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Abstract:The Dempster–Shafer (DS) theory of evidence can combine evidence with one parameter. The evidential 
reasoning (ER) approach is an extension of DS theory that can combine evidence with two parameters (weights 
and reliabilities). However, it has three infeasible aspects: reliability dependence, unreliability effectiveness, and 
intergeneration inconsistency. This study aimed to establish a generalized combination (GC) rule with both weight 
and reliability, where ER and DS can be viewed as two particular cases, and the problems of infeasibility of the 
parameters can be solved. In this paper, the infeasibilities of ER are analyzed, and a generalized discounting method 
is introduced to reasonably discount the belief distributions of the evidence using both the weight and the reliability. 
A GC rule is then constructed to combine evidence by means of the orthogonal sum operation, and the corresponding 
theorems and corollaries are provided. Finally, the superiority of the GC rule is shown through numerical 
comparisons and discussion, and an illustrative example is provided to demonstrate its applicability.

Keywords: Decision analysis; generalized combination rule; evidential reasoning; Dempster-Shafer theory of 
evidence; weight and reliability

1. Introduction

The Dempster–Shafer (DS) theory of evidence, first introduced by Arthur P. Dempster and subsequently 
developed by his student Glenn Shafer [4], is a flexible and useful mathematical tool for expressing and 
combining information under ignorance. Decision theory, which examines the reasoning underlying the 
choices of decision-makers or experts [8], is employed to make an optimal selection from a finite number of 
alternatives. Combining DS theory with decision theory, an approach called evidential reasoning (ER) was 
introduced to analyze multiple-criteria decision-making (MCDM) issues in uncertain environments.

The evidence combination rule is the kernel of the ER approach. As the earliest combination rule for 
evidence, Dempster’s rule was adopted to aggregate the probability mass assignments for criteria that are 
discounted by Shafer’s discounting technique [36]. However, such an evidence combination rule cannot 
distinguish the unassigned probability masses generated by incompleteness from those generated by weight, 
exaggerating the final ignorance of the fusion results. Therefore, a new ER rule was established by introducing 
an innovative weight-normalization process (called an “ER rule with weight” in this paper), in which the 
residual support generalized by Shafer’s discounting for the weight is allocated to a power set, and the 
orthogonal sum operation is employed for aggregation [37]. Since the residual support for the weight can be 
sufficiently separated from the global ignorance, an ER rule with weight can overcome the limitations of earlier 
versions of the combination rule (e.g., the inability to distinguish the unassigned probability mass generated 
by incompleteness from that generated by the weight). Recently, a new version of the ER rule was developed 
to solve the problem of evidence combination with two parameters (weight and reliability) [38]. In this recently 
proposed ER rule, the characteristic differences between the two parameters (weight and reliability) of the 
evidence are considered in the aggregation process—namely, the belief distributions are discounted by the 
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weight and the reliability, and the discounted belief distributions are then combined using the orthogonal sum 
operation. Since the recently proposed ER rule follows Bayesian inference and can deal with the evidence-
combination problem by taking the weight and reliability into account, it is considered to be more effective 
than the previous methods (e.g., enhanced proportional conflict redistribution rule no. 5, which can also be 
used to form a combination with two parameters) [27]. 

In this study, we aimed to establish a generalized combination (GC) rule for the ER approach and DS 
theory that can overcome the drawbacks of both while retaining their advantages. The specific improvement 
presented in this paper is the introduction of a new discounting method by thoroughly considering the 
characteristics of the weights and reliabilities. Based on this, a GC rule with weight and reliability is proposed, 
and the corresponding theorems and corollaries are provided. The reliability and weight are two distinct 
parameters that reflect the role of evidence from objective and subjective perspectives, respectively. The 
reliability of evidence is used to describe the information quality from objective and absolute perspectives[25] 
while the weight of evidence is used to describe information importance from subjective and relative 
perspectives[5]. The fusion result can only be reasonable and effective if both parameters are scientifically 
embodied and reflected in the process of evidence fusion. In our opinion, DS theory is capable of dealing with 
the problem of evidence fusion with only one parameter, and it does not distinguish the weight from the 
reliability. Although ER distinguishes the two parameters, the recently proposed ER rule has three drawbacks 
(infeasibilities) due to its inability to effectively deal with the properties of the two parameters in discounting 
and fusion. The first drawback involves the reliability dependence. In a situation with two parameters, it is 
reasonable to assume that the weight and reliability have their respective functions for evidence fusion. 
However, the discounting approach in the recently proposed ER rule will not work if the evidence is completely  
reliable. In other words, whether the weight is involved in the discounting fully depends on whether the 
reliability is equal to 1. The second drawback relates to the unreliability effectiveness. When all of the pieces 
of evidence are completely unreliable, it is logical to infer that their combined result is wholly ineffective. 
Unfortunately, such ineffectiveness cannot be reflected if we employ the recently proposed ER rule for the 
combination process. The third drawback involves intergeneration inconsistency. Two pieces of evidence that 
only have weights can be combined by the second-generation ER rule (ER rule with weight), while evidence 
with both weight and reliability can be combined by the third-generation ER rule (the recently proposed ER 
rule). When two combined pieces of evidence both have full or complete reliabilities, it is reasonable to ignore 
the effect of the reliability. Thus, such combination situations can be transferred to those with only weights. 
However, the third-generation ER rule is not equivalent to the second-generation rule when the two pieces of 
evidence are completely reliable. These three drawbacks are concretely demonstrated in Subsection 4.1.

The method proposed in this study can solve the problem of the two undistinguished parameters in DS 
theory as well as the aforementioned drawbacks of the ER approach. ER and DS can be seen as two particular 
cases of the proposed method. The rest of this paper is organized as follows. In Section 2, the literature related 
to DS theory and ER is reviewed, and the basic preliminary concepts are defined in Section 3. We present the 
generalized discounting method and the GC rule with weight and reliability in Section 4. In Section 5, the 
superiority of the GC rule is demonstrated through numerical comparisons and discussion. In Section 6, an 
illustrative example is provided to demonstrate its applicability. Section 7 concludes the paper.
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2. Literature review

DS theory, as a general extension of Bayesian theory, introduces a simple method for combining evidence 
from multiple sources with an orthogonal sum operator. Since DS theory can not only describe uncertain 
information with ignorance but also combine it, it is a powerful tool for handling uncertainty in decision-
making problems. Thus, it has been used in fields such as image processing [18], supply chain sustainability 
assessment [1], safety case confidence assessment [29], medical diagnosis [17], and wildfire risk prevention 
[12]. 

Dempster’s rule, which plays a crucial role in DS theory, has been challenged for its counterintuitive 
combination results (also called the intuition paradox) in high-conflict situations. Specifically, the combination 
of all of the pieces of evidence in a lowly supportive state can produce a fully supportive state [43,42,44]. 
Counterintuitive combination results are still likely to arise when the conflict level (whatever it is) does not 
play any role. Two main types of modified approaches have been developed in recent years to solve the 
counterintuitive problem of DS theory.

The first type assumes that Dempster’s rule is problematic and therefore develops various new 
combination rules. The developed rules are mainly constructed to redistribute conflict masses. For example, 
Yager assigned conflict masses to the frame of discernment [33-34], while Lefevre et al. distributed them over 
the subsets of the frame of discernment with a weighting factor [16]. Dubois et al. proposed a combination rule 
based on both conjunctive and disjunctive rules [7]. Smets and Kennes established a modified rule that assigned 
the conflict masses to an empty set from the perspective of an open-world assumption [22,28]. Dezert–
Smarandache theory (DSmT) extends DS theory on the super-power set and develops a series of combination 
rules [27]. Although these modified combination rules are well known, some problems have been identified, 
such as unsatisfying associative properties and high computation complexities. New modifications of 
Dempster’s rule are still being proposed, such as the flexible rule for evidential combination based on complete 
conflict and evidence weights presented by Ma et al. [20].

The other type of modification assumes that highly conflicting evidence is problematic while Dempster’s 
rule is correct. Thus, a number of discounting methods have been developed to correct evidence prior to 
combination. For example, Shafer proposed a simple method to add doubt to a piece of evidence, where the 
belief masses of focal elements are discounted using weights, and the residual masses of the weights are 
assigned to the frame of discernment [26]. Elouedi et al. used a confusion matrix to discount belief functions 
and showed how data presented in a matrix could adjust the information [41]. Mercier et al. constructed a 
contextual discounting method where belief functions could be weakened or strengthened [21]. Guyard and 
Cherfaoui established new discounting methods with fewer computations based on canonical decomposition 
[24]. The aforementioned discounting methods can correct the evidence, based on which the advantage of 
Dempster’s rule without high conflicts can be demonstrated through a combination. Nevertheless, this type of 
method carries the assumption that conflict evidence cannot be fully reliable. 

Since DS theory cannot distinguish unassigned probability masses generated by incompleteness from 
those generated by weight, an ER rule with weight that mainly follows the second type of modified approach 
was established by introducing an innovative weight-normalization process. Over the past two decades, ER 
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has gradually developed into a systematic approach and has been successfully applied in diverse areas. These 
include belief rule-based expert systems [39-40], medical quality assessment [14], smart-home subcontractor 
selection [23],navigational risk assessment [45], multiple-criteria R&D project selection [19], and financial 
investments [11]. The ER approach consists of four steps [38]: (i) a set of grades is supplied to assess attributes, 
(ii) a distributed framework is constructed to express assessments with belief structures, (iii) an evidence 
combination rule is established to aggregate the given assessments, and (iv) multi-attribute utility theory is 
used to rank alternatives. For steps (ii) and (iv), the ER approach has been extensively developed to handle the 
problem of assessment with various types of uncertainties. These include intervals or fuzziness [32,11], fuzzy 
linguistic assessment grades [35], interval belief degrees [30-31], coexisting uncertainties or interval 
uncertainties with various parameters[9-10], discrete belief structures [2], and deviated intervals [49]. 

The combination rule used in Step (iii), as the kernel of the ER approach, has seen three generations of 
development, as described in Section 1. The recently proposed ER rule follows Bayesian inference and can 
deal with two parameters. Thus, it has been used to construct inference models in the data-driven approximate 
causal field [3] to solve the expert assessment integration problem[5] and to make decisions for group MCDM 
[48]. Meanwhile, the ER approach has also been improved theoretically. For example, Wang et al. constructed 
an analytical ER methodology to solve the combination problem with interval belief degrees [30].  Zhang et 
al. proposed a Gini coefficient–based ER approach for making decisions in business negotiations [46]. Du and 
Wang presented an evidence combination rule with contrary support in the ER approach [6]. Du et al. presented 
a new ER combination rule that integrates subjective and objective fusions with a pair of coefficients [5]. 

The connections between the present and previous studies are as follows. First, the proposed method 
adopts the discounting idea in DS theory to process the reliabilities and extend DS theory to a more complex 
combination scenario with two parameters. Second, the proposed approach adopts the discounting idea in the 
ER to process weights and modifies the recently proposed ER rule by overcoming its three drawbacks. Third, 
this study adopts the orthogonal sum operation employed in both DS theory and ER to form combinations. 
Thus, it is a generalization of the two approaches. 

3. Preliminaries

DS theory is an uncertainty reasoning approach to determine an overall belief degree by forming fusions 
or combinations based on different evidence. The ER approach introduces a distributed structure to address 
probabilistic uncertainties in MCDM problems. Several concepts of DS theory and the ER approach which are 
the focus of this paper, are briefly described in this section.

Definition 1 [31]. Suppose a possible hypothesis of a variable is , and each of the possible ( 1, , )n n N  

hypotheses is exclusive. A finite non-empty exhaustive set of all possible hypotheses  is called 1{ , , }N   

a frame of discernment, and its power set that consists of  subsets of   is usually expressed as follows:2 N

 (1)1 1 2 1 1 1( ) { , , , ,{ , }, ,{ , }, ,{ , , }, }N N NP               

Definition 2 [4]. Suppose  is the frame of discernment. If the mapping function 1{ , , }N   

 satisfies: 2 [0,1]m  

 (2)
( ) 0
( ) 0, ( ) 1

m
m m



 
  



  
  


 
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then  is called the basic probability assignment (BPA) function of . If ,  is named a focal ( )m   ( ) 0m   

element.  reflects the degree of global ignorance, and  measures the degree of local ignorance ( )m  ( )m 

when  and .   n  

In Shafer’s definition, the integration of the belief distribution and the weight of evidence is called the 
BPA function. This means that the BPA function can not only reflect the belief distribution, but it can also 
consider the weight of evidence. In this paper, the weight of evidence is separated from the belief distribution 
to facilitate further discounting, and thus, we provide the following definitions of the belief distribution and 
Shafer’s discounting. 

Definition 3 [38]. Suppose  shows that the evidence  points to proposition  to a belief ,( , )ip ie 

degree . The profiled expression,ip

 (3), ,{( , ), , 1}i i ib p p 
 


    

is called the belief distribution (BD) of .ie

Definition 4 [26]. Suppose the BD of evidence  is , as defined by Eq. (3), and  is the weight of ie ib iw

evidence , which is used to discount , where . Shafer’s discounting method can be defined to ie ib 0 1iw 

generate the BPA function for the evidence  as follows:ie

 (4)( )
( )

( ) (1 )
i i

i
i i i

w p
m

w p w
 


 

 
     

Definition 5 [4]. Suppose the BPA functions of two pieces of evidence are  and  on  and  1m 2m  

is the orthogonal sum operator. The combined evidence with Dempster’s rule from  and  for     1m 2m

can be defined as follows:

 (5)
1 2, ,

(2) 1 2
1 2, ,

( ) ( )
( ) [ ]( )

1 ( ) ( )
B C B C

e
B C B C

m B m C
m m m

m B m C
    

  

  




In Shafer’s discounting method, global ignorance is produced to a certain BD, even when the evidence 
precisely points to a proposition without any ambiguous degree. Thus, the specificity of the original evidence 
cannot be well maintained. To improve Shafer’s discounting, a new discounting method with a weight is 
defined in the ER approach in Definition 6, and the discounted result is called the weighted belief distribution 
(WBD). WBDs can be combined by the recursive combination rules given in Definition 7 below.

