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A B S T R A C T

Dempster-Shafer theory (DST) or evidence theory has significant advantages in the fields of information ag-
gregation and decision analysis. In this paper, in order to overcome the counter-intuitive behavior or specificity
changes caused by evidence theory, the evidential reasoning (ER) rule which handles the weight and reliability
of evidence in an appropriate way, is generalized to deal with the combination of conflicting interval-valued
belief structures (IBSs). Specifically, an optimization model of pignistic probability distance is established from
the global perspective to provide the relative weights for interval evidence so that the modified interval evidence
can be reasonably combined, and then a modified interval evidence combination approach is proposed which is
based on ER rule. The method can lead to a rational combination of conflicting interval evidence, which is also a
development of Yang’s ER rule. Numerical examples are provided to indicate that the proposed method is not
only suitable for combining conflict-free interval evidence, but can also suitably combine conflicting interval
evidence. At last, a case study is conducted on the actual pattern recognition problem to illustrate the applic-
ability of the proposed method and the potential in dealing with the combination of conflicting interval evi-
dence.

1. Introduction

The Dempster-Shafer theory (DST) firstly developed by Dempster
(1967) and later extended and refined by Shafer (1976), is a general
framework for reasoning with uncertainty. Yager and Alajlan (2015)
have introduced a Dempster-Shafer belief structure. It provides a formal
mathematical framework for representing various types of uncertain
information, which can be used for decision-making under uncertainty.
As one of the leading theories for modeling uncertainty in imprecise
situations (Silva & de Almeida-Filho, 2016); DST is used for several
purposes like target recognition (Dou, Sun, & Lin, 2014); stochastic
modeling (Li, Wang, & Chen, 2017); safety analysis (Zhang, Ding, Wu,
& Skibniewski, 2017); global positioning system (Aggarwal, Bhatt,
Devabhaktuni, & Bhattacharya, 2013); localization in wireless sensor
networks (Elkin, Kumarasiri, Rawat, & Devabhaktuni, 2017), environ-
mental impact assessment (EIA) (Wang & Yang, 2006); stock portfolio
selection (Mitra Thakur, Bhattacharyya, & Sarkar Mondal, 2018) and
voice activity detection (Park & Chang, 2018).

The original DST was developed for combination of precise (crisp)

belief degrees or belief structures. However, due to the uncertainty of
decision makers’ (DMs) subjective judgments, linguistic ambiguity and
the lack of information, probability masses assigned to propositions can
be uncertain or imprecise. For example, when diagnosing and reasoning
disease, a doctor may be unable to give a precise judgment about the
disease if he/she cannot definitely confirm his/her diagnosis. In this
situation, the belief degree expressed in the form of interval number
rather than a crisp number may be easier for him/her. In the problem of
group decision-making (GDM), belief degrees may be provided by dif-
ferent DMs or experts, although these belief degrees can be synthesized
to get a precise point estimate, it will inevitably lead to information
loss. Thus, the use of interval-valued belief structures (IBSs) is an ideal
choice, which can not only preserve the views of different DMs or ex-
perts, but also express the uncertainty about the opinions of DMs or
experts.

IBSs, as an extension of belief structures in DST, are developed for
better exploitation of uncertain and imprecise information (Song,
Wang, Lei, & Yue, 2016). There have been many studies devoted to
extend DST to IBSs. Interested readers are referred to Lee and Zhu
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(1992), Denoeux (1999, 2000), Yager (2001), Wang et al. (2006, 2007),
Sevastianov, Dymova, and Bartosiewicz (2012), Song, Wang, Lei, and
Xue (2014) and Chen and Wang (2014) for details. However, the pro-
blems for combining and normalizing of IBSs have not been fully re-
solved. Existing approaches are mainly divided into two categories: one
type is based on interval arithmetic operations (Lee & Zhu, 1992;
Sevastianov et al., 2012; Song et al., 2014; Yager, 2001) and the other
type is based on programming models (Chen & Wang, 2014; Denoeux,
1999, 2000; Wang et al., 2006, 2007).

Wang et al. (2006, 2007) reinvestigated most of the existing re-
presentative methods (Denoeux, 1999, 2000; Lee & Zhu, 1992; Yager,
2001) and pointed out the shortcomings of these methods, and they can
provide true intervals of the combination result by the optimality ap-
proach (Song et al., 2014). Furthermore, they extended evidential
reasoning (ER) approach, which was developed to support multiple
attribute decision analysis (MADA) problems, to combine interval un-
certainty information including interval data and interval belief de-
grees. However, using their approaches may lead to counter-intuitive
behavior or change the specificity of the original interval evidence in
some cases. Since these two methods are based on the DST and ER,
respectively. Within the DST framework, the residual support is as-
signed to the frame of discernment. This specific assignment does not
differentiate between ignorance and the residual support, whilst the
former is an intrinsic property of the evidence and the latter reflects its
extrinsic feature related to its relative importance compared with other
evidence (Yang & Xu, 2013). This indiscrimination changes the speci-
ficity of interval evidence, even if all pieces of interval evidence do not
have any global ignorance before combination their combined results
for the frame of discernment will still have global ignorance. And in the
framework of ER, the residual support can only be redistributed to
single propositions and the frame of discernment, depending upon what
propositions other interval evidence supports.

As the latest research work on interval evidence combination and
normalization in recent years, Sevastianov et al. (2012) proposed a new
framework for rule-base ER in the interval setting and applied to di-
agnosing type 2 diabetes; unfortunately, this method is not suitable for
conflicting interval evidence combination. Song et al. (2014) developed
a novel combination approach which is based on the operation on in-
tuitionistic fuzzy set, elicited by DST. However, similar to Sevastianov’s
method (Sevastianov et al., 2012), the method is suitable for con-
flicting-free interval evidence combination and information loss occurs
during the combination process. Chen and Wang (2014) studied the
issues of combination and normalization of conflicting interval evi-
dence, but, the Chen’s method is one type of evidence discounting
combination method in the framework of DST, and the specificity of the
interval evidence will be changed by using Chen’s method.

It can be seen from the above review of the literatures about the
interval evidence combination that these representative and the latest
methods are mainly based on the frameworks of DST and ER, which
focus mainly on conflicting-free interval evidence combination.
Although these methods have excellent performance for conflicting-free
interval evidence combination, the combination results would be
counter-intuitive or irrational when the interval evidence encountered
conflict, especially a high conflict among them. Therefore, it is neces-
sary to propose a new method for interval evidence combination that
considers conflicting, which forms the motivation of this paper.

In this paper, the ER rule is the further development of DST and the
ER approach (Yang & Xu, 2013); which considers both evidence
weights and reliabilities in a more general framework to tackle with the
problems of combination and normalization of conflicting IBSs.

The main contributions of the paper can be summarized as follows:

(1) A means based on pignistic probability distance is established from
the global perspective to objectively determine the weights of in-
terval evidence.

