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ABSTRACT ARTICLE HISTORY

This paper describes an original method of global machine condi- Received 10 April 2018
tion assessment for infrared condition monitoring and diagnostics Accepted 6 December 2018
systems. This method integrates two approaches: the first is pro-

X . R . X X KEYWORDS
cessing and analysis of infrared images in the frequency domain

Classification; decision

by the use of 2D Fourier transform and a set of F-image features, fusion; PCR6; infrared image
the second uses fusion of classification results obtained indepen- analysis; Fourier analysis;
dently for F-image features. To find the best condition assessment infrared thermography;

solution, the two different types of classifiers, k-nearest neighbours condition base monitoring
and support vector machine, as well as data fusion method based

on Dezert-Smarandache theory have been investigated. This

method has been verified using infrared images recorded during

experiments performed on the laboratory model of rotating

machinery. The results obtained during the research confirm that

the method could be successfully used for the identification of

operational conditions that are difficult to be recognised.

1. Introduction

Infrared thermography is a modern and popular technique for thermal condition mon-
itoring of machinery, apparatus and industrial processes [1].

Infrared cameras can be used in continuous condition monitoring systems for con-
tactless detection and identification of object faults at its early stage, which is useful for
planing object maintenance and overhauls.

A continuous condition monitoring system based on the infrared device should
include infrared image processing and recognition to classify the current operating
condition of the object. Research connected with the application and development
of infrared image processing and analysis, as well as artificial intelligence methods, to
continuous thermographic objects monitoring and diagnostics has been carried out
in several different academic and research centres [2,3] and also by the authors [4]. In
this article, an original method of object condition identification, which can be used
in continuous condition monitoring and diagnostics systems, has been proposed.

The method can be generalised to any diagnostic data acquired during continuous
monitoring of different objects or industrial processes.
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2. Method

It has been assumed that the assessment of the general condition of an object could be
determined on the basis of the analysis of infrared images that are acquired continu-
ously by monitoring the system during an object operation.

For a clear description of the method, let us assume that the diagnosed object is
a complex machinery containing several sub-assemblies (e.g. motor, couplings, journal
bearing, pomp, etc.).

Having acquired an infrared image of machinery at any moment of its operation, it is
possible to define regions of interests (ROIs) containing only important parts of the
diagnosed object. In such a way, the rest of the image content could be treated as an
unwanted background that is not considered during the diagnostic process.

In the proposed method, whose brief algorithm is presented in Figure 1, each defined
ROI contained a sub-assembly of the machinery that could be treated as a kind of sub-
image. Each sub-assembly in a different way reflects the machine’s conditions; thus,
the analysis of the sub-images of sub-assemblies allows us to acquire partial diagnostic
information about global conditions of an object. The process of analysis of each sub-
image gives sets of features that represent the condition of each machine sub-assembly
at the moment of its operation corresponding to the time of infrared image acquisition.
The local conditions of the sub-assemblies are related to the machine’s global condition.

Having determined the feature vectors for infrared images acquired during machine
operation in different conditions (including faults), it is possible to design a set of local
classifiers that allow us to identify conditions of the machinery. At this stage, the
classifiers could be treated as local experts.

Local diagnostic information provided by each classifier can be joined together to get
information about global (overall) machinery condition. In the elaborated method, to
aggregate diagnostic decisions and maximise final classification performance, applica-
tion of decision fusion methods was used.

2.1. Processing and analysis of infrared images

The versatile nature of the developed method allows us to apply different image proces-
sing and analysis methods to obtain a features set. For method verification purposes, the
authors decided to use the spectral representation of infrared images. The spectral repre-
sentation of infrared images is obtained by use of the two-dimensional (2D) Fourier
transform. One of the reasons for application of the 2D Fourier transform is a shift-
invariant property [5], which makes the method less sensitive to deviation in the location
of imagining device while observing an object. The spectral representation of infrared
image could also emphasise diagnostic information that could be hidden in the real image.

