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Abstract

In this paper, we proposed a notion of belief universal gravitation (BUG) in the Dempster-
Shafer (D-S) evidence theory, of which the notion of mass of a belief function is newly
addressed using evidence quality coding (EQC) method. The proposed BUG aims to
discuss the process of information fusion from the perspective of Newton’s mechanics,
which may provide us a new insight to address the issues of D-S evidence theory. A key
issue in D-S evidence theory, i.e., conflict management, is solved better than previous
methods using the proposed BUG. An application in fault diagnosis is used to illus-
trate the effectiveness of the proposed BUG. Some further work is also summarized to
present the potentials of the proposed BUG.

Keywords: Information fusion, Dempster-Shafer evidence theory, Belief universal
gravitation, Evidence quality coding algorithm, Conflict management, Fault diagnosis.

1. Introduction

Dempster-Shafer (D-S) evidence theory was first proposed by Dempster and then
further developed by his student Shafer [1, 2]. In the 1970s and 1980s, D-S evidence
theory was introduced into the field of artificial intelligence [3]. Like fuzzy sets [4, 5],
rough sets [6, 7], Z-number [8, 9, 10], belief structures [11], D numbers [12, 13, 14],
soft likelihood functions (SLF) [15, 16, 17], belief entropy [18, 19] and belief function
[20] as an uncertainty reasoning method, D-S evidence theory provides a powerful
tool for the representation and fusion of decision-level uncertainty information. Up to
now, D-S evidence theory has been widely used in information fusion [21, 22], fault
diagnosis [23], decision analysis [24, 25], and so on, due to its advantages in dealing
with uncertain information.

In particular, Dempster’s combination rule is the core part in evidence theory, which
is used to fuse evidence information from multiple independent sources. However, the
founder of fuzzy mathematics Zadeh found through a counter-example: when using
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it to combine conflicting evidence, the result is contrary to human intuition [26]. For
a deeper understanding, we briefly review this example. From Definition 5, it can be
clearly observed that there is a clear conflict between the evidence m1 and m2. The
reason is as follows:

• Proposition A is strongly supported by the m1, but completely denied by the m2.

• Proposition C is strongly supported by the m2, but completely denied by the m1.

Then the Dempster’s combination rule was used to fuse the two pieces of evidence m1
and m2, and the fusion result was completely positive for proposition B, which was low
in support of original evidence m1 and m2. Obviously, this was not intuitive for human
beings, and the fusion result was not convincing.

Since then, more and more scholars have questioned the validity of Dempster’s
combination rules. The research on the conflict between evidences has always been a
hot topic in D-S evidence theory. Generally speaking, there are two ways to deal with
conflict information. The first way is to modify the combination rule of the classical
D-S evidence theory to adapt to the environment of high conflict, that is, to modify
the rule. The second idea is to keep the combination rule of the classical evidence
theory and preprocess the conflict evidence before fusion. In other words, this type of
method is to modify the data model. Where, the viewpoint of modifying rule can be
summarized as follows. Conflict management is a key problem to improve and develop
evidential reasoning. The use of Dempster’s combination rule under high conflict of
evidence will produce unreasonable conclusions, which is generated by the normaliza-
tion step of the rule, so it is necessary to modify Dempster’s combination rule. The
new combination rule needs to focus on how to redistribute conflicts. The representa-
tive of this school is the ”Unified reliability function combination method” proposed
by Lefevre et al. [27]. Other methods under this thinking include: Yager [28, 29], In-
agaki [30] et al. introduced the method of average support for propositions, Sun et al.
[31], Zhang’s method [32], the conditions of Dempster’s combination rules [33], the
combination rule of minC proposed by Dinael et al. [34] refined allocation space and
local conflicts and proposed the concept of potential conflicts, Smardndache et al. [35]
proposed the conflict proportional allocation rule PCR3 and Ma et al. [36] recently
proposed the flexible combination rule based on the complete conflict set, and so on.
Unlike the first class of methods for modifying combination rule, the second class of
methods is based on modifying the original evidence source. The view of this class
of methods is that Dempster’s combination rules are not inherently wrong. When the
evidence is highly conflicted, the conflict evidence should be preprocessed first, and
then the Dempster’s combination rule should be used. Such methods are represent-
ed by Haenni et al. [37]. Other typical methods include Murphy’s simple arithmetic
average method [38], Deng et al.’s weighted average method [39], et al [40, 41]. For
now, researchers lean toward Haenni’s point of view, and papers that modify data mod-
els dominate. In particular, Liu [42] comprehensively considered the applicability of
Dempster’s combination rule in the case of conflict, proposed the method of using bina-
ry groups of k and di f BetP to describe the conflict, and proposed the proposal of using
Demspster’s combination rule in the authoritative journal Arti f icial Intelligence. So
far, research on conflicts in evidence theory continues [43, 44, 45].
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Above, we briefly reviewed the development history and current status of D-S evi-
dence. Since the proposed method is based on the theory of gravitation, it is necessary
to introduce some basic knowledge related to the theory in the following paragraphs.