Definition 6 [38]. Suppose the BD of evidence  is , as defined by Eq. (3),  ( ) is the ie ib iw 0 1iw 

weight to discount , and  is the power set of . The ER discounting method with a weight is defined ib ( )P  

to generate the WBD for evidence  as follows:ie

 (6), ,

0
( )

1 ( )
i i i i

i

m m w p
w P

 


 



 
   
   

Definition 7 [38]. Suppose I pieces of independent evidence are each profiled by Eq. (3), and their WBDs 
are represented by Eq. (6). Suppose e(i) denotes the combination of the first i pieces of evidence, and  , ( )e im

is the probability mass to which  is supported jointly by e(i), with  and . The  , (1) ,1em m  ( ), (1) ( ),1P e Pm m 

orthogonal sum of the first i WBDs is then given as follows:

 (7a), ( ), ( ) 1

, ( ) ( ), ( )

0
[ ]( )= e ie i i

e i P e i

mm m m
m m







 


 


      




 



6

 (7b), ( ) , ( 1) ( ), ( 1) , , ( 1) ,[(1 ) ] ,e i i e i P e i i B e i C iB C
m w m m m m m   

    
      

 (7c)( ), ( ) ( ), ( 1)(1 )P e i i P e im w m   

where  is the weight of , which is not necessarily normalized, , and iw ie , ( ) ( ), ( )0 , 1e i P e im m  

 for , recursively., ( ) ( ), ( ) =1e i P e im m 
 1, ,i I 

If there is another reliability parameter in the fusion process, the reliability can be used to discount the 
WBDs by Definition 8. The discounted result with both a weight and reliability is also called the weighted 
belief distribution with reliability (WBDR). In the ER approach, the recursive combination rule given by 
Definition 9 is established to form combinations for the WBDRs, and the final combined BD for each 
proposition is determined by Definition 10.

Definition 8 [38]. Suppose the BD of evidence  is , as defined by Eq. (3), where  and  are ie ib iw ir

its weight and reliability, respectively, , and  is the power set of . The discounting method 0 , 1i iw r  ( )P  

of the ER approach with both a weight and reliability is defined to generate the WBDR for evidence , as ie

follows:

 (8), ,

0
( )

1 ( )
i i ii

i

m
w

m
P

w p 


 



 
   
   




where  is a normalization factor determined by , and  is , 1/ (1 )rw i i ic w r   , ( ), 1i P im m 
  ,i rw i iw c w

called the new weight or the adjusted weight, .,1 (1 )i rw i iw c r  

Definition 9 [38]. Suppose I pieces of independent evidence are each profiled by Eq. (3), and their 
WBDRs are represented by Eq. (8). Suppose e(i) is defined in the same way as in Definition 7,  is defined ,im

in the same as in Definition 8, and . The combined degree of belief to which I pieces of ( ), (1) ( ),1 1= =1P e Pm m r  

independent evidence  with weight  and reliability  ( ) jointly support proposition  is ie iw ir 1, ,i I  

given by , which is generated by recursively applying Eq. (7a) and the following two equations:, ( )e Im


 (9a), ( ) , ( 1) ( ), ( 1) , , ( 1) ,[(1 ) ] ,e i i e i P e i i B e i C iB C
m r m m m m m   

    
      

 (9b)( ), ( ) ( ), ( 1)(1 )P e i i P e im r m   

Definition 10 [38]. The combined degree of belief to which I pieces of independent evidence jointly 
support proposition   is given as follows:

 (10), ( ), ( )

, ( )

0
= ,e Ie I

e I

mp p
m

 





 


 


     





with  given by Eq. (7b) or (9a) for , , , and ., ( )e Im


i I 0 1p     =1p 

4. Proposed method

4.1 Infeasibility analysis of ER

As mentioned in Section 1, the ER approach has three drawbacks: reliability dependence, unreliability 
effectiveness, and intergeneration inconsistency. The first two arise from the reliability parameter and pertain 
to counterintuitive fusion results with the extreme reliability degrees. The third arises from both parameters 
and is related to inconsistencies between the second and third generations of the ER rule. The reason for these 
drawbacks is that the properties of the two parameters of the reliability and weight are not effectively reflected.
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(1) Reliability dependence. The reliability dependence problem refers to the fact that the discounting in 
the recently proposed ER rule will lose its effectiveness when the evidence is completely reliable. Specifically, 
if reliability 1ir  , then the weight cannot contribute to the discounting. Setting 1ir   in Eq. (8), we have 

, 1/ (1 ) 1/rw i i i ic w r w    , , , , , ,(1/ )i rw i i i i i i im c w p w w p p       for    , ( ),P im   , (1 ) 1/ 0 0rw i i ic r w    , and 

, 0im  . It is easy to find that , ,i im p   for    . This means that if the evidence is completely reliable, 
then ER’s discounted result is the same as the BD, although weight exists in the discounting. Consequently, 
whether the weight contributes to the discounting depends on whether the reliability is equal to 1.

Example 1. Assume , , and . According to Eq. (8), , 1 2{( ,0.4), ( ,0.6)}ip   0.9iw  1.0ir 

, , ,  , 1/(1 ) 1/ 10/9rwi i i ic w r w    
1 1, , , 10/9 0.9 0.4 0.4i rwi i im c wp     

2 , 10/ 9 0.9 0.6 0.6im     ( ), , (1 ) 5/3 (1 1)P i rwi im c r     

, and . Thus, we have . The weight 0.9 has an apparent meaning for 0 , 0im  , 1 2 ,{( ,0.4), ( ,0.6)}i im p   

a piece of evidence such that its importance degree is 0.9. However, we find that the weight 0.9 contributes 
nothing to the discounted result. Thus, such a result of the ER approach is counterintuitive.

(2) Unreliability effectiveness. The unreliability effectiveness problem refers to the fact that the recently 
proposed ER rule may produce an incorrect combination result that appears to be effective from completely 
unreliable evidence. For a straightforward case, suppose two pieces of completely unreliable evidence 1e  and 

2e  are used for a combination. It is reasonable to expect that their fusion result will produce noneffective 
information such as , (2) =0ep  and , (2) 1ep  . This means that if two pieces of completely unreliable evidence 
are fused, their final fusion result cannot provide any useful information. Setting reliability 1 2 0=r r  in Eqs. 
(9a) and (9b), we have , (2) 1 ,1 1 2 ,2 1 ,1 2 ,2[ (1 ) ] ,e B CB C

m w p w w p w p w p   


 
            and ( 1( ), 2) 2(1 )( )1P e wm r    

11/ (1 )= w , where , / (1 )=i rw i i i iw c w w w  , and 1,2i  . Since ,1 ,2 0,p p    and 1 2, 0w w  , we have 

1 2,0 1w w     and , (2) 0em   for    . From Eq. (10), the following must be satisfied: 

, (2) , (2) , (2)= 0e e ep m m   
   for    . Unfortunately, the expected combination result is not obtained.

Example 2. Assume two pieces of evidence are the same, their BDs are , their ,1 ,2 1 2{( ,0.4), ( ,0.6= )}p p   

weights are , and their reliabilities are . Setting  in Eqs. (8) and (9a), we have1 2 0.5w w  1 2 0r r  1 2 0=r r

,21 0.5 / (1 0.5)=1 3= /w w  
1 1 1 1 1, (2) 1 ,1 1 2 ,2 1 ,1 2 ,2[ (1 ) ]em w p w w p w p w p             =[1 3 0.4 (1 1 3) 1 3 0.4]     

, and (1 3 0.4) (1 3 0.4) 0.24   
2 2 2 2 2, (2) 1 ,1 1 2 ,2 1 ,1 2 ,2[ (1 ) =[1 3 0.6 (1 1 3) 1 3 0.] 6]em w p w w p w p w p                  

. Inserting ,  into Eq. (10), we have (1 3 0.6) (1 3 0.6) 0.37   
1 , (2)em


2 , (2)em


21 1 1, (2) , (2) , (2) , (2)( )=e e e ep m m m     

 and . We would anticipate a 0.24 (0.24 0.37) 0.39 
2 12 2, (2) , (2) , (2) , (2) = 0.37 (0.24 0.37) 0. 1) 6= (e e e ep m m m       

result that cannot provide any valuable decision information resulting from the two pieces of completely 
unreliable evidence. However, the calculated result of this example revealed that it has a 61% probability of 
being  and 39% probability of being . Thus, such a fusion result of the ER approach is counterintuitive.2 1

(3) Intergeneration inconsistency. The intergeneration inconsistency problem concerns the fact that the 
recently proposed ER rule, given by Eqs. (9a) and (9b), cannot degenerate into one with only weight if all the 
evidence has complete reliability. As shown in Eqs. (7a)(7c), evidence reliabilities are not considered, and 
they do not participate in the discounting of the ER rule with weight. The reason the reliabilities is not 
considered in the discounting must be explained. It is reasonable to say that all the evidence is regarded as 
completely reliable ( 1.0ir  , i ); otherwise, the reliability should be used to discount the evidence. More 
specifically, if all evidence is completely reliable, the fusion result of the recently proposed ER rule with two 
parameters should be equal to that of the ER rule with only one parameter. However, setting 1.0ir   for i  
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in Eqs. (9a) and (9b), we derive , ( ) , ( 1) , ,e i B e i C iB C
m m m   

     , ( ), ( ) 0P e im   , which differs from the 
expressions in Eqs. (7b) and (7c). The third-generation ER rule is not equivalent to the second-generation one 
when all evidence to be combined is completely reliable. Thus, there is an intergeneration inconsistency 
problem in the ER approach. In fact, this problem is also caused by reliability dependence. 

Example 3. Assume , , . In the first case, we use the ,1 ,2 1 2{( ,0.4), ( ,0.6= )}p p    1 2 0.5w w  1 2 1r r 

ER rule with weight to form the combination. Inserting  into Eqs. (7b) and (7c), we have ,1 ,2 1 2, , ,p w wp 

, 
1 1 1 1

, (2) 2 ,1 ( ),1 ,2 ,1 ,2[(1 ) ] =0.5 0.5 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.4=0.24e P B CB C
m w m m m m m     

            

, and 
2 2 2 2

, (2) 2 ,1 ( ),1 ,2 ,1 ,2[(1 ) ] =0.5 0.5 0.6 0.5 0.5 0.6 0.5 0.6 0.5 0.6=0.39e P B CB C
m w m m m m m     

            

. Inserting , , and  into Eq. (7a), we have( ), (2) 1 2(1 )(1 )=0.5 0.5=0.25P em w w    
1 , (2)em


2 , (2)em


( ), (2)P em 



,  
1 21 1, (2) , (2) , (2) , (2) ( ), (2) =0.24 (0.24 0.39 0.25) 0.2( 7= )e e e e P em m m m m          

1 22 2, (2) , (2) , (2) , (2) ( ), (2)= ( )e e e e P em m m m m        

, and = 0.39 (0.24 0.39 0.25) 0.44  ( ), (2) =P em  1 2( ), (2) , (2) , (2) ( ), (2)( ) =P e e e P em m m m       0.25 (0.24 0.39 0.25)

. From Eq. (10), we determine the final fusion results are 0.29
21 1 1, (2) , (2) , (2) , (2)( )=e e e ep m m m     

 and . In the second case, we = 0.24 (0.24 0.39) 0.38
2 12 2, (2) , (2) , (2) , (2) = 0.39 (0.24 0.39) 0. 2) 6= (e e e ep m m m       

use the recently proposed ER rule to form the combination. Inserting  into Eqs. (9a) and 1 2 1,1 ,2 2, , , , ,w wp r rp 

(9b), we have , , . Inserting ,
1 1 1, (2) ,1 ,2 =0.4 0.4=0.16em p p   

2 2 2, (2) ,1 ,2 =0.6 0.6=0.36em p p   
( ), (2) 0P em  

1 , (2)em


, and  into Eq. (7a), we have , 
2 , (2)em


( ), (2)P em 


1 , (2) 0.16 0.3= 0.1 66 .( )0 0 31em   

2 , (2) =em

, and . From Eq. (10), we can determine that the final fusion results are 0.36 0.16 0.( )36 0 0.69   ( ), (2) 0P em  

 and
1 1 1 2, (2) , (2) , (2) , (2) = 0.16 0.36 0.3= ( ) 6 10.1 ( )e e e ep m m m       

2 22 1, (2) , (2) , (2) , (2)= ( ) =e e e ep m m m      0.160.36 ( )0.36

. The combination results in the above two cases are different for  or for , and thus, the 0.69 (2)em (2)ep

intergeneration inconsistency problem of the ER approach is evident.

4.2 Generalized discounting method

The weight of the evidence, which is frequently defined by decision-makers, indicates the degree of 
importance of an evidence source relative to others. To achieve a piece of precise and unambiguous evidence, 
Shafer used the weight to discount the BD for the single nonempty subset   of  , and the residual support 
of the weight was allocated to  . However, this discounting approach is considered to be unable to hold the 
specificity of the evidence. Thus, the ER approach with a weight (Eq. (6)) allocates the residual support of the 
weight to the power set ( )P  . We agree with the discounting approach in the ER method since it can 
distinguish the residual support of the weight from global ignorance. In our opinion, the residual support of 
the weight 1 iw , plays a finite role in the combination process and is thus an extrinsic property, while the 
global ignorance ( )im   is generated by an evidence source to describe uncertainties and is therefore an 
intrinsic property of the evidence. 

In contrast, the reliability, which is frequently estimated using statistical data methods, is the capacity of 
an evidence source to generate valid information. To achieve a piece of precise and unambiguous evidence, 
reliability is also taken into account in the ER approach. As in Eq. (8), the ER discounts the BD ,ip  with 
weight iw  ( ,i iw p ) and then allocates the residual support of the reliability 1 ir  to the power set ( )P 

( ( ( )) 1i im P r   ). Finally, it uses coefficient ,rw ic  for normalization. The finite role of the combination 
originates from the residual support of the weight in Eq. (7b) and reliability in Eq. (9a). As a result, it is 
reasonable to consider that the finite roles of the combination defined in the ER approach are inconsistent. 
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Thus, it must be determined which is the correct approach. In our opinion, the reliability is an intrinsic property 
of the evidence that reflects the information quality, and it has no relevance to other evidence. Any evidence 
source can generate the probability or BD that proposition   may occur, but the information quality depends 
on its reliability. If an evidence source is not completely reliable, the generated information should first be 
corrected by its reliability. In other words, only the corrected probability or the corrected degree of belief is 
precise and unambiguous. As a result, it can be regarded as the BPA function generated by the evidence source 
(e.g., Example 4). Such an argument is consistent with the meaning of the BPA function. The BPA function 
in Shafer’s book is explained as follows: “where the evidence points precisely and unambiguously to a single 
non-empty subset A of  ,…we can say that the effect of the evidence is limited to providing a certain degree 
of support for A of  .” Reliability is unfortunately regarded as an extrinsic property of the evidence in Eq. 
(8), which plays a finite role in the combination process, as does the weight. Consequently, the three 
aforementioned infeasibilities will inevitably appear in the ER approach.

