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A B S T R A C T

Two aspects of problems such as weight over-bounding and reliability-dependence cannot be well solved in the
evidential reasoning (ER) approach with both weight and reliability. In order to solve the above problems, the
characteristics of weight and reliability are investigated and summarized, i.e., the reliability of evidence is
objective and absolute to reflect information quality, while the weight of evidence is subjective and relative to
reflect information importance. Then a new discounting method is defined to generate probability masses for the
evidence by assigning residual support of weight to empty set and that of reliability to power set. A new ER rule
is established for recursively combining the evidence with both reliability and weight by the orthogonal sum
operation and a series of theorems and corollaries are introduced and proved. Finally numerical comparison and
illustrative example are provided to demonstrate the performances and the applicabilities of the proposed rule
and algorithm.

1. Introduction

The evidential reasoning (ER) approach is a general approach for
analyzing multiple criteria decision making (MCDM) problems under
uncertainties (Yang & Singh, 1994). In the ER approach, the belief
structure and the belief decision matrix are introduced to model un-
certainties of various types of nature, and a generic conjunctive prob-
abilistic reasoning process satisfying a generalized bayesian inference
process is established to combine multiple pieces of evidence generated
from criteria or experts. The ER approach has been widely applied to
solve some practical problems in different fields such as medical quality
assessment (Kong, Xu, Yang, & Ma, 2015), technical analysis in forex
trading expert system (Dymova, Sevastjanov, & Kaczmarek, 2016),
trauma outcome prediction (Kong et al., 2016), smart home sub-
contractor selection (Polat, Cetindere, Damci, & Bingol, 2016), en-
vironmentally-friendly designs selection (NG, 2016), navigational risk
assessment (Zhang, Yan, Zhang, Yang, & Wang, 2016), data classifica-
tion (Xu, Zheng, Yang, Xu, & Chen, 2017), and so on.

In the published literature, three versions of the ER approach are
successively developed during the past decades. The first version of the
ER approach is introduced to discover the link between the MCDM and
the Dempster-Shafer theory of evidence (DST) (Yang & Singh, 1994) by
using the original concept of ER for criteria aggregation. It employs the

Dempster’s combination rule and the Shafer’s discounting method for
criteria aggregation with the introduction of criteria weights in the
probability mass assignment. Since it is incapable of separating an
unassigned probability mass into the part caused by incompleteness and
that caused by criterion weight, the reasoning process is approximate
and the ignorance may be exaggerated in the fusion result. Meanwhile,
this version approach has other drawbacks such as the compensation
among criteria is unable to be reflected, random numbers or interval
uncertainty are not to be handled, etc. In order to overcome the
drawbacks existing in the first version, the second version of ER ap-
proach is proposed to hold a more rigorous and rational reasoning
process. The second version approach is equipped with a new ER rule
and information transformation techniques (Yang, 2006). It is capable
of properly handling both qualitative and quantitative information,
probabilistic uncertainty, incomplete information and complete/global
ignorance in some assessments. It is important to note that the residual
support (for weight) generalized by Shafer’s discounting method is
distinguished from the degree of global ignorance denoted by frame of
discernment in the new ER rule. The global ignorance in a piece of
evidence is considered as an intrinsic property and has no relevance to
other evidence, while the residual support is considered as an extrinsic
property of the evidence and it may be incurred when applying weights
to discount evidence. Accordingly, if the residual support and global
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ignorance are confused in the basic probability assignment (BPA) cal-
culation or the process of combining evidence as in the first version of
ER approach, the combination results are bound to be unreasonable.

Obviously, there exists only one parameter such as evidence weight
in the earlier two versions of ER approach. The DSmT theory puts
forward the problem of combining evidence with both weight and re-
liability for the first time and attempts to solve it by the enhanced
proportional conflict redistribution rule no.5 (PCR5) (Smarandache &
Dezert, 2006). In contrast, the ER approach believes that the processing
way in the PCR5 changes the specificity of evidence and it is no longer a
bayesian inference process. Thus the third version of ER approach is
proposed, in which the discounting mode for processing evidence
weights as described in the second version is inherited (Yang & Xu,
2013). In this version, a novel concept of weighted belief distribution
(WBD) is proposed and firstly extended to WBD with reliability (WBDR)
to characterize evidence in complement of belief distribution (BD) in-
troduced in the DST. It establishes a unique ER rule to combine multiple
pieces of independent evidence conjunctively with both weights and
reliabilities. The implementation of the orthogonal sum operation on
WBDs and WBDRs leds to the establishment of a new ER rule. Since the
newly established ER rule holds an important property of constituting a
generic conjunctive probabilistic reasoning process or a generalizing
bayesian inference process, it is quickly employed to construct a data-
driven approximate causal inference model (Chen et al., 2015), and
solve expert assessments’ integration problem (Du & Xu, 2017; Dymova
et al., 2016). Note that, the ER approach mentioned hereafter in this
paper refers to the third version unless otherwise specified.

The evidence fusion problem with both weights and reliabilities
frequently exists in multi-criteria group decision making (MCGDM)
problems. Restricted by discipline backgrounds and professional areas,
the cognitive abilities of experts are always limited. Each expert can
only give decision information on one or several aspects for the decision
problem, in other words, he/she can only evaluate the performance of
alternatives on one or several criteria. The decision information on a
specific criterion evaluated by an expert can be regarded as a piece of
evidence and it is usually profiled as a BD (Du & Wang, 2017). It is
reasonable to believe that the reliability of evidence depends on the
cognitive ability of expert and the weight depends on the relative im-
portance of criterion. How to scientifically fuse the decision informa-
tion evaluated by experts with both parameters will strongly affect the
qualities of MCGDM. We believe the ER approach with both weight and
reliability is capable of holding the specificity of evidence and following
a bayesian inference process, and its combination result can be well
explained than other approaches. However, the ER approach may be
more reasonable if it can well consider and reflect the characteristics of
weight and reliability in its discounting method and combination rule.
Otherwise, the derived result may remain two aspects of problems as
follows. The first problem involves weight over-bounding. The ER’s
discounting method for weight seems to be capable of reflecting relative
importance degree, but the weight over-bounding problem that the
degree of constraint on the combined evidence is overly bounded than
its weight in the ER rule, will potentially lead to an unreasonable
combination result. The second problem relates to reliability-depen-
dence. When there are both weights and reliabilities in the evidence
discounting, each kind of parameters should play the corresponding
roles in the combination process. The ER’s discounting method will lose
effectiveness if the evidence is the most reliable or its reliability is equal
to one. Specifically, the result discounted by ER’s discounting method is
still the BD no matter how much is the weight, accordingly the weight
works or not in the discounting heavily depends on whether the relia-
bility is equal to one. Details on the above two problems are discussed
in Section 3.2.

The weight of evidence reflects the importance degree preferred in
decision maker’s mind, and the reliability of evidence is used to mea-
sure the quality of information generated by a piece of evidence
(Smarandache & Dezert, 2010). The former is subjective and depends

on who makes the judgement when combining several pieces of evi-
dence, but the latter is objective and is independent of who may use the
evidence. In our opinion, the reason why there exist the above two
problems in the ER approach is that the characteristics of weight and
reliability are not well considered in the process of evidence dis-
counting and combining. In order to overcome the above drawbacks in
the ER approach and derive a rational combination result, this paper
proposes a new discounting method and a new ER rule with both
weight and reliability for evidence combination. To facilitate our dis-
cussion, in Section 2, we describe background knowledge related to the
DST and the ER approach. In Section 3, a new discounting method and a
new ER combination rule are established to fuse evidence with both
weight and reliability. Numerical comparison and illustrative example
are provided to demonstrate the performances and the applicabilities of
the proposed approach in Sections 4 and 5. We come to the conclusion
of this paper in Section 6.

2. Preliminaries

The background knowledge presented in this section deals with the
interpretations of the DST and the ER approach. The DST is an approach for
uncertainty reasoning. It enables us to combine evidence from different
sources and arrive at a degree of belief (Dempster, 1967; Shafer, 1996). It is
modeled based on a frame of discernment denoted by = ⋯θ θΘ { , , }N1 , in
which elements are mutually exclusive. The power set ofΘ denoted by 2Θ or
P (Θ), contains all subsets of Θ and is expressed as

= = ∅ ⋯ ⋯ ⋯P θ θ θ θ θ θ(Θ) 2 { , , , , { , }, , { , }, ,N N
Θ

1 1 2 1 ⋯ −θ θ{ , , }, Θ}N1 1 . If a
set is assumed to be true, then all subsets are considered to be true as well.
An expert who believes that one or several sets in P (Θ) maybe true can
assign belief masses to these sets. Belief mass on a singleton set is interpreted
as the belief that the set in question is true. Belief mass on a non-singleton
set is interpreted as the belief that one of the singleton elements it contains
is true, but that the expert is uncertain about which of them is true. Ac-
cording to the above principles, several key concepts in the DST such as
basic probability assignment function and Dempster’s rule are defined as
follows.

Definition 1 (Dempster, 1967). Suppose = ⋯θ θΘ { , , }N1 is a frame of
discernment, if the mapping function →m: 2 [0, 1]Θ could fulfill

∑
⎧

⎨
⎩

= = ∅
⩾ = ≠ ∅

⊆

m θ θ
m θ m θ θ

( ) 0
( ) 0, ( ) 1

θ Θ (1)

then m (·) is called basic probability assignment (BPA) function of Θ. If
>m θ θ( ) 0, is named as a focal element.

Definition 2 (Dempster, 1967). Suppose the BPA functions of two pieces
of evidence are m1 and m2 on ⊕Θ, is the orthogonal sum operator, then
the combined evidence with Dempster’s rule from m1 and m2 for ≠ ∅θ
can be defined as:

∑= ⊕ =
− ∩ = ⊆

m θ m m θ
k

m B m C( ) [ ]( ) 1
1

( ) ( )e B C θ B C(2) 1 2 , , Θ 1 2 (2)

where = ∑ ∩ =∅ ⊆k m B m C( ) ( )B C B C, , Θ 1 2 is conflict factor and equal to the
amount of conflict among these pieces of evidence.

The Dempster’s rule is associative for the reason that it is based on
an orthogonal sum operation, so as to the third or more pieces of evi-
dence can be combined with the combined joint mass by Eq. (2) re-
cursively. It is necessary to point out that the counter-intuitive problem
may be occurred when the Dempster’s rule is used to combine evidence
under the situation →k 1. A plethora of modified methods has been
developed to solve the counter-intuitive problem, in which modifying
the initial belief function to better represent original information is a
widely accepted way. The BPA function is usually regarded as the
probability mass that has already taken into account the weight of
evidence, so the degree of support for a proposition is proportional to
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both the weight of evidence and the belief degree (Yang & Xu, 2013).

Definition 3 (Yang and Xu, 2013). Suppose θ p( , )θ i, shows that the
evidence ei points to proposition θ to a belief degree pθ i, , then the
profiled expression

∑= ⎧
⎨⎩

∀ ⊆ = ⎫
⎬⎭⊆

b θ p θ p( , ), Θ, 1i θ i
θ

θ i,
Θ

,
(3)

is called the belief distribution (BD) of ei.

Definition 4 (Shafer, 1996). Suppose the BD of evidence ei is bi as in Eq.
(3), λi is the weight of evidence ei used to discount bi, then the Shafer’s
discounting method can be defined to generate BPA for the evidence ei
as follows:

= =
⎧

⎨
⎩

= ∅
⊂

+ − =
m m θ

θ
λ p θ θ
λ p θ λ θ

( )
0

( ) Θ
( ) (1 ) Θ

θ i i i i

i i i

,

(4)

Shafer’s discounting method may change the specificity of the ori-
ginal evidence in that global ignorance is introduced to a BD even when
the evidence points to a proposition precisely and unambiguously. In
order to solve such a problem, the ER’s discounting method with weight
is introduced as in Eq. (5), and its discounting result mi is referred to as
weighted belief distribution (WBD). Besides, if there are both weight
and reliability in the evidence combination, the WBD can be further
discounted by reliability as in Eq. (6) and referred to as weighted belief
distribution with reliability (WBDR). The basic probability masses of
evidence, whether the WBDs discounted by Eq. (5) or the WBDRs dis-
counted by Eq. (6), are capable of being combined by Eqs. (7a)–(7d).
Note that, the combined degrees of belief may consist of local ignorance
or global ignorance. In order to distribute the combined result on each
element of frame of discernment, the pignistic probability is usually
employed.

Definition 5 (Yang and Xu, 2013). Suppose the BD of evidence ei is bi as
in Eq. (3), wi( ⩽ ⩽w0 1i ) is the weight to discount e P, (Θ)i is the power
set of Θ, then the ER’s discounting method with weight is defined to
generate the WBD for evidence ei as follows:

= =
⎧

⎨
⎩

= ∅
⊆

− =
m m θ

θ
w p θ

w θ P
( )

0
Θ

1 (Θ)
θ i i i θ i

i

, ,

(5)

Definition 6 (Yang and Xu, 2013). Suppose the BD of evidence ei is bi as
in Eq. (3), with wi and ri ( ⩽ ⩽w r0 , 1i i ) as its weight and reliability,
P (Θ) is the power set of Θ, then the ER’s discounting method with both
weight and reliability is defined to generate the WBDR for evidence ei as
follows:

= =
⎧

⎨
⎩

= ∅
⊆

− =

∼
∼

m m θ
θ

w p θ
w θ P

( )
0

Θ
1 (Θ)

θ i i i θ i

i

, ,

(6)

where = + −c w r1/(1 )rw i i i, is a normalization factor determined by
∑ + =⊆ m m 1θ θ i P iΘ , (Θ), , =∼w c wi rw i i, is called as the new weight or the
adjusted weight, − = −∼w c r1 (1 )i rw i i, .

