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Abstract  –  The  main  objective  of  this  paper  is  to  
investigate  the  impact  of  the  quality  of  attribute  data  
source  on  the  performance  of  a  target  tracking  
algorithm.  An  array  of  dense  scenarios  arranged  
according to the distance between closely spaced targets  
is  studied  by  different  confusion  matrices.  The  used  
algorithm is Generalized Data Association (GDA-MTT)  
algorithm  for  multiple  target  tracking  processing  
kinematic as well as attribute data.  The fusion rule for  
attribute data is based on  Dezert-Smarandache Theory  
(DSmT).  Besides the main goal a comparison is made  
between  the  cited  above  algorithm  and  an  algorithm  
with  Kinematic  based  only  Data  Association (KDA-
MTT).  The  measures  of  performance  are  evaluated  
using intensive Monte Carlo simulation. 
Keywords: Tracking,  data  association,  estimation, 
Dezert-Smarandache Theory (DSmT), fusion rules.

 1 Introduction

Target tracking of closely spaced targets is a challenging 
problem. The kinematic information is often insufficient 
to  make  correct  decision  which  observation  to  be 
associated  to  some  existing  track.  A  new  approach 
presented in [16] describes Generalized Data Association 
(GDA) algorithm incorporating attribute information. The 
presented results are encouraging, but it  is  important to 
study  the  algorithm  performance  for  more  complex 
scenarios  with  more  maneuvering  targets  and  different 
levels of quality of attribute data source. It is important to 
know the level of quality of the used attribute detection to 
assure robust target tracking in critical, highly conflicting 
situations. The goal of this paper is by using Monte Carlo 
simulation to determine the sufficient level of quality of 
attribute measurements that for given standard deviations 
of the kinematic measurements (in our case azimuth and 
distance) to assure allowable miscorrelations.

2 Problem formulation

Classical target tracking algorithms consist mainly of two 
basic  steps:  data  association to  associate  proper 
measurements  (usually  kinematic  measurement  ( )kz ) 

representing  either  position,  distance,  angle,  velocity, 
accelerations etc.)  with correct  targets;  track filtering to 
estimates  and  predict  the  state  of  targets  once  data 
association  has  been  performed.  The  first  step  is  very 
important for the quality of tracking performance since its 
goal  is  to  associate  correctly  observations  to  existing 
tracks.  The data association problem is  very difficult  to 
solve in dense multitarget and cluttered environment. To 
eliminate  unlikely (kinematic-based)  observation-to-track 
pairings, the classical validation test [3,7] is carried on the 
Mahalanobis distance 

,)()()( 1'2 γνν ≤= − kSkkd jjj (1)

where

)()(ˆ)( kzkzk jj −=ν  is  the  difference 

between   the  predicted  position  )(ˆ kz  and  the  thj −  

validated  measurement  )(kz j ,  S  is  the  innovation 

covariance matrix, γ  is a threshold constant defined from 
the table of the chi-square distribution [3].  Once all the 
validated  measurements  have  been  defined  for  the 
surveillance  region,  a  clustering  procedure  defines  the 
clusters of the tracks with shared observations. Further the 
decision about observation-to-track associations within the 
given  cluster with  n  existed  tracks  and  m  received 
measurements is considered. The Converted Measurement 
Kalman  Filter  (CMKF)  [5]  coupled  with  a  classical 
Interacting Multiple Model (IMM) for maneuvering target 
tracking is used to update the targets’ state vectors. In the 
CMKF  algorithm  the  classical  linearized  conversion  is 
used  as  the  value  of  validation  indicator  for  unbiased 

filtering, proposed in [11] 





<

σ
σ θ 4.0r

r

 is less than 0.01 

in our scenario. The GDA-MTT improves data association 
process by adding attribute measurements (like amplitude 
information  or  RCS  (radar  cross  section)  [#16-7]  ),  or 
eventually  as  in  [6],  target  type  decision  coupled  with 
confusion matrix to classical  kinematic measurements to 
increase  the  performance  of  the  MTT  system.  When 
attribute data is available, the generalized (kinematic and 
attribute)  likelihood  ratios  are  used  to  improve  the 
assignment. The GNN approach is used in order to make a 
decision  for  data  association  on  integral  criterion  base. 
The  used  GDA approach  consists  in  choosing  a  set  of 