(2) A more general theoretical framework for the combination and

normalization of interval evidence is constructed. The method can
effectively combine conflicting or conflicting-free interval evidence
in a more reasonable way.

(3) The proposed method based on ER rule can effectively overcome
the counter-intuitive behavior or specificity changes within the
framework of DST, which can be seen as an extension of Yang’s ER
rule.

(4) The ER rule is applied to the actual pattern recognition problem,
and the robustness of the proposed method is further verified.

The rest of the paper is organized as follows. Section 2 gives a brief
introduction of DST and investigates the counter-intuitive results of
interval evidence combination. In Section 3, we introduce the relevant
conceptions of the ER rule and show its advantages for combining IBSs.
In Section 4, the preliminary details of the normalization of IBSs are
described. Furthermore, we provide a method for determining the re-
lative weights of interval evidence and establish a general optimization
model for combining and normalizing IBSs. Numerical examples are
provided in Section 5 to demonstrate its advantages of the proposed
method, Section 6 presents a case study to illustrate our proposed ap-
proach and Section 7 concludes the paper with a summary.

2. Counter-intuitive results of combining interval evidence

In this section, we will briefly introduce the relevant concepts of the
DST as the basis for subsequent discussions. Moreover, the counter-in-
tuitive behavior of interval evidence combination in the framework of
DST is investigated.

2.1. DST

The DST is defined on a finite nonempty set of N mutually exclusive
and exhaustive hypotheses. This set is known as the frame of discern-
ment (FOD) and is denoted by . Further, 2 is the power set of ,
contains all possible propositions of the elements in , and can be de-
noted as: = … … …2 { , { }, , { }, { , }, , { , }, , }N N1 1 2 1 . The core defini-
tions in DST are described as follows.

Definition 1 (Dempster, 1967). Let be the frame of discernment, then
the basic probability assignment (BPA) is a function m: 2 [0, 1],
which satisfies the two following conditions:

=
=

m
m A

( ) 0,
( ) 1,A (1)

where denotes an empty set and the value m A( ) taken by m is termed
the basic probability mass of A. Each subset A with >m A( ) 0 is
referred to as a focal element of m.

Definition 2 (Dempster, 1967). The belief and plausibility functions are
defined as follows:

=
=

Bel A m B
Pl A m B

( ) ( ),
( ) ( ).

B A

A B (2)

The core of the DST is Dempster’s rule of combination by which
evidence from different sources are combined. This rule assumes that
information sources are independent and employs the orthogonal sum
to combine multiple pieces of evidence. Assuming m1, m2,…, mn denote
different BPAs derived from multiple independent pieces of evidence
and their orthogonal sum =m m m mn1 2 , where represents the
combination operator. With two BPAs, Dempster’s combination rule is
defined as

=
=

=

=

m m C
C

C[ ]( )
0, ,

, ,m A m B
m A m B

1 2 ( ) ( )
1 ( ) ( )

A B C

A B

1 2

1 2 (3)

where A and B are both focal elements and m m C[ ]( )1 2 is a BPA. The
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denominator, = m A m B1 ( ) ( )A B 1 2 , is denoted by k and called the
normalization factor. = m A m B( ) ( )A B 1 2 is called the degree of
conflict and measures the conflict between the pieces of evidence.
The division by k is called normalization.

Definition 3 (Liu, 2006). A pignistic probability distribution function is
a mapping of m from to [0,1], defined as follows:

=BetP m
m

m({ }) 1
| |

( )
1 ( )

, ( ) 1,m j
, j (4)

where | | is the number of propositions in . The pignistic probability
function BetPm can be extended as a function on the power set of the
frame of discernment , which is

=BetP BetP( ) ({ }).m m j
j (5)

The transformation from BPA m to pignistic probability function BetPm
is known as a pignistic transformation. When =m ( ) 0, m

m
( )

1 ( )
is

degraded to m ( ).

2.2. Counter-intuitive results of combining conflicting IBSs

In the actual decision-making process, the use of Dempster’s com-
bination rule to combine conflicting evidence may produce counter-
intuitive results (Deng, Han, Dezert, Deng, & Yu, 2016; Wang, Xiao,
Deng, Fe, & Deng, 2016; Zadeh, 1986). We illustrate this problem with
the following example.

Example 1. Let be the frame of discernment with three propositions
H H H{ , , }1 2 3 . Suppose that two BPAs, m1 and m2, are constructed as

= = =m H m H m H( ) 0.98, ( ) 0.02, ( ) 0.00,1 1 1 2 1 3

= = =m H m H m H( ) 0.00, ( ) 0.02, ( ) 0.98.2 1 2 2 2 3

According to Definition 2, the degree of conflict
== m A m B( ) ( ) 0.9996A B 1 2 , which indicates that two BPAs, m1 and

m2 are in high conflict with each other. Using Eq. (3) to combine
evidence m1 and m2, the result is

= = =m H m H m H( ) 0.00, ( ) 1.00, ( ) 0.00.12 1 12 2 12 3

Obviously, the above result means that if either pieces of evidence
m1 and m2 does not support proposition H1 or H3, then proposition H1 or
H3 will no longer be supported, no matter how strongly the other piece
of evidence supports proposition H1 or H3, this result contradicts
people’s intuition.

In fact, combining conflicting interval evidence using Dempster’s
combination rule is also likely to have counter-intuitive behavior. We
illustrate this by the following example.

Example 2. Let be the frame of discernment with three propositions
H H H{ , , }1 2 3 . Suppose that two normalized IBSs m1 and m2, are

constructed as:

= = =m H m H m H( ) [0.98, 0.99], ( ) [0.01, 0.02], ( ) [0, 0].1 1 1 2 1 3

= = =m H m H m H( ) [0, 0], ( ) [0.01, 0.02], ( ) [0.98, 0.99].2 1 2 2 2 3

The final combined results can be achieved through the
computational process described in their published works (Chen &

Wang, 2014; Sevastianov et al., 2012; Song et al., 2014; Wang, Yang,
Xu, & Chin, 2007). The combined results obtained by these methods are
presented in Table 1.

The interval-valued probability mass of proposition H1 in interval
evidence m1 is approximate to 1, the interval-valued probability mass of
proposition H2 in interval evidence m1 is approximate to 0, and the
interval-valued probability mass of proposition H3 in interval evidence
m1 is equal to 0. However, the interval-valued probability mass of
proposition H1 in interval evidence m2 is equal to 0, the interval-valued
probability mass of proposition H2 in interval evidence m2 is approx-
imate to 0, and the interval-valued probability mass of proposition H3 in
interval evidence m2 is approximate to 1. Therefore, interval evidence
m1 and m2 are in conflict with each other.

The interval-valued probability masses of proposition H2 in interval
evidence m1 and m2 are both approximate to 0. However, the interval-
valued probability mass of proposition H2 in their combined result
using the four methods are all approximate to 1, which is obviously
counter-intuitive.