Definition 7 (Yang and Xu, 2013). Suppose I pieces of independent
evidence ⋯e e, , I1 are asked to combine, each is discounted by Eq. (5) or
Eq. (6), e i( ) denotes the combination of the first i pieces of evidence,
mθ e i, ( ) is the probability mass to which e i( ) jointly supports proposition
θ with =m mθ e θ, (1) ,1 and =m mP e P(Θ), (1) (Θ),1, then the combined
evidence with ER’s rule from the first i pieces of evidence can be
defined as:

= ⊕⋯⊕ =
⎧
⎨
⎩

= ∅

≠ ∅
∑ +

∼
∼ ∼

⊆

m m m θ
θ

θ[ ]( )
0

θ e i i m
m m

, ( ) 1 θ e i

e i P e i

, ( )

ϑ Θ ϑ, ( ) (Θ), ( ) (7a)

∑= + + ⊆∼
− −

∩ = ⊆
−m m m m m m m θ( ) , Θθ e i P i θ e i P e i θ i

B C θ B C
B e i C i, ( ) (Θ), , ( 1) (Θ), ( 1) ,

, , Θ
, ( 1) ,

(7b)

=∼
−m m mP e i P i P e i(Θ), ( ) (Θ), (Θ), ( 1) (7c)

where ⩽ ⩽m m0 , 1θ e i P e i, ( ) (Θ), ( ) and ∑ + =⊆ m m 1θ θ e i P e iΘ , ( ) (Θ), ( ) for
= ⋯i I1, , recursively. Note that, if the evidence only consists of

weight, then the probability mass is generated by Eq. (5), otherwise
the evidence consists of both weight and reliability, then the probability
mass is generated by Eq. (6). When the pieces of evidence are all
combined at the end of the recursive process, the combined degree of
belief to which I pieces of independent evidence jointly support
proposition θ is given by

= =
⎧
⎨
⎩

= ∅

⊆
∑

∼
∼

⊆

p p
θ

θ

0

Θθ θ e I m
m

, ( ) θ e I

e I

, ( )

ϑ Θ ϑ, ( ) (7d)

with ⩽ ⩽ ∀ ⊆ ∑ =⊆p θ p0 1, Θ, 1θ θ θΘ .

Definition 8 (Smets, 2005). Suppose the frame of discernment is
= ⋯θ θΘ { , , }N1 , the combined degree of belief is pθ, ∑ = ⊆p θ1, Θθ θ .

The belief function and the plausibility function corresponding to θn are
= ∑ ⊆Bel θ p( )n θ θ θn

and = ∑ ∩ ≠∅Pl θ p( )n θ θ θn
, set a relevant factor

= ⎡⎣ −∑ ⎤⎦ ∑⊆ ⊆ε Bel θ Pl θ1 ( ) / ( )θ n θ nΘ Θn n
. Then the pignistic probability is

= + = ⋯γ θ Bel θ ε Pl θ n N( ) ( ) · ( ), 1, , .n n n (8)

3. The proposed method

3.1. Reliability and weight

Reliability is an important concept in various fields (Fu, Yang, &
Yang, 2015), such as engineering (Sriramdas, Chaturvedi, & Gargama,
2014), industry (Gonzalez-Gonzalez, Cantu-Sifuentes, Praga-Alejo,
Flores-Hermosillo, & Zuniga-Salazar, 2014), transportation (Gaonkar,
Xie, & Fu, 2013), computer networks (Lin & Yeng, 2013), wireless
networks (Chen & Lyu, 2005), software (Yacoub, Cukic, & Ammar,
2004), etc. In these domains, reliability is assessed to improve system
performance or safety. Recently, reliability is introduced into behavior
evaluation field for assessing the proficiency of specialists, in which
human reliability analysis or expert reliability is becoming an im-
portant topic since human behavior can significantly influence system
performance and safety (Akyuz & Celik, 2016; Ribeiro, Sousa, Duarte, &
e Melo, 2016). In information fusion field, reliability is defined as an
ability of evidence source to provide correct assessment/solution for the
given problem, and the reliability of an evidence source should be es-
timated by statistics or other techniques (Smarandache & Dezert, 2010).
Its reasonable range lies in [0,1] with 0 and 1 respectively standing for
not reliable at all and the most reliable. For example, if an evidence
source totally generalized or received 100 records, in which 90 records
are correct, then the reliability of this evidence source is =90/100 0.9.

Weight is a basic concept in the MCDM field with the meaning that
the subjectively relative importance degree of a criterion than another
with respect to a given problem (Fu & Wang, 2015). It is usually de-
termined by some computing methods such as analytic hierarchy pro-
cess (AHP) (Saaty, 2003), analytic network process (ANP) (Saaty,
2007), delphi (Stebler, Schuepbach-Regula, Braam, & Falzon, 2015),
etc. In the same way, the weight of an evidence source is a relative
importance degree of an evidence source than another and it should be
determined by a fusion system designer, expert, or decision maker. Its
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reasonable range usually lies in [0,1] with 0 and 1 respectively
standing for not important at all and the most important. The sum of
weights is frequently equal to 1 but this requirement is unnecessary. For
example, a decision maker is asked to give the weights for three pieces
of evidence with respect to a problem, he/she does pair-wised com-
parisons and gives a judgement matrix as [1, 2, 2;1/2, 1, 1;1/2, 1, 1], and
finally the weights can be determined as [0.5, 0.25, 0.25] according to
the AHP method (Saaty, 2003). In particular, the weights of three pieces
of evidence may be changed when the given problem or the decision
maker is changed.

Consequently, the reliability and the weight of a piece of evidence
are not the same thing and there is at least a significant difference
between them, i.e., the reliability of evidence is objective and absolute
to reflect information quality, while the weight of evidence is subjective
and relative to reflect information importance.

3.2. New discounting method with both weight and reliability

There are two aspects of problems such as weight over-bounding
and reliability-dependence in the ER approach.

The weight over-bounding problem is described as that the degree
of constraint on the combined evidence is overly bounded than its
weight, resulting in the combination results to be unreasonable.
Suppose there are only two pieces of evidence to be combined and the
sum of their weights is equal to 1. In this case, Eq. (7b) is reduced to

= − + − + ∑∼
∩ = ⊆m w m w m m m[(1 ) (1 ) ]θ e θ θ B C θ B C B C, (2) 1 ,2 2 ,1 , , Θ ,1 ,2with

=m w pθ i i θ i, , for ∀ ⊆θ Θ, in which − + −w m w m[(1 ) (1 ) ]θ θ1 ,2 2 ,1 is called
the bounded sum of individual support (BSIS) and
∑ ∩ = ⊆ m mB C θ B C B C, , Θ ,1 ,2 is called the orthogonal sum of collective support
(OSCS). Specially, the BSIS is explained to set a bound on the role that the
combined evidence can play in its individual support for a proposition θ.
We believe such an explanation has a certain degree of rationality, but the
role played by the combined evidence may be inaccurately bounded.
Taking =m w pθ i i θ i, , and + =w w 11 2 into the BSIS, we get

− + − = − + − = +w m w m w w p w w p w p w p[(1 ) (1 ) ] [(1 ) (1 ) ] ( ) ( )θ θ θ θ θ θ1 ,2 2 ,1 1 2 ,2 2 1 ,1 2
2

,2 1
2

,1.
From this equation, we know the bound for the combined evidence is w( )i

2

which should be equal to the weight wi for =i 1, 2, thus the weight of
evidence is overly bounded than it should be.

Example 1. Suppose = θ θ θΘ { , , }1 2 3 , the BDs of evidence e1 and e2
are =b θ θ{( , 0.40), ( , 0.60)}1 1 3 and =b θ θ{( , 0.70), ( , 0.30)}2 1 2 , their
weights are =w 0.601 and =w 0.402 . Use Eq. (7b) in the ER’s rule to
combine e1 with e2, we have = − + −∼m w m[(1 ) (1θ e θ, (2) 2 ,12 2 +w m) ]θ1 ,22
∑ = − = − = − × ×∩ = m m w m w w p(1 ) (1 ) (1 0.60) 0.40B C θ B C θ θ,1 ,2 1 ,2 1 2 ,22 2 2

= × =0.30 (0.40) 0.30 0.0482 . Obviously, the BD of e2 is bounded by 0.4 for
two times and there exists weight over-bounding problem in this example.

Much attention should be paid to the weight over-bounding pro-
blem which also exists in the situation of non-normalized weights. In
Example 1, if weights are not required to be normalized, there is
− ≠w w1 2 1. As such, there is − × × ≠ ×w w p w p(1 ) θ θ1 2 ,2 2

2
,22 2 . With

respect to the element θ2, its belief distribution pθ ,22 has been correctly
bounded by its weight w2, does it make sense to redundantly bounded
by −w(1 )1 ? Obviously, the belief distribution pθ ,22 of the element θ2
should be bounded by either its weight w2 or the remaining weight of
the other evidence −w1 1, but it should not be simultaneously bounded
by w2 and −w1 1 (i.e., × −w w(1 )2 1 ). Thus the weight over-bounding
problem also exists in the situation of + ≠w w 11 2 for the reason that
the evidence is overly bounded than it should be. In particular, if the
weight as mentioned above is replaced with the adjusted weight as in
Eq. (6), then it is easy to find that the weight over-bounding problem
also exists in the ER’s rule with both reliability and weight for the si-
milar reason, especially in the situation of = =w r w r,1 1 2 2, and

+ =w w 11 2 .

Example 2. Also suppose = θ θ θΘ { , , }1 2 3 , the BDs of evidence e1 and e2
are =b θ θ{( , 0.40), ( , 0.60)}1 1 3 and =b θ θ{( , 0.70), ( , 0.30)}2 1 2 , their

weights and reliabilities are = =w r 0.601 1 and = =w r 0.402 2 . Use Eq.
(6) to discount e1 and e2, we have = = + − =∼w c w w w r w/(1 )i rw i i i i i i, for
=i 1, 2. Use Eq. (7b) in the ER’s rule to combine e1 with e2, we have

= − + − + ∑ = −∼ ∼ ∼∼
∩ =m w m w m m m w m[(1 ) (1 ) ] (1 )θ e θ θ B C θ B C θ, (2) 2 ,1 1 ,2 ,1 ,2 1 ,22 2 2 2 2

= − = − = − × × = ×∼ ∼w w p w w p(1 ) (1 ) (1 0.60) 0.40 0.30 (0.40)θ θ1 2 ,2 1 2 ,2
2

2 2
=0.30 0.048. Similar to Example 1, the BD of e2 is bounded by 0.4 for

two times and the weight over-bounding problem appears.

The reliability-dependence problem is described as that the ER’s
discounting method will lose effectiveness as long as the reliability
=r 1i , in other words, if the reliability ri is equal to one, then the result

discounted by the ER is still the BD no matter how much is the weight.
Taking =r 1i into Eq. (6), we have = + − =c w r w1/(1 ) 1/rw i i i i, , so we
further derive = = =m c w p w w p p(1/ )θ i rw i i θ i i i θ i θ i, , , , , for
∀ ⊆ = − = × =θ m c r wΘ, (1 ) 1/ 0 0P i rw i i i(Θ), , , and =∅m 0i, . Obviously,
there is =m pθ i θ i, , for ∀ ⊆θ Θ. As a result, whether the weight works or
not in the discounting heavily depends on whether the reliability is
equal to one or not.

Example 3. Suppose = =p θ θ w{( , 0.4), ( , 0.6)}, 0.6θ i i, 1 2 , =r 1.0i .
According to Eq. (6), there is = + − = =c w r w1/(1 ) 1/ 5/3rw i i i i, ,

= = × × = = × × =m c w p m5/3 0.6 0.4 0.4, 5/3 0.6 0.6 0.6θ i rw i i θ i θ i, , , ,1 1 2

, = − = × − = =∅m c r m(1 ) 5/3 (1 1) 0, 0P i rw i i i(Θ), , , . So there is
= =m θ θ p{( , 0.4), ( , 0.6)}θ i θ i, 1 2 , .

Some experts may argue that if one is sure that evidence ei is fully
reliable, and he/she still believes this piece of evidence fully when re-
ceiving other pieces of evidence with reliability less than 1. If not, ei is
incapable of saying to be fully reliable. One does that without making a
tradeoff among pieces of evidence by considering weights. That is, fully
reliable evidence can dominate other pieces of evidence with reli-
abilities less than 1. In our opinion, reliability and weight are two
different concepts and each plays its corresponding role in evidence
discounting. In a MCGDM context, let each criterion be judged by an
expert on the performance of an alternative, so each expert can be re-
garded as an evidence source, and the judgment information given by
an expert can be regarded as a piece of evidence. Obviously, the re-
liability of evidence depends on the cognitive ability of the expert, and
the weight of the evidence depends on the relative importance of the
criterion with respect to the decision problem. It is unreasonable to say
that the influence of a criterion on the decision problem (represented by
weight) is not to be considered just because an expert gives the com-
pletely correct information on only one criterion (unless the criterion is
absolutely important). Therefore, only when the evidence is fully reli-
able and fully important, the BD before and after the discounting should
remain the same, otherwise the two kinds of parameters should be both
reflected in the evidence discounting.

Example 4. Suppose an alternative is evaluated by two criteria c1 and
c2, their weights are =w 0.00011 and =w 0.99992 , expert e1 and e2 are
asked to participate in decision making, their reliabilities are
= =r r 1.01 2 , the frame of discernment is = =θ θ Good BadΘ { , } { , }1 2 .

Also suppose the alternative performance on c1 given by expert e1 is
=b Good Bad{( , 0.9999), ( , 0.0001)}1 , and that on c2 given by expert e2 is
=b Good Bad{( , 0.0001), ( , 0.9999)}2 . = =r r 1.01 2 shows that b1 and b2

are both absolutely correct. From b1 and b2 we know the alternative
performance on c1 is approximate to Good and that on c2 is approximate
to Bad. Because of =w 0.00011 and =w 0.99992 , it is logical and
reasonable to infer that the comprehensive performance of alternative
on the two criteria should heavily depend on c2 and should be
approximate to Bad. Now we use the ER approach to solve this
decision problem. Since there is the reliability-dependence problem in
the ER’s discounting method with both weight and reliability as in Eq.
(6), the discounted probability mass for the two pieces of evidence are
unchanged. Then taking b1 and b2 into the ER’s rule as in Eqs. (7a)–(7d),
the eventually combined result is determined as

= =p Good p Bad( ) ( ) 0.5. Such a result means that the comprehensive
performance of alternative on the two criteria has 50% probability to
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Good and 50% probability to Bad. Obviously, it is conflicting with the
intuitional result. The root cause of the above errors is that there exists
reliability-dependence problem in the ER’s discounting method with
both weight and reliability. As a result, we believe that the weight and
the reliability should be both reflected in the evidence discounting
whether or not the reliability is equal to 1.