1 This work is partially supported by MON grant MI-1506/05 and by Center of Excellence BIS21++ grant (FP6-2004-ACC-SSA-2).
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assignments  { }ijχ  for  n ,  1,  i =  and   m,1,  j = , 

that assures maximum of the total generalized likelihood 
ratio  sum by  solving  the  classical  assignment  problem 

 amin n

1

m

1j ij∑ ∑= =i ijχ ,

where 

( )( )jiLRgen ,loga ij −=
with  

( ) ( ) ( )jiLRjiLRjiLR akgen ,,, = ,

 where ( )jiLRk ,  and ( )jiLRa ,  are kinematic and attribute 
likelihood ratios respectively, and





=
otherwise

itracktoassignedisjtmeasuremenif
ij 0

1
χ  

Or, when the assignment matrix ][ ijaA =  is constructed its 

elements ija  take the following values [12]: 

( ) ( )( )



≤−
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=
γ
γ

2
ijak

2
ij

ij difj,iLRj,iLRlog
dif

a

The  solution  of  the  assignment  matrix  is  the  one  that 
minimizes the sum of the chosen elements. We solve the 
assignment problem by realizing the extension of Munkres 
algorithm, given in [9]. As a result one obtains the optimal 
measurements  to  tracks  association.  Once  the  optimal 
assignment  is  found,  i.e.  the  correct  association  is 
available, then standard tracking filter is used depending 
on the dynamics of the tracking targets. 

2.1 Kinematic Likelihood Ratios for GDA

The kinematic likelihood ratios ( )jiLRk ,  involved into ija  

are easy to obtain because they are based on the classical 
statistical  models  for  spatial  distribution of  false alarms 
and for  correct  measurements [5].  ( )jiLRk ,  is  evaluated 

as:           ( ) ( ) falsetruek LFjiLFjiLR /,, = ,

 where  trueLF  is  the  likelihood  function  that  the 

measurement  j  originates  from a  target  (track)  i  and 

falseLF  is the likelihood function that the measurement  j  

originates from a false alarm. At any given time k , trueLF  
is defined as

( ) ( )kLFkLF r

l lltrue ∑ =
=

1
µ ,

 where r  is the number of the models (in our case of two 

nested models r  = 2 are used for CMKF-IMM, ( )klµ  is 

the probability (weight) of the model  l  for the scan  k , 
( )kLFl  is the likelihood function that the measurement j  

originates from target (track) i  according to the model l , 
i.e. 

( )
( )

( ) 2/,2

2

1 jid

i
l

l
le

kS
kLF −=

π .

falseLF  is defined as  cfafalse VPLF /= , where  faP  is the 

false  alarm  probability  and  cV  is  the  resolution  cell 

volume chosen as in [6]  as  ∏ =
= zn

i iic RV
1

12 .  In our 

case, 2nz =  is the measurement vector size and iiR  are 

sensor  error  standard  deviations  for  azimuth  β  and 

distance D  measurements.

2.2.Attribute Likelihood Ratios for GDA

The major difficulty to implement GDA-MTT depends on 

the  correct  derivation  of  coefficients  ija ,  and  more 

specifically the attribute likelihood ratios  ( )jiLRa ,  for 

correct association between measurement j  and target i  
based only on attribute information. When attribute data 
are  available and their quality is sufficient,  the attribute 
likelihood ratio helps a lot to improve MTT performance. 
In  our case,  the target  type information is utilized from 
RCS  attribute  measurement  through  fuzzification 
interface. A particular confusion matrix is constructed to 
model the sensor’s classification capability.
The  approach  for  deriving  ( )jiLRa ,  within  DSmT 

[10,14,15]  is  based  on  relative  variations  of  pignistic 

probabilities [15] for the target type hypotheses, jH  (j=1 

for  Fighter,  j=2  for  Cargo),  included  in the  frame  2Θ  

conditioned  by  the  correct  assignment.  These  pignistic 
probabilities  are  derived  after  the  fusion  between  the 
generalized  basic  belief  assignments  of  the  track’s  old 
attribute state history and the new attribute/ID observation, 
obtained within the particular fusion rule. It is proven that 
this approach outperforms most of the well known ones 
for attribute data association. It is defined as :

( ) ( ) ( )
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*
i

i
*

i
*
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i.e.  ( )ii TZP =∆ ˆ|*  is  obtained  by  forcing  the  attribute 

observation mass vector  to  be  the same as  the attribute 
mass  vector  of  the  considered  real  target,  i.e. 