The result of Fourier transform of an infrared image is a 2D spectrum, which could be
represented by two images of magnitude and phase called also F-images. Frequency
components on the F-images are distributed symmetrically, and in many cases of the
analysis, it is enough to consider one-quarter of the magnitude (grams) and/or two
adjacent quarters of the phase (grams). In most considered cases, the entire F-image is
shown and analysed [4,5]. This approach is most convenient for F-image interpretation
purposes because frequency components generate specific symmetrically distributed
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IR IMAGE #N

IR IMAGE #1

Figure 1. Idea of the method of identification of object conditions based on infrared images.

patterns (similar to stars) (c.f. Figure 2), whose shapes and locations depend on
a content of the original infrared image.
To analyse the F-images, the three following features are defined:

HFP — Horizontal F-image Parameter,
VFP - Vertical F-image Parameter,
CFP — Circular F-image Parameter.
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Real image F-image of phase F-image of amplitude
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(b) (c)

Figure 2. An exemplary infrared image (a) and its F-images of magnitude (b) and phase (c) obtained
on the basis of 2D Fourier analysis.

(a) HFP

Figure 3. Graphical illustration of considered features of F-images.

The features are mean values of F-images frequency components calculated over
rectangular and circular areas, placed in the centres of the F-images in the way
presented in Figure 3. The dimensions of areas that were used to calculate the feature
values were set experimentally (c.f. 3.1)

2.2. Classification of the machine’s conditions

To classify machine operating conditions, a number of possible approaches could be chosen
[6]. In practice, the choice of a classifier is a difficult problem and it is often based on a data
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specificity, as well as a researcher’s experience. The authors decided to apply two classifiers:
a simple k-nearest neighbour (k-NN) classifier [7] and support vector machine (SVM) [8],
which is recognised as a very effective classification solution. The author’s intention was to
show how to use the method and how the different classifiers behave.

To obtain a reliable and certain classification efficiency, the leave-one-out cross-
validation (LOOCV) algorithm [9] has been applied.

The LOOCV validation method has a high variance, but estimates of generalization error are
comparable with other partitioning schemes used for classification efficiency evaluation [10].

The classifier accuracy measure that we used was the relative number of misclassifi-
cation, which is calculated as follows: err = N /N

where N is the number of considered samples and N, is the number of misclassified
samples. On the basis of the err measure, the classifier efficiency was calculated in the
following way: eff = (1 — err) - 100%.

2.3. Decision fusion

In the elaborated method, joining of the classification results is proposed. There are
some methods which allow treatment of the data jointly [11]. One of the interesting
approaches is a decision fusion.

Decision fusion, which is also called classifier fusion, is the method that combines
the results of classification obtained from different classifiers trained over different types
of data gathered from the same object. In this approach, classifiers are treated as ‘local
experts’, who make decision about the machine’s condition.

The use of classifiers in technical diagnostic is connected with the uncertainty of the
data on which those classifiers are trained. The sources of uncertainty could take the
following form, for example, [12]: random events, measurement deviations, incomplete-
ness of the set of considered diagnostic parameters and lack of knowledge about
diagnosed object or process.

In general, most types of uncertainty could be characterised by the use of classical
probability theory based on the Bayesian theorem [13,14].

An alternative to the Bayesian methods is the Dempster-Shafer Theory (DST), also
called the mathematical theory of evidence. The DST can deal with imprecise or
incomplete data. In addition, DST can be interpreted as a generalisation of probability
theory where probabilities are assigned to multiple possible events (e.g. sets of events)
as opposed to mutually exclusive singletons [15,16].

The DST offers very important mechanisms of information aggregation coming from
multiple sources by the use of rules for combining evidences. A lot of rules have been
developed since establishing the DST.

Several interesting examples, including a detailed analysis of validity of Dempster’s
combination rule in different contexts, can be found in [17-19].