It can be seen from the above example that the existing methods
cannot truly solve the problem of interval evidence combination,
especially the conflicting interval evidence combination. Therefore, it is
necessary to continue to study the problem.

3. ER rule solution for counter-intuitive behavior

In this section, the conceptions of belief distribution, weighted be-
lief distribution (WBD), and the ER rule are briefly reviewed, and the
counter-intuitive results of combining IBSs mentioned in the previous
section were reinvestigated.

Definition 4 (Yang & Xu, 2013). Suppose p i, is the belief degree for
proposition by evidence ei, with p0 1( )i, , then ei can be
profiled as the following distribution:

= =e p p( , ), , 1i i i, ,
(6)

Definition 5 (Yang & Xu, 2013). Suppose w w(0 1)i i is the weight
of evidence ei, the weighted belief degree for ei defined in the ER rule
with evidence weight are given as follows:

= =
=

=
m m w p

w P
( )

0, ,
, , ,

1 , ( ),
i i i i

i

, ,

(7)

where =w 0i means that it is not important at all and =w 1i signifies
that it is the most important. w1 i is assigned to the power set of the
frame of discernment instead of any single subset. So w1 i is attached
to P ( ) that allows it to be redistributed to all propositions in the power
set of the frame of discernment because =P ( ) . The term m i, are
generated as basic probability mass for from evidence ei. Obviously,
the specificity of the belief degree does not change. The WBD of ei,
denoted by mi, is constructed from Eqs. (6) and (7) as follows:

=m m P m{( , ), ; ( ( ), )}i i P i, ( ), (8)

Definition 6 (Yang & Xu, 2013). The WBD is then extended to consider
both weight and reliability of evidence. Let wi is the weight of evidence
ei defined in Eq. (6) with w0 1i and ri is the reliability of evidence ei
with r0 1i and =r 0i and 1 standing for “not reliable at all” and
“fully reliable” respectively. The basic probability masses for evidence
ei are then assigned as follows

=
=

=
m w p

w P

~
0, ,

~ , , ,
1 ~ , ( ),

i i i

i

, ,

(9)

where

Table 1
Combination results obtained by different methods.

Wang’s
method

Sevastianov’s
method

Song’s
method

Chen’s
method

=m H( )12 1 [0, 0] [0, 0] [0, 0] [0, 0]
=m H( )12 2 [1, 1] [0.40, 1.60] [1, 1] [1, 1]
=m H( )12 3 [0, 0] [0, 0] [0, 0] [0, 0]

X.-X. Zhang, et al. Computers & Industrial Engineering 137 (2019) 106020

3



=
+

w w
w r

~
1

,i
i

i i (10)

Eq. (9) is called weighted belief distribution with reliability (WBDR). w~i
can be seen as a comprehensive coefficient to adjust both wi and ri of
evidence ei. w1 ~

i is the residual support for evidence ei from wi and ri.
So evidence ei can be denoted by Eq. (11) which is just a generalization
of Eq. (8).

=m m P m{( , ~ ), ; ( ( ), ~ )}.i i P i, ( ), (11)

It is clear that + =m m~ ~ 1i p i, ( ), .The ER rule (Yang & Xu, 2013)
which considers both evidence weights and reliabilities in a coherent
framework is generalized from the ER approach (Yang & Xu, 2002;
Yang, 2001). Since ER approach only considers the weights of evidence,
so we call it ER rule with weights.

Definition 7 (Yang & Xu, 2013). Suppose there are L pieces of
independent evidence denoted by Eq. (6) to be combined which are
discounted by Eqs. (9)–(11). Let e i( ) be the fusion of the first i pieces of
discounted evidence and we will have the orthogonal sum on the first i
WBDRs as follows:

= + +
=

m w m m m m m[(1 ~ ) ~ ~ ~ ] ~ ~ ,

,

e i i e i P e i i
B C

B e i C i, ( ) , ( 1) ( ), ( 1) , , ( 1) ,

(12)

=m w m(1 ~ ) ~ ,P e i i P e i( ), ( ) ( ), ( 1) (13)

= =
+

m k m
m

m m
~ · ,e i e i

e i

D D e i P e i
, ( ) , ( )

, ( )

, ( ) ( ), ( ) (14)

= =
+

m k m
m

m m
~ · .P e i P e i

P e i

D D e i P e i
( ), ( ) ( ), ( )

( ), ( )

, ( ) ( ), ( ) (15)

w~i is generated from the weight and reliability of evidence
=e i L( 1, 2, ..., )i by Eq. (10). =m m~ ~

e, (1) ,1, =m m~ ~
P e P( ), (1) ( ),1 with

m0 ~ 1e i, ( ) and m0 ~ 1P e i( ), ( ) . Eq. (14) is the probability mass
supports proposition for the combined WBDR of e i( ) after
normalization while Eq. (12) is the non-normalized probability mass
of the first i pieces of evidence after i 1 times of orthogonal sum
operation recursively on Eq. (11). Eqs. (13) and (15) represent the non-
normalized and normalized residual support for e i( ) respectively. After
L 1 times of calculation, the combined normalized probability mass
for all the L pieces of evidence can be obtained that is denoted by
m~ ( )e L, ( ) , and the combined normalized residual support for e L( )
is also obtained as m~P e L( ), ( ) . The final combined belief degree is then
generated as follows:

= =p
m
m

m
m

~

1 ~ , .e L
e L

P e L

e L

D D e L
, ( )

, ( )

( ), ( )

, ( )

, ( ) (16)

In the actual decision-making problems, if ri denotes the reliability of
information provided from evidence ei, then r1 i refers to the
unreliability of evidence ei. The unreliability of assessment
information we get may be due to the problematic assessment data of
the used method or equipment. When <r 1i , the information provided
from evidence ei is not fully reliable which means we could not
completely believe the assessment information from evidence ei to the
degree of r1 i.In order to verify the validity and rationality of ER rule
to eliminate counter-intuitive behavior, we will reinvestigate the
examples in the above section. The effectiveness of ER rule is
demonstrated below by examples in Section 2. Without loss of
generality, assume that each piece of precise evidence or interval
evidence is equally weighted, namely, = =w w 0.51 2 and the reliability
of each piece of precise evidence or interval evidence is also equal to
0.5, namely, = =r r 0.51 2 .

Example 3 (Example 1 revisited). By Eqs. (9)–(11), we can get two
WBDRs, respectively, representing m1 and m2 as:

= = = =m H m H m H m P~ ( ) 0.49, ~ ( ) 0.01, ~ ( ) 0.00, ~ ( ( )) 0.50,1 1 1 2 1 3 1

= = = =m H m H m H m P~ ( ) 0.00, ~ ( ) 0.01, ~ ( ) 0.49, ~ ( ( )) 0.50.2 1 2 2 2 3 2

According to Eqs. (12)–(15), the combined result of the two WBDRs is
=m H~ ( ) 0.327e (2) 1 , =m H~ ( ) 0.013e (2) 2 , =m H~ ( ) 0.327e (2) 3 , m~ e (2)

=( ) 0.000, =m P~ ( ( )) 0.333e (2) .By comparing m~ e (2) with m12,
obviously, the combination result obtained by using Dempster’s
combination rule is counter-intuitive, but the combination result
obtained by using ER rule is intuitive.