( ) ( )..
iTZ mm = . The decision for the right association relies 

on  the  minimum  of  expression  (3).  Because  the 

generalized  likelihood  ratio  genRL  is  looking  for  the 

maximum value, the final form of the attribute likelihood 

ratio is defined to be inverse proportional to the  ( )*Piδ  

with  i defining  the  number  of  the  track,  i.e. 
( ) ( )*

ia P/1j,iLR δ= .
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3  Numerical  experiments’  frame  and 
results

3.1 Experiments’ frame

For the experiments we use an  extension of the program 
packet  TTLab  [13],  written  in  MatLab.  This  extension 
takes into account the attribute information. A program-
human  interface  facilitates  the  changing  of  the  design 
parameters of the algorithms. 
The simulation scenario consists of twenty five air targets 
(Fighter and Cargo) moving in three groups from North-
West to South-East with constant velocity of 170[m/sec]. 
The stationary sensor is at the origin with 5=scanT  [sec], 
measurement standard deviations 0.3[deg] and 100[m] for 
azimuth  and  range  respectively.  The  headings  of  the 
central group are 135[deg] from North and for the left and 
right  groups  are  150[deg]  and  120[deg]  respectively. 
During the scans from 15th to 17th and from 48th  to 50th 
the targets of the left and right groups perform maneuvers 
with transversal  acceleration  4.4[ 2sec/m ].  The  targets 
are closely spaced especially in the middle part  of their 
trajectories. The scenario is shown on figure 1.
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Figure 1 : Multitarget  scenario with 25 targets 

The  typical  tracking  performances for  KDA-MTT  and 
GDA-MTT  algorithms  are  shown  on  figures  2  and  3 
respectively.
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Figure 2 : Typical performance with KDA-MTT 
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Figure 3 : Typical performance with GDA-MTT

The Track Purity performance metrics is used to examine 
the  ratio  of  the  correct  associations.  Track  purity  is 
considered as a ratio of the number of correct observation-
to-track associations (in case of detected target) over the 
total  number  of  all  possible  associations  during  the 
scenario tracking. 
Our aim in these experiments is to investigate what level 
of classifier accuracy we need in a particular scenario with 
the  given  separation  between  closely  spaced  targets. 
Recalling  that  the  confusion  matrix  (CM)  specifies  the 
prior  accuracy of  the  classifier  we perform consecutive 
experiments starting with CM corresponding to the highest 
accuracy and ending with a matrix close to real life. 
Beforehand, we have implemented a series of experiments 
with highest accuracy CM and different separations of the 
targets  starting  with  prohibited  close  separation 
(approximately  res5.1d σ= ;  here  resσ  is  residual 
standard deviation, ranging from 260[m] at the beginning 
of the trajectory to 155[m])[2]. With these experiments we 
try  to  find  out  the  particular  target’s  separation  which 
insures good results in term of tracks’ purity metrics. 
Besides the algorithm processing attribute data on the base 
of  Proportional  Conflict  Redistribution  Rule   number  5 
(PCR5)   from  DSm  theory  simultaneously  the  same 
tracking  algorithm  is  run  with  the  kinematic  data 
processing only.

3.2 Numerical results 

We  started  our  experiments  with  series  of  runs  with 
different target separation and confusion matrix 









=

995.0005.0
005.0995.0

CM  .

Hereafter, because of symmetry we will show the first row 
of the matrix only.  All the values in the tables below are 
averaged over the 50 Monte Carlo runs.  At a distance of 
300[m]  between  targets  the  results  are  extremely 
discouraging for  both  the kinematic only and  kinematic 
and attribute data used (the first row of table 1). There is 
no  surprise  because  this  separation  corresponds  to  less 
than res5.1 σ . This row stands out with remarkable ratio 
of ‘attribute’ to ‘kinematic’ percents of tracks’ purity.  In 
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the  ‘kinematic’  case  less  than  one  tenth  of  tracks  are 
processed  properly  while  with  using  the  attribute  data 
almost two thirds of targets are not lost. Nevertheless, the 
results are poor and unacceptable from the practical point 
of  view.  In  the  next  rows  we  increase  gradually  the 
distance  between targets  reaching separation  of  600[m]. 
This distance corresponds to res5.2 σ  and the results are 
good enough especially for the DSmT based algorithm. 