Example 4. Assume a group of experts is asked to vote on the performance of a project, and the grade 
level set is . Assume the group consists of ten experts, in which six experts vote for  and four 1 2={ , }  1

experts vote for . Thus, the BD is . Based on experience, one of the experts frequently 2 , 1 2{( ,0.6), ( ,0.4)}=ip  

makes a mistake, so the reliability of this piece of evidence is set as . To achieve the (10 1) 10 0.9r   

corresponding BPA function with precise and unambiguous information as mentioned in Shafer’s book, it is 
reasonable to discount  and  with the reliability, i.e.,  and 1( )p  2( )p  1( ) 0.9 0.6 0.54r p    

. It must be determined how to deal with the residual support of the reliability. Since 2( ) 0.9 0.4 0.36r p    

the expert who frequently makes a mistake may give a correct or incorrect judgment, it is reasonable to assign 
 to the frame of discernment  with the meaning that each element in  may be correct. As a 1 0.1r   

result, the BPA function is obtained as .1 2{( ,0.54), ( ,0.36), ( ,0.1)}=m   

Based on the properties of the weight and reliability mentioned above, we use the reliability of the 
evidence to discount the degree of belief for     and allocate the residual support of the reliability to  . 
We then use the weight of evidence to discount the discounted result, as shown in Eq. (6). Discounting with 
the reliability is used first to correct the degree of belief in terms of the intrinsic property, while discounting 
with the weight is then used to give the finite roles of the combination process, either for the evidence source 
itself or the evidence to be combined based on the extrinsic property. Therefore, we define the generalized 
discounting method as in Definition 11, and both the weight and reliability can participate in discounting the 
BD. The problem of the reliability dependence can thus be solved (e.g., Example 5).

Definition 11. Suppose iw  is the weight of evidence ie  with 0 1iw  , ir  is the reliability of ie  
with 0 1ir  , ir =0 corresponds to “completely unreliable”, and ir =1 corresponds to “completely reliable”. 
The basic probability mass for ie , discounted by both weight and reliability, is then assigned as follows:

 (11),
,

,

0

( )=
(1 )

1 ( )

i i i
i i

i i i i i

i

w r p
m m

w r p w r
w P














 
       
   

Example 5. As in Example 1, assume that the BD generated by evidence  is  ie 1 2, {( 0.4), ( 0.6)}ip   , ,

with weight  and reliability . Taking , , and  into Eq. (11), we have 0.6iw  1.0ir  ,ip iw ir
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. We find that . Moreover, the discounted result has the clear , 1 2={( ,0.24), ( ,0.36), ( ( ),0.40)}im P    , ,i im p 

meaning that the evidence  is exactly restricted by its weight  (see ), and the ie 0.6iw  1 2{( ,0.24), ( ,0.36)} 

evidence to be combined will be restricted by its remaining weight  (see ). Thus, we 1 0.4iw  {( ( ),0.40)}P 

propose that whether the weight is applied in the generalized discounting method is independent of the 
reliability.

Theorem 1. Suppose the basic probability masses for  are , which are discounted by Eq. (11). ie ,im

The following must be satisfied: ., ( ), 1i P im m 
 

Proof. Appendix A.1.
Corollary 1. If the weight is , then the generalized discounting in Eq. (11) for evidence  1.0iw  ie

degenerates into Shafer’s discounting given by Eq. (4).
Proof. Appendix A.2.
Corollary 2. If the reliability of the evidence  is , then the generalized discounting in Eq. (11) ie 1.0ir 

degenerates into the ER discounting with weight given by Eq. (6).
Proof. Appendix A.3.
From Definition 11, we can obtain Corollaries 1 and 2 when one parameter is set with the largest value. 

Comparing Corollary 1 with Shafer’s discounting, we see that the discounting parameters in the two methods 
are different (i.e., in this paper, reliability is used as the discounting parameter, while Shafer’s discounting uses 
the weight). It must be determined which approach is more reasonable. We propose that Corollary 1 is better 
than Shafer’s discounting because the reliability is an intrinsic property that can be used to generate BPA 
functions with precise and unambiguous information. However, the weight is an extrinsic property that can be 
used to determine the finite roles of combination, as in Corollary 2. In fact, the parameter in Shafer’s 
discounting (the so-called weight) has been used to reflect either the importance degree of an evidence source 
[26-27,38] or the capacity of that evidence source to generate valid information [25,47]. It is reasonable to say 
that DS theory with Shafer’s discounting can deal with the combination problem with only one discounting 
parameter, but the parameter does not distinguish between the weight (as an extrinsic property of evidence 
reflecting the degree of information importance) and the reliability (as an intrinsic property of evidence 
reflecting the information quality). 

4.3 Basic generalized combination rule

An orthogonal sum operation that follows a conjunctive probabilistic reasoning process has been used in 
both the DS and ER approaches. Herein, we also employ the orthogonal sum operation to perform evidence 
fusion. In a fusion problem with only two pieces of evidence, each is discounted using Eq. (11), and the initial 
fusion results are as follows:

 (12a), (2) ,1 ,1=e B CB C
m m m  

,  (12b), (2) ,1 ,1 ,1 ,2 ,2 ,1 ,1 ( ),2 ( ),1 ,2, ,
=[ ] [ ]e B C P PB C B C

m m m m m m m m m m m          
   

  

 (12c), (2) ,1 ,2 ( ),1 ,2 ,1 ( ),2[ ]e P Pm m m m m m m        

 (12d)( ), (2) ( ),1 ( ),2P e P Pm m m  

From Theorem 1, we know that the basic probability masses discounted by Eq. (11) have the property 

, ( ), 1i P im m 
   for 1,2i  . We combine 1m  and 2m  using the orthogonal sum operation, and the 
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sum of the probability masses for each part must be equal to unity, which is expressed as 

, (2) , (2) , (2) ( ), (2)+ + + =1e e e P em m m m      . , (2)em
  is a conflict factor used to describe the probability mass of the 

empty set, and it is usually denoted as , (2)ek m  . In most of the literature, conflict factor k  should be 
reassigned to focal elements to satisfy the requirements of the BPA definition. Following this strategy, we let 

, (2)=1 (1 ) =1 (1 )ek m     and reassign the conflict factor as follows:
,  (13a), (2) , (2)=e em m  
  

 (13b), (2) , (2)=e em m 


 (13c)( ), (2) ( ), (2)=P e P em m 


Theorem 2. Suppose two pieces of independent evidence are  and , their probability masses that 1e 2e

have been discounted by Eq. (11) are  and , and the results of the combination of  and  are ,1m ,2m 1e 2e

 as in Eqs. (13a)(13c). The following must be satisfied: ., (2)em , (2) ( ), (2) 1e P em m 
 

Proof. Appendix A.4.
As shown in Eqs. (13a)(13c), the probability masses determined by combining 1e  and 2e  can be seen 

as intermediate combination results, since the result consists of probability masses on power set ( )P  . From 
Eq. (3), we know that the BD is a distribution of probability masses on focal elements. Thus, the ER approach 
reassigns ( ), (2)P em   to other elements to obtain the BD of a combined result. Similar to the ER approach, we 
reassign ( ), (2)P em   to other elements using the following Eq. (14) to determine the final combination results:

, . (14), (2) , (2) ( ), (2)= (1 )e e P ep m m     

Accordingly, Fig. 1 shows the basic GC process for two pieces of evidence with two parameters, and 
Theorem 3 summarizes the basic GC rule. As shown in Fig. 1, Step 1 is to perform the orthogonal sum 
operation for two pieces of evidence, e1 and e2, using Eqs. (12a)–(12d); Step 2 is to reassign the conflict factor 

, (2)ek m   to focal elements using Eqs. (13a)–(13c); Step 3 is to redistribute probability masses ( ), (2)P em 
  in 

the power set to focal elements using Eq. (14) to determine the final combination results , (2)ep  for    . 

Fig. 1 The basic generalized combination process

Theorem 3. Suppose two pieces of independent evidence are  and  with weight  and reliability 1e 2e iw

, where , and their BDs are profiled by Eq. (3) and discounted by the generalized discounting in Eq. ir 1, 2i 

(11). The combined BD  is then given as follows:, (2)ep

 (15a), (2), (2)

, (2)

0

,ee

e

mp
m







 


 


     





,  (15b), (2) ,1 ,2 ,1 ,2 ,2 ,1 2 ,1 1 ,2, ,
=[ ] [(1 ) (1 ) ]e B CB C B C

m m m m m m m w m w m        
     

  

 (15c), (2) ,1 ,2 1 ,2 2 ,1[(1 ) (1 ) ]em m m w m w m        

Proof. Appendix A.5.
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Based on Eqs. (15b) and (15c), Theorem 3 reveals that the combined BD includes two parts. One part is 
the first square-bracketed term in Eq. (15b) and ,1 ,2m m   in Eq. (15c); the other is the second square-bracketed 
term in Eq. (15b) and the square-bracketed term in Eq. (15c). We adopt the names given in the ER approach. 
In particular, the former is called the orthogonal sum of collective support (“orthogonal sum” for short), and 
the latter is called the bounded sum of individual support (“bounded sum” for short). From the bounded sum, 
it is easy to find that each piece of evidence has finite roles restricted by weights. From Theorem 3, we can 
infer Corollaries 35 below. Furthermore, in the evidence combination process with only one parameter, the 
basic GC rule is simplified into the ER rule with weight by inserting Eq. (16) into Eq. (15a), and it is simplified 
into Dempster’s rule by inserting Eq. (17) into Eq. (15a). As a result, the ER rule with weight and Dempster’s 
rule are two particular cases of the basic GC rule.

Corollary 3. If the reliabilities of  and  are both equal to 1, i.e., , and  for 1e 2e 1 2 1r r  , ,=w
i i im w p 

, then the combined probability masses for  shown in Eqs. (15b) and (15c) are calculated as      

follows:
,  (16), (2) 2 ,1 1 ,2 ,1 ,2, ,

=[(1 ) (1 ) ]+w w w w
e B CB C B C

m w m w m m m     
      

Proof. Appendix A.6.
Corollary 4. If the weights of  and  are both equal to 1, i.e., ,  for , 1e 2e 1 2 1w w  , ,=r

i i im r p    

and , then the combined probability masses for  in Eqs. (15b) and (15c) are calculated , ,= 1r
i i i im r p r      

as follows:
,  (17), (2) ,1 ,2, ,

= r r
e B CB C B C

m m m      

Proof. Appendix A.7.
Corollary 5. If the reliabilities of  and  are both equal to 0, i.e., , then the BDs 1e 2e 1 2 0r r 

combined by the basic GC rule in Eq. (15a) must be ., (2) =1ep

Proof. Appendix A.8.

4.4 Recursive generalized combination rule

Suppose there are more than two pieces of evidence to be combined, and the amount of evidence to be 
combined is I ( 2I  ). The combined probability masses of the first two pieces of evidence for   and     
are shown in Eqs. (12a)–(12c), and those for the power set are ( ), (2) ( ),1 ( ),2 1 2=(1 )(1 )P e P Pm m m w w       . Letting 
  denote the formation of a combination with the orthogonal sum operation, we have 

(2) 1 2 , (2) , (2)= =( ; , ;e e em m m m m     
, (2) ( ), (2); )e P em m 

  , where , (2) , (2) ( ), (2) , (2)+ + + =1e e P e em m m m        . Since , (2)em
  is 

defined as zero in generalized discounting, it should be reassigned to other elements in the combination process 
as expressed by Eqs. (13a)(13c). The above combination result is simplified as

(2) 1 2 , (2) , (2) ( ), (2)= =( , ; ; )e e e P em m m m m m      , where , (2) , (2) ( ), (2)+ + =1e e P em m m   . The previously combined 
results are used to make a combination with the third piece of evidence, such as 

(3) (2) 3 , (3) , (3) ( ), (3)= =( , ; ; )e e e e P em m m m m m      . Repeating the above process, I pieces of evidence can be 
combined recursively. All pieces of evidence should be combined, and the final combined BD , ( )e Ip  is 
determined by reassigning ( ), ( )P e Im   to all of the focal elements of  , as in Eq. (10). Fig. 2 shows the 
recursive GC process for more than two pieces of evidence. As shown in Fig. 2, Step 1 is to initialize the first 
piece of evidence as the combined probability masses, Steps 2 to I are to form combinations for the combined 
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probability masses of the first i pieces of evidence with those of the (i+1)th one using the basic GC rule 
repeatedly ( 1, , 1i I  ), and Step I+1 is to redistribute ( ), ( )P e Im   and yield the final combined BD , ( )e Ip . 
Theorems 4 and 5 summarize the recursive GC rule, and both are introduced to determine the combined 
probability masses for the first i pieces of evidence and the final combined BD. 

Fig. 2 The recursive generalized combination process

Theorem 4. Suppose there are I pieces of independent evidence to be combined, and  is the ith piece ie

of evidence with weight  and reliability , . The BD of  is profiled by Eq. (3) and discounted iw ir 1, ,i I  ie

by Eq. (11). e(i) is the combination of the first i pieces of evidence, and its combined probability mass is 
, with  and . The orthogonal sum of the first i discounted probability masses , ( )e im , (1) ,1=em m  ( ), (1) ( ),1=P e Pm m 

are then determined by

 (18a), ( ), ( ) 1

, ( ) ( ), ( )

0
[ ]( )= e ie i i

e i P e i

mm m m
m m







 


 


      




 

,  (18b), ( ) , ( 1) , , ( 1) , , , ( 1) , ( 1) ( ), ( 1) ,, ,
=[ ] [(1 ) ]e i B e i C i e i i i e i i e i P e i iB C B C

m m m m m m m w m m m              
    

  

 (18c), ( ) , ( 1) , ( ), ( 1) , , ( 1)[ (1 ) ]e i e i i P e i i i e im m m m m w m           

 (18d)( ), ( ) ( ), ( 1)=(1 )P e i i P e im w m  

where  for , , ; and ., ( )0 1e im     =  = ( )P  , ( ) ( ), ( )+ =1e i P e im m  
Proof. Appendix A.9.
Theorem 5. The combined BDs of I pieces of independent evidence are determined by

 (19), ( ), ( )

, ( )

0
= ,e Ie I

e I

mp p
m

 





 


 


     





where  is calculated by Eqs. (18b) and (18c) for ,  for , and ., ( )e Im


i I , ( )0 1e Ip     , ( ) =1e Ip  
Proof. Appendix A.10.
Similar to Theorem 3, Theorems 4 and 5 also show that the combined BD in the recursive GC rule also 

includes the orthogonal sum and the bounded sum. A series of corollaries are inferred from Theorems 4 and 5.
Corollary 6. If the reliability of each piece of evidence is equal to 1, i.e.,  for ,  =1ir 1, ,i I  , ,=w

i i im w p 

for ,  for  and , then the combined    , ( 1) , ( 1) , ( 1) ( ), ( 1)( )w
e i e i e i P e im m m m      

   
   = ( )P 

probability masses in Eqs. (18b)(18d) can be computed as follows:
,  (20a), ( ) , ( 1) ( ), ( 1) , , ( 1) ,, ,