The law of gravitation was first proposed by Newton in the book ”Mathematical
Principles of Natural Philosophy” published in 1687 [46]. The law of gravitation be-
longs to the laws of natural science. It shows that any two objects in nature are attracted
to each other. The magnitude of gravity is proportional to the product of the masses
of two objects and inversely proportional to the square of the distance between them
[46]. Subsequently, the law of gravitation has been widely developed and applied in
the field of natural science. In recent years, some scholars have proposed a population
optimization algorithm based on the idea of the law of gravitation [47], while others
have developed a gravitational search algorithm [48], and so on. This novel algorithm
combining physical meaning has attracted the attention of many scholars immediately.
Since then, more and more scholars have tried to apply gravitation to relevant scien-
tific research fields. Therefore, studies based on gravity have been further developed
[49, 50, 51].

Based on the above discussion and knowledge background, inspired by Newton’s
law of gravitation, in this paper, for the first time, we creatively proposed the belief
universal gravitation (BUG) in D-S evidence theory. First, we believed that the essence
of evidence information fusion is affected by some potential force. If certain conditions
are met, the evidence will be fused. Secondly, in order to quantify the degree of force
between the evidences, we proposed the theory of belief universal gravitation (BUG).
Among them, the BUG formula is the core part of the theory. The details about it are
expressed as follows.

• The evidence obtained by the sensor is abstracted into the quality of logical evi-
dence. The proposed evidence quality coding (EQC) algorithm is used to obtain
the quality of evidence for each independent source.

• The evidence distance [52] is used to indicate the spatial distance between two
pieces of evidence.

• The evidence gravity parameter GET is used to distinguish the different discern-
ment frameworks in the system where the same evidence gravity is located.

In addition, by proof, the BUG formula satisfies some basic properties. The relation-
ship between it and other variables is further explained through simulation experiment.
Thirdly, based on the BUG theory, we modeled the essence of information fusion. In
addition, combined with the clear physical meaning of the BUG formula, we studied
its effect in conflict management. Finally, application illustrates the superiority and
prospects of the proposed method.

The organizational structure of this paper is as follows. Section 2 introduces some
background knowledge required for this paper. In Section 3, the BUG theory is pro-
posed, and some basic properties of the BUG formula are proved. In Section 4, a nu-
merical example is used to model the essence of information fusion in evidence theory.
Section 5 illustrates the nature of the proposed method through simulation experiment.
In Section 6, the proposed BUG formula is used for the measurement of conflict, and
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the potential of the proposed method is illustrated by comparison. Section 7 shows the
application value of the proposed method through the application of fault diagnosis.
Section 8 summarizes and discusses the work done in this paper.

2. Preliminaries

In this section, we briefly review some basic concepts, including D-S evidence
theory, evidence distance, and law of gravitation.

2.1. Dempster-Shafer evidence theory
2.1.1. Frame of discernment
Definition 1. Let Θ be a set of mutually exclusive and collectively exhaustive events
defined by [1, 2]

Θ = {θ1, θ2, · · · , θn} (1)

where the set Θ is called the frame of discernment.
The 2Θ is the Θ power set, which is expressed as

2Θ = {∅, {θ1} , · · · {θN} , {θ1, θ2} , · · · {θ1, θ2, · · · , θi} , · · · ,Θ} (2)

and ∅ is an empty set.
If A ∈ 2Θ, A is called a hypothesis or proposition.

2.1.2. Mass function
Definition 2. For a frame of discernmentΘ, a mass function is expressed as a mapping,
i.e., from 2Θ to [0, 1], formally defined by [1, 2]

m : 2Θ → [0, 1] (3)

which satisfies the following two attributes

m (∅) = 0 and
∑
θ⊆Θ

m (θ) = 1 (4)

In D-S evidence theory, m is also called a Basic Probability Assignment (BPA).
For exmaple, m(A) is BPA of A, which accurately reflects the extent to which A is
supported. If m(A) > 0, A is a focal element of the mass function.

2.1.3. Belief and plausibility functions
Definition 3. From this BPA, a belief function Bel and a plausibility function Pl are
defined, respectively, as [1, 2]

Bel(A) =
∑
B⊆A

m(B) (5)

and
Pl(A) = 1 − Bel(Ā) =

∑
A
∩

B=∅
m(B) (6)
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where Ā = Θ − A, Bel : 2Θ → [0, 1] and Pl : 2Θ → [0, 1].

The relationship between Pl function and Bel function is shown in Fig.1.

Min belief level of A Max belief level of A
Bel(A) The level of ignorance in A

Pl(A)

1

0

Bel(A)

Figure 1: The relationship between Pl and Bel.

In Fig.1, the quantity Bel(A) can be interpreted as a measure of one’s belief that
hypothesis A is true. The plausibility Pl(A) can be viewed as the total amount of be-
lief that could be potentially placed in A. The [Bel(A), Pl(A)] indicates the uncertain
interval for A.

2.1.4. Dempster’s combination rule
The Dempster’s combination rule has been widely used to combine multiple inde-

pendent evidence, and its definition is as follows.

Definition 4. Suppose the two evidence functions m1 and m2 are on the discernmen-
t frame Θ, and then the Dempster’s combination rule can be defined as follows (⊕
represents the orthogonal summation operation.) [1, 2]

[m1 ⊕ m2] (θ) =

0 θ = ∅∑
A1∩A2=θ

m1(A1)m2(A2)

1−k θ , ∅
(7)

where the conflict coefficient k is defined as follows

k =
∑

A1∩A2=∅
m1(A1)m2(A2) (8)

Notably, Dempster’s combination rule is useful only under the condition that k < 1.