Example 4 (Example 2 revisited). Since IBSs m1 and m2 are two
normalized IBSs, the optimization models can be applied to solve
these two normalized IBSs combination problem, as in Wang’s method
(Wang et al., 2007). Combining these two normalized IBSs, we have the
following formulas for the non-normalized probability masses:

= + +
=

m w m m m m m[(1 ~ ) ~ ~ ~ ] ~ ~ , ,e e P e
B C

B e C, (2) 2 , (1) ( ), (1) ,2 , (1) ,2

=m w m(1 ~ ) ~ .P e P e( ), (2) 2 ( ), (1)

The normalized probability masses will be given by

= =
+

m k m
m

m m
~ · , ,e e

e

D D e P e
, (2) , (2)

, (2)

, (2) ( ), (2)

= =
+

m k m
m

m m
~ · .P e P e

P e

D D e P e
( ), (2) ( ), (2)

( ), (2)

, (2) ( ), (2)

In order to determine the normalized probability mass interval for
each proposition, we need to solve the following pairs of optimization
models:

=

= + +

=
=
=

=
=
=
=
=
=
=
=

+ + =
+ + =

+

=

m

m w m m m m m

m w m
w
w

m H w m H
m H w m H
m H w m H

m P w m P
m H w m H
m H w m H
m H w m H

m P w m P
m H m H m H
m H m H m H

m H
m H
m H
m H
m H
m H

Max/Min ~

s.t. [(1 ~ ) ~ ~ ~ ] ~ ~ ,

,
(1 ~ ) ~ ,

~ 0.5,
~ 0.5,

~ ( ) ~ ( ),
~ ( ) ~ ( ),
~ ( ) ~ ( ),

~ ( ( )) ~ ( ( )),
~ ( ) ~ ( ),
~ ( ) ~ ( ),
~ ( ) ~ ( ),

~ ( ( )) ~ ( ( )),
( ) ( ) ( ) 1,
( ) ( ) ( ) 1,

0.98 ( ) 0.99,
0.01 ( ) 0.02,

0 ( ) 0,
0 ( ) 0,

0.01 ( ) 0.02,
0.98 ( ) 0.99.

e
m

m m

e e P e B C B e C

P e P e

, (2)

, (2) 2 , (1) ( ), (1) ,2 , (1) ,2

( ), (2) 2 ( ), (1)

1

2

1 1 1 1 1

1 2 1 1 2

1 3 1 1 3

1 1 1

2 1 2 2 1

2 2 2 2 2

2 3 2 2 3

2 2 2

1 1 1 2 1 3

2 1 2 2 2 3

1 1

1 2

1 3

2 1

2 2

2 3

e

D D e P e

, (2)

, (2) ( ), (2)

With the help of LINGO software package and solving the above pair
of models for , respectively, we get the normalized probability
mass intervals as follows:

=m H~ ( ) [0.327, 0.330]e (2) 1 , =m H~ ( ) [0.007, 0.013]e (2) 2 , m~ e (2)

=H( ) [0.327, 0.330]3 , =m~ ( ) [0, 0]e (2) , m~ e (2) =P( ( )) [0.333, 0.333],
where the interval for m P~ ( ( ))e (2) is obtained by solving the models
with mP e( ), (2) used as the numerator of the objective function.

According to the combined result, m~ e (2) , it is obviously that the
combined result is counter-intuitive using existing approaches but
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conforms to intuitive judgment according to ER rule. The above ex-
amples indicate that the ER rule is a good option to the problem of the
interval evidence combination, which can generate intuitive and rea-
sonable combination results than existing methods.

4. ER rule with IBSs

We first introduce the following definitions, which are based on the
published works of Denoeux (1999) and Wang et al. (2006, 2007). In
addition, a method based on pignistic probability distance for de-
termining the weights of interval evidence, is presented. A more general
optimal model for combining IBSs based on the ER rule is also pro-
posed.

4.1. The definition of IBSs

Definition 8 (Denoeux, 1999). Let =H H H{ , ..., }N1 be the frame of
discernment, F F, ..., n1 be n subsets of H and a b[ , ]i i be n intervals with

=a b i n0 1 ( 1, ..., )i i . An IBS is the belief structure on H such that

(1) a m F b( )i i i, where a b0 1i i for =i n1, ..., ;
(2) = a 1i

n
i1 and = b 1i

n
i1 ;

(3) =m A( ) 0, A F F{ , ..., }n1 .

Definition 9 (Wang, Yang, Xu, & Chin, 2006; Wang et al., 2007). Let m
be a valid IBS with interval-valued probability masses a m F b( )i i i,

=i n1, ..., . If = b b a( ) 1j
n

j i i1 and += a b a( ) 1j
n

j i i1 ,
i n{1, ..., }, then m is called a normalized IBS.

Definition 10 (Denoeux, 1999). Let m be a normalized IBS on H with
interval-valued probability masses a m F b( )i i i, =i n1, ..., . For
A H , the belief function (Bel) and the plausibility function (Pl) of
A are both the closed intervals defined respectively by

= +A A ABel ( ) [Bel ( ), Bel ( )]m m m (17)

= +A A APl ( ) [Pl ( ), Pl ( )]m m m (18)

where

= =A m F a bBel ( ) min ( ) max , 1 ,m
F A

i
F A

i
F A

j
i i i (19)

= =+ A m F b aBel ( ) max ( ) min , 1 ,m
F A

i
F A

i
F A

j
i i i (20)

= =
=

A m F a bPl ( ) min ( ) max , 1 ,m
F A

i
F A

i
F A

j
i i i (21)

= =+

=
A m F b aPl ( ) max ( ) min , 1 .m

F A
i

F A
i

F A
j

i i i (22)

Definition 11 (Song et al., 2014). Let m be a normalized IBS on
=H H H{ , ..., }N1 , with interval-valued probability masses a m F b( )i i i

for =i n1, ..., . m denotes a Bayesian belief structure elicited by m. The
probability masses of m are interval values, defined by:

= = +m H BetP H BetP H BetP H( ) ( ) [ ( ), ( )],j j j j (23)

where =BetP H( )j A F
a
F| |j i

i
i
, =+BetP H( ) min 1,j A F

b
F| |j i

i
i

,
=i n1, ..., , =j N1, ..., .