Definition 9. Suppose the BD of evidence ei is bi as in Eq. (3), with wi
and ri ( ⩽ ⩽w r0 , 1i i ) as its weight and reliability, α is a coefficient for
subjective fusion and β is a coefficient for objective fusion with
+ = >α β α β1, , 0. Then the new discounting method with both

weight and reliability is defined to generate probability mass for the
evidence as follows:

= =
⎧

⎨
⎩

= ∅
⊆

− + − =
m m θ

αw θ P
βr p θ
α w β r θ P

( )
( )

Θ
(1 ) (1 ) (Θ)

θ i i

i

i θ i

i i

, ,

(9)

where P (Θ) is the power set of ∅PΘ, ( ) is an empty set generated by
weight discounting and it is used to distinguish with the empty set
generated by orthogonality of focus element.

In order to overcome the mentioned drawbacks in the ER approach,
we introduce a new discounting method with both reliability and
weight as in Eq. (9). The reliability and the weight are two kinds of
different concepts with the former objectively and absolutely reflecting
information quality and the latter subjectively and relatively reflecting
information importance. The new discounting method takes reliability
ri to discount the BD pθ i, and assigns the residual support of reliability
−r(1 )i to the power set P (Θ). It means that the residual support of re-

liability also participates in combining with other evidence, and it is
completely consistent with the characteristics of reliability for the
reason that the reliability is the ability of an evidence source to provide
correct assessment/solution with respect to the given problem as
mentioned in Section 3.1. The above principles can be directly ex-
plained with the following example.

Example 5. Suppose = θ θΘ { , }1 2 , the BD given by evidence source ei is
=b θ θ{( , 0.4), ( , 0.6)}i 1 2 , the reliability is = =r α0.8, 0i and =β 1.

Without loss of generality, we assume the evidence source ei totally
generalized or received 100 records. In this case,

=b θ θ{( , 0.4), ( , 0.6)}i 1 2 means that × =100 0.4 40 records show θ1 to
be true and × =100 0.6 60 records show θ2 to be true. According to the
characteristics of reliability, =r 0.8i means that the evidence source ei
has the ability to provide 80% correct information so as to there is 80%
information in bi is correct. It is easily inferred that there are
× =r 40 32i records that show θ1 to be true must be correct, and
× =r 60 48i records that show θ2 to be true must be correct. How to deal

with the residual records − × − × =r r(100 40 60 20)i i ? Since we are not
sure these residual records may show which subsets in the power set to
be true, it is reasonable to assign the 20 records to the power set. The
above processing principle can effectively describe the discounting
thoughts by the reliability in Definition 9.

Although it is meaningful to take the reliability to discount the BD
as shown in Example 5, we believe that such a processing mode is
unsuitable for the weight. The weight is different from the reliability
and it just reflects information importance subjectively and relatively.
The main question is how to deal with different weights of evidence
sources in the fusion process in such a way that a clear distinction is
made/preserved between reliability and weight? Our preliminary in-
vestigations show that the discounting idea which defines the weight
discounting with respect to the empty set is a nice way (Smets, 1993;
Smarandache & Dezert, 2010). As a result, the new discounting method
assigns the weight wi to the empty set ∅P ( ) as well as assigns the re-
sidual support of weight −w(1 )i to the power set P (Θ). The interest of
this new discounting is not only to preserve the specificity of the evi-
dence since all BDs of focal elements are unchanged, but also to set a

bound on the role that the combined evidence can play in its individual
support for a proposition θ. The basic probability mass for ∅P ( ) in the
eventually fusion result will be reassigned to focal elements. We shall
use the positive mass of the empty set just as an intermediate/pre-
liminary step of the fusion process. Working with positive mass of belief
on the empty set is not new and has been introduced in Smets’ trans-
ferable belief model (Smets, 1993), and Smarandache’s DSmT theory
(Smarandache & Dezert, 2010). Above introductions will be discussed
deeply in next section.

The BD discounted by the reliability is to improve information
qualities from the objective and absolute perspectives, while that dis-
counted by the weight is to reflect information importances from the
subjective and relative perspectives. A pair of parameters α and β, such
that >α β, 0 and + =α β 1, is used to balance the relative importance
relationship between the two kinds of perspectives. Taking α and β into
the discounting with both reliability and weight, we derive the new
discounting method as in Eq. (9). How to determine α and β rationally
in practice will be discussed later. No matter what value α and β take,
the new discounting method must satisfy the property that the sum of
all parts is equal to 1 (see Theorem 1).

Theorem 1. Suppose the BD of evidence ei is bi as in Eq. (3), with wi and ri
( ⩽ ⩽w r0 , 1i i ) as its weight and reliability, + = >α β α β m1, , 0, θ i, is the
result discounted by the new discounting method with both weight and
reliability as in Eq. (9). Then there must be
∑ + + =⊆ ∅m m m 1θ θ i P i P iΘ , ( ), (Θ), .

Proof. See Appendix A.1. □

Differentiating with the ER’s discounting method as in Eq. (6), the
new discounting method presented in this paper is a symmetry form of
weight and reliability which is benefit to discount the evidence by
weight and reliability simultaneously in terms of the features of two
concepts. Moreover the reliability-dependence problem does not exist
in the new discounting method. Taking =r 1i into Eq. (9), we get

= = ∅ ⊆ − =m αw θ P βp θ α w θ P{ , ( ); , Θ; (1 ), (Θ)}θ i i θ i i, , , it is obvious to
find that ≠m pθ i θ i, , . Note that, here = −m α w(1 )P i i(Θ), means that the
residual support of reliability is zero and there is only the residual
support of weight left to participate in combination.

3.3. New ER combination rule

Suppose the BD of evidence ei is bi as in Eq. (3), its weight and
reliability are wi and ⩽ ⩽r w r, 0 , 1i i i , mθ i, is the probability mass of ei
discounted by taking b w,i i and ri into Eq. (9). Now two pieces of in-
dependent evidence e1 and e2 with mθ,1 and mθ,2 are asked to combine.
In order to hold a generalized bayesian inference process, the ortho-
gonal sum operation is utilized to make combination for mθ,1 and mθ,2,
and the conjunctive probabilistic reasoning process for two pieces of
evidence is shown as in Fig. 1. In Fig. 1, ∼mθ e, (2) and ∼mP e(Θ), (2) are the
initially orthogonal results of mθ,1 and mθ,2 without extracting the
probability mass of empty set, = ∑∼

∅ ∩ =∅ ⊆m m me B C B C B C, (2) , , Θ ,1 ,2 is the
probability mass of empty set generated by orthogonality of focal ele-
ments. Note that, ∼∅m e, (2) is frequently called the conflict factor. Similar
to the DST and the ER approach, the conflict factor is reassigned into
other parts and thus we get the eventually joint probability masses for
∀ ⊆θ PΘ, (Θ) and ∅P ( ) as in Eqs. (10a)–(10c).

∑=
−

⎡

⎣
⎢ + + ⎤

⎦
⎥ ⊆

∩ = ⊆

m
k

m m m m m m θ1
1

, Θθ e
B C θ B C

B C P θ P θ, (2)
, , Θ

,1 ,2 (Θ),1 ,2 (Θ),2 ,1

(10a)

=
−

m
k

m m1
1P e P P(Θ), (2) (Θ),1 (Θ),2 (10b)
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∑ ∑=
−

⎡

⎣
⎢
⎢

⎛

⎝
⎜ + +

⎞

⎠
⎟ +

⎛

⎝
⎜ +

⎞

⎠
⎟
⎤

⎦
⎥
⎥

∅ ∅ ∅
⊆

∅
⊆

m
k

m m m m m m m1
1P e P P

θ
θ P P

θ
θ P( ), (2) ( ),1 ( ),2

Θ
,2 (Θ),2 ( ),2

Θ
,1 (Θ),1

(10c)

where = ∑ ∩ =∅k m mB C B C,1 ,2 is the conflict factor.
From Eq. (7d), we know that the combined degree of belief is

computed by normalizing the probability masses of ⊆θ Θ in the ER
approach. Such a principle is employed to compute the combined de-
gree of belief in this work. There is an important property that
∑ + + =⊆ ∅m m m 1θ θ e P e P eΘ , (2) (Θ), (2) ( ), (2) in the combined probability
mass as shown in Theorem 2, so as to the combined degree of belief
denoted by pθ e, (2) is actually generated by reassigning mP e(Θ), (2) and

∅mP e( ), (2) back to all focal elements of Θ as in Eq. (11), and it is capable
of being determined by Eqs. (12a) and (12b) as shown in Theorem 3.

=
− −

⊆
∅

p
m

m m
θ

1
, Θθ e

θ e

P e P e
, (2)

, (2)

(Θ), (2) ( ), (2) (11)

Theorem 2. Suppose the probability masses of two pieces of independent
evidence e1 and e2 are mθ,1 and mθ,2 discounted by Eq. (9), and the
probability mass to which both e1 and e2 jointly support proposition θ is
mθ e, (2) as shown in Eqs. (10a)–(10c). Then there must be
∑ + + =⊆ ∅m m m 1θ θ e P e P eΘ , (2) (Θ), (2) ( ), (2) .

Proof. See Appendix A.2. □

Theorem 3. Suppose the probability masses of two pieces of independent
evidence e1 and e2 are mθ,1 and mθ,2 discounted by Eq. (9). Then the
combined degree of belief denoted by pθ e, (2) to which both e1 and e2 jointly
support proposition θ is given as follows:

=
⎧
⎨
⎩

= ∅

⊆
∑

∼
∼

⊆

p
θ

θ

0

Θθ e m
m

, (2) θ e

B B e

, (2)

Θ , (2) (12a)

where ⩽ ⩽p0 1θ e, (2) for ∀ ⊆ ∑ = > + =⊆θ p α β α βΘ, 1, , 0, 1θ θ eΘ , (2) .

Proof. See Appendix A.3. □

As shown in Eq. (12b), Theorem 3 reinforces the notion that the
combined degree of belief to which two pieces of independent evidence
jointly support a proposition consists of three parts:
∑ − + −∩ = ⊆ m m β r m r m, [(1 ) (1 ) ]B C θ B C B C θ θ, , Θ ,1 ,2 1 ,2 2 ,1 , and −α [(1

+ −w m w m) (1 ) ]θ θ1 ,2 2 ,1 . We name the first part as orthogonal sum of
collective support (OSCS), the second part as reliability-bounded sum of
individual support (RBSIS), and the third part as weight-bounded sum
of individual support (WBSIS). Eq. (12b) illustrates that if two pieces of
evidence each play a limited role bounded by the reliability and the
weight, in addition to their collective support, the individual supports
from any evidence not only bounded by reliability but also bounded by
weight should be counted as part of the combined support in general.
Obviously, the OSCS and the WBSIS have the similar forms with Eq.
(7b), but both of them differ from that in the ER approach in that they
are discounted by Eq. (9) and do not exist the over-bounded problem
and the reliability-dependence problem.

Example 6. Suppose = θ θ θΘ { , , }1 2 3 , the BDs of evidence e1 and e2 are

=b θ θ{( , 0.40), ( , 0.60)}1 1 3 and =b θ θ{( , 0.70), ( , 0.30)}2 1 2 , their weights are
=w 0.601 and =w 0.402 , their reliabilities are = = = =r r α β1.0, 0.51 2 .

Using Eq. (12b) to combine e1 with e2, we have
= ∑ + − + − + −∼

∩ =m m m β r m r m α w m[(1 ) (1 ) ] [(1 )θ e B C θ B C θ θ θ2, (2) 2 ,1 ,2 1 2,2 2 2,1 1 2,2

+ − = − = = × − ×w m α w m αw βr b(1 ) ] [(1 ) ] 0.5 (1 0.60) 0.5θ θ θ2 ,1 1 ,2 2 2 ,22 2 2
× =0.30 0.03. In this computing process, it is obvious to see that the BD
of e2 is bounded by the weight (which is = −w w12 1 in this case) for just
one time rather than two times in the ER’s rule (see Example 1). Thus
there is no weight over-bounding problems in Eq. (12b). Similarly,
we can derive =∼m 0.2θ e, (2)1 and =∼m 0.009θ e, (2)3 . Using Eq. (12a) to
compute the combined degree of belief, and we have

= = =p p p0.6250, 0.0937, 0.2813θ e θ e θ e, (2) , (2) , (2)1 2 3 .

Example 7. Suppose an alternative is evaluated by two criteria c1 and
c2, the alternative performance on c1 is evaluated by expert e1 and that
on c2 is evaluated by expert e2, the frame of discernment is

= =θ θ Good BadΘ { , } { , }1 2 , and the parameters such as BDs given by
experts, weights, reliabilities are the same as in Example 4. Let the
coefficient α be valued from 0.01 to 0.99 with the step 0.01, we use the
proposed combination rule as in Eqs. (12a) and (12b) to solve this
problem. The combination results are illustrated in Fig. 2. Fig. 2 shows

that the combined degree of belief is changed as α is defined to different
values, but the combined degrees of belief for Good are always
approximate to 0 and that for Bad are always approximate to 1. It is
consistent with the intuitive result that the comprehensive performance
of alternative on the two criteria should heavily depend on the
performance on c2 which should be approximate to Bad. Obviously,
the reliability-dependence problem does not exist in the proposed
combination rule.

From Theorem 3 we know that if the evidence e1 is not the most
reliable or not the most important then the fusion result will consist of
all focal elements of the evidence e2, and if the two pieces of evidence
are both not the most reliable or the most important then the fusion
result will consist of all their focal elements. Such a conclusion is
consistent with the practice, i.e., if e1 does not have the ability to
completely deny e2 (the reliability problem), or e1 is not fully trusted by
the decision maker (the weight problem), then it is reasonable and lo-
gical to assign the propositions (focal elements) of e2 in the final fusion
result.

If there are more than two pieces of evidence to be combined, Eqs.

Fig. 1. The conjunctive probabilistic reasoning process.