A generalisation and in some points an extension of the DST is The Dezert-
Smarandache Theory (DSmT) [20] of plausible and paradoxical reasoning. DSmT over-
comes some limitations of DST [20,21] because it allows us to formally combine any kind
of information. DSmT bases itself on similar terms as DST. The DSmT introduces the
generalised frame of discernment ©, which contains n exhaustive elements (01, ..., 8,).
In the classification case, elements of O are all considered classes (class labels).
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On the basis of the generalised frame of discernment, hyper-power set D® can be created
of all single class labels but also of allowed class labels logical combinations. This means that
classification can not only be made for single classes but the tested sample can also be
assigned simultaneously to several classes (6; N #()) or there can be some uncertainty in
the reasoning process and the same test sample can be member of one or other class
(6; % #()). Each of these combinations is called focal element. For each element of D°,
a Generalised Basic Belief Assignment (GBBA) is possible. In other words, as the result of
classification, some belief is assigned for test sample x that is a member of certain classes,
several classes or there is some doubt to which class it should be assigned. From the formal
site:m(.) : D® — [0, 1] so GBBA can take values from 0 to 1, and if m,(A) = 1, there is 100%
belief that test element x belongs to class A. In contrast, for an empty set — e.g., unknown

class m()) = 0. Belief assigned to all elements of D® should sum up to 1: >~ m(A) = 1.
AeDP

This means that in the frame of discernment, D° tested elements are for sure member of one
of classes or class combinations defined by D®; so, no other unknown classes are allowed.

Similar to DST, the DSmT also allows to aggregate information with the use of
combination rules. For this purpose, many combination rules have been elaborated
[20,22]. During the research, a PCR6 rule was used. The key idea of the PCR6 rule is to
transfer the partial conflicting Basic Belief Assignment (BBA) proportionally to the
individual BBA of non-empty elements involved in the conflict [23].

2.4. GBBA calculation

The calculation of evidence is crucial for classifier fusion based on the methods demand-
ing the BBA or the GBBA for each class [24,25].

A simple method, which is ideal for research at the preliminary stage, has been
developed for the evidence calculation from k-NN classifiers [26]. To obtain the output
for a given sample, a set of distance measures to a number of known samples is
calculated and it can be regarded as a class distribution. Identification of k -NNs of
a element x irrespective of the class label is made. Then, the number of neighbours k;
supporting assignment of an element x to class C; is calculated. Accordingly, the GBBA
function of class C; is calculated as follows [26]: m({C}) = ki/k

In case of SVM classifier, which unfortunately gives only class labels, the probabilities
of class distribution were obtained applying extension introduced by Wu [27]. In the
presented research, we deal with only one occurring condition at the time; therefore,
probabilities are very useful. It can be assumed that SVM classifier outputs are degrees of
support for each class representing identified machine conditions. These outputs can be
directly transformed into mass assignments: p; — m(i), where p; is the probability of
condition i occurrence and m(i) is the belief that condition i occurred provided by single
SVM classifier on the basis of available evidence (in a form of feature space).

3. Method verification

Our method verification considers several different aspects of the method'’s application. First
of all, verification should confirm that the method can be useful in condition monitoring of
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machinery. The second important task of verification was to indicate what kind of classifier
should be used and what is the best way to perform data fusion. To do this, we use two
earlier described classifiers and compare results of classification obtained by use of single
classifiers with results of classifier fusion, as well as results of classification obtained for
multidimensional space of features. Investigation helps us to find the best solution to
answer the question: is fusion of simple classifiers a better solution than the application of
the classifier to single or multidimensional space of features? The method was verified on
the basis of digital infrared images taken during diagnostic experiments. All of our compu-
tations were performed using Matlab 2007b software.

3.1. Considered experimental data

The experiments have been performed using a laboratory stand that consists of
a laboratory model of rotating machinery and an infrared imagining system (Figure 4).

During the experiment, a sequence of 840 infrared images of resolution 320 x 480
pixels has been recorded. The thermographic images have been taken every 30 s. The
images have represented the machine operating in the conditions presented in Table 1.