4.2. Determination of interval evidence weights

To overcome the counter-intuitive behavior in the process of evi-
dence combination, some researchers argue that the results are caused

by the evidence combination rules themselves, which should be im-
proved (Lefevre, Colot, & Vannoorenberghe, 2002; Smarandache &
Dezert, 2006; Yager, 1987; Yamada, 2008); in contrast, others believe
that the results due to the evidence itself, which should be modified by
weight (Han, Deng, & Han, 2013; Martin, Jousselme, & Osswald, 2008;
Murphy, 2000; Smarandache & Dezert, 2010). Haenni (2002) believes
that it is a reasonable practice to modify the original evidence, no
matter from the viewpoint of philosophical logic, mathematics, or en-
gineering practices. In fact, the original ER rule was only developed for
evidence combination, which did not provide a method for determining
evidence weights. However, different evidence weights will result in
different combination results. Therefore, it is necessary to provide a
method to determine the weights for interval evidence so that the re-
sults of the interval evidence combination are more reasonable and
meaningful.

In this section, we provide an objectively method from the per-
spective of minimizing the overall discrepancies to determine the
weights for pieces of interval evidence. The method is built based on
pignistic probability distance, which assists decision-making problems
which use DST and provides a reasonable measure of the difference
between the evidence (Smets & Kennes, 1994).

Definition 12 (Liu, 2006). Let be the frame of discernment, mi and mj
be two BPAs on frame , and BetPmi, BetPmj are their pignistic probability
function respectively. The pignistic probability distance between two
BPAs is defined as follows:

=difBetP BetP A BetP Amax(| ( ) ( )|).m
m

A
m mi

j
i j (24)

Proposition 1 (Chen, Wang, Shi, Zhang, & Lin, 2017). Let difBetPm
m

i
j be the

pignistic probability distance of two BPAs, mi and mj. Then,

=difBetP BetP BetP difBetP1
2

| ( ) ( )| 0 1.m
m

m m m
m

i
j

i j i
j

(25)

Although Eq. (25) is equivalent to Eq. (24), the calculation process of the
former is simpler. For example, suppose that two BPAs, m1 and m2 on the
frame of discernment = {1, 2, 3, 4, 5} are constructed as

= =m {1, 2, 3, 4, 5} 1,1

= = = =m m{3, 4} 0.6, {1, 2} 0.4.2 2

According to Eq. (25), the result is
= + + + + =difBetP (|0.20 0.20| |0.20 0.20| |0.20 0.30| |0.20 0.30| |0.20 0|) 0.20m

m
1
2 1

2
.

For = = + =BetP ({ })M j
M M M

, | | , | |
( )

| | ,i j
i

j
i i

j
, ,

w m
| |
i i, + = +( )ww m

i
m m1

| | , | | | |
1

| |
i i

j
i i, , , .Values are

assigned:

= =
m m m m
| | | |

and
| | | |ij

i i
kj

k k

,

, ,

,

, ,

j j

(26)

Then: =BetP BetP w w| ( ) ( )| | |M j M j ij i kj ki k .

Proposition 2. When the evidence are interval evidence with IBSs, the
pignistic probability distance, difBetPM

M
i
k, between two modified interval belief

structures Mi and Mk is denoted as follow:

=

= = …

+ +…+ = …

=

+

difBetP w w

s t
m i n

m m m
w w w w w w

| |

. .
1, 1, 2, ., ,

, ,
1, , , , 0.

M
M

j ij i kj k

i

i i i

n n

1
2 1

| |

,

, , ,

1 2 1 2

i
k

(27)

Due to differences in data format, determining the weights of interval
evidence is more difficult than precise (crisp) evidence. This study minimizes
the discrepancies among pieces of modified interval evidence based on a
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global perspective modeling approach, in order to minimize the conflict
among them, therefore, a model can be constructed as follows:

=

= = …

+ +…+ = …

= =

+

Min difBetP difBetP

s t
m i n

m m m
w w w w w w

 min

. .
1, 1, 2, ., ,

, ,
1, , , , 0.

i
n

k
n

M
M

i

i i i

n n

1 1

,

, , ,

1 2 1 2

i
k

(28)

In order to solve the model conveniently, Eq. (28) can be converted into
Eq. (29):

=

= = …

+ +…+ = …

= = =

+

Min difBetP w w

s t
m i n

m m m
w w w w w w

 min ( )

. .
1, 1, 2, ., ,

, ,
1, , , , 0.

j i
n

k
n

ij i kj k

i

i i i

n n

1
| |

1 1
2

,

, , ,

1 2 1 2 (29)

The objective function of Eq. (29) is a convex function, and the
constraint conditions are equality constraints. Therefore, Eq. (29) satisfies
the conditions that the nonlinear programming model has a global optimal
solution. The weight vector of the modified interval evidence

= …w w w w( , , , )n
T

1 2 can be obtained with the help of LINGO or MATLAB.

4.3. New optimal model for interval evidence combination

To overcome the drawbacks of the previous approaches, an opti-
mization model based on the ER rule for combining and normalizing
interval evidence is built. The model is constructed as follows:

=

= +

+
=

= =

= =

=

= =

=
+ +…+ = …

=
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+
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(30)

The objective functions of above models indicate the respective
maximum and minimum final combined belief degree with respect to
proposition by n pieces of interval evidence e i( ). = …w i n( 1, 2, , )i is
generated from the weight of e i( ) by Eq. (29). m m0 ~ , ~ 1e i p e i, ( ) ( ), ( )
and + =m m~ ~ 1e i p e i, ( ) ( ), ( ) for = …i n2, , . m~ e i, ( ) is the non-normal-
ized interval-valued probability mass of the n pieces of interval evi-
dence after n 1 times of orthogonal sum operation recursively,
with =m m~ ~

e, (1) ,1 and =m m~ ~
P e P( ), (1) ( ),1. It is worth noting that the

above optimization models consider both the combination and nor-
malization problems in the recursive combination process in the same
time, and the residual support is not assigned to the frame of discern-
ment or one of its specific propositions in advance, but to any subset of
the power set. In addition, the probability masses must be normalized
within the framework of ER rule.

5. Comparison studies

In this section, two numerical examples with conflicting and nor-
malized random IBSs coming from Chen’s paper (Chen & Wang, 2014)
are given respectively to demonstrate the effectiveness and rationality
of the proposed method by comparing with Wang’s method (Wang
et al., 2007); Sevastianov’s method (Sevastianov et al., 2012); Song’s
method (Song et al., 2014); Chen’s method (Chen & Wang, 2014), and

Table 2
The BPAs.

A B C

m1 [0.50 ,0.60] [0.10, 0.20] [0.30, 0.40]
m2 [0.00, 0.00] [0.90, 0.95] [0.05, 0.10]
m3 [0.55, 0.60] [0.15, 0.20] [0.25, 0.30]
m4 [0.55, 0.60] [0.15, 0.20] [0.25, 0.30]
m5 [0.55, 0.60] [0.15, 0.20] [0.25, 0.30]

Table 3
Combination results obtained by different methods.