2.2. Zadeh’s counter-example

Definition 5. Suppose m1 and m2 are two BPAs defined on a frame of discernment
Θ = {A, B,C} with [26]

m1 : m1(A) = 0.99,m1(B) = 0.01,m1(C) = 0

m2 : m2(A) = 0,m2(B) = 0.01,m2(C) = 0.99

5



Then using Dempster’s combination rule, the fusion result of proposition B is

m⊕{m1,m2} ({B}) =

∑
X∩Y=B

m1(X)m2(Y)

1 − ∑
X∩Y=∅

m1(X)m2(Y)

=
m1 ({B}) m2 ({B})

1 − (m1 ({A})) m2 ({B} + m1 ({A1}) m2 ({C}) + m1 ({B}) m2 ({C}))

=
0.01 × 0.01

1 − (0.99 × 0.99 + 0.99 × 0.01 + 0.01 × 0.99)
= 1

2.3. Evidence distance

Jousselme et al. [52] proposed a distance measure for belief functions, the evidence
distance is defined as follows.

Definition 6. Let m1 and m2 be two BPAs on the same discernment frame Θ, and the
distance between m1 and m2 is defined as follows [52]

d(m1,m2) =

√√√√1
2

∑
∅,A1⊆Θ
∅,A2⊆Θ

|A1 ∩ A2|
|A1 ∪ A2|

(m1(A1) − m2(A1))(m1(A2) − m2(A2)) (9)

Definition 7. A metric distance defined on the set ℜ is a function. Evidence distance
d satisfies the following conditions [52]{

δ × δ→ℜ
(A, B)→ d(A, B) (10)

which meets the following requirements for any of A and B inℜ:

(1) Nonnegativity: d(A,B)> 0

(2) Nondegeneracy: d(A,B)= 0⇔ A=B

(3) Symmetry: d(A,B)=d(B,A)

(4) Triangle inequality: d(A,B)≤ d(A,C)+d(C,B) and any C ∈ δ

2.4. Law of gravitation

Definition 8. Let F be the magnitude of the gravitational attraction on the object, G
be the universal gravitational constant, M1and M2 be the masses of any two objects
attracted to each other, and R be the distance between the two objects. And then, the
formula for gravitation is defined as [46]

F = G
M1M2

R2 (11)
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From Eq.(11), we can know that the law of gravitation is expressed as follows.
Any two objects in nature are attracted to each other, and the magnitude of gravity is
proportional to the mass product of the two objects, and inversely proportional to the
square of their distance.

3. Proposed the theory of belief universal gravitation

In this section, inspired by Newton’s theory of gravitation, based on evidence dis-
tance, we creatively present a novel BUG within the framework of evidence theory.

3.1. Proposed the evidence quality coding algorithm

In order to characterize the quality of evidence obtained from evidence sources,
in this subsection, we propose the EQC algorithm to generate evidence quality. The
introduction to the method is shown below.

Assumption 3.1. Assume that m1 and m2 are two pieces of evidence defined on the same
discernment frame Θ = {A1, A2, A3}, and their BPAs are shown below

m1 : m1(A1) = ϑ1, m1(A2) = ϑ2, m1(A3) = ϑ3

m2 : m2(A1) = φ1, m2(A2) = φ2, m2(A3) = φ3

where ϑ1 , 0, ϑ2 , 0, ϑ3 , 0, φ1 , 0, φ2 , 0 and φ3 , 0.

Step 1: Assign each BPA a binary code. Each BPA was assigned a binary code based
on the order of propositions in the discernment frame. The coding principle is as
follows: for each BPA, the corresponding bit of the proposition in the discern-
ment framework is labeled 1 and the rest is labeled 0. The binary code of m2 is
shown below

m1(A1)→ 100,m1(A2)→ 010,m1(A3)→ 001

Similarly, the binary code of m2 is as is represented as follows

m2(A1)→ 100,m2(A2)→ 010,m2(A3)→ 001

Step 2: Convert the binary encoding of each BPA to decimal. So, m1 is converted as
follows

m1(A1)→ 4,m1(A2)→ 2,m1(A3)→ 1

Similarly, m2 is converted as follows

m2(A1)→ 4,m2(A2)→ 2,m2(A3)→ 1
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Step 3: Generate the quality of each piece of evidence. The quality of the evidence m1
is as follows

Mm1 =
4 × ϑ1 + 2 × ϑ2 + 1 × ϑ3

n
=

4 × ϑ1 + 2 × ϑ2 + 1 × ϑ3

3

Similarly, the quality of the evidence m2 is as follows

Mm2 =
4 × φ1 + 2 × φ2 + 1 × φ3

n
=

4 × φ1 + 2 × φ2 + 1 × φ3

3

where n is the number of focus elements in BPAs.

3.2. Proposed the formula for belief universal gravitation

In the previous subsection, we described the process of generating evidence quality
using the proposed EQC algorithm through a model. In this subsection, based on the
evidence quality, and the evidence distance, we propose a new BUG formula. The
formula is defined as follows.