=[(1 ) ]+w w w w w
e i i e i P e i i B e i C iB C B C

m w m m m m m        
     

 (20b)( ), ( ) ( ), ( 1)=(1 ) w
P e i i P e im w m  

Proof. Appendix A.11.
Corollary 7. If the weight of each piece of evidence is equal to 1, i.e.,  for ,  =1iw 1, ,i I  , ,=r

i i im r p 

for , ,  for  and , then the    , ,= 1r
i i i im r p r    , ( 1) , ( 1) , ( 1) ( ), ( 1)( )r

e i e i e i P e im m m m      
       = ( )P 
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combined probability masses in Eqs. (18b)(18d) are calculated as follows:
,  (21a), ( ) , ( 1) ,, , ,

= r r
e i B e i C iB C B C

m m m       

 (21b)( ), ( ) =0r
P e im 



Proof. Appendix A.12.
Corollary 8. If the reliability of each piece of evidence is equal to 0, i.e.,  for , then the =0ir 1, ,i I 

combined BDs by the recursive GC rule in Eq. (19) must be ., ( ) =1e Ip

Proof. Appendix A.13.
Corollary 9. If the weight of  is equal to 0, i.e., , its discounting result is  as in Eq. (11), and ie =0iw im

the combined probability masses of other  pieces of evidence are . 1I  ( 1) , ( 1) , ( 1) ( ), ( 1)=( , ; ; )e I e I e I P e Im m m m      

The combined probability masses of all evidence must then be .( ) ( 1) ( 1)= =e I e I i e Im m m m 

Proof. Appendix A.14.
Corollary 10. The final combined BD of all the evidence in Corollary 9 must be . ( ) ( 1)=e I e Ip p 

Proof. Appendix A.15. 
Corollary 11. If the reliability of  is equal to 0, i.e., , its discounting result is  in Eq. (11), ie =0ir im

and the combined probability masses of the other  pieces of evidence are  1I  ( 1) , ( 1) , ( 1)=( , ; ;e I e I e Im m m     

. The combined probability masses of all the evidence must be as follows:( ), ( 1) )P e Im  

,  (22a), ( ) , ( 1)=e I e Im m     

 (22b), ( ) , ( 1) ( ), ( 1)=e I e I i P e Im m w m    

 (22c)( ), ( ) ( ), ( 1)= (1 )P e I P e I im m w   

Proof. Appendix A.16.
Corollary 12. The final combined BD of all evidence in Corollary 11 must satisfy 

 for  and , where , ( ) , ( 1) , ( 1)=e I e I e Ip p p        , ( ) , ( 1) , ( 1)=1 +e I e I e Ip p p      

., ( 1) , ( 1) ( ), ( 1)= ( + )e I e I i P e Im m w m  
      

Proof. Appendix A.17. 

4.5 Findings and decision-making process

Based on the theoretical results of this study, a generalized discounting method is introduced to reasonably 
discount the BDs of the evidence using both the weight and reliability. On this basis, a GC rule is constructed 
to effectively combine the evidence by means of orthogonal sum operations. This GC rule, which includes 
basic and recursive rules, is a generalization of DS theory and ER. It can not only overcome the drawbacks of 
each but also inherit their advantages. When all of the pieces of evidence are completely reliable or the most 
important, the GC rule is simplified into the ER rule with a weight or Dempster’s rule with Shafer’s discounting, 
respectively. Evidently, when all of the pieces of evidence are both completely reliable and the most important, 
the GC rule is further simplified into Dempster’s rule (without Shafer’s discounting). Thus, the three infeasible 
aspects of the ER (i.e., reliability dependence, unreliability effectiveness, and intergeneration inconsistency) 
do not exist in the GC rule.

Fig. 3 shows the theoretical framework of the GC rule described by the relationships between the GC rule 
and the Theorems/Corollaries. The theoretical findings of the GC rule can be concluded from the Corollaries. 
As shown by ① and ② in Fig. 3, the GC rule with reliability and weight includes the basic GC rule (Theorem 
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3) and the recursive GC rule (Theorems 4 and 5). In ③–⑤, the GC rule with reliability and weight is simplified 
into the ER rule with weight, Dempster’s rule with Shafer’s discounting, and Dempster’s rule when each piece 
of evidence to be combined is deemed to be most important or is completely reliable. In ⑥–⑧, the GC rule 
with reliability and weight can obtain reasonable combination results when there exists completely unreliable 
or unimportant evidence to be combined.

Fig. 3 Theoretical framework of the GC rule
(1) Based on Corollaries 3 and 6, if all of the evidence to be combined is completely reliable, the GC rule 

is simplified into the ER rule with weight (see ③  in Fig. 3). This means the intergeneration inconsistency 
problem can be solved by the proposed GC rule. In addition, if all the evidence to be combined is the most 
important (i.e., each piece of evidence does not need to be discounted by a weight), the GC rule is further 
simplified into Dempster’s rule without Shafer’s discounting (see ⑤ in Fig. 3).

(2) Based on Corollaries 4 and 7, if all of the evidence to be combined is the most important, the GC rule 
is simplified into Dempster’s rule with Shafer’s discounting (see ④  in Fig. 3). In such a situation, the 
combination results only consist of the orthogonal sum while the bounded sum is eliminated since the finite 
roles restricted by their weights are zero. Additionally, if all of the evidence to be combined is completely 
reliable (i.e., each piece of evidence does not need to be discounted by the reliability), the GC rule is further 
simplified into Dempster’s rule without Shafer’s discounting (see ⑤ in Fig. 3).

(3) Based on Corollaries 5 and 8, if all of the evidence to be combined is completely unreliable, the 
combined BDs cannot provide any valuable information (see ⑥ in Fig. 3). This conclusion is consistent with 
our intuition, and the unreliability effectiveness problem can be solved by the proposed GC rule.

(4) Based on Corollaries 9 and 10, if a piece of evidence to be combined is not important at all, it will be 
dropped (ignored or eliminated) and have no influence on the combination (see ⑦ in Fig. 3). This conclusion 
is consistent with intuition since the piece of evidence, which is completely unimportant in the problem, may 
have no impact on the decision-making (regardless of its reliability). For example, with a group decision-
making problem with I experts, each expert may be seen as a piece of evidence, and the importance degree of 
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the suggestions given by each expert depends on his or her decision-making weight. If the weight of one expert 
is equal to zero, it means his or her suggestion will not be considered at all in the decision-making for various 
reasons (e.g., the expert has no right to participate in the decision-making), and it is reasonable to make the 
final decision based on the suggestions given by the experts whose weights are greater than zero. Meanwhile, 
it should be determined whether it is possible that the weight of each piece of evidence source could be equal 
to zero. Since the sum of the weights of evidence sources is usually set to 1, there must be positive weights. In 
an extreme case, if only one piece of evidence has a positive weight with =1iw , and the remaining pieces of 
evidence are all weighted zero, then the combined results for all of the evidence must be determined by the 
evidence with =1iw .

(5) Based on Corollaries 11 and 12, if a piece of evidence to be combined is completely unreliable but is 
important for solving the decision-making problem with weight 0iw  , it will increase the global ignorance 
(see ⑧ in Fig. 3). It must be determined whether this conclusion is reasonable. For example, in the MCDM 
problem with I criteria, each criterion that may be regarded as a piece of evidence that is necessary for 
determining the collective evaluation value of the alternative (choice). The alternative can be well evaluated 
by integrating the performances of all of the criteria/evidence. However, if the performance of the alternative 
on the ith criterion is missing, the collective evaluation value determined by the performances of the remaining 
criteria must have some uncertainty. The more important the ith criterion is, the more uncertain the collective 
evaluation value becomes. The missing information can be regarded as the absence of useful information in 
the completely unreliable evidence. Thus, Corollaries 11 and 12 are consistent with intuition.

There are three kinds of inputs in the GC rule: the BD generated by the evidence source, the reliability of 
the evidence, and the weight of the evidence. If we employ the GC rule to make a decision by combining all 
of the pieces of evidence, the above three kinds of inputs should be determined in advance, based on which all 
of the pieces of evidence are combined recursively. Since global or local ignorance may exist in the 
combination result, the pignistic probability is frequently employed to make the final decision. The decision-
making process with the GC rule is summarized as follows:

Step 1: Generate BDs by evidence sources. The frame of discernment 1{ , , }N     is established first, 
and then BD bi defined by Eq. (3) is generated by the ith piece of evidence source ei, 1, ,i I  .

Step 2: Set the reliability and weight of each piece of evidence. For evidence ei, its reliability ri ( 0 1ir  ) 
is determined based on the capacity to generate valid information, and its weight wi ( 0 1iw  ) is determined 
based on the importance degree of the decision problem, 1, ,i I  .

Step 3: Combine all of the evidence with reliabilities and weights recursively. For evidence ei, the BD bi 
is discounted by the generalized discounting method given by Eq. (11) to obtain probability masses mi, 

1, ,i I  . The probability masses of all of the pieces of evidence are combined using the recursive GC rule 
given by Eqs. (18a)–(18d) to determine the combined probability masses , ( )e Im  for    , =  , and 

= ( )P  . Finally, probability mass ( ), ( )P e Im   is reassigned to all of the focal elements of   in Eq. (19), and 
the final combined BD , ( )e Ip  for     is obtained.

Step 4: Make a decision under a specified principle. Pignistic probability is popular for determining the 
probability corresponding to each hypothesis, and it can be computed by , ( )( ) | |

n
e InBetP p 

 
 

   for 
1, ,n N  , where ( )iBetP   is the probability that hypothesis n  is likely to occur. Thus, the hypothesis   
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with the highest pignistic probability 1( )= max( ( ), , ( ))NBetP BetP BetP     can be seen as the final decision.

5. Comparisons and discussion

DS theory and the ER approach are two special cases of the proposed GC rule. Therefore, each is 
compared with the proposed GC rule by using the same example as in the original literature for the ER rule 
with both weight and reliability [38]. In this example, the frame of discernment is set as 1 2 3={ , , }  

={A,B,C}, and three pieces of evidence—e1, e2, and e3—are to be combined. Table 1 lists the generated BDs. 
The purpose of comparing the proposed GC rule with DS theory is to prove that if the two parameters of the 
reliability and weight are undistinguished, then an unreasonable combination result may be generated. 
Meanwhile, the purpose of comparing the proposed GC rule with the ER approach is to prove that the three 
infeasible aspects of the ER can be overcome by the GC rule. 

Table 1 The BDs given by evidence e1-e3

A B C {A,B} {A,C} {B,C} {A,B,C}

 e1 0.8000 — — 0.1000 0.1000 — —

 e2 0.4000 0.3000 — 0.2000 — 0.1000 —

 e3 0.1000 0.3000 0.5000 — — — 0.1000

5.1 Comparison with DS theory and discussion

In DS theory, Dempster’s rule is established to fuse the evidence with precise and unambiguous BDs. If 
the BDs corresponding to the evidence are not precise and unambiguous, Shafer’s discounting method, given 
by Eq. (4), is employed to discount the BDs with a discounting parameter in advance. As mentioned above, 
DS theory deals with the combination problem with only one parameter and does not distinguish weights from 
reliabilities. To compare DS theory and the proposed GC rule, we introduce four cases that reflect the 
combination problem with only one parameter, in which the weight or reliability is set to 1. Cases 1 and 3 are 
used to show that the proposed GC rule is equivalent to DS theory when each piece of evidence is the most 
important in the combination while Cases 2 and 4 are used to show that the proposed GC rule is superior to 
DS theory when each piece of evidence in the combination is completely reliable. The two kinds of cases can 
be regarded as a combination problem with only reliabilities or only weights. 

Case 1: Weights of e1 and e2 are , and their reliabilities are .1 2 1.0w w  1 2 0.5r r 

Because the weights of e1 and e2 are , they can be regarded as the most important in the 1 2 1.0w w 

combination. It is not difficult to determine that both pieces of evidence do not need to be discounted from the 
perspective of the weights, and thus, the combination is simplified into a problem with only one parameter. 
The discounting parameter in this case is the reliability. First, we insert the BDs in the second and third rows 
of Table 1 and the reliabilities of e1 and e2 into Eq. (4) to perform Shafer’s discounting and obtain their BPA 
functions  and , as shown in the second and third rows of Table 2. Next, we take the BPA functions ,1DSm ,2DSm

 and  in Eq. (5) to make a combination with Dempster’s rule and obtain the fusion result of e1 and ,1DSm ,2DSm

e2, as shown in the fourth and fifth rows of Table 2. In Table 2,  is the combined result within the , (2)DS em

probability mass of the empty set, and  is the final combination result obtained by normalizing the , (2)DS em

probability mass of the empty set into focal elements.
Table 2 Discounted and combination results of the DS theory for Case 1
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Φ A B C {A,B} {A,C} {B,C} {A,B,C}

,1DSm — 0.4000 — — 0.0500 0.0500 — 0.5000

,2DSm — 0.2000 0.1500 — 0.1000 — 0.0500 0.5000

, (2)DS em 0.0875 0.4450 0.0850 0.0025 0.0800 0.0250 0.0250 0.2500

, (2)DS em — 0.4877 0.0932 0.0027 0.0877 0.0274 0.0274 0.2740

The proposed GC rule is employed to form a combination of e1 and e2 via the following steps. First, we 
insert the BDs from the second and third rows of Table 1 and the weights and reliabilities of e1 and e2 into Eq. 
(11) and obtain the discounted probability masses  and , as shown in the second and third rows of ,1GCm ,2GCm

Table 3. Next, we insert  and  into Theorems 3 and 4 to obtain the fusion result of e1 and e2, as ,1GCm ,2GCm

shown in the fourth and fifth rows of Table 3. In Table 3,  is the joint probability mass within the , (2)GC em

probability mass of the power set, and  is the final fusion result obtained by normalizing the probability , (2)GC ep

mass of the power set back to the focal elements.
Table 3 Discounted and combination results of the GC for Case 1

A B C {A,B} {A,C} {B,C} {A,B,C} P(Θ)

,1GCm 0.4000 — — 0.0500 0.0500 — 0.5000 —

,2GCm 0.2000 0.1500 — 0.1000 — 0.0500 0.5000 —

, (2)GC em 0.4877 0.0932 0.0027 0.0877 0.0274 0.0274 0.2740 —

, (2)GC ep 0.4877 0.0932 0.0027 0.0877 0.0274 0.0274 0.2740 —

Comparing the second and third rows of Table 2 with those of Table 3, we find that the discounted 
probability masses generated by the DS theory and the proposed GC rule are the same. This means that 
reliability as an intrinsic property is well reflected, whether in DS theory or in the proposed GC rule. 
Furthermore, comparing the fifth row of Table 2 with the fifth row of Table 3, we also find that there is no 
difference between the fusion results of the two methods. Both comparisons show that these two methods are 
equivalent to each other when the evidence to be combined is the most important, and the GC can be simplified 
into the DS when each piece of evidence to be combined is the most important (Corollary 4).