Fig. 2. The combined degrees of belief.

∑= + − + − + − + −∼
∩ = ⊆

m m m β r m r m α w m w m[(1 ) (1 ) ] [(1 ) (1 ) ]θ e B C θ B C B C θ θ θ θ, (2) , , Θ ,1 ,2 1 ,2 2 ,1 1 ,2 2 ,1 (12b)
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(10a)–(10c) can be repeated to combine the third piece of evidence
with the previously-combined assessment mθ e, (2) for
⊆ = = ∅θ θ m θ mΘ, ,P e P e(Θ), (2) ( ), (2) , and so on until all pieces of evi-

dence are combined recursively. Theorem 4 is established to calculate
the combined probability masses for the first i pieces of evidence.
Suppose there are I pieces of evidence to be combined, the recursive
fusion as in Eqs. (13a)–(13d) needs to be applied for −I 1 times. As
mentioned before, the finally combined degree of belief, denoted by
pθ e I, ( ), should be generated by reassigning mP e I(Θ), ( ) and ∅mP e I( ), ( ) back to
all focal elements of Θ as in Eq. (11). Theorem 5 is established to cal-
culate the finally combined degree of belief after all the pieces of evi-
dence are combined, and it is applied only one time at the end of the
recursive process. Such a recursive combination process can be sum-
marized as in Algorithm 1.

Theorem 4. Suppose the BD of evidence ei is profiled by bi as in Eq. (3),
mθ i, is the probability mass of ei discounted by Eq. (9), = ⋯i I1, , , −e i( 1)
denotes the combination of the first −i 1 pieces of evidence and −mθ e i, ( 1) is the
probability mass to which −e i( 1) jointly supports proposition θ, with

=m mθ e θ, (1) ,1. Then the combined probability mass denoted by mθ e i, ( ) to
which −e i( 1) and ei jointly support proposition θ can be computed by the
recursive combination rule as:

= ⊕⋯⊕ =
∑ + +

∀
∼

∼ ∼ ∼
⊆ ∅

m m m
m

m m m
θ[ ] ,θ e i i

θ e i

B B e i P e i P e i
, ( ) 1

, ( )

Θ , ( ) (Θ), ( ) ( ), ( )

(13a)

∑= + − + − +∼
∩ = ⊆

− − −m m m α w β r m m m[ (1 ) (1 )]θ e i
B C θ B C

B e i C i i i θ e i P e i θ i, ( )
, , Θ

, ( 1) , , ( 1) (Θ), ( 1) ,

(13b)

= − + −∼
−m α w β r m[ (1 ) (1 )]P e i i i P e i(Θ), ( ) (Θ), ( 1) (13c)

= + −∼
∅ ∅ − ∅ −m αw m αw mP e i i P e i i P e i( ), ( ) ( ), ( 1) ( ), ( 1) (13d)

where ⩽ ⩽m0 1θ e i, ( ) for ∀ ⊆ = = ∅θ θ P θ PΘ, (Θ), ( ) and
∑ + + = = ⋯⊆ ∅m m m i I1, 1, ,θ θ e i P e i P e iΘ , ( ) (Θ), ( ) ( ), ( ) .

Proof. See Appendix A.4. □

Theorem 5. Suppose I pieces of independent evidence are all combined by
Theorem 4, then the combined degree of belief denoted by pθ e I, ( ) to which I
pieces of independent evidence jointly support proposition θ is given as
follows:

= =
⎧
⎨
⎩

= ∅

⊆
∑

∼
∼

⊆

p p
θ

θ

0

Θθ θ e I m
m

, ( ) θ e I

B B e I

, ( )

Θ , ( ) (14)

where ∼mθ e I, ( ) is given by Eq. (13b) for = ⩽ ⩽ ∀ ⊆i I p θ, 0 1, Θθ and
∑ =⊆ p 1θ θΘ .

Proof. See Appendix A.5. □

Algorithm 1. Combination algorithm by the new ER approach

Input: The BDs of evidence
( = ∀ ⊆ ∑ = = ⋯⊆b θ p θ p i I{( , ), Θ, 1}, 1, ,i θ i θ θ i, Θ , ), the weights

of evidence ( = ⋯w i I, 1, ,i ), the reliabilities of evidence
( = ⋯r i I, 1, ,i ), the pair of fusion coefficients (α and β).

Output: The combined degree of belief for I pieces of evidence
(pθ e I, ( )).

Begin
%Generate the probability masses by discounting evidence with

both weights and reliabilities as in Eq. (9)
For =i 1 to I

If ⊆θ Θ
%Generate the probability masses for ⊆θ Θ
Then =m βr pθ i i θ i, ,

%Generate the probability masses for = ∅θ P ( ) and
=θ P (Θ)

Else = = − + −∅m αw m α w β r, (1 ) (1 )P i i P i i i( ), (Θ),

ElseIf
EndFor
%Initialize the first i pieces of evidence e i( )

= =e e m m(1) , θ e θ1 , (1) ,1

%Combine probability masses recursively by the new ER rule as in
Eqs. (13a)–(13d)

For =i 2 to I
If ⊆θ Θ

%Combine probability masses without normalization for
⊆θ Θ by Eq. (13b)

Then

= ∑ + − + −

+

∼
∩ = ⊆ − −

−

m m m α w β r m

m m

[ (1 ) (1 )]θ e i B C θ B C B e i C i i i θ e i

P e i θ i

, ( ) , , Θ , ( 1) , , ( 1)

(Θ), ( 1) ,

%Combine probability masses without normalization for
= ∅θ P ( ) and =θ P (Θ) by Eqs. (13c) and (13d)

Else = + −∼
∅ ∅ − ∅ −m αw m αw mP e i i P e i i P e i( ), ( ) ( ), ( 1) ( ), ( 1),

= − + −∼
−m α w β r m[ (1 ) (1 )]P e i i i P e i(Θ), ( ) (Θ), ( 1)

EndIf
%Normalize the combined probability masses by Eq. (13a)
For ⊆ = ∅θ θ PΘ, ( ), and =θ P (Θ)

= ∑ + +

∼
∼ ∼ ∼

⊆ ∅
mθ e i

m
m m m, ( )

θ e i

B θ e i P e i P e i

, ( )

Θ , ( ) (Θ), ( ) ( ), ( )

EndFor
EndFor
%Compute the combined degree of belief by Eq. (14)
For ⊆θ Θ

= = ∑

∼
∼

⊆
p pθ θ e I

m
m, ( )

θ e I

B B e I

, ( )

Θ , ( )

EndFor
End

3.4. Discussion of fusion coefficients

From Eqs. (12b) and (13b) we know that the eventually combined
degree of belief is influenced by the pair of fusion coefficients, i.e., the
coefficient for subjective fusion α and the coefficient for objective fu-
sion β with + = >α β α β1, , 0. How to rationally determine the two
coefficients is important to guarantee the effectiveness of fusion results.
In the simple context, the two coefficients can be determined in terms of
the practical requirements by decision makers. For solving the decision
problem, if the objective fusion result is more valuable, β should be
valued bigger than α, else if the subjective fusion result is more valu-
able, α should be valued bigger than β, else set = =α β 0.5.

In the complex context, the decision makers may feel difficult to
determine the two coefficients, so the following principles are sug-
gested. Suppose there are four sets of evidence E E E E, , ,1 2 3 4 and each
set consists of several pieces of evidence. From the perspective of
overall information qualities, E1 is high and E2 is low. From the per-
spective of overall importance degrees for solving the given problem, E3
is high and E4 is low. All pieces of evidence in each set are combined to
determine the eventually combined degree of belief (result). The fol-
lowing assumptions are logical and rational to be existing in the minds
of decision makers.

• The combined result of E1 is more valuable than that of E2 ( ≻E E1 2),
since the overall information quality of E1 is better than E2.

• The combined result of E3 is more valuable than that of E4 ( ≻E E3 4),
since the overall importance of E3 is higher than E4 to the given
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problem.

• When the combined result of E1 is compared with that of E3, the
decision makers may consider the two are both valuable ( =E E1 3),
since the two aspects are both important in solving the given deci-
sion problems.

From the above assumptions it can be easily inferred that:

• When the combined result of E1 is compared with that of E4, the
decision makers may consider the former is more valuable than the
latter ( =E E1 3 and ≻E E3 4 so there is ≻E E1 4).

• When the combined result of E3 is compared with that of E2, the
decision makers may consider the former is more valuable than the
latter ( ≻E E1 2 and =E E1 3 so there is ≻E E3 2).

As mentioned in Section 3.1, the information quality can be re-
flected by reliabilities and the information importance can be reflected
by weights. It is reasonable to believe that the values of the two coef-
ficients are closely related to the overall performance of the reliabilities
and the weights. According to the proposed assumptions and in-
ferences, we establish the methods for determining fusion coefficients
as in Eqs. (15a) and (15b).

Definition 10. Suppose the weight and the reliability of evidence ei are
wi and ri respectively, ⩽ ⩽ = ⋯w r i I0 , 1, 1, ,i i . The coefficient for
subjective fusion α and the coefficient for objective fusion β can be
computed as follows.

=
∑ ∀

∑ ∀ + ∑ ∀
α

w w i
w w i r r i

[ /max( | ) ]
[ /max( | ) ] [( ) /max( | ) ]

i i i

i i i i i i
2 (15a)

=
∑ ∀

∑ ∀ + ∑ ∀
β

r r i
w w i r r i
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i i i
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2 (15b)

In Eqs. (15a) and (15b),∑ ∀w w i[ /max( | )]i i i is introduced to reflect
the overall performance of weights. If = ′w wi i for ′ = ⋯ ≠ ′i i I i i, 1, , , ,
there is ∑ ∀ =w w i I[ /max( | )]i i i with the meaning that all pieces of
evidence are all important for solving the given problem. If

= ∀′w w imax( | )i i and =′w 0i for ′ ≠i i, there is
∑ ∀ =w w i[ /max( | )] 1i i i with the meaning that only one piece of evi-
dence is important for solving the given problem. Obviously, the former
illustrates that the subjective fusion based on weights is very important
and necessary, while the latter illustrates that it is not very important
and unnecessary since the subjective fusion result is equal to the belief
distribution of evidence with the maximum weight. With the similar
reasons, ∑ ∀r r i[( )/max( | )]i i i is introduced to reflect the overall per-
formance of reliabilities. Note that, the sum of weights is frequently
equal to 1 but this requirement is unnecessary, in other words, the
weight of evidence is subjective and relative to reflect information
importance. Differentiating with the weight, the reliability of evidence
is objective and absolute to reflect information quality. In order to
describe the objective characteristics (the greater the reliabilities of all
evidence, the more important the objective fusion),
∑ ∀r r i[( ) /max( | )]i i i

2 is established by multiplying ∑ ∀r r i[( )/max( | )]i i i
with the reliability ri. Accordingly, Eqs. (15a) and (15b) are constructed
to reflect the relative importance degrees respectively for the subjective
fusion and the objective fusion.

Theorem 6. Suppose the two fusion coefficients are determined by Eqs.
(15a) and (15b), then there must be + =α β 1 and (1) if all pieces of
evidence are the most reliable and the same important, then = =α β 0.5; (2)
if all pieces of evidence are the most reliable but their importance degrees are
different, then < <β0.5 1; (3) if all pieces of evidence are the same
important but their reliabilities are different, then < <α0.5 1.

Proof. See Appendix A.6. □

The two coefficients can be valued by decision makers according to
the practical requirements for the decision problem, or determined by
the proposed methods as in Eqs. (15a) and (15b). When the fusion
coefficients are close to the maximum or the minimum values, the
following useful corollaries can be obtained.

Corollary 1. If the coefficient for subjective fusion →α 0, then the
combined degree of belief pθ e, (2) in Theorem 3 is able to be approximately
computed by ∼nθ e, (2) as follows:

=
⎧
⎨
⎩

= ∅

⊆
∑

∼
∼

⊆

p
θ

θ

0

Θθ e n
n

, (2) θ e
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, (2)

Θ , (2) (16a)

∑= + − + −∼
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n r r p p r r p r r p[(1 ) (1 ) ]θ e
B C θ B C

B C θ θ, (2) 1 2
, , Θ

,1 ,2 1 2 ,2 2 1 ,1
(16b)

⩽ ⩽where p0 1θ e, (2) for ∀ ⊆ ∑ =⊆θ pΘ, 1θ θ eΘ , (2) .

Proof. See Appendix A.7. □

Corollary 2. If the coefficient for objective fusion →β 0, then the combined
degree of belief pθ e, (2) as in Eq. (16a) in Corollary 1 is able to be
approximately computed by ∼nθ e, (2) as follows:

= − + −∼n w r p w r p(1 ) (1 )θ e θ θ, (2) 1 2 ,2 2 1 ,1 (16c)

Proof. See Appendix A.8. □

Corollary 3. If the coefficient for subjective fusion →α 0, then the
orthogonal sum of the first i piece of evidence which is used to derive the
combined degree of belief pθ e I, ( ) in Theorem 5 is able to be recursively
computed by:

= ⊕⋯⊕ =
∑ +

⊆ =
∼

∼ ∼
⊆

n n n
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(17b)

= −∼
−n r n(1 )P e i i P e i(Θ), ( ) (Θ), ( 1) (17c)

with =n r pθ i i θ i, , for ⊆ = − = ⋯θ n r i IΘ, 1 , 1, ,P i i(Θ), and =n nθ e θ, (1) ,1 for
⊆ =θ θ PΘ, (Θ).

Proof. See Appendix A.9. □

Corollary 4. If the coefficient for objective fusion →β 0, then the
orthogonal sum of the first i pieces of evidence which is used to derive the
combined degree of belief pθ e I, ( ) in Theorem 5 is able to be recursively
computed by:

= = − +∼
− −n n w n n n(1 )θ e i θ e i i θ e i P e i θ i, ( ) , ( ) , ( 1) (Θ), ( 1) , (18a)

= = −∼
−n n w n(1 )P e i P e i i P e i(Θ), ( ) (Θ), ( ) (Θ), ( 1) (18b)

= = + −∼
∅ ∅ ∅ − ∅ −n n n w w nP e i P e i P e i i i P e i( ), ( ) ( ), ( ) ( ), ( 1) ( ), ( 1) (18c)

with =n r pθ i i θ i, , for ⊆ = − = = ⋯∅θ n w n w i IΘ, 1 , , 1, ,P i i P i i(Θ), ( ), and
=n nθ e θ, (1) ,1 for ⊆ = ∅ =θ θ P θ PΘ, ( ), (Θ).