A B C P ( )

m12 Wang’s method [0, 0] [0.692, 0.927] [0.073, 0.308] [0, 0] –
Sevastianov’s method [0, 0] [0.537, 1.134] [0.090, 0.239] [0, 0] –
Song’s method [0, 0] [0.922, 0.933] [0.067, 0.078] [0, 0] –
Chen’s method [0.435, 0.551] [0.139, 0.265] [0.270, 0.381] [0.022, 0.031] –
Yang’s method – – – – –
Proposed method [0.500, 0.600] [0.100, 0.200] [0.300, 0.400] [0, 0] [0, 0]

m123 Wang’s method [0, 0] [0.529, 0.910] [0.090, 0.471] [0, 0] –
Sevastianov’s method [0, 0] [0.401, 1.130] [0.112, 0.357] [0, 0] –
Song’s method [0, 0] [0.958, 0.959] [0.041, 0.042] [0, 0] –
Chen’s method [0.641, 0.773] [0.055, 0.150] [0.172, 0.297] [0, 0] –
Yang’s method – – – – –
Proposed method [0.671, 0.800] [0.033, 0.103] [0.167, 0.293] [0, 0] [0, 0]

m1234 Wang’s method [0, 0] [0.360, 0.890] [0.110, 0.640] [0, 0] –
Sevastianov’s method [0, 0] [0.286, 1.073] [0.132, 0.508] [0, 0] –
Song’s method [0, 0] [0.980, 0.980] [0.020, 0.020] [0, 0] –
Chen’s method [0.782, 0.900] [0.016, 0.068] [0.083, 0.198] [0, 0] –
Yang’s method – – – – –
Proposed method [0.798, 0.911] [0.009, 0.045] [0.079, 0.190] [0, 0] [0, 0]

m12345 Wang’s method [0, 0] [0.220, 0.866] [0.134, 0.780] [0, 0] –
Sevastianov’s method [0, 0] [0.194, 0.969] [0.149, 0.688] [0, 0] –
Song’s method [0, 0] [0.991, 0.991] [0.009, 0.009] [0, 0] –
Chen’s method [0.873, 0.959] [0.004, 0.027] [0.037, 0.120] [0, 0] –
Yang’s method – – – – –
Proposed method [0.882, 0.963] [0.003, 0.018] [0.035, 0.114] [0, 0] [0, 0]
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Yang’s method (Yang & Xu, 2013).

Example 5. Let be the frame of discernment with three propositions
A B C{ , , }. Five pieces of interval evidence with IBSs on are listed in

Table 2.
It can be concluded that these five pieces of interval evidence satisfy

the conditions of Definition 9, so, they are all normalized. We assume
that all pieces of interval evidence are completely reliable, namely,

= = = = =r r r r r 11 2 3 4 5 . The results of combing these five pieces of
interval evidence by different combination methods are detailed in
Table 3.

As shown in Table 2, it is evident that four pieces of interval evi-
dence m1, m3, m4, and m5 mainly support proposition A. However, in-
terval evidence m2 strongly supports proposition B, which is a very
different piece of interval evidence. Thus, interval evidence m2 is in
conflict with the others. According to Wang’s method (Wang et al.,
2007), the combined results means that if interval evidence m2 does not
support proposition A, then proposition A will no longer be supported,
no matter how strongly others pieces of interval evidence m1, m3, m4,
and m5 support proposition A, it is obviously counter-intuitive. The
reason is that Wang’s approach is in the framework of DST, which
provides a process for combining two pieces of non-compensatory in-
terval evidence, in the sense that if either of them completely opposes a
proposition, the proposition will not be supported at all, no matter how
strongly it may be supported by the other piece of interval evidence. In
this example, =m A( ) [0.00, 0.00]2 , meaning that proposition A is not
supported by interval evidence m2 at all, the numerator of Eq. (3) will
be zero. In other words, in Wang’s approach, a proposition will be
supported only if both pieces of interval evidence each support it to
some degrees.

Both Sevastianov’s method (Sevastianov et al., 2012) and Song’s
method (Song et al., 2014) are based on interval arithmetic operations.
The combined results of these two methods are similar to Wang’s
method (Wang et al., 2007); namely, if interval evidence m2 does not
support proposition A, then proposition A will no longer be supported,

no matter how strongly others pieces of interval evidence m1, m3, m4,
and m5 support proposition A. It is obviously counter-intuitive.

Similar to Wang’s method (Wang et al., 2007), the Chen’s method
(Chen & Wang, 2014) is one type of evidence discounting combination
method in the framework of DST. However, the specificity of the in-
terval evidence will be changed by using Chen’s method (Chen & Wang,
2014). In order to explain this problem more clearly, we re-examine the
data in Table 2, the first two pieces of interval evidence m1 and m2 do
not have any global ignorance before combination, but after using
Chen’s method (Chen & Wang, 2014) there is =m ( ) [0.022, 0.031] as
shown in the fifth row and the sixth column of Table 3, it is obviously
irrational. The global ignorance generated by Chen’s method (Chen &
Wang, 2014) is entirely due to the use of discounting method in the
process of interval evidence combination; which will inevitably change
the specificity of the interval evidence (Yang & Xu, 2013). In addition,
Yang’s method (Yang & Xu, 2013) was originally used to solve the
precise evidence combination, so it is invalid to directly solve the in-
terval evidence combination problem.

The proposed method determines the interval evidence weights
from the perspective of global to minimize overall discrepancies. If a
piece of interval evidence is close to most other pieces of interval evi-
dence, then it will get a relatively large weight, and vice versa. In this
example, interval evidence m2 is in conflict with the others. Therefore,
based on the Eq. (29), the interval evidence weights

= =w w w w w w( , , , , ) (0.3023, 0, 0.2326, 0.2326, 0.2326)1 2 3 4 5 , where, for
the second evidence, the relative weight of m2 is =w 02 , which reduces
its interference on the combination results, thus improving the accuracy
of the method in this paper. At the same time, from Table 3, it can be
seen that the existing methods have deviated from the reasonable fu-
sion result when the first two pieces of interval evidence or the first
three pieces of interval evidence are combined. Because, when the first
two pieces of interval evidence or the first three pieces of interval
evidence are combined, the combined probability mass interval of
proposition A is [0,0], but the interval evidence m1 supports proposition
A with interval-valued probability mass [0.50,0.60] before the

Table 4
Belief structures of random interval evidence.

A A B, B B C, C

m1 [0.284, 0.289] [0.219, 0.224] [0.118, 0.123] [0.309, 0.314] [0.055, 0.060]
m2 [0.182, 0.187] [0.330, 0.335] [0.143, 0.148] [0.209, 0.214] [0.121, 0.126]
m3 [0.442, 0.447] [0.208, 0.213] [0.006, 0.011] [0.106, 0.111] [0.223, 0.228]
m4 [0.195, 0.200] [0.008, 0.013] [0.308, 0.313] [0.120, 0.125] [0.354, 0.359]

Table 5
Combination results obtained by different methods.