Case 2: Weights of e1 and e2 are , and their reliabilities are .1 2 0.5w w  1 2 1.0r r 

Because the reliabilities of e1 and e2 are , they can be seen as completely reliable in the 1 2 1.0r r 

combination. Both pieces of evidence do not need to be discounted from the perspective of the reliabilities, 
and thus the combination is simplified into a problem with only one parameter. The discounting parameter in 
this case is the weight. Following a similar computing process to that in Case 1, the discounting and 
combination results of DS in this case are the same, as shown in Table 2. The reason these two cases have the 
same discounting and combination results is that the DS can deal with the combination problem with only one 
parameter, and weight and reliability are not distinguished.

The proposed GC rule is also employed to form a combination for e1 and e2 by following similar steps to 
those in Case 1. First, we insert the BDs from the second and third rows of Table 1 and , 1 2 0.5w w 

 into Eq. (11), and we obtain the discounted probability masses  and  as shown in the 1 2 1.0r r  ,1GCm ,2GCm

second and third rows of Table 4. Next, we insert  and  into Theorems 3 and 4 to obtain the fusion ,1GCm ,2GCm

results  and , as shown in the fourth and fifth rows of Table 4., (2)GC em , (2)GC ep
Table 4 Discounted and combination results of the GC for Case 2

A B C {A,B} {A,C} {B,C} {A,B,C} P(Θ)
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,1GCm 0.4000 — — 0.0500 0.0500 0.4000 — 0.5000

,2GCm 0.2000 0.1500 — 0.1000 — 0.0500 — 0.5000

, (2)GC em 0.4877 0.0932 0.0027 0.0877 0.0274 0.0274 — 0.2500

, (2)GC ep 0.6717 0.1283 0.0038 0.1208 0.0377 0.0377 — —

Comparing Table 2 with Table 4, differences between the DS and GC approaches are evident in terms of 
not only of the discounted results but also their combination results. The DS uses Shafer’s discounting to form 
a discount for each piece of evidence and allocates residual support of the weight to the global ignorance 

={A,B,C}, e.g., , and , ,1 1 1 1( ) (1 )m w p w     0 0.1 (1 0.5) 0.5     ,2 2 2 2( ) (1 ) 0 0.1 (1 0.5) 0.5m w p w         

while the GC makes a discount and allocates residual support of the weight to the power set (see Eq. ( )P 

(11)), e.g.,  and . It must be determine which of 1( ( )) 1 1 0.5 0.5m P w      2( ( )) 1 1 0.5 0.5m P w     

these is correct. As mentioned in Subsection 4.2, the residual support of the weight  (i=1,2) is an extrinsic 1 iw

property, and it plays a finite role in the combination. Unfortunately, the DS cannot distinguish the global 
ignorance and the residual support of the weight. Thus, it undoubtedly disturbed the characteristics of the 
original evidence, i.e., there exists no global ignorance in the BDs ( =0 for i=1,2), but global ignorance ,ip

appears in the discounted results (  for i=1,2). In contrast, the proposed GC rule can well distinguish , 0im 

the residual support of the weight from the global ignorance, and thus we believe that the fusion result of the 
GC is more reasonable than that of the DS in this case.

Case 3: Weights and reliabilities of e1 and e2 are the same as in Case 1, and those of e3 are  and 3 1.0w 

.3 [0,1.0]r 

In the combination made by DS theory, the BPA function  of e3 is derived by Shafer’s discounting ,3DSm

with reliability  as the discounting parameter, and then the final fusion result of three pieces of evidence can 3r

be determined by , where  is the fusion result of e1 and e2 as shown in Table 2, , (3) , (2) ,3=DS e DS e DSm m m , (2)DS em

and  denotes the formation of a combination with Dempster’s rule. In the combination made by the GC, the 

discounted probability mass of e3 is derived by the generalized discounting given by Eq. (11), and then the 
joint probability masses of three pieces of evidence are determined as , where  , (3) , (2) ,3=GC e GC e GCm m m , (2)GC em

is the fusion result of e1 and e2, as shown in Table 3, and  denotes the formation of a combination with the 
GC rule. The final fusion result  is computed by inserting  into Eq. (19)., (3)GC ep , (3)GC em

Because the reliability  is a variable that ranges from 0 to 1, we let take values from 0 to 1 with a 3r 3r

step of 0.01. The final fusion results of the DS with different reliabilities are shown in Fig. 4, while those of 
the GC are shown in Fig. 5. Figs. 4 and 5 show that the final fusion results for the two methods were the same 
for each reliability in the range of 0 to 1. This means that the GC can be simplified to the DS in any reliability-
valued situation when each piece of evidence to be combined is the most important.
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Fig.4 Final fusion results of DS for r3∈[0,1]

Fig.5 Final fusion results of GC for r3∈[0,1]

Case 4: Weights and reliabilities of e1 and e2 are the same as those in Case 2, and those of e3 are  3 1.0r 

and .3 [0,1.0]w 

Similar to the combination process in Case 3, the final fusion results of the DS and GC approaches can 
be determined with the defined parameters in this case. Two differences should be pointed out. The weight of 
e3 is regarded as the discounting parameter in DS theory, and the other is that the fusion results  and , (2)DS em

 used in this case are those shown in Tables 2 and 4, respectively. Because the weight  is a variable , (2)GC em 3w

in the range of 0-1, we let  take values from 0 to 1 with a step of 0.01. The final fusion results of DS 3w

approach with different weights are the same as shown in Fig. 4, while those of the GC approach with different 
weights are shown in Fig. 6. As shown in Figs. 4 and 6, the final fusion results between the DS and GC 
approaches are very different in terms of the valued weights in the range of 0-1. The DS approach cannot 
distinguish the global ignorance and the residual support of the weight, while the GC approach can solve this 
problem well. Thus, we believe that the fusion result of the GC rule proposed in this paper is more precise and 
reasonable than that of DS theory in any weight-valued scenario of this case.



21

Fig.6 Final fusion results of GC for w3∈[0,1]

5.2 Comparison with ER approach and discussion

The ER approach can deal with the evidence combination problem in scenarios with existing weights and 
reliabilities. In the ER approach, the concept of WBDR is used to characterize evidence, and then the 
orthogonal sum operation is employed to combine the WBDRs. The process for the GC rule introduced in this 
paper is similar to that of the ER approach, but the difference lies in the discounting method (Eq. (11)) and 
combination rule (Eqs. (18a)(18d)). Here, we compare the ER and GC approaches using three cases to test 
the three kinds of infeasibilities described in Subsection 3.1. In this subsection, Case 1 is used to show that the 
reliability dependence and intergeneration inconsistency problems may arise in the ER approach but not in the 
proposed GC rule. Cases 2 and 3 show that while the ER and GC approaches can both completely drop 
unimportant evidence from the combination, the unreliability effectiveness problem that may arise in the ER 
approach does not occur in the GC approach. In each case, the ER and GC approaches are both employed to 
create a combination recursively through the following three steps.

(i) Taking each BD in Table 1 and its weight and reliability as inputs, the ER approach employs Eq. (8) 
to generate the WBDR , and the GC approach employs Eq. (11) to generate the discounted result , ,WBDR im ,GC im

where i=1,2,3.
(ii) The ER approach takes  as inputs and employs Eqs. (7a), (9a), and (9b) to form a combination ,WBDR im

and derive  and . The GC approach takes  as inputs and employs Eqs. (18a)(18d) to , (2)WBDR em , (3)WBDR em ,GC im

make a combination and derive  and ; e(2) and e(3) denote the combination made by the first (2)GC em ， , (3)GC em

two and first three pieces of evidence, respectively.
(iii) The ER approach employs Eq. (10) to obtain the final combined BDs , and the GC approach , (3)WBDR ep

employs Eq. (19) to obtain final combined BDs ., (3)GC ep

Case 1: Reliabilities of e1, e2 and e3 are , and , and their weights are , , 1 2 1r r  3 0.6r  1 0.7w  2 0.4w 

and .3 0.8w 

The fusion results determined by the ER and GC approaches in this case are listed in Tables 5 and 6, 
respectively. The comparison of the second and third rows of Tables 1 and 5 shows that the discounted results 
of the ER approach using both the weight and reliability are the same as those with the original BDs. It must 
be determined whether such discounted results are reasonable. The reliabilities of e1 and e2 are , and 1 2 1r r 

their weights are  and , resulting in a reliability dependence problem, i.e., if the reliability is 1 0.7w  2 0.4w 
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completely reliable, then the ER’s discounting result is the same as that of the BD, regardless of the weight 
values. Thus, the discounted results in the ER approach are unreasonable since the discounted result is equal 
to the original BD when the reliability is equal to 1.

Table 5 The ER combination results
A B C {A,B} {A,C} {B,C} {A,B,C} P(Θ)

,1WBDRm 0.8000 — — 0.1000 0.1000 — — —

,2WBDRm 0.4000 0.3000 — 0.2000 — 0.1000 — —

,3WBDRm 0.0667 0.2000 0.3333 — — — 0.0667 0.3333

, (2)WBDR em 0.8923 0.0615 0.0308 0.0154 — — — —

, (3)WBDR em 0.8626 0.0888 0.0254 0.0233 — — — —

, (3)WBDR ep 0.8626 0.0888 0.0254 0.0233 — — — —

Table 6 The GC combination results
A B C {A,B} {A,C} {B,C} {A,B,C} P(Θ)

,1GCm 0.5600 — — 0.0700 0.0700 — — 0.3000

,2GCm 0.1600 0.1200 — 0.0800 — 0.0400 — 0.6000

,3GCm 0.0480 0.1440 0.2400 — — — 0.3680 0.2000

 , (2)GC em 0.6058 0.0523 0.0031 0.0794 0.0466 0.0133 — 0.1996

, (3)GC em 0.5360 0.1094 0.0893 0.0622 0.0365 0.0104 0.1012 0.0550

, (3)GC ep 0.5672 0.1158 0.0945 0.0658 0.0386 0.0110 0.1071 —

Furthermore, the reliability dependence problem directly leads to the loss of focal elements in the fusion 
process. A comparison of the fifth through the seventh rows of Table 5 with the second through fourth rows 
shows that {A,C} of , {B,C} of , and {A,B,C} of  do not exist in the ER fusion results, but they are 1e 2e 3e

focal elements of the evidence to be combined. It must be determined whether such combination results are 
reasonable.

The combined BD determined by the ER approach includes part of the bounded sum, and this part has 
the apparent meaning that the residual support of the weight  is used to restrict the roles played by other 1 iw

evidence in the combination. Because the weights of all of the evidence are less than 1, the evidence to be 
combined is allowed to play finite roles ( ) in the combination. Therefore, the focal elements for each piece 1 iw

of evidence should exist in the fusion results. Unfortunately, the mentioned focal elements are lost in the ER 
fusion results.

In contrast, neither the reliability dependence problem nor the loss of focal elements are incurred in the 
GC fusion results. A comparison of second and third rows of Tables 1 and 6 shows that discounted results of 
the GC approach using both weight and reliability are different from the original BDs. The discounted results 
of the GC approach have clear meanings, i.e.,  for  is the discounted BD, which is corrected , ( )GC im    

by its reliability and restricted by its weight, and  for  is determined by , which restricts , ( )GC im  = ( )P  1 iw

the role of the combination for the evidence to be combined. In addition, the fifth to seventh rows of Table 6 
show that the focal elements of all of the evidence (including the lost focal elements in the ER’s fusion) are all 
retained in the GC fusion results. As a result, it is reasonable to believe that the GC fusion results are superior 
to the ER fusion results.

Note that e1 and e2 are both completely reliable, and their weights are less than 1. Generally, if we combine 
the two pieces of evidence in this situation, the weights should participate in the combination, while the 
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reliabilities could be omitted for their full reliabilities. Thus, the combination problem of e1 and e2 with weight 
and reliability should be equivalent to that with only weight. We now adopt the ER rule with only weight to 
combine e1 and e2 and obtain the fusion results that are listed in the fourth and fifth rows of Table 7. The final 
fusion results of e1 and e2 determined by the ER approach with weights and reliabilities could be computed by 
inserting  from Table 5 into Eq. (10) to obtain  (see the sixth row of Table 7). Similarly, the , (2)WBDR em , (2)WBDR ep

final fusion results of e1 and e2 determined by the GC approach could be computed by inserting  from , (2)GC em

Table 6 into Eq. (19) to obtain  (see the seventh row of Table 7). Comparing  with , , (2)GC ep , ( 2 )WBD ep , (2)WBDR ep

an inter-generation inconsistency problem in the ER approach is incurred, i.e., the fusion results determined 
by the ER rule with two parameters are inconsistent with those determined by the ER rule with one parameter. 
However, comparing  with , the fusion results determined by the ER rule with one parameter , ( 2 )WBD ep , (2)GC ep

are consistent with those determined by the GC rule. This means that the inter-generation inconsistency 
problem can be well solved by the GC rule.

Table 7 Combination results of e1 and e2 determined by two kinds of methods
A B C {A,B} {A,C} {B,C} {A,B,C} P(Θ)

,1WBDm 0.5600 — — 0.0700 0.0700 — — 0.3000

,2WBDm 0.1600 0.1200 — 0.0800 — 0.0400 — 0.6000

 , ( 2)WBD em 0.6058 0.0523 0.0031 0.0794 0.0466 0.0133 0.0196 0.1800

 , ( 2 )WBD ep 0.7387 0.0638 0.0038 0.0968 0.0568 0.0162 0.0238 —

, (2)WBDR ep 0.8923 0.0615 0.0308 0.0154 — — — —

, (2)GC ep 0.7387 0.0638 0.0038 0.0968 0.0568 0.0162 0.0238 —

Case 2: Weight of one piece of evidence is equal to 0, i.e., .0iw 

We assume that the weight of e3 is 0 ( ) and the other parameters are the same as they were in Case 3 0w 

1 of this subsection. The combination results generated by the ER and GC approaches are listed in Tables 8 
and 9, respectively. As shown in Table 8, the combined results of the first two determined by the ER approach 
are equal to those of the first three. Similar results are shown in Table 9 for the GC approach. Although there 
are two aspects of problems, i.e., reliability dependence and intergeneration inconsistency, in the fusion results 
of the first two determined by the ER approach, these problems have no influence on the judgement of the 
effectiveness of the fusion results with a third piece of evidence. Based on our intuition, if the combined 
evidence is completely unimportant, it is dropped from the combination and has no influence on the fusion 
results. Consequently, we believe that the ER and GC approaches both effectively form a combination for the 
problem in which one piece of evidence to be combined is completely unimportant. If the weights of more 
than one piece of evidence are set to 0, it is inferred that such a conclusion may also be applicable for the ER 
and GC approaches.