Proof. See Appendix A.10. □

From Corollary 1–4, it can be inferred that the eventually fusion
result combined by the new ER approach only consists of an objective
fusion result when the coefficient for subjective fusion →α 0, while the
eventually fusion result only consists of a subjective fusion result when
the coefficient for objective fusion →β 0. Above four Corollaries can
effectively simplify the complexities of the recursive operation in the
extremely subjective ( →β 0) circumstance and extremely objective
( →α 0) circumstance. Meanwhile, we can also find that some features
of the extremely subjective fusion and the extremely objective fusion as
follows. From Corollaries 1 and 3, we know the weights do not appear
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in the recursive fusion process, so it is able to find that the extremely
objective fusion result is independent of weights. From Corollaries 2
and 4, we know that the reliabilities appear in the recursive fusion
process with the role correcting the evidences from the perspective of
information quality, so it is able to find that the extremely subjective
fusion result is dependent of reliabilities. Note that, Eqs. (17a)–(17c) in
Corollary 3 and Eqs. (7a)–(7c) in the ER’s rule are very similar in ap-
pearance. But there is an essential difference between them, i.e., Eqs.
(17a)–(17c) are the objective fusion result by fusing with reliability,
and Eqs. (7a)–(7c) seem to be the subjective fusion result by fusing with
weight in which there exists a weight over-bounding problem and does
not well reflect the characteristics of weight as mentioned in Section
3.1.

4. Numerical comparisons

From the literature, there are only two kinds of approaches to solve
the evidence fusion problems with both reliability and weight, i.e., the
ER approach and the proportional conflict redistribution rules no
5(PCR5) method. The DST is an important tool for uncertainty rea-
soning, and it initially uses the Shafer’s discounting to modify belief
functions by integrating weights or reliabilities with belief functions.
Although the DST does not distinguish the differences between weights
and reliabilities, it is favorable to give expressions to the results of two
methods. In this section, these three kinds of approaches are compared
with the proposed approach in this paper by using the same example as
examined in literature (Smarandache & Dezert, 2010). Suppose

=Θ {A, B, C} with A, B and C mutually exclusive and collectively ex-
haustive, and three pieces of independent evidence e e,1 2 and e3 are
represented by three BDs as shown in Table 1. Since the relative im-
portance for the subjective fusion with weight and the objective fusion
with reliability is not considered in the DST, the ER and the PCR5, this
example assumes = =α β 0.5 which means the two kinds of fusion are
equally valuable.

4.1. Comparison with the DST

The DST can only solve such an evidence combination problem that
all pieces of evidence are absolutely reliable or absolutely important.
When not all of the evidence are absolutely reliable or absolutely im-
portant, the DST usually uses the Shafer’s discounting method to in-
tegrate the weight or the reliability with the BDs of evidence, but the
difference between the weight and the reliability is not distinguished at
all (Dempster, 1967; Shafer, 1996). In order to compare the DST with
the new ER approach presented in this paper, we assume = = =r r r 11 2 3
and = = =w w w1, 0.41 2 3 in this example.

Taking the data of Table 1 directly into the Dempster’s rule as in Eq.
(2) and the new ER rule as in Theorems 4 and 5, we can recursively
determine the fusion result of three pieces of evidence as shown in
Tables 2 and 3. In Table 2,∼mDST θ e, , (2) and∼mDST θ e, , (3) are the DST’s results
of the first two pieces of evidence and all three pieces of evidence
without normalization by conflict factor, mDST θ e, , (2) and mDST θ e, , (3) are
normalization results of ∼mDST θ e, , (2) and ∼mDST θ e, , (3). Note that, the third
piece of evidence needs to be discounted by Shafer’s discounting
method before combining it with the combined result of the first two
pieces of evidence. In Table 3, mθ e, (2) and mθ e, (3) are the new ER’s jointly
probability masses of the first two pieces of evidence and all three

pieces of evidence generated by Theorem 4, pθ e, (2) and pθ e, (3) are the
combined degrees of belief by taking mθ e, (2) and mθ e, (3) into Theorem 5.

Comparing the 3rd row of Table 2 and the 3rd row of Table 3, it is
not difficult to find that there is no difference between the DST and the
new ER on the fusion results of the first two pieces of evidence. This
illustrates the two methods are equivalent when combining the abso-
lutely reliable and absolutely weighting evidence. However, the fusion
results of the two approaches are not the same when combining the
combined results of the first two pieces of evidence with the third one,
as shown in the 5th row of Table 2 and the 5th row of Table 3. The third
piece of evidence is discounted by Shafer’s discounting method as in Eq.
(4), and there is = + −m λ p λ(Θ) (1 )Θ,3 3 3 3 for the global ignorance. The
difference between the weight and the reliability is not distinguished in
the DST, so as to there is =λ w3 3, and further we have

= + − = × + − = + =m λ p λ(Θ) (1 ) 0.4 0.1 (1 0.4) 0.04 0.6 0.64Θ,3 3 3 3 . In
this process, the residual result of weight is assigned to the global ig-
norance and it leads to the specificity of the original evidence to be
changed for the reason that ≠m m p p/ /i j i jΘ, Θ, Θ, Θ, in the DST. Thus the
combination result of the DST is imprecise and unreasonable. Differ-
entiating from the DST, the new ER is able to hold the specificity of the
original evidence in its discounting method with =r 13 and =w 0.43 as
in Eq. (9), in which the characteristic of weight can be well reflected,
and its result is more precise and reasonable than the DST. It is inter-
esting to find that, if we discount the third piece of evidence with

=w 13 and =r 0.43 by Eq. (9), the fusion result of new ER is as the same
as the DST (see ′pθ e, (3) in the 7th row of Table 3). The reason is the
residual support of reliability is assigned to the power set P (Θ) and the
belief degree for ⊆θ Θ is also discounted by r pi θ i, in the new ER, whose
discounting result is similar to the DST’s. This not only coincides with
the characteristics of reliability but also holds the specificity of the
original evidence. In other words, the DST with Shafer’s discounting
method may be only suitable for combination with reliability but not
for that with weight.

4.2. Comparison with the ER

In order to make an effective comparison for the ER and the new ER,
this example assumes =r1 = = = = =r r w w w1, 0.6, 0.7, 0.4, 0.82 3 1 2 3 .
The fusion result generated by using the ER is as shown in Table 4. The
support for each proposition from each piece of evidence is given as the
probability mass generating by Eq. (6), as shown in rows 2–4 of Table 4.
mER θ e, , (2) and mER θ e, , (3) in the 5th and 7th row of Table 4 generated by
Eqs. (7a)–(7d) are the jointly probability masses, and pER θ e, , (2) and
pER θ e, , (3) in the 6th and 8th row of Table 4 generated by Eq. (7d) are the
combined degree of belief to which three pieces of independent evi-
dence with both weight and reliability.

The fusion result generated by using the new ER is shown in Table 5.
The support for each proposition from each piece of evidence is given as
the probability mass generated by Eq. (9), as shown in rows 2–4 of
Table 5. mθ e, (2) and mθ e, (3) in the 5th and 7th row of Table 5 generated
by Theorem 4 are the jointly probability mass, and pθ e, (2) and pθ e, (3) in
the 6th and 8th row of Table 5 generated by Theorem 5 are the com-
bined degree of belief to which three pieces of independent evidence
with both weight and reliability.

From the rows 2–3 of Table 4, it is not difficult to find that the

Table 1
The BDs of three pieces of independent evidence.

A B C {A, B} {A, C} {B, C} {A, B, C}

e1 0.8000 – – 0.1000 0.1000 – –
e2 0.4000 0.3000 – 0.2000 – 0.1000 –
e3 0.1000 0.3000 0.5000 – – – 0.1000

Table 2
Combination result of the DST.

∅ A B C {A, B} {A, C} {B, C} {A,
B,
C}

∼mDST θ e, , (2) 0.3500 0.5800 0.0400 0.0100 0.0200 – – –

mDST θ e, , (2) 0.8923 0.0615 0.0154 0.0308 – – –
∼mDST θ e,, , (3) 0.5508 0.3952 0.0328 0.0084 0.0128 – – –

mDST θ e,, , (3) 0.8798 0.0730 0.0187 0.0285 – – –
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discounted result for the first two pieces of evidence is the same as the
original BD, or say there is no discounting for them. Such a discounted
result is correct in the case that reliability and weight of evidence are
both equal to 1, but is clearly unreasonable in the case that reliability is
equal to 1 but weight is 0.7. This situation illustrates that there is a
reliability-dependence problem in the ER.

From =α 0.5 we know that the subjective fusion with weight and
objective fusion with reliability are equally valuable in this example.
From Eq. (12b) we further know that the eventually fusion result should
consist of all focal elements of the two combined pieces of evidence
especially when each weight of the two pieces of evidence is smaller
than 1 ( = =w w0.7, 0.41 2 ). Comparing the 6th row of Table 4 with the
6th row of Table 5, we know that two focal elements {A, C} and {B, C}
appear in the combination result of the new ER, while the both do not
appear in the ER. Obviously, the focal element {A, C} of e1 and {B, C} of
e2 are lost in the fusion result of the first two pieces of evidence by the
ER. Furthermore, comparing the 8th row with the 6th row of Table 4,
we know that the focal elements of the eventual fusion result derived by
combining the fusion result of the first two pieces of evidence with the
third one, are unchanged. This illustrates that the focal element {A, B,
C} is also lost in the eventual result by the ER. Thus it can be inferred
that the reliability-dependence problem makes the ER lose the ability to
reflect the impact of weight or subjective fusion in the fusing process, as
a result directly leading to the loss of the focal elements in this example.
On the contrary, the new ER is capable of taking into account the dif-
ferences between the reliability and the weight and well balance the
relationship between the subjective fusion and the objective fusion, so
that all the focal elements of three pieces of evidence are kept in the
eventual fusion result.

Besides, the ER also has the weight over-bounding problem and the
order-dependent problem. These two problems are illustrated by
hereinbefore examples, so we do not illustrate them again. In particular,
if we let =r 01 and other parameters remain unchanged, the ER and the
new ER are respectively employed to make combination for three pieces
of evidence, and we can obtain the eventual fusion results as shown in
Tables 6 and 7. For the first two pieces of evidence, the fusion result of
the new ER is the same as the BD of e2 in Table 1 completely, while the
ER’s is not the same. Which result is more reasonable? We know r1 is
given by 0 means that all the evidence information in e1 is false. Ob-
viously, if a fusion method cannot eliminate the impact of false evi-
dence, its fusion result is bound to be irrational. Fortunately, the new
ER is capable of excluding the impact of the false evidence such as e1

because its fusion result is the same as the BD of e2. Therefore, the result
of the new ER is more reasonable than the ER’s.

4.3. Comparison with the PCR5

The fusion result generated by the PCR5 is shown in Table 8 with
= = = = = =r r r w w w0.8, 0.5, 0.2, 0.9, 0.3, 0.61 2 3 1 2 3 , which has been

originally provided in the paper by Smarandache and Dezert (2010). In
Table 8, m θ( )ri wi, is a reliability-importance discounting which is per-
formed for ei by Shafer’s reliability discounting method and followed by
the PCR5 importance discounting method, =i 1, 2, 3. The fusion result
for m θ m θ( ), ( )r w r w1, 1 2, 2 and m θ( )r w3, 3 is∼ ∅m θ( )PCR r w5 , , as shown in the 7th
row of Table 8. Similarly, m θ( )wi ri, is an importance-reliability dis-
counting which reverses the order of two discounting methods,
=i 1, 2, 3, and their combination result is ∼ ∅m θ( )PCR w r5 , , as shown in the

8th row of Table 8. ∼m θ( )PCR5 in the 9th row of Table 8 is the arithmetic
mean value of∼ ∅m θ( )PCR r w5 , , and∼ ∅m θ( )PCR w r5 , , . More details on the PCR5
can be found in Smarandache and Dezert (2010).

We also use the weights and reliabilities as mentioned above in the
PCR5 to combine three pieces of evidence by the new ER (here also let
= =α β 0.5) and the eventual fusion result is shown in Table 9. The

support for each proposition from each piece of evidence is given as
probability masses generated by Eq. (9) and as shown in rows 2–4 of
Table 9. mθ e, (2) and mθ e, (3) in the 5th and the 7th row of Table 9 gen-
erated by Theorem 4 are the jointly probability masses, and pθ e, (2) and
pθ e, (3) in the 6th and the 8th of Table 9 generated by Theorem 5 are the
combined degrees of belief to which three pieces of independent evi-
dence with both weight and reliability.

Comparing the discounted results in rows 2–7 of Table 8 with those
in rows 2–4 of Table 1, it is able to find that the specificity of the ori-
ginal evidence is changed in the PCR5, i.e., =m m p p/ /θ i θ j θ i θ j, , , , is true
for all ⊂θ Θ but not for =θ Θ. For example, e2 does not contain any
global ignorance with =p 0A B C{ , , },2 as shown in the 3rd row and last
column of Table 1, but after discounting there is =m (Θ) 0.1500r w2, 2 or

=m (Θ) 0.5000w r2, 2 as shown in the 3rd or the 6th row and last column
of Table 8. The specificity of the original evidence is also changed for e1

and e3. Especially for e3, the specificity change leads to a mix of global
ignorance and residual support of weight or reliability. However, such a
problem of changing the specificity of the original evidence does not
occur in new ER, i.e., =m m p p/ /θ i θ j θ i θ j, , , , for ∀ ⊆θ Θ. Therefore, from
the perspective of evidence discounting, the new ER is more reasonable
than the PCR5.

Table 3
Combination result of the new ER.

