of Denœux usually used.

Perspectives

Many interesting research tracks are possible as a result of this work, among them we cite:

• The introduction of conjunctions between classes within DSmT gives it a particular rich-
ness and flexibility to model the imperfections and the paradox of the data. Thus, it will
be interesting to adapt our approach presented in chapter 4 to DSmT framework in order
to benefit from the semantics of the class conjunctions in the joint classification of highly
heterogeneous sources presenting a strong conflict.

• Let us recall that the approach proposed in chapter 4 is entirely satisfied with the dis-
semination of the evidential knowledge derived from the textural information registered
by the radar sensors. It will be interesting to study the advantage of analyzing the po-
larimetric capabilities of SAR data that have found wide applications, especially in crops
discrimination in a farming area.

• The study presented in chapter 5 focuses on the fusion of two dependent sources only.
The extension to the fusion of 3 or more sources of information brings new problems that
have to be tackled. In fact, accounting for the dependence in nD (i.e., defining a copula
C(u1, u2, . . . , un)), the 2-by-2 dependency structure may not be equivalent between cou-
ple of sources so that it induces a conjunctive rule that is not associative anymore. This
point constitutes one of our main future works.

• Likewise in chapter 5, our method was mainly tested on benchmarks and synthetic data
sets. Hence, it is promising to investigate the performance of the CRC rule of combination
to different remote sensing applications like optical and radar data fusion.

• The introduced CRC rule gives a conflictual mass which seems to describe the disaccord
between the dependent sources of information well. Hence, it will be interesting to study
the behaviour of this mass depending on the number of combined BPAs. Moreover, it is
possible to study new rules of combination that allow the conflict redistribution.
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Résumé 

Avec l’avènement de nouvelles techniques d’acquisition d’image et 

l’émergence des systèmes satellitaires à haute résolution, les données 

de télédétection à exploiter sont devenues de plus en plus riches et 

variées. Leur combinaison est donc devenue essentielle pour améliorer 

le processus d’extraction des informations utiles liées à la nature 

physique des surfaces observées. Cependant, ces données sont 

généralement hétérogènes et imparfaites ce qui pose plusieurs 

problèmes au niveau de leur traitement conjoint et nécessite le 

développement de méthodes spécifiques. C’est dans ce contexte que 

s’inscrit cette thèse qui vise à élaborer une nouvelle méthode de fusion 

évidentielle dédiée au traitement des images de télédétection 

hétérogènes à haute résolution. Afin d’atteindre cet objectif, nous 

axons notre recherche, en premier lieu, sur le développement d’une 

nouvelle approche pour l’estimation des fonctions de croyance basée 

sur la carte de Kohonen pour simplifier l’opération d’affectation des 

masses des gros volumes de données occupées par ces images. La 

méthode proposée permet de modéliser non seulement l’ignorance et 

l’imprécision de nos sources d’information, mais aussi leur paradoxe. 

Ensuite, nous exploitons cette approche d’estimation pour proposer 

une technique de fusion originale qui permettra de remédier aux 

problèmes dus à la grande variété des connaissances apportées par 

ces capteurs hétérogènes. Finalement, nous étudions la manière dont 

la dépendance entre ces sources peut être considérée dans le 

processus de fusion moyennant la théorie des copules. Pour cette 

raison, une nouvelle technique pour choisir la copule la plus appropriée 

est introduite. La partie expérimentale de ce travail est dédiée à la 

cartographie de l’occupation des sols dans les zones agricoles en 

utilisant des images SPOT-5 et RADARSAT-2. L’étude expérimentale 

réalisée démontre la robustesse et l’efficacité des approches 

développées dans le cadre de cette thèse. 

Mots-clés : Théorie des fonctions de croyance, Estimation, Carte de 

Kohonen, Fusion des données hétérogènes, Images optiques et 

radars, Dépendances, Théorie des copules 

 

 

 

Abstract 

With the advent of new image acquisition techniques and the 

emergence of high-resolution satellite systems, remote sensing data to 

be exploited have become increasingly rich and varied. Their 

combination has thus become essential to improve the process of 

extracting useful information related to the physical nature of the 

observed surfaces. However, these data are generally heterogeneous 

and imperfect, which poses several problems in their joint treatment 

and requires the development of specific methods. It is in this context 

that falls this thesis that aimed at developing a new evidential fusion 

method dedicated to heterogeneous remote sensing images 

processing at high resolution. In order to achieve this objective, we first 

focus our research, firstly, on the development of a new approach for 

the belief functions estimation based on Kohonen’s map in order to 

simplify the masses assignment operation of the large volumes of data 

occupied by these images. The proposed method allows to model not 

only the ignorance and the imprecision of our sources of information, 

but also their paradox. After that, we exploit this estimation approach to 

propose an original fusion technique that will solve problems due to the 

wide variety of knowledge provided by these heterogeneous sensors. 

Finally, we study the way in which the dependence between these 

sources can be considered in the fusion process using the copula 

theory. For this reason, a new technique for choosing the most 

appropriate copula is introduced. The experimental part of this work is 

devoted to land use mapping in case of agricultural areas using SPOT-

5 and RADARSAT-2 images. The experimental study carried out 

demonstrates the robustness and effectiveness of the approaches 

developed in the framework of this thesis. 

Keywords: Belief function theory, estimation, Kohonen's map, 

heterogeneous data fusion, optical and radar images, dependencies, 

copula theory 
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