A A B, B B C, C P ( )

m12 Wang’s method [0.265, 0.276] [0.103, 0.107] [0.440, 0.452] [0.092, 0.097] [0.080, 0.086] –
Sevastianov’s method [0.266, 0.276] [0.104, 0.108] [0.436, 0.457] [0.093, 0.096] [0.080, 0.086] –
Song’s method [0.240, 0.240] [0.356, 0.357] [0.067, 0.067] [0.311, 0.311] [0.255, 0.256] –
Chen’s method [0.260, 0.270] [0.118, 0.123] [0.420, 0.432] [0.100, 0.104] [0.082, 0.089] –
Yang’s method – – – – – –
Proposed method [0.164, 0.169] [0.164, 0.167] [0.139, 0.144] [0.151, 0.154] [0.060, 0.064] [0, 0]

m123 Wang’s method [0.450, 0.472] [0.044, 0.047] [0.360, 0.380] [0.020, 0.022] [0.095, 0.106] –
Sevastianov’s method [0.450, 0.475] [0.044, 0.047] [0.352, 0.387] [0.020, 0.020] [0.097, 0.105] –
Song’s method [0.423, 0.423] [0.272, 0.272] [0.002, 0.002] [0.111, 0.111] [0.192, 0.192] –
Chen’s method [0.390, 0.408] [0.071, 0.076] [0.371, 0.389] [0.046, 0.050] [0.094, 0.103] –
Yang’s method – – – – – –
Proposed method [0.191, 0.196] [0.162, 0.165] [0.140, 0.145] [0.143, 0.146] [0.071, 0.075] [0, 0]

m1234 Wang’s method [0.281, 0.311] [0.001, 0.002] [0.523, 0.552] [0.007, 0.008] [0.147, 0.167] –
Sevastianov’s method [0.282, 0.312] [0.001, 0.002] [0.504, 0.570] [0.007, 0.008] [0.149, 0.166] –
Song’s method [0.524, 0.524] [0.017, 0.017] [0.003, 0.003] [0.059, 0.059] [0.397, 0.397] –
Chen’s method [0.306, 0.329] [0.032, 0.035] [0.469, 0.493] [0.028, 0.031] [0.130, 0.144] –
Yang’s method – – – – – –
Proposed method [0.192, 0.197] [0.149, 0.152] [0.162, 0.168] [0.138, 0.141] [0.089, 0.093] [0, 0]
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combination, although the interval evidence m2 does not support pro-
position A at all. The proposed method has shown that proposition A
has the highest interval-valued probability masses when the first two
pieces of interval evidence or the first three pieces of interval evidence
are combined, and the combined result of proposition A is consistent
with the final fusion result. Therefore, in the case of existing conflicts
situations in interval evidence, this method is different from the ex-
isting methods, and the counter-intuitive results can be suppressed. The
method is still reasonable, effective, and has high convergence.

Example 6. Let be the frame of discernment with three propositions
A B C{ , , }. The BPA of each piece of interval evidence is the normalized

random intervals number between 0 and 1. Four pieces of interval
evidence with IBSs on are listed in Table 4.

It can be seen from Table 4 that there is no obvious conflict among
the four pieces of random interval evidence. Assuming that the relia-
bility of interval evidence is = = = =r r r r 0.51 2 3 4 , the combined results
in Table 5 are basically consistent and are all reasonable (conform to
intuitive judgment) except for Song’s method (Song et al., 2014), whose
combined results degenerate to deterministic values (the minimum and
maximum values of the interval probability mass for each proposition
are equal), it is obviously irrational. In addition, Yang’s method (Yang &
Xu, 2013) to solve this problem is invalid. According to the Eq. (29), the
relative weights of pieces of interval evidence

= =w w w w w( , , , ) (0.4031, 0.4527, 0.0744, 0.0698)1 2 3 4 , thus, it can be
seen that the distribution of four pieces of random interval evidence is
relatively balanced and there is low conflict among them.

At the same time, when the first two pieces of interval evidence or
the first three pieces of interval evidence are combined, the proposed
method has indicated that the BPA values of proposition A, B, and C are
compared as: > >A B C, which is consistent with the final fusion re-
sult. Therefore, in the case that there is no conflict or low conflict
among pieces of interval evidence, the fusion results of this method are
also reasonable and effective, and has high convergence.

6. Case study

In modern warfare, the extensive use of target recognition system
and missile weapons has formed a complex, changeable and serious
threat of electronic countermeasures environment. Under these condi-
tions, electronic reconnaissance plays an increasingly important role in
the war. Target recognition system is an important research direction in
electronic reconnaissance, which uses the reflection (or secondary
scattering) of electromagnetic wave from the target to find the target
and determine its position. With the development of sensor technology,

the task of sensor is not only to measure the distance, azimuth and
elevation angle of the target, but also to measure the speed of the target
and to get more information about the target from the echo of the
target. Then the target can be recognized and classified by using this
information, so that the enemy missiles can be recognized and aimed at
the target before it enters the range threatening our security, and take
different action measures against the target characteristics to minimize
their losses and protect themselves to the maximum extent, and make
themselves in a dominant position in modern warfare.

In a military exercise at a military base, suppose that a real target is
detected by an automatic target discernment system with multi-sensor.
In this multisensor-based target recognition system, there are totally
three types of targets A, B and C , which constitute the frame of dis-
cernment = A B C{ , , }, and assume the real target is A. There are six
different sensors including charge coupled device (CCD) (S1), com-
plementary metal oxide semiconductor (CMOS) (S2), electronic support
measures (ESM) (S3), electronic countermeasures (ECM) (S4), electronic
counter-countermeasures (ECCM) (S5) and audio sensor system (AES)
(S6). From six different sensors, the system has acquired six pieces of
interval evidence listed as follows:

6.1. Construction of the IBSs

Considering that in the actual pattern recognition problem, much of
the information provided by the target recognition system may be in-
complete, inaccurate or unreliable. As shown in Table 6, the informa-
tion provided by m1, m2, m3, m4, m5 and m6 is expressed by six IBSs, and
it can be concluded that these six pieces of interval evidence satisfy the
conditions of Definition 9, so, they are all normalized. In this example,
we assume that the reliabilities of the six sensors are = =r r 0.4s s1 2 ,

= =r r 0.6s s3 4 , and = =r r 0.9s s5 6 , respectively.

6.2. Determination of interval evidence weights

As shown in Table 6, it is evident that four pieces of interval evi-
dence m1, m2, m5 and m6 mainly support proposition A. However, in-
terval evidence m3 and m4 strongly support proposition B. Thus, in-
terval evidence m3 and m4 are in conflict with the others. Therefore,
based on the Eq. (29), the interval evidence weights

= =w w w w w w w( , , , , , ) (0.1827, 0.2351, 0.0840, 0.0824, 0.2024, 0.2134)1 2 3 4 5 6 ,

Table 6
BPAs determined by 6 sensors.