Definition 9. Let m1 and m2 be two separate and different evidences on the same
discernment frame Θ. The BUG formula is defined as

FBPA = GET
Mm1 Mm2

d2 (12)

where the GET is defined as
GET = 10−δ|Θ| (13)

with
0 6 δ 6 1 (14)

In Eq.(12), Mm1 and Mm2 represent the quality of the evidence m1 and m2 generated
using the proposed EQC algorithm. d represents the distance between evidence from
two independent sources. GET is the evidence gravitation parameter used to distinguish
different discernment frames. Where δ is an adjustable parameter that satisfies the
constraint of Eq.(14). It is used to dynamically adjust the size of the BUG in a system,
so that the BUG can be observed more clearly. Simultaneously, it is important to note
that the value of δ in different BUG formulas must be consistent in a definite system
(the definite system represents the same environment in which the belief gravitation is
used, including the time environment and the space environment.).

The physical meaning of the BUG formula is as follows. FBPA represents the grav-
itation between two different evidences m1 and m2. As can be seen from the Eq.(12),
in a definite system, for two different evidences on the same discernment frame, the
BUG is proportional to the product of their quality and inversely proportional to the
square of the distance between them. Taking this one step further, the smaller the dif-
ference between the two pieces of evidence, the greater the gravitation between them.
Conversely, the greater the difference between the two pieces of evidence, or even the
conflict, the smaller the gravitation between them.
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3.3. Basic properties of the proposed belief universal gravitation formula

In this subsection, we discuss and demonstrate some of the basic properties that are
satisfied by the BUG formula.

Assumption 3.2. Assume m1 and m2 are two different pieces of evidence on the same
discernment frame Θ. In a definite system, FBPA is the gravitational pull between
evidence m1 and m2, Mm1 and Mm2 are the quality of the evidence m1 and m2 generated
using the proposed EQC algorithm, and GET is the evidence gravitation parameter.

The BUG formula has the following properties.

(i) Non-negative

Proof. First, from Eq.(9), it can be known that the evidence distance d > 0,
clearly, d2 > 0. Secondly, through Eq.(13), we can know that Ge > 0. Finally,
it can be seen from the subsection 3.1 that the quality of evidence generated by
EQC algorithm is non-negative, i.e., Mm1 and Mm2 > 0. Based on the above and
the Eq.(12), we can observe that FBPA is non-negative.

(ii) Symmetry

Proof. In Definition 9, the value of δ is determined because of the BUG in a sys-
tem defined. Based on this, since m1 and m2 are on the same discernment frame,
the value of GET is determined. According to the evidence distance symmetry
property (see Definition 7), i.e., d(A, B) = d(B, A). In Eq.(12), Mm1 Mm2 is the
product of the masses of evidence m1 and m2, hence, which also has symmetry.
In general , the BUG formula has a symmetry, i.e., FBPA(A, B) = FBPA(B, A).

(iii) Unbounded

Proof. Since the BUG is in a definite system, the value of δ is defined. As can
be seen from the Eq.(12), the FBPA is proportional to the product of the mass
of evidence m1 and m2, and inversely proportional to the number of discernment
frame |Θ| and the evidence distance d. It can be seen from Definitions 6 and 7
that the evidence distance d is the scale to measure the difference of evidence, and
its value is between 0 and 1. When the discernment frame is infinite, the value
of evidence quality will increase exponentially due to the binary encoding used
in EQC algorithm. Even if the evidence gravitation parameter GET weakens the
value of BUG to some extent, the value of BUG will approach infinity with the
infinite expansion of discernment frame elements.
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4. Model the essence of information fusion

In this section, through an example, we use BUG to model the essence of multi-
sensor data information fusion in evidence theory.

Example 4.1. Suppose the discernment frame is Θ = {A1, A2, A3}. At T = 0s, sensor 1,
sensor 2, and sensor 3 obtained three pieces of evidence, namely m1, m2, m3, respec-
tively. After that, evidence m4, m5 were obtained by sensor 4 and sensor 5 at T = 5s,
T = 10s respectively. Their BPAs are shown in Table 1.

Table 1: The initial evidences obtained by the sensors.

Time Sensor m({A1}) m({A2}) m({A3})

T = 0s S 1 : m1(·) 0.99 0.01 0

T = 0s S 2 : m2(·) 0 0.01 0.99

T = 0s S 3 : m3(·) 0.97 0.03 0

T = 5s S 4 : m4(·) 0.95 0.05 0

T = 10s S 5 : m5(·) 0.94 0.06 0

Obviously, the evidence m2 is a piece of conflict evidence because other evidence
supports the proposition A1 very high, while evidence m2 has no probability support
for it at all. Under the proposed BUG, the fusion results of these five pieces of different
evidence information are shown in Fig.2.
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Notes:    indicates a large BUG, which will cause the evidence to be fused.  

indicates a small BUG, which will not cause the evidence to be fused.

 indicates a conflict.

Free State: Not subject to BUG

BUG system

Figure 2: Information fusion modeling of five different evidences based on BUG.
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In Fig.2, Fig.(a) shows five pieces of evidence information in the free state. It can be
observed that when T = 10s, that is, all evidences are obtained, they are also scattered
and have no relevance. In this case, information fusion is a simple combination of the
five pieces of evidence information. However, the fusion results are not conducive to
the final decision, because there is interference information m2. If the BUG system is
considered, then at each phase of obtaining the evidence, the evidence will gradually
merge the potentially fused evidence information under the force of the BUG. In this
system, the quality of each piece of evidence information, the distance between them
and the size of the BUG between them are different.