Table 8 The ER combination results with w3=0
A B C {A,B} {A,C} {B,C} {A,B,C} P(Θ)

 , (2)WBDR em 0.8923 0.0615 0.0154 0.0308 — — — —

 , (2)WBDR ep 0.8923 0.0615 0.0154 0.0308 — — — —

 , (3)WBDR em 0.8923 0.0615 0.0154 0.0308 — — — —

 , (3)WBDR ep 0.8923 0.0615 0.0154 0.0308 — — — —
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Table 9 The GC combination results with w3=0
A B C {A,B} {A,C} {B,C} {A,B,C} P(Θ)

 , (2)GC em 0.6058 0.0523 0.0031 0.0794 0.0466 0.0133 — 0.1996

 , (2)GC ep 0.7568 0.0653 0.0039 0.0992 0.0582 0.0166 — —

, (3)GC em 0.6058 0.0523 0.0031 0.0794 0.0466 0.0133 — 0.1996

, (3)GC ep 0.7568 0.0653 0.0039 0.0992 0.0582 0.0166 — —

Case 3: Reliability of one piece of evidence is equal to 0, i.e., .0ir 

We assume that the reliability of e3 is 0 ( ), and the other parameters are the same as in Case 1 of this 3 0r 

subsection. The fusion results generated by the ER and GC approaches are listed in Tables 10 and 11, 
respectivley. From Table 10, the focal element {A,B,C} of e3 is lost, and the probability masses of focal 
elements are all changed after making a combination with  using the ER approach (see the third and fifth 3e

rows of Table 10). This means that the unreliability effectiveness problem occurs in the ER approach. As 
shown in Table 11, the probability masses of all the focal elements except for ={A,B,C} and P( ) are not  

changed, and that of ={A,B,C} increased after making a combination with e3 by the GC approach (see the 

second and fourth rows of Table 11). The final results  are determined by redistributing the probability , (3)GC ep

masses of the power set  on the other focal elements, with the result that  for  , (3) ( ( ))GC em P  , (3) ( )GC ep    

is decreased and that for ={A,B,C} is increased compared to the last round of combination results (see the 

third and fifth rows in Table 11). The two methods yielded different fusion results. It must be determined 
which results are reasonable. Based on our intuition, if one piece of evidence is completely unreliable, it can 
be regarded as missing information. The more important the missing information is, the more uncertain the 
final fusion results become. It is logical to infer that the uncertainties of the final fusion results should be 
enlarged after making a combination with the completely unreliable but important evidence e3 (  and 3 0r 

). Consequently, it is reasonable to believe that the GC fusion results are superior to the ER fusion 3 0.8w 

results in this case.
Table 10 The ER combination results with r3=0

A B C {A,B} {A,C} {B,C} {A,B,C} P(Θ)

 , (2)WBDR em 0.8923 0.0615 0.0154 0.0308 — — — —

 , (2)WBDR ep 0.8923 0.0615 0.0154 0.0308 — — — —

, (3)WBDR em 0.8777 0.0749 0.0281 0.0193 — — — —

, (3)WBDR ep 0.8777 0.0749 0.0281 0.0193 — — — —

Table 11 The GC combination results with r3=0
A B C {A,B} {A,C} {B,C} {A,B,C} P(Θ)

 , (2)GC em 0.6058 0.0523 0.0031 0.0794 0.0466 0.0133 — 0.1996

 , (2)GC ep 0.7568 0.0653 0.0039 0.0992 0.0582 0.0166 — —

, (3)GC em 0.6058 0.0523 0.0031 0.0794 0.0466 0.0133 0.1596 0.0399

, (3)GC ep 0.6309 0.0545 0.0032 0.0827 0.0485 0.0139 0.1663 —

To further discuss the above argument, we assume that the reliability of e3 is 0 ( ), its weight  3 0r  3w

ranges from 0 to 1 with a step of 0.01, and the other parameters are the same as those in Case 1 of this subsection. 
The final fusion results of the ER and GC approaches with different weights are shown in Figs. 7 and 8, 
respectivley. Fig. 7 shows that the uncertainty (global ignorance) in the combined result of ER approach 
remains at zero regardless of the value set as the weight of the evidence e3, and the probability masses of focal 
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elements changed to minor extents. Fig. 8 shows that the fusion results of combining e3 in the GC approach 
may increase the uncertainty of the first two pieces of evidence when e3 is completely unreliable but important. 
The larger the weight (importance) of e3 is, the larger the uncertainty becomes. In extreme situations, the fusion 
results of combining e3 with the GC approach are the same as those of the first two pieces of evidence when 
e3 is completely unreliable and completely unimportant (r3=0 and w3=0). The fusion results of combining e3 
increase the uncertainty of the first two pieces of evidence to the greatest extent when e3 is completely 
unreliable and the most important (r3=0 and w3=1). Such results are consistent with intuition, i.e., if the 
evidence makes no contribution to the decision (w3=0), it will be dropped from the combination regardless of 
its reliability. Otherwise, if the evidence can make a contribution to the decision (w3>0) but it is completely 
unreliable, the uncertainty of the combined result may increase. Consequently, we believe that the GC fusion 
results are superior to the ER fusion results in this case.

Fig.7 Final fusion results of ER for w3∈[0,1]

Fig.8 Final fusion results of GC for w3∈[0,1]

In a more extreme situation, each piece of evidence is completely unreliable, i.e., , and the 1 2 3= =0r r r

weights of all of the evidence are the same as those in Case 1 of this subsection. The combination results of 
the ER and GC approaches are listed in Tables 12 and 13, respectively. As shown in Table 12, the final fusion 
results of the ER are . This means that each of the focal elements may occur with precise probabilities, , (3)WBDR ep

and A has the largest probability (0.4679) of occurring. As shown in Table 13, the final fusion results of the 
GC approach are , and this means that A, B, or C may occur, but we do not know which is correct. In , (3)GC ep

other words, we obtain nothing from the fusion results of e1, e2, and e3. Generally, any useful information is 
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incapable of being obtained from completely unreliable evidence regardless of the weights. However, the ER 
can obtain some effective information from completely unreliable evidence. Based on our intuition, if all of 
the pieces of evidence are completely unreliable, then we can obtain nothing from them. In other words, if one 
obtains a result from all of the completely unreliable evidence, it must be incorrect. As a result, it is reasonable 
to believe that the GC fusion results are superior to the ER fusion results.

Table 12 The ER combination results with r1=r2=r3=0
A B C {A,B} {A,C} {B,C} {A,B,C} P(Θ)

,1WBDRm 0.3294 — — 0.0412 0.0412 — — 0.5882 

,2WBDRm 0.1143 0.0857 — 0.0571 — 0.0286 — 0.7143 

,3WBDRm 0.0444 0.1333 0.2222 — — — 0.0444 0.5556

 , (2)WBDR em 0.3867 0.0575 0.0012 0.0682 0.0307 0.0175 — 0.4382 

 , (3)WBDR em 0.3302 0.1355 0.1319 0.0495 0.0223 0.0127 0.0236 0.2943

 , (3)WBDR ep 0.4679 0.1920 0.1869 0.0701 0.0316 0.0180 0.0334 —

Table 13 The GC combination results with r1=r2=r3=0
A B C {A,B} {A,C} {B,C} {A,B,C} P(Θ)

,1GCm — — — — — — 0.7000 0.3000

,2GCm — — — — — — 0.4000 0.6000 

,3GCm — — — — — — 0.8000 0.2000 

 , (2)GC em — — — — — — 0.8200 0.1800

 , (3)GC em — — — — — — 0.9640 0.0360

 , (3)GC ep — — — — — — 1.0000 0.0000

6. Illustrative example

The protection and sustainable use of China’s marine biological resources have become increasingly 
urgent due to the decline of offshore fishery resources and the worsening of the ecological environment. Marine 
ranching is rapidly growing in China. This is considered to be a sustainable fishery mode that is ecofriendly 
for fisheries, aquaculture, and capture-based aquaculture [13,15]. By the end of 2019, China had built more 
than 233 marine ranches, including 110 national marine ranching demonstration zones (MRDZs), and it had 
released more than 60.94 million air cubic meters of reefs [50]. Marine ranching takes ecological security as 
the core objective in all construction, production, and recreational activities. To ensure a good ecological 
environment, abundant biological resources, and sustainable fishery development, such activities should not 
damage the integrity of the ecological environment and biological resources. 

To achieve the core objective of marine ranching, it is important to evaluate the ecological security of 
MRDZs. We suppose that the government plans to evaluate a specific MRDZ (called MRDZ-A). Fig. 9 shows 
the evaluation framework and the decision information, consisting of the evaluation criteria system, evidence 
reliability and weight, and evidence source (experts). This relevant decision information will be described 
hereafter. This is the first time to evaluate the ecological security of MRDZ-A, and the collected data are 
inadequate. Thus, uncertainties exist in the evaluation process. The GC rule proposed in this paper is employed 
to evaluate the ecological security of MRDZ-A. This demonstrates the process of using the GC rule to solve a 
real-world problem under uncertainty. According to the steps in Subsection 4.5, the decision-making process 
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is as follows.

Fig.9 Evaluation framework for MRDZ-A

Step 1: Generate BDs by evidence sources. The ecological security of MRDZs is evaluated from the two 
aspects of marine environment and biological resources. The former is reflected by the water quality (c1) and 
marine sediment (c2) while the latter is reflected by the target biological resources (c3) and biodiversity index 
(c4). Thus, the evaluation criteria system is constructed as C={c1,c2,c3,c4}. The performance of MRDZ-A for 
criterion ci is evaluated by experts ei, 1, ,4i   . Five grades—Excellent (E), Good (G), Average (A), Poor (P), 
and Worst (W)—are used to express the evaluation information. Thus, the frame of discernment is constructed 
as 1 5={ , , }   ={W, P, A, G, E}. Expert ei gives the evaluation information with the BDs as in Eq. (23), and 
each bi can be considered to be a piece of evidence.

  (23)

1

2

3

4

{ ,0.2; ,0.4;( , ),0.3; ,0.1}
{( , ),0.6;( , ),0.4}
{ ,0.5;( , ),0.5}
{ ,0.2;( , ),0.3; ,0.3; ,0.2}

b E A P G
b A G P E
b P A G
b G W P A

 
 
 
  

Step 2: Set the reliability and weight of each piece of evidence. The reliability and weight of evidence bi 
are equal to the reliability of expert ei and the weight of criterion ci, respectively. Suppose experts e1 and e2 
can make fully correct judgments, and e3 and e4 can make judgments with 80% correct information. The 
reliabilities of the experts can thus be obtained by their capacities to give valid information, which are set as 
r1=r2=1.0, r3=r4=0.8. In addition, regarding the ecological security of MRDZ-A, the water quality (c1) and 
target biological resources (c3) are considered to be slightly more important than the marine sediment (c2) and 
biodiversity index (c4). Thus, the weights of the criteria were set as w1=w3=0.3, and w2=w4=0.2. 

Step 3: Combine all evidence with reliabilities and weights recursively.
First, each BD is discounted by the generalized discounting method given by Eq. (11), and we obtain the 

corresponding probability masses. For example, the probability masses discounted for b1 are calculated as 

1 1 1 1( ) ( ) 0.3 1.0 0.2 0.06m E w r p E     , 1 1 1 1( ) ( ) 0.3 1.0 0.4 0.12m A w r p A     , 1 1 1 1(( , )) (( , ))m P G w r p P G   
0.3 1.0 0.3 0.09   , 1 1 1 1 1 1( ) ( ) (1 ) 0.3 1.0 0.1 0.3 1.0 1.0) 0.03m w r p w r           ( , and 1 1( ( )) 1m P w     
1 0.3 0.70  . The probability masses (mi, 1, ,4}i   ) corresponding to all the BDs are obtained as follows:

  (24)

1

2

3

4

{ ,0.06; ,0.12;( , ),0.09; ,0.03; ( ),0.70}
{( , ),0.12;( , ),0.08; ( ),0.80}
{ ,0.12;( , ),0.12; ,0.06; ( ),0.70}
{ ,0.032;( , ),0.048; ,0.048; ,0.072; ( ),0.80}

m E A P G P
m A G P E P
m P A G P
m G W P A P

  
  
   
   
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Second, the probability masses of all of the pieces of evidence are combined by the recursive GC rule in 
Eqs. (18a)–(18d), and the combined probability masses are determined. The recursive combination process is 
as follows:

(2) 1 2em m m   ( ,0.0537; ,0.1123; ,0.0110; ,0.0073;( , ),0.0732;( , ),0.0891;( , ),0.0594; ,0.0244; ( ),0.5696)E A G P P G A G P E P 

(3) (2) 3e em m m   ( ,0.0428; ,0.1036; ,0.0194; ,0.0982;( , ),0.0584;( , ),0.1570;( , ),0.0473; ,0.0553; ( ),0.4181)E A G P P G A G P E P 

(4) (3) 4e em m m   ( ,0.0388; ,0.1305; ,0.0411; ,0.0991;( , ),0.0529;( , ),0.1422;( , ),0.0429;( , ),0.0236; ,0.0814; ( ),0.3475)E A G P P G AG P E W P P 

Third, the probability mass ( ), (4)P em   is reassigned to all of the focal elements of   by Eq. (19), and 
the final combined BD is obtained as follows:

(4) { ,0.0594; ,0.2000; ,0.0630; ,0.1519;( , ),0.0810;( , ),0.2180;( , ),0.0657;( , ),0.0362; ,0.1247 }ep E A G P P G A G P E W P 

Step 4: Make a decision using a specified principle. Inserting (4)ep  into , ( )( | |( ) )
n

e In pBetP  
 

 
  , 

we calculate the pignistic probabilities of each hypothesis as ) 0 43( .0 0Be WtP  , ) 0 68( .2 4Be PtP  , 
) 0 33( .3 9Be AtP  , ) 0 37( .2 4Be GtP  , and ) 0 17( .1 2Be EtP  . The combined result shows that the ecological 

security of MRDZ-A has a 4.30% probability of being Worst, a 26.84% probability of being Poor, a 33.39% 
probability of being Average, a 23.74% probability of being Good, and a 11.72% probability of being Excellent. 
Clearly, Average is the hypothesis with the highest pignistic probability. Thus, the ecological security of 
MRDZ-A is ultimately evaluated as Average. 

Based on Steps 1–4 above, we can conclude the following. (1) The evaluation information can be 
described with BDs, and it can reflect the local or global ignorance that exists in the decision. (2) The quality 
and importance of the evaluation information, which can be described by reliability and weight, are both 
allowed to participate in the decision making. (3) The evaluation information with reliability and weight can 
be easily combined with the GC rule, and pignistic probability can be computed to make the final decision. 
The proposed GC rule-based decision-making process is therefore effective and practical for solving real-
world problems.

7. Conclusions

DS theory is a flexible and useful tool for expressing and combining uncertain information with ignorance, 
but it cannot distinguish the weight and the reliability of the evidence. As an extension of DS theory, ER with 
weight combines evidence with the bounded sum of the individual support and the orthogonal sum of the 
collective support. However, the most recent version (ER with both weight and reliability) has three infeasible 
aspects. In this study, a GC rule with both weight and reliability was proposed that can solve the problems 
related to the parameters in the ER approach and DS theory. ER and DS can be seen as two particular cases of 
the GC rule. The present study has four main contributions, which are described below.