For reference, condition S1 decided to record two times more images to make it
easier to recognise by classifiers. It should be pointed out that conditions S2, S3 and S4
are difficult to distinguish and have been simulated intentionally to check whether it
was possible to notice a small change in operational condition. Such small changes were
also desirable for testing the ability of the classifiers to recognise nearly indistinguish-
able changes in the machine’s condition.

Figure 4. Visualisation of the laboratory stand. 1-frame, 2-motor (1.5 kW, 2500 rpm), 3-coupling,
4-bearings set no 1, 5-shaft, 6-bearings set no 2, 7-break set, 8-air pump, 9-throttle valve, 10-infrared
camera connected to PC, 11-motor controller.
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Table 1. Description of conditions simulated during the experiment.

Condition Id Description of fault No. of acquired images
S1 Machine without faults 240
S2 50% Throttling of air pump 120
S3 90% Throttling of air pump 120
S4 90% Throttling of air pump and clearance of second bearing mounting 120
S5 Load of disk brake 120
S6 Faulty bearing no. 2 120

The infrared images acquired during the experiment have been preprocessed. The
first step of the preprocessing was the selection of two ROIs of size 20 x 30 pixels (ROI1
and ROI2) (Figure 5). These ROIs represented the bearing housings. It was expected that
changes in the machine’s condition would affect changes in bearing temperature and
should be revealed in the infrared images.

According to the proposed method (c.f. 2), sub-images corresponding to ROI(ROI1 and
ROI2) were transformed to the frequency domain using Fast Fourier Transform algorithm.
F-images (magnitude and phase) obtained after transformation were analysed, and image
features were calculated. Each infrared image was represented by 12 features, whose
names were coded in the following way:

Estimatorld_FIlmageType_ROlld

e.g. HFP_P_R1 means that the value of the feature HFP was calculated for F-image of
phase determined in ROI1.

It is obvious that the values of presented F-image features depend on dimensions
and content of the ROI, as well as type of F-image (magnitude and phase). To consider
a variety in the content of each type of F-images, each of the proposed features could
be fitted to the image content by setting a value of the feature parameter W, H and D.

To find the optimal values of F-image feature parameters W, H and D, an exhaustive
search of feature space based on criterion of the maximum machine conditions classifier
performance has been performed. Features have been calculated for each acceptable value
of the feature parameters (from 1 to the maximal value Hpgx = 30, Wiax = 20, Diax = 20).

Figure 5. Infrared image of the operating laboratory stand, with marked ROIs of the first (left, ROI1)
and the second (right, ROI2) bearings.
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Table 2. Optimal values of feature parameters and basic statistics of classifi-
cation efficiencies.

Estimator Estimator Mean
Feat. Feat. Parameter Parameter Eff.
Num. Name Name Value [9%)]
1 ROIT_VFP_A H 20 59.6
2 ROI2_VFP_A H 18 80.6
3 ROINT_VFP_P H 2 239
4 ROI2_VFP_P H 7 25.2
5 ROIT_HFP_A w 29 56.9
6 ROI2_HFP_A w 26 80.8
7 ROIN_HFP_P w 9 28.3
8 ROI2_HFP_P w 9 243
9 ROIT_CFP_A D 14 62.3
10 ROI2_CFP_A D 20 75.6
1 ROIN_CFP_P D 6 371
12 ROI2_CFP_P D 6 434

Constrains followed from the size (20 x 30 pixels) of the considered F-images. For optimisa-
tion purposes, a k-NN classifier was used. A number of nearest neighbours parameter was
set to k = 10 according to recommendations presented in [28]. Classification efficiency was
calculated in the way presented in the theoretical background (cf. 2.2) and LOOCV algo-
rithm was used. Optimal values of feature parameters are presented in Table 2.

The feature values, calculated using determined optimal parameters of F-image
features, were the data source for classification of machine conditions.