In phase 1 (T = 0s), for the three pieces of evidence obtained initially, it is clear that
m2 is a piece of highly conflicting evidence information. Based on the proposed EQC
algorithm, the quality of m2 is relatively small compared to the other two evidences;
based on the evidence distance, the distance between m1 and m3 is also the closest, as
shown in Fig.(b). After that, we assume that under the action of BUG, m1 and m3 are
fused to form a new evidence information M′. Because of the increase of proposition
reliability, its quality also becomes larger than the initial evidence m1 and m3. At this
time, there is still a conflict between m2 and M′, and the BUG between them is not
enough to make the two fuse with each other, as shown in Fig.(c). In phase 2 (T = 5s),
when the evidence m4 is added to this system, the force relationship under the action
of BUG is shown in Fig.(d). At this time, m2 is still a piece of conflicting evidence.
The difference is that the distance between M′ and m4 increases due to the increased
reliability of M′ for the proposition, but the BUG between them is still relatively large.
After that, m4 and M′ are fused under the action of BUG to form new evidence M′′, as
shown in Fig.(e). Similarly, in phase 3 (T = 10s), Fig.(f) shows the force relationship
diagram after the evidence m5 is added, and Fig.(g) shows the final state of the system
under the action of BUG. On the whole, as the newly formed evidence M′, M′′ and
M′′′ support for propositions increase, their quality also increases. At the same time,
the distances between 1 and m3, m4 and M′, and m5 and M′′ also gradually increase
due to changes in reliability.

Based on the concept of the proposed BUG, in this section we discuss the physical
significance of evidence information fusion by multi-source sensors in evidence theory.
This provides a new idea for information fusion.

5. Simulation experiment

In this section, the relationship between BUG and other parameter variables is fur-
ther discussed through simulation experiments.

Example 5.1. Suppose there are 20 elements in the discernment frame Θ, such as Θ =
{1, 2, 3, · · · , 20}. The BPAs of two different evidences m1 and m2 are defined as follows:

m1 : m1(2, 3, 4) = 0.05,m1(7) = 0.05,m1(Θ) = 0.1,m1(A) = 0.8
m2 : m2(1, 2, 3, 4, 5) = 1

Here, assuming that A is not a set of constants, it can be changed by discernment
frame. It starts at 1 and ends at 20, increasing by an order of magnitude each time.
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Then, we record the data of the mass of evidence m1 and m2, the square of the distance
of evidence d2, and the change of the BUG in Table 2.

Table 2: The change data of the parameters in the BUG formula.

A GET Mm1 Mm2 d2 FBPA

{1} 10−10 136,908.775 1,015,808 0.6175 22.5226

{1, 2} 10−10 189,337.575 1,015,808 0.4714 40.7982

{1, 2, 3} 10−10 215,551.975 1,015,808 0.3255 67.2748

{1, 2, 3, 4} 10−10 228,659.175 1,015,808 0.1795 129.3848

{1, 2, 3, 4, 5} 10−10 235,212.775 1,015,808 0.0175 1365.1000

{1, 2, · · · , 6} 10−10 238,489.575 1,015,808 0.1509 160.5915

{1, 2, · · · , 7} 10−10 240,127.975 1,015,808 0.2529 96.4475

{1, 2, · · · , 8} 10−10 240,947.175 1,015,808 0.3255 75.2007

{1, 2, · · · , 9} 10−10 241,356.775 1,015,808 0.3828 64.0488

{1, 2, · · · , 10} 10−10 241,561.575 1,015,808 0.4295 57.1251

{1, 2, · · · , 11} 10−10 241,663.975 1,015,808 0.4684 52.4087

{1, 2, · · · , 12} 10−10 241,715.175 1,015,808 0.5015 48.9557

{1, 2, · · · , 13} 10−10 241,740.775 1,015,808 0.5301 46.3212

{1, 2, · · · , 14} 10−10 241,753.575 1,015,808 0.5552 44.2339

{1, 2, · · · , 15} 10−10 241,759.975 1,015,808 0.5774 42.5288

{1, 2, · · · , 16} 10−10 241,763.175 1,015,808 0.5975 41.1001

{1, 2, · · · , 17} 10−10 241,764.775 1,015,808 0.6156 39.8940

{1, 2, · · · , 18} 10−10 241,765.575 1,015,808 0.6322 38.8475

{1, 2, · · · , 19} 10−10 241,765.975 1,015,808 0.6474 37.9356

{1, 2, · · · , 20} 10−10 241,766.175 1,015,808 0.6615 37.1283

1 In this system, set the value of the adjustable parameter δ to 1/2.

It can be seen from Table 2 that with the increase of the number of propositions
in set A, the evidence quality of m1, i.e., the value of Mm1 increases gradually. Since
the number of propositions in m2 remains the same, hence, Mm2 is a constant. Further
more, the relationships between d2 and the size of set A, FBPA and the size of set A are

13



shown in Fig.3 and Fig.4, respectively.
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Figure 3: The trend of d2 with respect to |A|.
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Figure 4: The trend of FBPA with respect to |A|.