First, the three infeasible aspects of the ER (i.e., reliability dependence, unreliability effectiveness, and 
intergeneration inconsistency) were analyzed in terms of the extreme values of the two parameters. Second, a 
generalized discounting method with weight and reliability was introduced based on the properties of the two 
parameters. Third, a GC rule consisting of basic and recursive forms was established to combine evidence 
using reliabilities and weights, and the corresponding theorems and corollaries were provided. Finally, the 
proposed GC rule was compared with DS and ER to show its superiority, and it was also applied to a real-
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world example to demonstrate its applicability.
This study provides significant insight that evidence fusion should consider not only objective 

information quality but also subjective information importance. The fusion result will only be reasonable and 
effective if both perspectives are scientifically embodied and reflected in the process of evidence fusion. 
Otherwise, the intuition paradox may arise in the fusion results.

As mentioned in Section 2, Dempster’s rule plays a crucial role in DS theory. However, the intuition 
paradox may arise in situations with high or low conflict, and the combination results may be counterintuitive. 
In our view, the intuition paradox arises because either the objective or subjective feature of the evidence is 
not well considered in the combinations. High conflict between evidence may be caused by the objective 
reliability of the evidence source. In this situation, the intuition paradox can be partly solved by discounting 
the evidence with the reliability to obtain completely reliable evidence and then make a combination using 
Dempster’s rule. Such treatment assumes that each piece of evidence has equal importance to the most extreme 
degree.

Even if all of the pieces of evidence are completely reliable, the importance degree of each should also 
be considered in the combination to solve a specific decision-making problem. A “one-vote veto” is necessary 
for evidence with the most importance in the combination, but it is not necessary for evidence with the least 
importance. For example, the unqualified appearance that is seen as a completely reliable evidence can directly 
decide an actor will not pass the interview in the selection of film stars, while such a decision may not occur 
in other regular interviews, since this piece of evidence is very important in the former situation but is 
unimportant in the latter situation. Consequently, it is necessary to take both the objective quality and the 
subjective importance of the evidence into account in the combination. Only when both aspects are well 
considered in the combination can we obtain a satisfying result that conforms to intuition. After all, the so-
called intuition paradox belongs to the category of subjective cognition. The proposed GC rule is an effective 
attempt to solve the intuition paradox.

In the era of big data, evidence with different weights and reliabilities can be easily obtained through 
information technology. The proposed GC rule may provide an alternative way to solve the fusion problems 
that arise from big data. It should be noted that the weight and the reliability of evidence in the proposed GC 
rule are required to be crisp values. Therefore, a valuable direction for future research would be to further 
study the GC rule using uncertain weights or reliabilities.
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Appendix A.1. Proof of Theorem 1

Proof. There is . , , , , , ,= = [ (1 )]i i i i i i i i i i i i i i i i im m m w r p w r p w r w r p w w r          
         

Because , we have  and thus ., =1ip  , = =i i i i i i im w r w w r w 
  , ( ), = 1 =1i P i i im m w w 

  
Appendix A.2. Proof of Corollary 1

Proof. Inserting  into Eq. (11), we have  for , 1.0iw  , ,( ) =i i i i i im w r p r p     

  for ,  for . Obviously, the discounted ,( ) (1 )i i i i i im w r p w r    ,= 1i i ir p r      ( ) 1 =0i im w   ( )P  

result is equivalent to the form of Shafer’s discounting as in Eq. (4).

Appendix A.3. Proof of Corollary 2

Proof. Inserting  into Eq. (11), we have  for ,  1.0ir  , ,( ) =i i i i i im w r p w p      ,( )i i i im w r p 

 for ,  for . The first two results could be rewritten ,(1 )=i i i iw r w p     ( ) 1i im w   ( )P  

 for . Obviously, the discounted result is equivalent to the form of ER’s discounting with ,( )i i im w p    

weight as in Eq. (6).

Appendix A.4. Proof of Theorem 2

Proof. Inserting Eqs. (13a)-(13c) into the following expression, we have  , (2) ( ), (2)e P em m 
 

. Because of , we have , (2) , (2) ( ), (2) , (2) , (2) ( ), (2)= (+ + + )e e P e e e P em m m m m m  
    

    
, (2)=1 (1 ) =1 (1 )ek m   

. Because of , , (2) ( ), (2) , (2) , (2) ( ), (2) , (2)+ + ) (( 1 )e P e e e P e em m m m m m      
       

, (2) , (2) , (2) ( ), (2)+ + + =1e e e P em m m m     

we have ., (2) ( ), (2) , (2) , (2)(1 ) (1 ) =1e P e e em m m m   
     

Appendix A.5. Proof of Theorem 3

Proof. From Eq. (11), the discounted results on  of two pieces of evidence are  and ( )P  ( ),1 1=1Pm w 

. Inserting the expressions of  and  which are discounted by Eq. (11) into Eq. (12b) ( ),2 2=1Pm w  ( ),1Pm  ( ),2Pm 

and Eq. (12c), we get  for , , (2) ,1 ,2 ,1 ,2 ,2 ,1 2 ,1 1 ,2, ,
=[ ] [(1 ) (1 ) ]e B CB C B C

m m m m m m m w m w m        
        

. From Theorem 2, since   for , , (2) ,1 ,2em m m   
1 ,2 2 ,1[(1 ) (1 ) ]w m w m    , (2) ( ), (2) 1e P em m 

  1, 2i 

we have . From Eqs. (13a)-(13b) we have for  and , (2) ( ), (2)1e P em m 
  , (2) , (2) , (2)= (1 )e e em m m      

. Thus the Eq. (14) can be expressed as:= 

, (2) , (2)
, (2)

, (2) , (2)

, (2) ,( ),e(2) , ( (22) , (2) , 2)) (1 +
e e

e
P e

e e

e ee e

m m
p

m m m
m m

m m m
 


 



 




     

     
   

 
   ，

Appendix A.6. Proof of Corollary 3

Proof. Inserting  as in Eq. (11) into Eqs. (15b)-(15c), we derive, ( = , = ( ))im P      ,

, (2) 1 1 ,1 2 2 ,2 1 1 ,1 2 2 ,2 2 2 2 2 ,2, ,
[ (1 )]e B CB C B C

w r p w r p w r p w r p w r w r pm     
      

,  (A.1)1 1 ,1 1 1 2 1 1 ,1 1 2 2 ,2[ (1 )] (1 ) (1 )w r p w r w w r p w w r p          

 (A.2), (2) 1 1 ,1 1 1 2 2 ,2 2 2 1 2 2 ,2 2 2 2 1 1 ,1 1 1[ (1 )] [ (1 )] (1 )[ (1 )]+(1 )[ (1 )]e w r p w r w r p w r w w r p w r w w r p w rm                

When ,  and  as in Eqs. (A.1)-(A.2) can be expressed as1 2 1r r  , (2)em


, (2)em


,  (A.3), (2) 1 ,1 2 ,2 1 ,1 2 ,2 2 ,2 1 ,1 2 1 ,1 1 2 ,2, ,
(1 ) (1 )e B cB C B C

w p w p w p w p w p w p w w p w wm p        
            

 (A.4), (2) 1 ,1 2 ,2 1 2 ,2 2 1 ,1(1 ) (1 )e w p w p w w p w pm w           

Since  for , Eqs.(A.3) and (A.4) can be expressed as, ,=w
i i im w p    

, (2) ,1 ,2 ,1 ,2 ,2 ,1 2 ,1 1 ,2, ,C
=[ ] [(1 ) (1 ) ]w w w w w w w w

e B CB C B
m m m m m m m w m w m        

     
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= ,  (A.5),1 ,2,C
w w
B CB C B

m m
   , 2 ,1 1 ,2[(1 ) (1 )w ww m w m       

= ,  (A.6), (2) ,1 ,2 1 ,2 2 ,1[(1 ) (1 ) ]w w w w
em m m w m w m        

,1 ,2 2 ,1 1 ,2,C
[(1 ) (1 )w w w w

B CB
m m w m w m 

    = 

Inserting both into unified forms, we have , ., (2) 2 ,1 1 ,2 ,1 ,2,,
=[(1 ) (1 ) ]+w

B
w w w

e CB C C Bm w m w m m m    
      

Appendix A.7. Proof of Corollary 4

Proof. Inserting  as in Eq. (11) into Eqs. (15b)-(15c), we get  and , ( = , = ( ))im P      , , (2)em


 as in Eqs. (A.1)-(A.2). Inserting  into Eqs. (A.1)-(A.2), we have, (2)em


1 2 1w w 
,  (A.7), (2) 1 ,1 2 ,2 1 ,1 2 ,2 2 2 ,2 1 ,1 1, ,

[ (1 )] [ (1 )]e B cB C B C
r p r p r pm r p r r p r p r      

            

,  (A.8), (2) 1 ,1 1 2 ,2 2[ (1 )] [ (1 )]e r p r rm p r        = 

Since  for , , Eqs. (A.7) and (A.8) can be expressed as, ,=r
i i im r p     , ,= 1r

i i i im r p r   
= ,  (A.9),1 ,2 ,1 ,2 ,2 ,1, ,, (2)

r r r r r
e

r
B CB C B C

m m m m m m m     
  

,1 ,2, ,
r r
B CB C B C

m m
     

=  (A.10), (2) ,1 ,2
r r

em m m  
,1 ,2,C

w w
B CB

m m


Inserting the both into unified forms, we determine , ., (2) 1, , , ,2= r r
e B CB CB C

m m m       

Appendix A.8. Proof of Corollary 5

Proof. Inserting  as in Eq. (11) into Eqs. (15b)-(15c), we get  and , ( = , = ( ))im P      , , (2)em


 as in Eqs. (A.1)-(A.2). Inserting  into Eqs. (A.1)-(A.2), we get , ; , (2)em


1 2 0r r  , (2) =0em
   

. Inserting the above results into Eq. (15a), we determine , (2) 1 2e w wm  
1 2 2 1 1 2 1 2(1 ) +(1 ) = +w w w w w w w w  

, ; ., ( 1 2 22) 1= 0 (0+ + ) 0e w wp w w      1 2 1 2 1 2 1, 2 2( ) = ( + ) (0 + ) =1e w w w w w w wp w   

Appendix A.9. Proof of Theorem 4

Proof. For ,  for ,  and , and thus Eqs. (18b)-(18d) are obviously 2i  , (1) ,1em m     =  = ( )P 

equivalent to Eqs. (12b)-(12d). Meanwhile, we also have  as shown in Eq. (12a) and , (2) ,1 ,1=e B CB C
m m m  



 which can be rewritten by . , (2) , (2) , (2) ( ), (2)+ + + =1e e e P em m m m     
, (2) , (2) ( ), (2) , (2)+ + =1e e P e em m m m   

    

Because  is defined to be zero and it should be reassigned into other parts, we have , (2)em


 for  and , (2) , (2) , (2) , (2) , (2) , (2) ( ), (2) , (2) , (2) ( ), (2)1 += = ( )+ = ( )e e e e e e P e e e P em m m m m m m m m m          
          

  

 which are shown as in Eq. (18a). From Theorem 2, we know ., (2) =0em , (2) ( ), (2) 1e P em m 
 

For , suppose that Eqs. (18a)-(18d) are true and it means that there exists 1i i  , ( -1) 1[e im m  

, with , for , ,  and .-1]( )im  , ( -1)0 1e im     =  = ( )P  , ( 1) ( ), ( 1)+ =1e i P e im m   
For , we should make combinations for the first  pieces of evidence with the  one by i i 1i  thi

. Similar to Eqs. (12a)-(12d), the orthogonal sum of  and  without , ( ) , ( 1) ,e i e i im m m    , ( 1)e im  ,im

normalization can be expressed as follows.
, ( ) , ( 1) ,=

=e i B e i C iB C
m m m  



, ( ) , ( 1) , , ( 1) , , , ( 1) , ( 1) ( ), ( 1) ,, ,
=[ ] [(1 ) ]e i B e i C i e i i i e i i e i P e iB C iB C

m m m m m m m w m m m             
    

, ( ) , ( 1) , ( ), ( 1) , , ( 1)[ (1 ) ]e i e i i P e i i i e im m m m m w m           

( ), ( ) ( ), ( 1)=(1 )P e i i P e im w m  

Since , we have  , ( ) , ( ) ( ), ( ) , ( )+ =1+e i e i P e i e im m m m
         

, ( ) , ( ) , ( ) , ( ) , ( ) , ( ) ( ), ( )= = (1 + + )e i e i e i e i e i e i P e im m m m m m m     
      

=  for  and  which are shown as in Eq. (18a). In addition, , ( ) , ( ) ( ), ( )( )e i e i P e im m m  
  

   , ( ) =0e im

., ( ) ( ), ( ) , ( ) ( ), ( ) , ( )+ ( ) 1( )e i P e i e i P e i e im m m m m
     

     
, ( ) ( ), ( ) , ( ) ( ), ( )( ) ( + ) 1e i P e i e i P e im m m m          

Appendix A.10. Proof of Theorem 5
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Proof. From the proof of Theorem 4, it is known that  and , ( ) ( ), ( )+ =1e i P e im m
  

 for , . Because , , ( ) , ( ) , ( )= (1 )e i e i e im m m   
, ( ) , ( ) ( ), ( )= ( )e i e i P e im m m  

  
   1, ,i I  , ( ) ( ), ( )+ =1e I P e Im m

  
the final combined BD of I pieces of evidence can be determined by reassigning the probability masses of 
power set back to focal elements, i.e.,  for . In , ( ) , ( ) ( ),e , , ( )( ) ( )(1 ) =e I e I p I e I e Ip m m m m    

   ,    

addition, from Eqs. (13a)-(13c) we know  for , , , thus we have , ( ) , ( )=e i e im m      , ( )=1 (1 )e im   1, ,i I 

 for . Obviously, , ( ) , ( ) , ( ) , ( ), ( ) , ( ) , ( )=e I e I e I ee II e I e Im m mmmp m       
 

  
     

,    

. Because  and , it , ( ) , ( ) , ( ) , ( ), ( ) = ( )= =1e I e I e Ie I e Ip m m m m               
, ( ) 0e Ip  , ( ) =1e Ip 

is obvious to find that , ., ( )0 1e Ip    

Appendix A.11. Proof of Corollary 6

Proof. For ,  for  has been proved by 2i  , (2) 2 ,1 1 ,2 ,1 ,2,,
=[(1 ) (1 ) ]+w

B
w w w

e CB C C Bm w m w m m m    
      

Corollary 3. Because  and , we take the both into the above expression of , (1) ,1
w w

em m  ( ), (1) ( ),1 11w w
P e Pm m w   

 and thus Eq. (20a) can be obtained. Besides, for  we have , (2)em
 2i  ( ), (2) 2 1 2 ( ),1=(1 )(1 ) (1 ) w