3.2. Classification results for one- and multidimensional feature space

The first step of the method verification was assessment of the application of one- (1D)
and multidimensional F-images feature space for purposes of classification of machine
condition. As mentioned earlier, k-NN and SVM classifiers were applied. In case of k-NN
classifier, a k = 10 neighbours was used. The Euclidean distance function was used as
a distance metric in k-NN classifier. In case of SVM classifier, one-against-all strategy is
implemented for multi-class classification. A Gaussian kernel was applied. Mean classifier
efficiencies of considered machine conditions as a function of feature space dimension
were shown in Figure 6. As one can expect, classification efficiency increase with size of
feature space and for almost all conditions reach efficiency above 80% for size of feature
space equal to 4 and more. A detailed analysis of maximal classifier efficiencies is
presented in Table 3. The results show that in case of conditions S1, S3, S4, S5 and S6,
maximum efficiencies could be achieved for 1D space of feature values for both types of
applied classifiers. Values of maximal classification efficiencies are given in bold. The
highest classification efficiency values have been obtained on the basis of CFP feature,
which indicates its usefulness in analysing the F-images. The greatest number of max-
imum classification efficiency (100%) was obtained using the SVM classifier. SVM gave
the best results for features of F-images of phase, whereas k-NN gave good results for
F-images of magnitude within the ROI2. Region ROI2 covered more load bearing sup-
port, which affected its highest temperature and thus intensive infrared radiation.

A plot of classification efficiencies for condition S2 presented in Figure 6 and values in
Table 3 clearly show that condition S2 is poorly recognisable. Analysis of classification
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Figure 6. Plots of mean classifiers efficiencies as a function of feature space dimension for
considered conditions.

efficiencies for condition S2 shows that application of 1D feature space allowed to
obtain maximal efficiency equals 58.3% with application of k-NN classifier. The SVM
classifier was unable to correctly recognise condition S2, where SVM allowed to obtain
maximal efficiency of 8.3%.

Looking at feature values distribution for condition S2 presented in Figure 7, it is clear
that SVM was unable to find proper global decision boundaries. Exemplary decision
boundary for condition S2 vs. all other conditions can be seen in Figure 7. Taking into
consideration the distribution of feature values for condition S2, the strategy of classi-
fication using SVM classifier with linear boundaries is insufficient to distinguish between
S2 and other classes. Application of feature spaces dimensionality of 3-8
increases maximal classification performance of condition S2 which was, respectively,
83% for k-NN and 75% for SVM classifiers. Minimal space giving maximal classification
performance with the use of k-NN classifier was constructed with the use of the
following two sets of features:
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Table 3. Classification efficiencies obtained for individual F-image features.
Simulated machine conditions

Feature space S1 S2 S3 S4 S5 S6

kNN(HFP_A_R1) 62.5 16.7 91.7 333 91.7 91.7
SVM(HFP_A_R1) 87.5 0.0 100.0 0.0 83.3 91.7
kNN(HFP_P_R1) 54.2 16.7 83 25.0 25.0 16.7
SVM(HFP_P_R1) 87.5 0.0 100.0 0.0 83.3 91.7
kNN(HFP_A_R2) 91.7 583 4.7 83.3 100.0 91.7
SVM(HFP_A_R2) 83.3 83 100.0 83.3 100.0 833
kNN(HFP_P_R2) 50.0 16.7 83 83 16.7 83
SVM(HFP_P_R2) 100.0 0.0 0.0 0.0 0.0 0.0
kNN(VFP_A_R1) 583 83 100.0 583 91.7 91.7
SVM(VFP_A_R1) 79.2 0.0 100.0 16.7 75.0 91.7
kNN(VFP_P_R1) 50.0 0.0 0.0 83 16.7 16.7
SVM(VFP_P_R1) 100.0 0.0 0.0 0.0 0.0 0.0
kNN(VFP_A_R2) 91.7 58.3 25.0 83.3 100.0 91.7
SVM(VFP_A_R2) 833 83 100.0 83.3 100.0 833
kNN(VFP_P_R2) 62.5 0.0 16.7 25.0 83 16.7
SVM(VFP_P_R2) 95.8 0.0 0.0 0.0 25.0 16.7
kNN(CFP_A_R1) 87.5 16.7 91.7 0.0 91.7 833
SVM(CFP_A_R1) 100.0 83 100.0 25.0 75.0 833
kNN(CFP_P_R1) 62.5 0.0 0.0 83 25.0 16.7
SVM(CFP_P_R1) 100.0 0.0 100.0 75.0 0.0 100.0
kNN(CFP_A_R2) 91.7 583 75.0 91.7 100.0 91.7
SVM(CFP_A_R2) 833 0.0 100.0 91.7 91.7 83.3
kNN(CFP_P_R2) 62.5 50.0 16.7 333 83 417
SVM(CFP_P_R2) 100.0 0.0 16.7 100.0 0.0 583