A B C A C, B C,

m1 [0.2, 0.3] [0.0, 0.1] [0.0, 0.4] [0.1, 0.4] [0.0, 0.1] [0.0, 0.0]
m2 [0.2, 0.4] [0.0, 0.1] [0.0, 0.3] [0.1, 0.5] [0.0, 0.1] [0.0, 0.1]
m3 [0.0, 0.2] [0.7, 0.8] [0.0, 0.4] [0.1, 0.5] [0.0, 0.1] [0.0, 0.0]
m4 [0.0, 0.3] [0.7, 0.8] [0.0, 0.3] [0.2, 0.5] [0.0, 0.0] [0.0, 0.1]
m5 [0.2, 0.4] [0.0, 0.1] [0.1, 0.4] [0.1, 0.5] [0.0, 0.1] [0.0, 0.0]
m6 [0.2, 0.3] [0.0, 0.1] [0.0, 0.4] [0.2, 0.5] [0.0, 0.0] [0.0, 0.1]

Table 7
Combination results obtained by the proposed method.

A B C A C, B C, P ( )

m12 [0.088, 0.169] [0.000, 0.042] [0.023, 0.167] [0.040, 0.194] [0.000, 0.041] [0.000, 0.022] [0.555, 0.569]
m123 [0.078, 0.185] [0.072, 0.136] [0.021, 0.183] [0.045, 0.202] [0.000, 0.046] [0.000, 0.019] [0.484, 0.498]
m1234 [0.071, 0.186] [0.135, 0.218] [0.020, 0.185] [0.058, 0.207] [0.000, 0.041] [0.000, 0.026] [0.424, 0.440]
m12345 [0.140, 0.418] [0.055, 0.171] [0.072, 0.404] [0.061, 0.283] [0.000, 0.056] [0.000, 0.011] [0.169, 0.187]
m123456 [0.172, 0.590] [0.022, 0.128] [0.068, 0.575] [0.060, 0.235] [0.000, 0.029] [0.000, 0.022] [0.065, 0.084]

Fig. 1a. Changes of combined belief degrees with rs1.
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where, for the third and fourth piece of interval evidence, the relative
weights of m3 and m4 are =w 0.08403 and =w 0.08244 , respectively,
which reduces its interference on the combination results, thus im-
proving the accuracy of the pattern recognition problem.

6.3. Generating the aggregated belief degrees

After the generation of weights and reliabilities for all pieces of
interval evidence, the results of combing these six pieces of interval
evidence by using Eq. (30) are detailed in Table 7. The combined results
in Table 7 are all reasonable and conform to intuitive judgment. When
the first two pieces of interval evidence are combined, the combination
results obviously support proposition A. When the third and fourth
pieces of interval evidences are combined, the combination results
gradually turn to support proposition B. When the fifth and sixth pieces
of interval evidences are combined, the combination results obviously
begin to support proposition A. Therefore, this proposed method has a
good ability to combine conflicting interval evidence. According to
Definition 11, the final combination results can be transformed to a
Bayesian belief structure as: =m A( ) [0.202, 0.715]123456 ,

=m B( ) [0.022, 0.150]123456 , =m C( ) [0.098, 0.714]123456 . It’s easy to find
that the transformed Bayesian belief structure is an interval-valued
Bayesian belief structure. For comparison purposes, we take the average
values of the interval-valued probability masses as: =m A¯ ( ) 0.459123456 ,

=m B¯ ( ) 0.086123456 , =m C¯ ( ) 0.406123456 . The results show that the target
identified by the system should be A.

6.4. Sensitivity analysis

To test the robustness of the methods proposed above in this paper,
sensitivity analysis is to be carried out with respect to the reliability of
interval evidence. In order to facilitate the analysis, we transform the
final combination results into Bayesian belief structures, in the case of
the weights of interval evidence are calculated according to Eq. (29),
and then take the average values of the combined interval-valued
probability masses.

We analyze the change of the combined belief degrees with respect
to the reliability of the interval evidence. We could get the changes of
the combined average probability masses on A, B and C with respect to
the reliability of interval evidence as shown in Figs. 1a-1f. Here, the
horizontal and vertical axes refer to the value of interval evidence re-
liability and the combined average probability masses respectively.

Fig. 1a shows the changes of the combined average probability
masses on A, B and C with respect to rs1. From Fig. 1a, we can see that
with the increase of the value assigned to rs1, the combined average
probability masses assigned to A and C also increase gradually while
the assessment to B decreases. It is easy to be interpreted because the
value of rs1 varies from 0 to 1 in the aggregation process, which makes
comprehensive coefficient = +w r~ 0.1827/(1 0.1827 )s1 1 larger and
larger. When =r 1s1 , the other parameters remain the same, the

Fig. 1b. Changes of combined belief degrees with rs2.

Fig. 1c. Changes of combined belief degrees withrs3.

Fig. 1d. Changes of combined belief degrees with rs4.

Fig. 1e. Changes of combined belief degrees with rs5.

Fig. 1f. Changes of combined belief degrees with rs6.
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combined average probability masses on A, B and C is 0.478, 0.044 and
0.486 respectively. It can be concluded that all the three curves are not
sensitive to the changes of rs1. Besides, the three curves in Figs. 1b, 1e
and 1f are similar to those in Fig. 1a, respectively, and it indicates that
they have similar characteristics.

Figs. 1c and 1d show the changes of the combined average prob-
ability masses on A, B and C with respect to rs3 and rs4, respectively. It is
obvious that rs3 and rs4 almost do not influence the results, and the re-
sults are similar to the judgments of others interval evidence whose
weights are much larger than w3 and w4. From the above analysis, we
can see that weight of interval evidence actually dominates the final
result.

7. Conclusions

Interval information is common in practical decision-making pro-
blem. In this paper, the ER rule is extended to tackle with IBSs com-
bination problem considering the weights and reliabilities of interval
evidence. The purpose of this paper is to construct a more general
method for interval evidence combination. Firstly, an optimization
model of pignistic probability distance is established to determine the
relative weights of interval evidence from the global perspective, and
then a modified interval evidence combination approach is proposed
which is based on ER rule. Secondly, compared with others existing
approaches through numerical examples indicated that the proposed
method is not only suitable for combining conflict-free interval evi-
dence, but can also suitably combine conflicting interval evidence.
Finally, the extension of the ER rule in this paper can contribute to
widen its applications in pattern recognition problem. Further re-
searches may include two aspects. First, the proposed approach will be
further developed to areas with linguistic information such as GDM
problem and MADA problem (Zhang, Wang, Chen, Chu, & Chen, 2018);
where the key point is how to combine the assessments of DMs with
different weights and reliabilities in an acceptable consistent way.
Second, the consensus is an essential issue in the GDM (Zhang, Dong,
Chiclana, & Yu, 2019); and how to solve the consensus problem in GDM
should also consider their different backgrounds and expertise.
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