From Fig.3, we can see that the square of the evidence distance d2 has the oppo-
site trend of the FBPA with the increase of the number of propositions in set A. More
specifically, when set A approaches set {1, 2, 3, 4, 5}, the value of d2 tend to be the low-
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est. Conversely, when the value of set A deviates from the set {1, 2, 3, 4, 5}, the value
of FBPA increases. Especially, d2 shows a decreasing trend until the size of set A is 5.
When the size of set A is 5, that is, A = {1, 2, 3, 4, 5}, d2 reaches the minimum value.
And then, as the size of set A increases, d2 increases, but it’s less than 1. It can be seen
from Definition 6 that evidence distance d is used to express the similarity between
evidences. When the size of set A is 5, that is, A = {1, 2, 3, 4, 5}, m1 and m2 have the
greatest similarity, that is, d is the smallest, so d2 is the smallest. After that, the number
of propositions in set A increases, so does the difference between m1 and m2, so d2

increases. In addition, from Fig.4, we can also observe that when the value of set A
is 5, that is, A = {1, 2, 3, 4, 5}, FBPA reaches the maximum value. In combination with
the physical significance of the BUG, the difference between evidence m1 and m2 is the
smallest, that is, evidence distance d is the smallest. In other words, the similarity be-
tween evidence m1 and m2 is the highest. Therefore, the universal gravitation generated
by m1 and m2 is maximized. Thereafter, as the size of set A increases, the similarity
between m1 and m2 gradually decreases, and the value of the BUG also decreases.

To sum up, through the experimental simulation, we further clarify the relationship
between the BUG and its parameters. We can conclude that, in a system, and given
the discernment frame, the BUG is inversely proportional to the square of the evidence
distance. In other words, when the distance between two pieces of evidence is smaller,
at this point, the BUG is greater, the more attractive the two pieces of evidence are to
each other.

6. Conflict management based on the proposed belief universal gravitation

How to manage conflicts in D-S evidence theory is a difficult and challenging prob-
lem. More crucially, in the management of conflict evidence, how to describe the sim-
ilarity between the evidence is a key and important problem. In this section, based on
the proposed BUG formula and its physical significance, here we creatively use it to
describe the similarity between evidence.

Before comparing the proposed approach with the others, let’s briefly review some
of the work of some scholars on conflict management in the DST. In [52], Jousselme
et al. proposed a distance measure for belief function. In [1], the conflict coefficient k
was first used to represent the degree of conflict between evidences. However, in [42],
Liu pointed out that the k doesn’t effectively measure the conflict between two pieces
of evidence. A two-dimensional conflict model is then proposed, where the pignistic
probability distance [53] and the conflict coefficient k are united to represent the degree
of conflict. After that, Daniel [54] defined the plausibility conflict between BPAs.
Lefevre and Elouedi [55] put forward a novel called the Combination With Adapted
Conflict (CWAC) rule. This rule provided an adaptive weighting between Dempster’s
rule and conjunctive rule based on Jousselme et al.’s evidence distance. Ma and An [56]
considered a method to combine conflict evidence with a probabilistic dissimilarity
measure. Song et al. [57] studied the correlation coefficient for the relativity between
two BPAs and used it to measure the conflict. Since then, to measure the correlation
degree between the two pieces of evidence, Jiang [58] considered a new correlation
coefficient that takes into account both the non-intersection and the difference between
the focus elements. Recently, a new belief entropy is presented as Deng entropy [59,
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60]. Inspired by Deng entropy, Pan et al. [61] proposed a novel association coefficient
of belief functions to measure conflicts between evidences.

Here we use the Example 5.1 in Section 5 to compare the degree of conflict between
the two groups of BPA with the above-mentioned different methods. The results are
shown in Table 3 and Fig.5.
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Figure 5: Comparison of conflicts between different parameter values

As shown in Fig.5, more specifically, the d and kr show a consistent trend for con-
flict measurement. When the size of set A approaches 5, the measurement value of
conflict is the lowest. When the size of set A deviates from 5, the conflicting measure-
ments increase. DisS im is not monotonic until the size of set A is 5, so it is not an
effective way to measure conflicts. CWAC is always kept at a low level, and it is insen-
sitive to the conflict change. The classical conflict coefficient k is always maintained at
0.5, which cannot distinguish the variation of evidence m1. The method of Pl C takes
A value of 0 when set A is 5, which is unacceptable. The kr method has between 0
and 5 elements in set A, which is more monotone. When the size of set A is 5, the
collision value is smaller than the above mentioned methods, which is reasonable. As
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Table 3: Comparisons of conflict degree.