CFP_A_R2 class S2-vs-all

@ S2class A otherclassesl

A A

=== decision boundaries

other | S2 other
classes classes

A I A A i A A A A

-1.5 -1 -0.5 0 0.5 1 1.5 2 25
CFP_A_R2

Figure 7. Distribution of CFP_A_R2 feature for condition S2.

VFP_P_R2,HFP_A_R2, HFP_P_R2 and

VFP_A_R1,HFP_P_R2,CFP_A_R1

To assess which classes are most similar, a confusion matrix was prepared (Figure 8).
In each column, there is percentage fraction of each class that was assigned to various
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Figure 8. Normalised confusion matrix for single k-NN classifier.

predicted classes. Taking into consideration only single k-NN classifiers, that were trained
over 1D data set it can be seen, that conditions S2 and S3 are most difficult to
distinguish. It is connected with the way in which those conditions were simulated,
when only degree throttling of air pump was changed.

4. Classifier fusion results

Results of the classification of machine conditions, shown in Section 2.2 (Table 3),
indicate that the proposed features of the F-images are useful for assessing machine
conditions. For the majority of concerned machine conditions, it was possible to obtain
the maximum classification efficiency on the basis of selected individual features of
F-images. However, for condition S2, reliable condition assessment was not possible. To
increase classification efficiency, fusion of classifiers was applied. We carried out an
exhaustive computation considered all combinations of two, three and four k-NN and
SVM classifiers of all considered F-image features. Mean classification efficiencies after
classifier fusion as a function of number of fused classifier for all considered conditions
are presented in Figure 9. Table 4 presents the highest classification efficiencies
obtained for all condition after fusion of two, three and four combinations of different
individual k-NN and SVM classifiers. Our results show that fusion of two classifiers is
sufficient to obtain maximal classification almost for all conditions. Classifier fusion also
allowed us to raise the highest classification efficiency for condition S2 by 8.3% (from
58.3% to 66.7%) in comparison to the results obtained for the individual classifiers. The
maximum efficiency of the classification was obtained as a result of the fusion of k-NN
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Figure 9. Plots of mean classification efficiencies as a function of different number of fused classifiers
for considered machine conditions.

Table 4. Comparison of maximal classification efficiencies for all conditions after fusion different
numbers of single k-NN and SVM classifiers using PCR6 rule.

Simulated machine conditions

Fuzz. Class. No. Class. Type S1 S2 S3 S4 S5 S6
2 kNN(.) 100.0 66.7 100.0 100.0 100.0 100.0
SVM(.) 100.0 83 100.0 100.0 100.0 100.0
3 kNN(.) 100.0 66.7 100.0 100.0 100.0 100.0
SVM(.) 100.0 83 100.0 100.0 100.0 100.0
4 kNN(.) 100.0 66.7 100.0 100.0 100.0 100.0
SVM(.) 100.0 83 100.0 100.0 100.0 100.0

classifiers only. Fusion of the SVM classifiers does not ensure an increase of the classi-
fication efficiency for this class.

The most interesting observation made after the analysis of classification performances
is the lack of an increase of the efficiency for the condition S2 according to the number of
fused single classifiers. This is caused by the presence of the classifiers that assign the high
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Table 5. Comparison of maximal classification efficiencies for all conditions fusion of two classifiers
trained over 2D feature space.