∅P ( ) A B C {A, B} {A, C} {B, C} {A, B, C} P (Θ)

mθ e, (2) 0.0304 0.8651 0.0597 0.0149 0.0298 – – – –
pθ e, (2) – 0.8923 0.0615 0.0154 0.0308 – – – –

mθ e, (3) 0.9209 0.0685 0.0068 0.0018 0.0021 – – – 0.0000
pθ e, (3) – 0.8662 0.0855 0.0223 0.0260 – – – –

′mθ e, (3) 0.9367 0.0557 0.0046 0.0012 0.0018 – – – 0.0000

′pθ e, (3) – 0.8798 0.0730 0.0187 0.0285 – – – –

Table 4
Combination result of the ER.

A B C {A, B} {A, C} {B, C} {A, B, C} P (Θ)

mER θ, ,1 0.8000 – – 0.1000 0.1000 – – –
mER θ, ,2 0.4000 0.3000 – 0.2000 – 0.1000 – –
mER θ, ,3 0.0667 0.2000 0.3333 – – – 0.0667 0.3333
mER θ e, , (2) 0.8923 0.0615 0.0154 0.0308 – – – 0.0000
pER θ e, , (2) 0.8923 0.0615 0.0154 0.0308 – – – –

mER θ e, , (3) 0.8626 0.0888 0.0233 0.0254 – – – 0.0000
pER θ e, , (3) 0.8626 0.0888 0.0233 0.0254 – – – –
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Let’s examine the original and the generated data for {A, C}, {B, C}
and {A, B, C} as adopt in literature (Yang & Xu, 2013). In the original
data, each of them is only given a belief degree of 0.1 in e e,1 2, and e3
respectively, or = =p p0.1, 0.1A C B C{ , },1 { , },2 and =p 0.1A B C{ , , },2 as shown
in Table 1. It seems reasonable to expect that none of them should be
given a larger degree of belief than 0.1 in the eventual fusion result after
the three pieces of evidence are combined. In the result as shown in the
last row of Table 8, there is =∼m A B C({ , , }) 0.3506PCR5 , which is much
larger than 0.1 even their sum is 0.3, inconsistent with the expectation.
Besides, the uncertainty degree of combination result which can be
reflected by the interval between the lower bound
( = ∑ ⊆Bel θ m( ) (ϑ)θϑ ) and the upper bound ( = ∑ ∩ ≠∅Pl θ m( ) (ϑ)θϑ ). The
uncertainty degree of the combination result in PCR5 is much larger
than that in the new ER. For example, the lower bound and the upper
bound of {A} is respectively 0.5334 and

+ + +0.9538(0.5334 0.0388 0.0310 0.3506) in the PCR5, while that is
0.7395 and + + +0.9000(0.7395 0.0912 0.0653 0.0040) in the new ER.
The interval of the former is − =0.9538 0.5334 0.4204, which is more
than the interval of the latter with − =0.9000 0.7395 0.1605. From the

perspective of uncertainty degree of the combination result, the new ER
is superior to the PCR5.

5. Illustrative example

The second round of National Marine Functional Zoning
(2011–2020) has been launched by China for several years. It has
played an important role in the development of marine economy and
the construction of marine ecological civilization. In order to further
raise the marine management level and rationally allocate marine re-
sources, a scientific method should be established for evaluating im-
plementation performance of a specified marine functional zoning
(MFZ). The new ER method proposed in this paper is employed to solve
such a MFZ evaluation problem as follows.

Suppose the government is responsible for the evaluation work and
the criteria listed in Fig. 3 are utilized as the evaluation index system for
MFZ. Each first class index in Fig. 3 is respectively regarded as a cri-
terion, so the criteria can be denoted by = ⋯c i, 1, , 6i . The government
selects six experts = ⋯e i{ | 1, , 6}i from different fields to participate in
the evaluation. Expert ei is responsible for giving the assessment in-
formation on criterion ci in the overall view of all the second class in-
dices included in ci. Taking e1 for example, he/she should investigate
the overall implementation performance of the MFZ on such three as-
pects as functional area adjustment, reasonable marine demand, man-
agement enforcement, and then gives the assessment information on
executive force (c1). The assessment is made on five grades such as
Excellent (E), Good (G), Average (A), Poor (P), and Worst (W), and thus
the frame of discernment is constructed as

= ⋯ =θ θ W P A G EΘ { , , } { , , , , }1 5 . The decision information given by
expert ei is profiled by bi as in Eq. (3), which is listed in Eq. (19).

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪⎪

=
=
=
=
=
=

b E A G P
b A G P E
b P A G
b G P W
b E A
b G A P W

{ , 0.2; , 0.5;( , ), 0.3}
{( , ), 0.7;( , ), 0.3}
{ , 0.5;( , ), 0.5}
{ , 0.7;( , ), 0.3}
{ , 0.6; , 0.4}
{ , 0.5; , 0.4;( , ), 0.1}

1

2

3

4

5

6 (19)

The weights of criteria are given by the government, which are
supposed to be = = = = = =w w w w w w0.6, 0.81 2 3 4 5 6 . The reliabilities

Table 5
Combination results of the new ER.

∅P ( ) A B C {A, B} {A, C} {B, C} {A, B, C} P (Θ)

mθ,1 0.3500 0.4000 – – 0.0500 0.0500 – – 0.1500
mθ,2 0.2000 0.2000 0.1500 – 0.1000 – 0.0500 – 0.3000
mθ,3 0.4000 0.0300 0.0900 0.1500 – – – 0.0300 0.3000
mθ e, (2) 0.5260 0.3233 0.0356 0.0027 0.0384 0.0164 0.0082 – 0.0493
pθ e, (2) – 0.7613 0.0839 0.0065 0.0903 0.0387 0.0194 –

mθ e, (3) 0.7880 0.1316 0.0260 0.0137 0.0139 0.0060 0.0030 0.0016 0.0163
pθ e, (3) – 0.6722 0.1327 0.0698 0.0712 0.0305 0.0153 0.0083 –

Table 6
Combination result of the ER with =r 01 .

A B C {A, B} {A, C} {B, C} {A, B,
C}

P (Θ)

mθ,1 0.3294 – – 0.0412 0.0412 – – 0.5882
mθ,2 0.4000 0.3000 – 0.2000 – 0.1000 – –
mθ e, (2) 0.5540 0.2254 0.0048 0.1471 – 0.0687 – –
pθ e, (2) 0.5540 0.2254 0.0048 0.1471 – 0.0687 – –

Table 7
Combination result of the new ER with =r 01 .

∅P ( ) A B C {A, B} {A, C} {B, C} {A,
B, C}

P (Θ)

mθ,1 0.3500 – – – – – – – 0.6500
mθ,2 0.2000 0.2000 0.1500 – 0.1000 – 0.0500 – 0.3000
mθ e, (2) 0.4800 0.1300 0.0975 – 0.0650 – 0.0325 – 0.1950
pθ e, (2) – 0.4000 0.3000 – 0.2000 – 0.1000 – –

Table 8
Combination result of the PCR5.

∅ A B C {A, B} {A, C} {B, C} {A, B, C}

m θ( )r w1, 1 0.1000 0.5760 – – 0.0720 0.0720 – 0.1800

m θ( )r w2, 2 0.7000 0.0600 0.0450 – 0.0300 – 0.0150 0.1500

m θ( )r w3, 3 0.4000 0.0120 0.0360 0.0600 – – – 0.4920

m θ( )w r1, 1 0.0800 0.5760 – – 0.0720 0.0720 – 0.2000

m θ( )w r2, 2 0.3500 0.0600 0.0450 – 0.0300 – 0.0150 0.5000

m θ( )w r3, 3 0.0800 0.0120 0.0360 0.0600 – – – 0.8120
∼

∅m θ( )PCR r w5 , , – 0.5741 0.0254 0.0182 0.0311 0.0233 0.0032 0.3247
∼

∅m θ( )PCR w r5 , , – 0.4927 0.0254 0.0182 0.0311 0.0233 0.0032 0.3765
∼m θ( )PCR5 – 0.5334 0.0249 0.0182 0.0388 0.0310 0.0032 0.3506
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of experts are estimated by statistics and are supposed to be
= = = = = =r r r r r r1.0, 0.8, 0.61 2 3 4 5 6 . If the bi is regarded as a piece of

evidence, with the weight wi derived from criteria and the reliability ri
derived from experts, = ⋯i 1, ,6, then the evaluation problem on the
MFZ is a MCGDM problem and can be solved by fusing all pieces of
evidence.

Because the coefficients α and β are not given by the government, so
they are determined by the suggested method as in Section 3.4. Taking
the weights and the reliabilities into Eqs. (15a) and (15b), we have
=α 0.5676 and =β 0.4324. We take the BDs of evidence as listed in Eq.

(19), weights, reliabilities, and the pair of coefficients into the combi-
nation algorithm by the new ER approach (Algorithm 1), and the
combined degree of belief can be gradually obtained as follows.

The probability masses for six pieces of evidence are generated by
discounting with both weights and reliabilities as in Eq. (9), and the
discounted results are listed as in Eq. (20). Taking the first piece of
evidence for example, w r,1 1 and b1 are substituted into Eq. (9), we have

= = × × =m βr p 0.4324 1.0 0.2 0.0865E E,1 1 ,1 , = = ×m βr p 0.4324A A,1 1 ,1
× =1.0 0.5 0.2162, = = × × =m βr p 0.4324 1.0 0.3 0.1297P G P G( , ),1 1 ( , ),1 ,

= = × =∅m αw 0.5676 0.6 0.3406P ( ),1 1 , = − + − = ×m α w β r(1 ) (1 ) 0.5676P (Θ),1 1 1

− + × − =(1 0.6) 0.4324 (1 1) 0.2270.

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪⎪

= ∅
= ∅
= ∅
= ∅
= ∅
= ∅

m θ E A P G P P
m θ A G P E P P
m θ P A G P P
m θ G W P P P
m θ E A P P
m θ G A W P P P

( ) { , 0.0865; , 0.2162;( , ), 0.1297; ( ), 0.3406; (Θ), 0.2270}
( ) {( , ), 0.3973;( , ), 0.1703; ( ), 0.3406; (Θ), 0.0918}
( ) { , 0.1730;( , ), 0.1730; ( ), 0.3406; (Θ), 0.3135}
( ) { , 0.2421;( , ), 0.1038; ( ), 0.4541; (Θ), 0.2000}
( ) { , 0.1557; , 0.1038; ( ), 0.4541; (Θ), 0.2865}
( ) { , 0.1297; , 0.1038;( , ), 0.0259; ( ), 0.4541; (Θ), 0.2865}

1

2

3

4

5

6

(20)

Combining the probability masses of e1 and e2 by the new ER

approach, we have = ∑ + − +∼
∩ = ⊆m m m α w[ (1 )E e B C E B C B e C, (2) , , Θ , (1) ,2 2

− + = + − + −β r m m m m m α w β r(1 )] [ (1 ) (1 )]E e P e E E e P E2 , (1) (Θ), (1) ,2 , (1) ( , ),2 2 2
= × + × − + × − ×m 0.0865 0.1297 [0.5676 (1 0.6) 0.4324 (1 1)]E e, (1)
≐0.0865 0.0344; = + − + −∼m m m α w β r m[ (1 ) (1 )]A e A e A G A e, (2) , (1) ( , ),2 2 2 , (1)

= × + × − + × − × ≐0.2162 0.3027 [0.5676 (1 0.6) 0.4324 (1 1)] 0.2162
0.1145; = = × ≐∼m m m 0.1297 0.3027 0.0393G e P G e A G, (2) ( , ), (1) ( , ),2 ; =∼mP e, (2)

= × ≐m m 0.1297 0.1297 0.0168P G e P E( , ), (1) ( , ),2 ; = − + −∼m α w β r[ (1 ) (1 )]P G e( , ), (2) 2 2

= × − + × − × ≐m [0.5676 (1 0.6) 0.4324 (1 1)] 0.1297 0.0294P G e( , ), (1) ;
= = × ≐∼m m m 0.2270 0.3027 0.0687A G e P e A G( , ), (2) (Θ), (1) ( , ),2 ; =∼m P E e( , ), (2)

= × ≐m m 0.2270 0.1297 0.0294P e P E(Θ), (1) ( , ),2 ; = + −∼
∅ ∅m αw mP e P e( ), (2) 2 ( ), (1)

= × + − × × ≐∅αw m 0.5676 0.6 0.3406 0.5676 0.6 0.3406 0.5652P e2 ( ), (1) ;
= − + − = × − + ×∼m α w β r m[ (1 ) (1 )] [0.5676 (1 0.6) 0.4324P e P e(Θ), (2) 2 2 (Θ), (1)

− × ≐(1 1)] 0.2270 0.0515. Then we use the equation

= ∑ + +

∼
∼ ∼ ∼

⊆ ∅
mθ e i

m
m m m, ( )

θ e i

B θ e i P e i P e i

, ( )

Θ , ( ) (Θ), ( ) ( ), ( )
to deal with the above probability

masses for ∀ ⊆ = ∅θ θ PΘ, ( ) and =θ P (Θ). We obtain that
≐m 0.0326E e, (2) , ≐m 0.1211A e, (2) , ≐m 0.0415G e, (2) , ≐m 0.0178P e, (2) ,

≐m 0.0311P G e( , ), (2) , ≐m 0.0727A G e( , ), (2) , ≐m 0.0311P E e( , ), (2) ,
≐∅m 0.5976P e( ), (2) , ≐m 0.0545P e(Θ), (2) .

It is similar to the combination process of mθ e, (2), we can obtain
m m m, ,θ e θ e θ e, (3) , (4) , (5) and mθ e, (6), for ∀ ⊆ = ∅θ θ PΘ, ( ) and =θ P (Θ).
Taking mθ e, (6) into Eq. (14), the combined degree of belief is able to be
computed and the result is as follows. =p 0.4225G e, (6) , =p 0.2851A e, (6) ,

=p 0.1065P e, (6) , =p 0.0534E e, (6) , =p 0.0197W P e( , ), (6) , =p 0.0787A G e( , ), (6) ,
=p 0.0171P G e( , ), (6) , =p 0.0171P E e( , ), (6) . In order to distribute the com-

bined result on each grade of frame of discernment, the pignistic
probability is computed by taking the combined degree of belief into
Eq. (8) and we have =γ W( ) 0.0023, =γ P( ) 0.1252, =γ A( ) 0.3277,

=γ G( ) 0.4832, =γ E( ) 0.0616.
The eventually combined result shows that the overall im-

plementation performance of the MFZ by six experts/criteria has 23%
probability to be Worst, 12.52% probability to be Poor, 32.77% prob-
ability to be Average, 48.32% probability to be Good, and 6.16% prob-
ability to be Excellent. According to the principle of maximum mem-
bership, the assessment grade Good is the final evaluation result. It is
easy to find that the new ER approach can be solved recursively and can
be programmed as shown in Algorithm 1, thus the proposed approach
in this work is valid and applicable.