A k[1] d[52] CWAC[55] DisS im[56] Pl C[54] kr[58] cBPA[61] FBPA

{1} 0.05 0.7858 0.0393 0.3710 0.05 0.7348 0.9555 0.0225

{1, 2} 0.05 0.6866 0.0343 0.4855 0.05 0.5483 0.8950 0.0408

{1, 2, 3} 0.05 0.5705 0.0285 0.3974 0.05 0.3690 0.7787 0.0673

{1, 2, 3, 4} 0.05 0.4237 0.0212 0.3644 0.05 0.1964 0.5292 0.1294

{1, 2, 3, 4, 5} 0.05 0.1323 0.0066 0.3375 0.05 0.0094 0.0302 1.3651

{1, 2, · · · , 6} 0.05 0.3884 0.0195 0.4188 0.05 0.1639 0.5133 0.1606

{1, 2, · · · , 7} 0.05 0.5029 0.0251 0.6000 0.05 0.2808 0.7511 0.0965

{1, 2, · · · , 8} 0.05 0.5705 0.0285 0.6497 0.05 0.3637 0.8691 0.0752

{1, 2, · · · , 9} 0.05 0.6187 0.0309 0.6884 0.05 0.4288 0.9278 0.0640

{1, 2, · · · , 10} 0.05 0.6554 0.0328 0.7194 0.05 0.4770 0.9571 0.0571

{1, 2, · · · , 11} 0.05 0.6844 0.0342 0.7448 0.05 0.5202 0.9717 0.0524

{1, 2, · · · , 12} 0.05 0.7082 0.0354 0.7660 0.05 0.5565 0.9790 0.0490

{1, 2, · · · , 13} 0.05 0.7281 0.0364 0.7839 0.05 0.5872 0.9827 0.0463

{1, 2, · · · , 14} 0.05 0.7451 0.0372 0.7992 0.05 0.6137 0.9845 0.0442

{1, 2, · · · , 15} 0.05 0.7599 0.0380 0.8126 0.05 0.6367 0.9855 0.0425

{1, 2, · · · , 16} 0.05 0.7730 0.0386 0.8242 0.05 0.6569 0.9860 0.0411

{1, 2, · · · , 17} 0.05 0.7846 0.0392 0.8345 0.05 0.6748 0.9863 0.0399

{1, 2, · · · , 18} 0.05 0.7951 0.0397 0.8438 0.05 0.6907 0.9866 0.0388

{1, 2, · · · , 19} 0.05 0.8046 0.0402 0.8519 0.05 0.7050 0.9869 0.0379

{1, 2, · · · , 20} 0.05 0.8133 0.0407 0.8389 0.05 0.7178 0.9875 0.0371

1 In this system, set the value of the adjustable parameter δ to 1/2.
2 In this example, in order to facilitate comparison with other methods, we reduce every

BUG in the same proportion (i.e., each BUG is divided by 1,000) without affecting the
properties of the BUG.
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an improved method based on Deng entropy, the change of cBPA is more significant
than that of kr. On the whole, with the increase of the number of elements in set A, the
proposed BUG changes in an opposite trend to other methods.

According to the physical meaning of the BUG discussed in subsection 3.2, it de-
scribes the magnitude of gravity between the two pieces of evidence. That is to say,
the more similar the two evidences support certain propositions, the larger the BUG.
Conversely, the greater the difference in support for certain propositions, the smaller
the BUG. In this example, although d, kr and cBPA can also represent the change of
conflict, it should be emphasized that the proposed method shows from a mechanical
point of view that the BUG can also well reflect the difference of conflict evidence.
Fig.5 graphically reflects this change trend. This also shows the potential of BUG for
conflict measurement.

7. Application in fault diagnosis

In industrial production, how to effectively integrate multi-source evidence to give
decision makers reasonable and accurate machine fault diagnosis results is a challeng-
ing problem. In this section, we demonstrate the superiority of the proposed method by
applying the BUG to actual fault diagnosis in [62]. A machine fault diagnosis model is
shown in Fig.6.
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Figure 6: Machine fault diagnosis diagram.
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7.1. Application background
In the case of motor rotor fault diagnosis, three kinds of sensors are used to collect

the feature information of acceleration, velocity and displacement. The data from these
sensors are turned into BPAs, which are listed as follow Table 4.

Table 4: The output of the multi-sensors.

mi A1 A2 A3 A4

m1 0.06 0.68 0.02 0.04

m2 0.02 0 0.79 0.05

m3 0.02 0.58 0.16 0.04

As shown in Table 4, m1, m2, and m3 represent evidence from acceleration sensors,
speed sensors, and displacement sensors, respectively. Motor rotors typically have four
states, A1 is normal operation, A1 is unbalance, A2 is misalignment, and A4 is pedestal
looseness. Then a discernment frame, i.e.,Θ = {A1, A2, A3, A4} is established. From the
information collected by the three acceleration sensors, it is clear that the information
obtained by the sensor m2 is conflicting because it does not support A2 misalignment,
which is highly supported by the sensor m1 and m3.

7.2. Fault diagnosis based on the proposed method
In order to fuse the information obtained by the three sensors, we adopt the method

proposed in [39]. Note that instead of using evidence distance to represent the sim-
ilarity between the evidence information obtained by the sensors, we use BUG. The
method is briefly expressed as follows.

Step 1: Construct a BUG matrix (BUGM), which reflects the degree of similarity be-
tween the two evidence bodies. Suppose there are n pieces of evidence, the
BUGM as follows:

BUGM =



ℑ FBPA(m1,m2) · · · FBPA(m1,m j) · · · FBPA(m1,mn)
...

...
...

...
...

...
FBPA(mi,m1) FBPA(mi,m2) · · · FBPA(mi,m j) · · · FBPA(mi,mn)

...
...

...
...

...
...