Simulated machine conditions

Fuzz. Class. No. Class. Type S1 S2 S3 S4 S5 S6
2 KNN(.) 100.0 83.3 100.0 100.0 100.0 100.0
SVM() 100.0 62.5 100.0 100.0 100.0 100.0

degree of belief to the wrong states. Fusing more than two classifiers did not cause an
increase of the relative number of classifier combinations giving the maximal perfor-
mance. These results find confirmation in [29], which showed that adding additional
experts at some point leads to obtaining totally conflicted and useless classifier combina-
tions. Analysis of classifiers combinations giving the highest performances indicates that
they are composed of complementary rather than individually best-performing classifiers.
Taking into account the obtained results, it can be concluded that the fusion of two
selected classifiers is sufficient. In case of the considered data, a pair of classifiers assuring
highest efficiency 66.7% was HFP_A_R2, CFP_A_R1.

Taking into consideration the very good results of classification obtained for multi-
dimensional feature spaces decided to perform fusion of k-NN classifiers calculated for
two-dimensional feature spaces. As could have been expected, the results were very
good (Table 5). Maximal classification efficiency for condition S2 was increased to 83.3%
for four following combination of classifiers and feature spaces:

PCR6{kNN{VFP_A_R2,CFP_A_R2},kNN{HFP_P_R2,CFP_A_R1}},
PCR6{kNN{HFP_P_R2,CFP_A_R1},kNN{HFP_P_R2,CFP_A_R2}},
PCR6{kNN{HFP_P_R2,CFP_A_R1}kNN{HFP_P_R2,CFP_P_R2}},
PCR6{KNN{HFP_P_R1,CFP_P_R1},kNN{HFP_P_R2,CFP_A_R1}}.

Its worth mentioning that maximal classification efficiency using single k-NN classifier
for condition S2 with the use of three- and four-dimensional (3D and 4D) space of feature
was also 83.3%. The presented results confirm the ability of decision fusion algorithms to
identify machinery conditions which are difficult to be recognised. In contrast, the SVM
classifier results for the 2D feature space was maximally 62.5%. Accordingly, the increase
of classification performance in comparison to single feature space is visible, and in this
the k-NN classifier was proven to be better than the SVM classifier.

5. Conclusions

In this paper, the method of object condition assessment using multiple classifiers fusion
approach based on the generalised evidence theory is proposed. Fused classifiers have
been trained over the data represented by three parametric spectral features of
F-images. The F-images were the result of the 2D Fourier transform of infrared images
acquired during object observation. During the research, optimal parameters of the
features were evaluated and F-image features were computed. Based on the spectral
features of the infrared images the classification process was performed. For comparison
purposes, k-NN and SVM classifiers were used. The results of the classification have
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shown that the proposed features of an F-image of thermograms could be useful for the
evaluation of a machine’s condition. Circular F-image Parameter (CFP) seemed to be
suitable enough for the estimation of magnitude, as well as phase F-images.

The proposed approach of classifier fusion is suitable for the assessment of machine
global condition on the basis of preselected features of spectral infrared images.
Classification efficiencies obtained using classifier fusion are higher than those calcu-
lated taking into consideration a single classifier. It must be mentioned that features
chosen for the member classifiers in fusion process should be heterogeneous to assure
high classification efficiency. Moreover, the increase of the number of considered ROIs
should entail a reduction of the uncertainty of the information, which is used in the
decision-making about the machine’s global condition. Although the connection
between the diversity of features and the classification performance is not always
straightforward, the analysis of the obtained results leads to the statement that in the
considered case, the influence of feature heterogeneity degree on the fusion results is
quite noticeable. The problem of high homogeneity of data could be resolved by
classification of multidimensional space of homogeneous feature values and the next
application of the fusion of such a classifier. This strategy was verified during the
presented research and the obtained results confirmed the ability of classifier fusion
to increase classification efficiency of condition S2, which was difficult to recognise.

It can be expected that conclusions made from the research could be generalised to
data represented by other infrared image features and diagnostic signals. However, it
needs further investigation.
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