6. Conclusions

The ER approach with both weight and reliability has two aspects of
problems such as weight over-bounding and reliability-dependence.
The reason why there exists above two aspects of problems in the ER
approach is that the characteristics of weight and reliability are not well
considered in the process of evidence discounting and combining. In
this paper, we investigate the characteristics of the weight and the re-
liability, and find that the reliability of evidence is objective and ab-
solute to reflect information quality, while the weight of evidence is
subjective and relative to reflect information importance. A new dis-
counting method with both weight and reliability is defined to generate

Table 9
Combination result of the new ER.

∅P ( ) A B C {A, B} {A, C} {B, C} {A, B, C} P (Θ)

mθ,1 0.4500 0.3200 – – 0.0400 0.0400 – – 0.1500
mθ,2 0.1500 0.1000 0.0750 – 0.0500 – 0.0250 – 0.6000
mθ,3 0.3000 0.0100 0.0300 0.0500 – – – 0.0100 0.6000
mθ e, (2) 0.5518 0.2746 0.0158 0.0010 0.0347 0.0249 0.0039 – 0.0933
pθ e, (2) – 0.7737 0.0445 0.0029 0.0978 0.0701 0.0109 – –

mθ e, (3) 0.7042 0.1763 0.0144 0.0070 0.0217 0.0156 0.0024 0.0010 0.0574
pθ e, (3) – 0.7395 0.0606 0.0292 0.0912 0.0653 0.0102 0.0040 –

Fig. 3. The evaluation index system.

Y.-W. Du et al. Computers & Industrial Engineering 124 (2018) 493–508

504



probability masses for the evidence by assigning the residual support of
weight to the empty set and that of reliability to the power set. On the
basis of the new discounting method, we use the orthogonal sum op-
eration to establish a new ER combination rule with both reliability and
weight for recursively combining the evidence. The new ER combina-
tion rule consists of the subjective fusion with weight and the objective
fusion with reliability which are integrated by a pair of fusion coeffi-
cients, and a series of theorems and corollaries are introduced and
proved. Numerical comparisons are introduced to compare the new ER
approach with the DST, the ER, and the PCR5, and illustrate the su-
periority of the new ER approach. An illustrative example is provided to
demonstrate the applicabilities of the proposed combination rules and
algorithm. The new ER combination rule cannot only maintain the
specificity of the evidence but also solve the problems such as weight
over-bounding and reliability-dependence.

We have to point out that: (1) The weights sometimes can be de-
termined by the objective methods, in which the weight-determination
thoughts should comply with some subjective principles given by de-
cision-makers. For examples, the subjective principle may be that the
weights should lessen the separation between each alternative and the
ideal one as much as possible (Ma, Fan, & Huang, 1999); the weights
should reflect the disorder degrees of data denoted by information
entropy, the greater the entropy, the lower the weight (Zhou, Lin, Deng,
Li, & Liu, 2016); the weights should be favorable for each decision

making unit as much as possible (Pendharkar, 2018). In other words,
weight-determination thoughts should be subjectively goal-oriented
according to the needs of decision makers, based on which the weights
may be determined by the objective data. From this viewpoint, the
weight of evidence also can be regarded to be subjective in the objective
methods. (2) This work only studies how to scientifically fuse the evi-
dence with both weights and reliabilities from the static perspective,
however, sometimes contentious meetings of what might be described
as BOGSATs (Bunch of Guys/Gals Sitting Around A Table) may happen.
Further studying the evidence combination in dynamic situation would
be a good research direction in the future.
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Appendix A

A.1. Proof of Theorem 1

Proof. Taking the expression of ∅m m,θ i P i, ( ), and mP i(Θ), of Eq. (9) into ∑ + +⊆ ∅m m mθ θ i i P θ iΘ , , ( ), , we have
∑ + + = ∑ + + − + − = ∑ + + − + −⊆ ∅ ⊆ ⊆m m m βr p αw α w β r βr p αw α αw β β r(1 ) (1 )θ θ i P i P i θ i θ i i i i i θ θ i i i iΘ , ( ), (Θ), Θ , Θ , . Since ∑ =⊆ p 1θ θ iΘ , and + =α β 1,
so as to ∑ + + = + + − = + =⊆ ∅m m m βr α β β r α β 1θ θ i P i P i i iΘ , ( ), (Θ), . □

A.2. Proof of Theorem 2

Proof. From Theorem 1, we know ∑ + + = =⊆ ∅m m m i1, 1, 2θ θ i P i P iΘ , (Θ), ( ), .We make an orthogonal sum operation for mθ,1 and mθ,2, and get four
parts as following: = ∑ + +∼

∩ = ⊆m m m m m m mθ e B C θ B C B C P θ P θ, (2) , , Θ ,1 ,2 (Θ),1 ,2 (Θ),2 ,1 for ∀ ⊆θ Θ, =∼m m mP e P P(Θ), (2) (Θ),1 (Θ),2 for =θ P (Θ),
= + ∑ + + ∑ +∼

∅ ∅ ∅ ⊆ ∅ ⊆m m m m m m m m( ) ( )P e P P θ θ P P θ θ P( ), (2) ( ),1 ( ),2 Θ ,2 (Θ),2 ( ),2 Θ ,1 (Θ),1 for = ∅θ P ( ), = ∑∼
∅ ∩ =∅ ⊆m m me B C B C B C, (2) , , Θ ,1 ,2 for = ∅θ . If there

are two parts with the sum of each part being equal to 1, then the orthogonal sum for the two parts must be equal to 1.Thus there is
∑ + + + =∼ ∼ ∼ ∼

⊆ ∅ ∅m m m m 1θ θ e P e P e eΘ , (2) (Θ), (2) ( ), (2) , (2) (Yang & Xu, 2013).Let = = ∑ = −∼ ∼
∅ ∩ =∅ ⊆k m m m m m k, /(1 )e B C B C B C θ e θ e, (2) , , Θ ,1 ,2 , (2) , (2) for

⊆ =θ θ PΘ, (Θ) and = ∅θ P ( ). Because ∑ + + = − = −∼ ∼ ∼ ∼
⊆ ∅ ∅m m m m k1 1θ θ e P e P e eΘ , (2) (Θ), (2) ( ), (2) , (2) , there is ∑ ⊆θ Θ

+ + = ∑ + + − = − − =∼ ∼ ∼
∅ ⊆ ∅m m m m m m k k k[ ]/(1 ) (1 )/(1 ) 1θ e P e P e θ θ e P e P e, (2) (Θ), (2) ( ), (2) Θ , (2) (Θ), (2) ( ), (2) . □

A.3. Proof of Theorem 3

Proof. From Eq. (3), we get the discounted results on P (Θ) of e1 and e2 are = − + −m α w β r(1 ) (1 )P (Θ),1 1 1 and = − + −m α w β r(1 ) (1 )P (Θ),2 2 2 . Let the
numerator in Eq. (10a) be = ∑ + +∼

∩ = ⊆m m m m m m mθ e B C θ B C B C P θ P θ, (2) , , Θ ,1 ,2 (Θ),1 ,2 (Θ),2 ,1, and take the expressions of mP (Θ),1 and mP (Θ),2 into ∼mθ e, (2).
We get = ∑ + + = ∑ + − + − + − + −∼

∩ = ⊆ ∩ = ⊆m m m m m m m m m α w β r m α w β r m[ (1 ) (1 )] [ (1 ) (1 )]θ e B C θ B C B C P θ P θ B C θ B C B C θ θ, (2) , , Θ ,1 ,2 (Θ),1 ,2 (Θ),2 ,1 , , Θ ,1 ,2 1 1 ,2 2 2 ,1

= ∑ + − + − + − + −∩ = ⊆ m m β r m β r m α w m α w m[ (1 ) (1 ) ] [ (1 ) (1 ) ]B C θ B C B C θ θ θ θ, , Θ ,1 ,2 1 ,2 2 ,1 1 ,2 2 ,1 . Since ∑ + + =⊆ ∅m m m 1θ θ i P i P iΘ , ( ), (Θ), from Theorem 1,
=i 1, 2, and∑ + + =⊆ ∅m m m 1θ θ e P e P eΘ , (2) (Θ), (2) ( ), (2) from Theorem 2, as a result, there exists∑ = − −⊆ ∅m m m1θ θ e P e P eΘ , (2) (Θ), (2) ( ), (2). Besides, take Eq.

(12b) into Eq. (10a), we can easily get = −∼m m k/(1 )θ e θ e, (2) , (2) . At last, take the expressions of ∑ ⊆ mθ θ eΘ , (2) and mθ e, (2) into Eq. (10), we can get

= = = =− − ∑
−

∑ − ∑

∼
∼

∼
∼

∅ ⊆ ⊆ ⊆
pθ e

m
m m

m
m

m k
m k

m
m, (2) 1

/ (1 )
/ (1 )

θ e

P e P e

θ e

θ θ e

θ e

θ θ e

θ e

B B e

, (2)

(Θ), (2) ( ), (2)

, (2)

Θ , (2)

, (2)

Θ , (2)

, (2)

Θ , (2)
,∑ = ∑ = =⊆ ⊆ ∑

∑

∑

∼
∼

∼

∼
⊆

⊆

⊆
p 1θ θ e θ

m
m

m

mΘ , (2) Θ
θ e

B B e

θ θ e

B B e

, (2)

Θ , (2)

Θ , (2)

Θ , (2)
. Because ⩾p 0θ e, (2) and

∑ =⊆ p 1θ θ eΘ , (2) , we can get ⩽ ⩽ ∀ ⊆p θ0 1, Θθ e, (2) . □

A.4. Proof of Theorem 4

Proof. For =i 2, since =m mθ e θ, (1) ,1 for ⊆ =θ θ PΘ, (Θ) and = ∅θ P ( ), Eq.(13b) becomes Eq.(12b), Eq.(13c) becomes
= = − + − − + −∼m m m α w β r α w β r[ (1 ) (1 )][ (1 ) (1 )]P e P e P(Θ), (2) (Θ), (1) (Θ),2 1 1 2 2 , and (13d) becomes = + −∼

∅ ∅m αw mP e P e( ), (2) 2 ( ), (1)
= + − = + −∅ ∅ ∅αw m αw m αw m αw αw α w wP e P P2 ( ), (1) 2 ( ),1 2 ( ),1 2 1

2
1 2. They are as the same as that in the proof of Theorem 2. Besides, Eq.(13a) is true

with ⩽ ⩽m0 1θ e, (2) for ∀ ⊆ = = ∅ ∑ + + =⊆ ∅θ θ P θ P m m mΘ, (Θ), ( ), 1θ θ e P e P eΘ , (2) (Θ), (2) ( ), (2) also has been proved in Theorem 2. Suppose for
= −i i 1, Eqs.(13a)–(13d) are true, that is = ⊕⋯⊕− −m m m θ[ ]( )θ e i i, ( 1) 1 1 , with ⩽ ⩽−m0 1θ e i, ( 1) for ∀ ⊆ = = ∅θ θ P θ PΘ, (Θ), ( )

and∑ + + =⊆ − − ∅ −m m m 1θ θ e i P e i P e iΘ , ( 1) (Θ), ( 1) ( ), ( 1) . For =i i, since the orthogonal sum operation is independent of the order, we have
= ⊕⋯⊕ ⊕ = ⊕⋯⊕ ⊕− −m m m θ m m m m θ[ ]( ) [( ) ]( )θ e i i θ i i i, ( ) 1 1 , 1 1 . The above equation means that combining i pieces of evidence is equal to
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combining the first −i 1 pieces with the ith piece. The orthogonal sum of −mθ e i, ( 1) and mθ i, without normalization leads to
= ∑ + + = ∑ + − + − +∼

∩ = ⊆ − − − ∩ = ⊆ − − −m m m m m m m m m α w β r m m m[ ] [ (1 ) (1 )]θ e i B C θ B C B e i C i P i θ e i P e i θ i B C θ B C B e i C i i i θ e i P e i θ i, ( ) , , Θ , ( 1) , (Θ), , ( 1) (Θ), ( 1) , , , Θ , ( 1) , , ( 1) (Θ), ( 1) , ,
= = − + −∼

− −m m m α w β r m[ (1 ) (1 )]P e i P i P e i i i P e i(Θ), ( ) (Θ), (Θ), ( 1) (Θ), ( 1). Since ∑ + + =⊆ − − ∅ −m m m 1θ θ e i P e i P e iΘ , ( 1) (Θ), ( 1) ( ), ( 1) and ∑ ⊆θ Θ
+ + =∅m m m 1θ i P i P i, (Θ), ( ), , there is ∑ + = −⊆ ∅m m m1θ θ i P i P iΘ , (Θ), ( ), . Thus = ∑ + + +∼

∅ ∅ ⊆ − − ∅ −m m m m m( )P e i P i θ θ e i P e i P e i( ), ( ) ( ), Θ , ( 1) (Θ), ( 1) ( ), ( 1)

∑ + = + − = + − = + −∅ − ⊆ ∅ ∅ − ∅ ∅ ∅ − ∅ − ∅ ∅ − ∅ −m m m m m m m m m m αw m αw m( ) (1 )P e i θ θ i P i P i P e i P i P i P e i P e i P i i P e i i P e i( ), ( 1) Θ , (Θ), ( ), ( ), ( 1) ( ), ( ), ( ), ( 1) ( ), ( 1) ( ), ( ), ( 1) ( ), ( 1),
= ∑ =∼

∅ ∩ =∅ ⊆ −m m m ke i B C B C B e i C i, ( ) , , Θ , ( 1) , . There must be ∑ + + + =∼ ∼ ∼ ∼
⊆ ∅ ∅m m m m 1θ θ e i P e i P e i e iΘ , ( ) (Θ), ( ) ( ), ( ) , ( ) , and ∑ ⊆θ Θ