FBPA(mn,m1) FBPA(mn,m2) · · · FBPA(mn,m j) · · · ℑ


(15)

where FBPA(mi,m j) represents the gravitation between the evidence mi and m j,
and ℑ means not defined.

Step 2: Calculate the credibility of all evidence. The degree of support of the body of
evidence is expressed as follows:

S up(mi) =
n∑

j=1, j,i

FBPA(mi,m j) (16)
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and the credibility degree Crdi of the body of evidence mi is defined as:

Crdi =
S up(mi)

n∑
i=1

S up(mi)
(17)

Step 3: Get the average weight value of all evidence.

MAE(m) =
n∑

i=1

(Crdi × mi) (18)

Step 4: Use the Dempster’s combination rule Eq.(7) to fuse the average weight of the
evidence n − 1 times.

More specifically, in the concrete calculation process, using Eq.(17), the credibility
of the three pieces of evidence obtained is expressed as Crd1 = 0.4872, Crd2 = 0.1088,
Crd3 = 0.4041 respectively. Through Eq.(18), the average value of the three obtained
evidences is shown in Table 5.

Table 5: The averaged evidence.

m(A1) m(A2) m(A3) m(A4) m(Θ)

0.0395 0.5657 0.1604 0.0410 0.1934

Finally, the evidence was fused twice using the Dempster’s combination rule, and
then the final results are shown in Table 6.

Table 6: The final results after using Dempster’s combination rule.

m(A1) m(A2) m(A3) m(A4) m(Θ)

0.0111 0.8860 0.0763 0.0116 0.0149

7.3. Analysis and discussion

The outcome of a fault diagnosis depends on the probability of supporting a fault
event. In this paper, we set the threshold to 0.8 to make a decision. Table 7 shows the
initial diagnostic results of three different types of sensors. Table 8 and Fig.7 show the
fault diagnosis results after the fusion of fault evidences obtained from three sensors
by different methods.
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Table 7: The initial output of sensors and diagnosis results.

Sensor type A1 A2 A3 A4 Diagnosis result

Acceleration 0.06 0.68 0.02 0.04 uncertainty

Velocity 0.02 0 0.79 0.05 uncertainty

Displacement 0.02 0.58 0.16 0.04 uncertainty

By comparing the fault diagnosis results in Table 7 and Table 8, we can clearly see
the advantages of multi-source sensor data fusion. More specifically, in Table 7, if we
consider only one feature of the machine’s working state, it is difficult to make a correct
judgment decision. With a threshold of 0.8, these three single pieces of evidence show
that they present uncertain answers before the evidence is combined. In addition, how
to deal with the conflicts in the evidence combination is also very important. As shown
in Fig.7, if we use Dempster, Murphy and Deng et al.’s method to combine the evidence
obtained by the sensors, it is difficult for us to make a decision. Jiang’s method and
Xiao’s method can determine that the failut of the equipment is unbalance, while the
proposed method seems to make more accurate judgments.

Table 8: Comparisons of some existing methods.

Method A1 A2 A3 A4 Θ Diagnosis result

Dempster [1] 0.0205 0.5230 0.3933 0.0309 0.0324 uncertainty
Murphy [38] 0.0112 0.6059 0.3508 0.0153 0.0168 uncertainty

Deng et al. [39] 0.0110 0.7730 0.1856 0.0139 0.0165 uncertainty
Jiang [58] 0.0108 0.8063 0.1534 0.0134 0.0162 unbalance
Xiao [63] 0.0146 0.8184 0.1021 0.0187 0.0462 unbalance
Proposed 0.0111 0.8860 0.0763 0.0116 0.0149 unbalance

1 In this system, set the value of the adjustable parameter δ to 1/4.
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Figure 7: The results of comparison with some existing methods.

To sum up, the example verifies the validity and superiority of BUG in the case of
conflict and shows the potential application prospect of proposed method.

8. Conclusion and discussion

In this paper, a new concept of BUG is proposed in the evidence theory system.
Overall, the contributions of this paper are as follows. First of all, to the best our
knowledge, this is the first time to introduce the law of gravity from natural science
into evidence theory. Secondly, according to the knowledge framework of D-S evi-
dence theory, the BUG formula is used to characterize the degree of gravity between
evidences. Through the modeling of evidence information fusion, the rationality of the
BUG in the fusion process is explained. Finally, by solving the hot issue of conflict
measurement in D-S evidence theory, the potential application value of the proposed
method is demonstrated. Furthermore, the application also illustrates the effectiveness
of the proposed method.

In addition, although we proposed the theory of BUG, there are still some short-
comings that need to be further overcome. For instance, under the BUG, what is the
critical point of evidence information fusion? In other words, what conditions are met
before the evidence can be fused. As a method of measuring the amount of evidence
information, is there a more perfect alternative method than EQC algorithm? how to
consider more applications to increase the reliability of BUG, and consider its appli-
cation to more practical problems, etc. In future work, we will consider introducing
speed and acceleration to establish the BUG theory more completely. We also intend
to apply the theory of BUG to evidence anti-monitoring, interference interception and
measurement of transmission media.
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Highlights 

1. A new concept BUG is proposed in the D-S evidence theory. 

2. BUG provides a new perspective for information fusion in evidence theory. 

3. BUG formula is based on evidence distance, EQC algorithm, etc. 
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