P e Pm w w w m    

, and thus Eq. (20b) is obtained.2 ( ), (1)(1 ) w
P ew m  

For , we suppose that Eqs. (20a)-(20b) are true and it means that there exist1i i 

,  (A.11), ( 1) 1 , ( 2) ( ), ( 2) , 1 , ( 2) , 1, ,
=[(1 ) ]+w w w w w

e i i e i P e i i B e i C iB C B C
m w m m m m m            

     

 (A.12)( ), ( 1) 1 ( ), ( 2)=(1 ) w
P e i i P e im w m    

Note that, , for  and ., ( 1) , ( 1) , ( 1) ( ), ( 1)( )w
e i e i e i P e im m m m      

   
   = ( )P 

For , we combine  as in Eq. (11) with  as above for , and get i i ,im , ( 1)
r

e im  , , ( )P       

 ( ),  and  as follows., ( )e im
    , ( )e im


( ), ( )P e im 



, ( 1), ( ) , ( 1) , , , , ( 1), ,
= [ (1 )]

e i

w w w
e i B e i i i c i i i i i i i i i e iB C B C

m m w r p m w r p w r w r p m
       

   

,  (A.13)
( ), ( 1), ( 1) ,[(1 ) ]

P e i

w w
i e i i i iw m m w r p       

 (A.14), ( ) , ( 1) , ( ), ( 1) , , ( 1)[ (1 )] [ (1 )] (1 )w w w
e i e i i i i i i P e i i i i i i i e im m w r p w r m w r p w r w m               

 (A.15)( ), ( ) ( ), ( 1)= (1 )w
P e i P e i im m w   

Since , we take it into Eqs. (A.13)-(A.15) and get Eqs. (A.16)-(A.18).=1ir

,  (A.16)
, ( 1) ( ), ( 1), ( ) , ( 1) , , , , ( 1) , ( 1) ,, ,

= [(1 ) ]
e i P e i

w w w w w
e i B e i i c i i i i i e i i e i i iB C B C

m m w p m w p w p m w m m w p
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 (A.17), ( ) , ( 1) , ( ), ( 1) , , ( 1)(1 )w w w
e i e i i i P e i i i i e im m w p m w p w m           

 (A.18)( ), ( ) ( ), ( 1)= (1 )w
P e i P e i im m w   

Since  for , we take it into Eqs. (A.16)-(A.18) and get, ,=w
i i im w p    

,  (A.19)
, ( 1) ( ), ( 1), ( ) , ( 1) , , , , ( 1) , ( 1) ,, ,

= [(1 ) ]
e i P e i

w w w w w w w w w
e i B e i C i i i e i i e i iB C B C

m m m m m m m w m m m
            

       

 (A.20), ( ) , ( 1) , ( ), ( 1) , , ( 1)(1 )w w w w w
e i e i i P e i i i e im m m m m w m           

 (A.21)( ), ( ) ( ), ( 1)= (1 )w
P e i P e i im m w   

Since  for , 
, ( 1), ( 1) , , , , ( 1) , ( 1) ,, , , ,

=
e i

w w w w w w w w
B e i C i i i e i B e i C iB C B C B C B C

m m m m m m m m
           

      , ( 1) , =w w
e i im m  

 for , Eqs. (A.19)-(A.21) can be simplified into Eqs. (20a)-(20b)., ( 1) ,, ,
w w
B e i C iB C B C

m m
    = 

Appendix A.12. Proof of Corollary 7

Proof. For , it can be obtained from Eqs. (A.1)-(A.2) that2i 
,  (A.22), (2) 1 ,1 2 ,2 1 ,1 2 ,2 2 2 ,2 1 ,1 1, ,

[ (1 )] [ (1 )]e B cB C B C
r p r p r pm r p r r p r p r      

            

,  (A.23), (2) 1 ,1 1 2 ,2 2[ (1 )] [ (1 )]e r p r rm p r        = 

Since  for , ,  for  , ,=r
i i im r p     , ,= 1r

i i i im r p r    , ( 1) , ( 1) , ( 1) ( ), ( 1)( )r
e i e i e i P e im m m m      

   
  
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and , Eqs. (A.22)-(A.23) can be simplified into = ( )P 
,  (A.24),1 ,2 ,1 ,2 ,2 ,1 ,1 ,2,, (2 , ,) ,

=r r r r r r r r
B Ce B CB C B C B C B C

m m m m m m m m m
         

         

,  (A.25), (2) ,1 ,2
r r

em m m   = 

Obviously, Eqs. (A.24)-(A.25) can be transferred into a unified form as in Eq. (21a). Besides, there exist 
 for the reason that  for . ( ), (2) 2 1=(1 )(1 )=0r

P em w w   =1iw 1, 2i 

For , we suppose that Eqs. (21a)-(21b) are true and it means that there exist1i i 

,  (A.26), ( 1) , ( 2) , 1, ,
= r r

e i B e i C iB C B C
m m m        

 (A.27)( ), ( 1) =0r
P e im  



Note that,  for  and ., ( 1) , ( 1) , ( 1) ( ), ( 1) , ( 1) , ( 1)( )=r
e i e i e i P e i e i e im m m m m m            

      
   ( ), ( 1) =0r

P e im  

For , we combine  as in Eq.(11) with  as above for , and get i i ,im , ( 1)
r

e im  , , ( )P       

( ), and  as follows., ( )e im
    , ( )e im


( ), ( )P e im 



, 
, ( 1) ( ), ( 1), ( ) , ( 1) , , , , ( 1) , ( 1) ,, ,

= [ (1 )] [(1 ) ]
e i P e i

r r r r r
e i B e i i i C i i i i i i i i i e i i e i i i iB C B C

m m w r p m w r p w r w r p m w m m w r p
            

      

 (A.28)  

 (A.29), ( ) , ( 1) , ( ), ( 1) , , ( 1)[ (1 )] [ (1 )] (1 )r r r
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 (A.30)( ), ( ) ( ), ( 1)= (1 )r
P e i P e i im m w   

Since  and , we take both into Eqs. (A.28)-(A.30) and get Eqs. (A.31)-(A.33).=1iw
( ), ( 1)

=0
P e i

rm
 

,  (A.31)
, ( 1), ( ) , ( 1) , , , , ( 1), ,

= [ (1 )]
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m m r p m r p r r p m
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 (A.32), ( ) , ( 1) , ( ), ( 1) ,[ (1 )] [ (1 )]r r
e i e i i i i P e i i i im m r p r m r p r           

 (A.33)( ), ( ) ( ), ( 1)= (1 )=0r
P e i P e i im m w   

Since  for  and , Eqs. (A.31)-(A.33) can be simplified into, ,=r
i i im r p     , ,= 1r

i i i im r p r   

,  (A.34)
, ( 1), ( ) , ( 1) , , , , ( 1) , ( 1) ,, , , ,

=
e i

r r r r r r r r
e i B e i C i i i e i B e i C iB C B C B C B C

m m m m m m m m m
           

      

 (A.35), ( ) , ( 1) , ( ), ( 1) ,
r r r r

e i e i i P e i im m m m m       

 (A.36)( ), ( ) ( ), ( 1)= (1 )=0r
P e i P e i im m w   

Obviously, Eqs. (A.34)-(A.35) can be transferred into a unified form as shown in Eq. (21a), and Eq. 
(A.36) is equal to Eq. (21b).

Appendix A.13. Proof of Corollary 8

Proof. From Theorem 5, there are  and  for . If we want to prove that, ( ) =1e Ip  , ( )0 1e Ip    

, we just need to prove . Since  for ,  , ( ) =1e Ip , ( ) , ( )=1 =0e I e Ip p 
 , ( )0 1e Ip     , ( ) =0e Ip 

requires that  for . In addition, also from Eq. (19) we know that  , ( ) =0e Ip    , ( ) , ( ) , ( )e I e I e Ip m m   
  

for , it means that  is equivalent to  for  and thus we just prove     , ( ) =0e Ip , ( ) =0e Im
    , ( ) =0e Im



for  as follows.   

For ,  has been proved by Corollary 5 and it is equivalent to  for  as 2i  , ( ) =1e Ip , (2) =0em
   

mentioned above. 
For , we suppose that  for  is true and it means that there exists  1i i  , ( 1) =1e ip     , ( 1) =0e im 



for . Note that, we also have  for .   , ( 1) , ( 1) , ( 1) ( ), ( 1)( ) =0e i e i e i P e im m m m      
   

  

For , from Eq.(18b) we know thati i
, .

, ( 1) ( ), ( 1), ( ) , ( 1) , , , , ( 1) , ( 1) ,, ,
= [ (1 )] [(1 ) ]

e i P e ie i B e i i i C i i i i i i i i i e i i e i i i iB C B C
m m w r p m w r p w r w r p m w m m w r p

            
         

Since  for  and , we find that  for . When , there also , ( 1) 0e im      =0ir , ( ) =0e im
    i I

exists  for  and it is equivalent to ., ( ) =0e Im
    , ( ) =1e Ip
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Appendix A.14. Proof of Corollary 9

Proof. Since the combination of evidence is made with the orthogonal sum operation, the recursive GC 
rule in this paper satisfies commutative law. Suppose the  pieces of evidence (except the evidence ) 1I  ie

have been combined by the recursive GC rule and their combined probability masses are  ( 1) , ( 1)=( , ;e I e Im m    

. Now we make combination for  and  by Eqs. (18b)-(18d) and we get, ( 1) ( ), ( 1); )e I P e Im m    ( 1)e Im  im

, ( 1), ( ) , ( 1) , ,, ,
= [ (1 )]

e Ie I B e I i i C i i i i i iB C B C
m m w r p m w r p w r

     
  

 for  (A.37)
( ), ( 1), , ( 1) , ( 1) ,[(1 ) ]

P e Ii i i e i i e I i i iw r p m w m m w r p           

 (A.38), ( ) , ( 1) , ( ), ( 1) , , ( 1)[ (1 )] [ (1 )] (1 )e I e I i i i i i P e I i i i i i i e Im m w r p w r m w r p w r w m               

 (A.39)( ), ( ) ( ), ( 1)= (1 )P e I P e I im m w   

Inserting  into the above expressions and we find that  for ,  =0iw , ( ) , ( 1)=e I e Im m  
    , ( ) , ( 1)e I e Im m  

and . Inserting them into Eq. (18a), we have ( ), ( ) ( ), ( 1)=P e I P e Im m  


, ( ) , ( ) , ( ) ( ), ( )= ( + )e I e I e I P e Im m m m      

 for ,  and . From Theorem 4 we know , ( 1) , ( 1) ( ), ( 1)= ( + )e I e I P e Im m m
        =  = ( )P  , ( -1) +e im

 
, so we have  for ,  and . Thus there is .( ), ( 1) =1P e im   , ( ) , ( 1)=e I e Im m      =  = ( )P  ( ) ( 1) ( 1)= =e I e I i e Im m m m 

Appendix A.15. Proof of Corollary 10

Proof. From Eq. (18a), we have . It is equivalent to , ( ) , ( ) , ( ) ( ), ( )= ( + )e I e I e I P e Im m m m      

. From Eq. (19), the combined BD of all evidence in corollary 9 can be , ( ) , ( ) , ( ) ( ), ( )= ( + )e I e I e I P e Im m m m     

determined by Eq. (A.40).

 (A.40), ( ) , ( ) ( ), ( ), ( ) , ( )
, ( )

, ( ) , ( ) , ( ) ( ), ( ) , ( )

( + )
= ,

[ ( + )]
e I e I P e Ie I e I

e I
e I e I e I P e I e I

m m mm m
p

m m m m m
  


     



  



 

   


   

 
  

Similarly, the combined BD of I-1 pieces of evidence in corollary 9 can be determined by Eq. (A.41).

 (A.41), ( 1) , ( 1) ( ), ( 1), ( 1) , ( 1)
, ( 1)

, ( 1) , ( 1) , ( 1) ( ), ( 1) , ( 1)

( + )
= ,

[ ( + )]
e I e I P e Ie I e I

e I
e I e I e I P e I e I

m m mm m
p
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 

  


  

    


 
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     
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
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 
  

Since  which is proved by corollary 9, we have ( ) ( 1)=e I e Im m 

 (A.42), ( ) , ( 1)
, ( ) , ( 1)

, ( ) , ( 1)

= = =e I e I
e I e I

e I e I

m m
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m m
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
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



 
Appendix A.16. Proof of Corollary 11

Proof. Similar to Corollary 9, we make a combination for  and  by Eqs. (18b)-(18d) and we ( 1)e Im  im

get Eqs. (A.37)-(A.39). Inserting  into Eqs. (A.37)-(A.39) and it is obvious to find that=0ir

 for  (A.43), ( ) , ( 1) , ( 1) , ( 1)= (1 ) =e I e I i i e I e Im m w w m m         

 (A.44), ( ) , ( 1) ( ), ( 1) , ( 1) , ( 1) ( ), ( 1)(1 ) = +e I e I i P e I i i e I e I i P e Im m w m w w m m w m             

 (A.45)( ), ( ) ( ), ( 1)= (1 )P e I P e I im m w   

Note that,  , ( ) , ( ) ( ), ( ) , ( 1) ( ), ( 1) ( ), ( 1) , ( 1)= (1 )=e I e I P e I e I i P e I P e I i e Im m m m w m m w m             
        

. Inserting Eqs. (A.43)-(A.45) into Eq. (18a), we have ( ), ( 1) =1P e Im   , ( ) , ( ) , ( ) ( ), ( )= ( + )e I e I e I P e Im m m m      

 for , , and , ( 1)= e Im     , ( ) , ( ) , ( ) ( ), ( ) , ( 1) ( ), ( 1)= ( + ) = +e I e I e I P e I e I i P e Im m m m m w m         
( ), ( ) =P e Im 



.( ), ( ) , ( ) ( ), ( )( + )P e I e I P e Im m m
    

( ), ( 1)= (1 )P e I im w  

Appendix A.17. Proof of Corollary 12

Proof. From Eqs. (19), (22a), (22b) and (A.40), we have 
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,  (A.46), ( ) , ( ) , ( 1)
, ( )

, ( ) , ( ) , ( ) , ( 1) ( ), ( 1)

= e I e I e I
e I

e I e I e I e I i P e I

m m m
p

m m m m w m
  


      



   
 

 
  

  

From Eqs. (19) and (A.41), we have  for . , ( 1) , ( 1) , ( 1) , ( 1) , ( 1)= ( )e I e I e I e I e Ip m m m m          
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It is equivalent to  for . Inserting the expression of  into Eq. , ( 1) , ( 1) , ( 1)e I e I e Im p m    
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Highlights

Infeasibilities of evidential reasoning (ER) with weight and reliability are analyzed
Generalized discounting method is defined to discount evidence with two parameters
Generalized combination (GC) rule is established to make combinations for evidence
A series of theorems and corollaries of the proposed GC rule are proved
Comparison and discussion are made with ER and Dempster-Shafer theory of evidence
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