+ + = −∼ ∼ ∼
∅m m m k1θ e i P e i P e i, ( ) (Θ), ( ) ( ), ( ) . Conflict factor k is the probability mass of empty set and its influence should be eliminated by normalizing

to keep characteristics of other expressions unchanged as mentioned above. Thus let = −∼m m k/(1 )θ e i θ e i, ( ) , ( ) for ∀ ⊆ = = ∅θ θ P θ PΘ, (Θ), ( ), we get
= − = ∑ + +∼ ∼ ∼ ∼ ∼

⊆ ∅m m k m m m m/(1 ) /[ ]θ e i θ e i θ e i θ θ e i P e i P e i, ( ) , ( ) , ( ) Θ , ( ) (Θ), ( ) ( ), ( ) for ∀ ⊆ = = ∅θ θ P θ PΘ, (Θ), ( ); ∑ + +⊆ m mθ θ e i P e iΘ , ( ) (Θ), ( )

= ∑ + + − = − − =∼ ∼ ∼
∅ ⊆ ∅m m m m k k k[ ]/(1 ) (1 )/(1 ) 1P e i θ θ e i P e i P e i( ), ( ) Θ , ( ) (Θ), ( ) ( ), ( ) . Since ∼mθ e i, ( ) is non-negative so as to ⩾m 0θ e i, ( ) for

∀ ⊆ = = ∅θ θ P θ PΘ, (Θ), ( ). Besides∑ + + =⊆ ∅m m m 1θ θ e i P e i P e iΘ , ( ) (Θ), ( ) ( ), ( ) , thus there must be ⩽ ⩽m0 1θ e i, ( ) for ∀ ⊆ = = ∅θ θ P θ PΘ, (Θ), ( ). □

A.5. Proof of Theorem 5

Proof. Similar to the proof of Theorem 3, it is straightforward to be proved. □

A.6. Proof of Theorem 6

Proof. Taking Eqs. (15a) and (15b) into +α β, we have + =α β 1 directly.
Case 1: When all pieces of evidence are the most reliable and the same important, there are =r 1i ( = ⋯i I1, , ) and = ′w wi i ( ′ = ⋯i i I, 1, , ). Taking

the above two parameters into Eqs. (15a) and (15b), we have = =α β 0.5.
Case 2: When all pieces of evidence are the most reliable but their importance degrees are different, there are =r 1i (∀ i) and ∃ <′w wmax( |i i

≠ ′i i ). We have

∑

∑ ∑

⎧

⎨
⎪

⎩
⎪

∀ =

∀ = ≠ ′ + ≠ ′′
≠ ′

r r i I

w w i w w i i w w i i

[( ) /max( | )]

[ /max( | ) ] /max( | ) [ /max( | )]
i

i i

i
i i i i

i i
i i

2

If let ∑ ∀ =w w i μ[ /max( | )]i i i , then < <μ I0 . Taking the above result into Eq. (15b), there is = + = − +α μ μ I I μ I/( ) 1 /( ). Since < <μ I0 , there
exist the following relationships, i.e., < + < < + < < + < < + <I μ I I I μ I I I I I μ I I I I μ I( ) 2 , 1/(2 ) 1/( ) 1/ , /(2 ) /( ) / , 1/2 /( ) 1. From
= − +α I μ I1 /( ), we have < <α0 0.5. From + =α β 1, we have < <β0.5 1.
Case 3: If all pieces of evidence are the same important but their reliabilities are different, there are =w I1/i (∀ i) and ∃ <′r rmax( |i i ≠ ′i i ), so

∑

∑ ∑

⎧

⎨
⎪

⎩
⎪

∀ =

∀ = ≠ ′ + ≠ ′′
≠ ′

( )

w w i I

r r i r r i i r r i i

[ /max( | )]

[( ) /max( | )] /max( | ) [( ) /max( | )]
i

i i

i
i i i i

i i
i i

2 2 2

If let ∑ ∀ =r r i η[( ) /max( | )]i i i
2 , then there must be < <η I0 . Taking the above result into Eq. (15b), there is = + = − +β η η I I η I/( ) 1 /( ). Since

< <η I0 , there exist the following relationships, i.e., < + < < + < < + < < + <I η I I I η I I I I I η I I I I η I( ) 2 , 1/(2 ) 1/( ) 1/ , /(2 ) /( ) / , 1/2 /( ) 1. From
= − +β I η I1 /( ), we have < <β0 0.5. From + =α β 1, we have < <α0.5 1. □

A.7. Proof of Corollary 1

Proof. From Eqs. (9) and (12b), we get
= ∑ + − + − + − + − = ∑ + − + − +∼

∩ = ⊆ ∩ = ⊆m m m β r m β r m α w m α w m βr p βr p β r βr p β r βr p[ (1 ) (1 ) ] [ (1 ) (1 ) ] [ (1 ) (1 ) ]θ e B C θ B C B C θ θ θ θ B C θ B C B C θ θ, (2) , , Θ ,1 ,2 1 ,2 2 ,1 1 ,2 2 ,1 , , Θ 1 ,1 2 ,2 1 2 ,2 2 1 ,1

− + − = ∑ + − + − + − + −∩ = ⊆α w βr p α w βr p β β r p r p β r r p β r r p α w r p α w r p[ (1 ) (1 ) ] { [ (1 ) (1 ) ] [ (1 ) (1 ) ]}θ θ B C θ B C B C θ θ θ θ1 2 ,2 2 1 ,1 , , Θ 1 ,1 2 ,2 1 2 ,2 2 1 ,1 1 2 ,2 2 1 ,1 . Let =∼Nθ e, (2)

∑ ∩ = ⊆β B C θ B C, , Θ + − + − + − + −r p r p β r r p β r r p α w r p α w r p[ (1 ) (1 ) ] [ (1 ) (1 ) ]B C θ θ θ θ1 ,1 2 ,2 1 2 ,2 2 1 ,1 1 2 ,2 2 1 ,1 , so =∼ ∼m βNθ e θ e, (2) , (2). Since + =α β 1 and >α β, 0, there
is →β 1 when →α 0. = ∑ + − + − + − + − =∼

→ → → → ∩ = ⊆ →N β r p r p β r r p β r r p α w r p α w r plim lim { [ (1 ) (1 ) ] [ (1 ) (1 ) ]} (limα β θ e α β B C θ B C B C θ θ θ θ β0, 1 , (2) 0, 1 , , Θ 1 ,1 2 ,2 1 2 ,2 2 1 ,1 1 2 ,2 2 1 ,1 1

∑ + − + − + − + − = ∑ + −∩ = ⊆ → → ∩ = ⊆β r p r p β r r p r r p α w r p w r p r r p p r) (lim )[(1 ) (1 ) ] (lim )[(1 ) (1 ) ] [(1 )B C θ B C B C β θ θ α θ θ B C θ B C B C, , Θ 1 ,1 2 ,2 1 1 2 ,2 2 1 ,1 0 1 2 ,2 2 1 ,1 1 2 , , Θ ,1 ,2 1

+ −r p r r p(1 ) ]θ θ2 ,2 2 1 ,1 . Let =∼nθ e, (2) ∑ + − + −∩ = ⊆r r p p r r p r r p[(1 ) (1 ) ]B C θ B C B C θ θ1 2 , , Θ ,1 ,2 1 2 ,2 2 1 ,1 . Thus when the coefficient for subjective fusion →α 0, there

is = = = = =→ → ∑ → → ∑ → → ∑ ∑ ∑
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∼

∼
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∼
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∼
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∼

∼
⊆ ⊆ ⊆
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Θ 0, 1 , (2)

, (2)

Θ , (2)
.□

A.8. Proof of Corollary 2

Proof. As shown in the proof of Corollary 1, there is =∼ ∼m βN ,θ e θ e, (2) , (2) = ∑ + −∼
∩ = ⊆N β r p r p β r r p[ (1 )θ e B C θ B C B C θ, (2) , , Θ 1 ,1 2 ,2 1 2 ,2+ − +β r r p(1 ) ]θ2 1 ,1

− + −α w r p α w r p[ (1 ) (1 ) ]θ θ1 2 ,2 2 1 ,1 . Since + =α β 1 and >α β, 0, there is →α 1 when →β 0. =∼
→ → Nlimα β θ e1, 0 , (2)

∑ + − + − + − + − = ∑ +→ → ∩ = ⊆ → ∩ = ⊆β r p r p β r r p β r r p α w r p α w r p β r p r plim { [ (1 ) (1 ) ] [ (1 ) (1 ) ]} (lim )α β B C θ B C B C θ θ θ θ β B C θ B C B C1, 0 , , Θ 1 ,1 2 ,2 1 2 ,2 2 1 ,1 1 2 ,2 2 1 ,1 0 , , Θ 1 ,1 2 ,2
− + − + − + − = − + −→ →β r r p r r p α w r p w r p w r p w r p(lim )[(1 ) (1 ) ] (lim )[(1 ) (1 ) ] (1 ) (1 )β θ θ α θ θ θ θ0 1 2 ,2 2 1 ,1 1 1 2 ,2 2 1 ,1 1 2 ,2 2 1 ,1. Let = − + −∼n w r p w r p(1 ) (1 )θ e θ θ, (2) 1 2 ,2 2 1 ,1.

Thus when the coefficient for subjective fusion →β 0, there is = = =→ → ∑ → → ∑
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. □
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A.9. Proof of Corollary 3

Proof. Since + =α β 1 and >α β, 0, there is →α 0 when →β 1. For =i 2, take = = = = −n n r p n n r, 1θ e θ θ P e P, (1) ,1 1 ,1 (Θ), (1) (Θ),1 1, and =n r pθ θ,2 2 ,2 into
Eq. (15b), we have = ∑ + − + = ∑ + − + −∼

∩ = ⊆ ∩ = ⊆n n n r n n n r p r p r r p r r p[(1 ) ] [(1 ) (1 ) ]θ e B C θ B C B e C θ e P e θ B C θ B C B C θ θ, (2) , , Θ , (1) ,2 2 , (1) (Θ), (1) ,2 , , Θ 1 ,1 2 ,2 2 1 ,1 1 2 ,2 . This is
consistent with Eq. (16b) in Corollary 1. From Eq. (13c), when →α 0 and →β 1 there is

= − + − = − + − = − + − − + − = − −∼
→ → → → → →m α w β r m α w β r m α w β r α w β r r rlim [ (1 ) (1 )] lim [ (1 ) (1 )] lim [ (1 ) (1 )][ (1 ) (1 )] (1 )(1 )P e α β P e α β P α β(Θ), (2) 0, 1 2 2 (Θ), (1) 0, 1 2 2 (Θ),1 0, 1 2 2 1 1 1 2

. This is consistent with Eq. (17c) as = − = − = − −∼n r n r n r r(1 ) (1 ) (1 )(1 )P e P e P(Θ), (2) 2 (Θ), (1) 2 (Θ),1 1 2 . From Eq. (13d), when →α 0 and →β 1 there is
= + − = + − =∼

∅ → → ∅ ∅ → →m αw m αw m αw αw α w wlim [ ] lim [ ] 0P e α β P e P e α β( ), (2) 0, 1 2 ( ), (1) 2 ( ), (1) 0, 1 2 1
2

1 2 . So here we get =mθ e, (2)
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. Without loss of generality, =∼

→ → ∅mlim 0α β P e0, 1 ( ), (2) is omitted in this corollary.

Suppose for =i i, Eqs. (17a)–(17c) are true when →α 0 and →β 1. As presented in Corollary 1, Eq. (17b) is true in this situation means

= ∼∼
→ → m nlimα β θ e i θ e i0, 1 , ( ) , ( ) for ⊆θ Θ and = =→ → → → ∑ ∑
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. Eq. (17c) is true means = ∼∼

→ → m nlimα β P e i P e i0, 1 (Θ), ( ) (Θ), ( ),

Eq. (17a) is true means = =∼∼
→ → ∅ ∅m nlim 0α β P e i P e i0, 1 ( ), ( ) ( ), ( ) . So we get ∑ + + = ∑ +∼ ∼∼ ∼ ∼
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= +i i 1, when →α 0 and →β 1 there is = ∑ + + =∼
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. □

A.10. Proof of Corollary 4

Proof. Since + =α β 1 and >α β, 0, there is →β 0 when →α 1. For =i 2, take = = = = −n n r p n n w, 1θ e θ θ P e P, (1) ,1 1 ,1 (Θ), (1) (Θ),1 1, and =n r pθ θ,2 2 ,2 into
Eq. (16b), we have = − + = − + = − + −∼n w n n n w n n n w r p w r p(1 ) (1 ) (1 ) (1 )θ e θ e P e θ θ P θ θ θ, (2) 2 , (1) (Θ), (1) ,2 2 ,1 (Θ),1 ,2 1 2 ,2 2 1 ,1. This is consistent with Eq. (16c) in
Corollary 2. From Eq. (13c), when →α 1 and →β 0 there is =∼mP e(Θ), (2) −→ → α wlim [ (1 )α β1, 0 2
+ − = − + − = − + − − + − = − −→ → → →β r m α w β r m α w β r α w β r w w(1 )] lim [ (1 ) (1 )] lim [ (1 ) (1 )][ (1 ) (1 )] (1 )(1 )P e α β P α β2 (Θ), (1) 1, 0 2 2 (Θ),1 1, 0 2 2 1 1 1 2 . This is
consistent with Eq. (18b) as = − = − = − −∼n w n w n w w(1 ) (1 ) (1 )(1 )P e P e P(Θ), (2) 2 (Θ), (1) 2 (Θ),1 2 1 . From Eq. (13d), when →α 1 and →β 0 there
is = + − = + − = + −∼
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for ⊆ ∅θ P PΘ, ( ), (Θ). From Eqs. (3), (13a) and (13b), we know∼mθ e i, ( )

is a function of β, so also let =∼ ∼m βNθ e i θ e i, ( ) , ( ) as in Corollary 2. Suppose for =i i, Eqs. (18a)–(18c) are true when →α 1 and →β 0. As presented in
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