Table 1: Pd=0.995,   CM(0.995, 0.005)

Distance [m] Track purity [%]
GDA (PCR5) KDA

300 57.99 8.65
350 74.47 12.43
400 87.45 21.17
450 93.24 35.47
500 95.94 56.12
550 96.74 74.74
600 97.76 86.40

The next step  is  to  choose  this medium separation size 
which  ensures  highly  acceptable  results.  We  take  the 
distance of 450[m] because it is in the middle of the table 
and its results are very close to that of larger  distances. 
Now  we  start  our  runs  with  confusion  matrix 
(0.995;0.005) corresponding to highest accuracy and 
gradually  change  its  elements  to  more  realistic  values 
(table  2).  In  this  table  the  tracks’  purity  data  for 
‘kinematic’  only algorithm are  omitted  because  they do 
not depend on confusion matrix values. Now we choose 
the threshold of 85% for tracks’ purity value above which 
could  be  said  that  the  results  are  satisfying  enough. 
Actually, the choice of threshold is a matter of an expert 
assessment  and  strongly  depends  on  the  particular 
implementation.It can be seen from the table that the last 
row stepping from the top with tracks’ purity value above 
the chosen threshold is the row with CM with elements 
(0.96;0.04). So that, if our task is to track targets separated 

at  normalized  distance  approximately  res5.1 σ  to  res3σ  

we  have  to  ensure  classifier  with  mentioned  above 
confusion matrix. As a comparison could be remained the 
value of tracks’ purity ratio for the ‘kinematic’ algorithm 
for this separation – 35.47%. 
Table 2 Track purity results with different confusion 
matrices for scenario with distance 450[m]

Distance [m] 450
Confusion Matrix Track Purity
 0.995  0.005 93.24
 0.99   0.01 91.51
 0.98   0.02 89.53
 0.97   0.03 86.83
 0.96   0.04 85.26
 0.95   0.05 82.48
 0.94   0.06 79.41
 0.93   0.07 75.38
 0.92   0.08 75.25
 0.91   0.09 74.27
 0.90   0.10 70.69

Some additional  experiments have been  performed with 
continuing change of the elements of CM worsening the 
classifier accuracy and trying to answer the question how 
looks the CM which do not influence the value of tracks’ 
purity ratio,  i.e.  when the ‘attribute’ algorithm gives the 
same results as ‘kinematic’ one for the chosen separation. 
The results can be seen in table 3. Even for the values of 
elements  of  CM  close  to  the  natural  limit  values  of 
(0.5;0.5) the investigated ratio remains slightly better (the 
last row of table 3) than that of ‘kinematic’ algorithm.

Table 3 :  Distance =450[m] , PCR5 algorithm

Distance [m] 450 
Confusion Matrix Track Purity
0.995   0.005 93.24
0.95    0.05 82.48
0.90    0.10 70.69
0.80    0.20 52.04
0.70    0.30 46.90
0.60    0.40 43.01
0.55    0.45 42.20

After  correct  association  is  made  the  classical  IMM 
Kalman filtering algorithm is  used  to  diminish position 
errors. The figures 4 and 5 shows the errors along axes X 
and Y with  and without filtering. It can be seen the effect 
of significant reduction of the sensor errors after filtering. 
On figure 4 is presented the result of more precise model 
1,  and on figure 2 is the result of model 2 with bigger 
values for errors.
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Figure 4 : Monte Carlo estimation of errors 
along axes x and y for model 1
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Figure 5 :  Monte Carlo estimation of errors 
along axes x and y for model 2

On  figure  6  the  result  for  distance  errors  for  the  two 
models is presented. It can be seen that the errors for the 
more precise first model the errors are lower.
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Figure 6 : Monte Carlo estimation of distance 
errors for first and second models 

Conclusions
In this paper a series of experiments have been performed 
aiming to investigate the influence of some circumstances 
and values of some particular parameters on performance 
capability of multiple target tracking algorithm processing 
both kinematic and attribute data.  The algorithm is based 
on  Global  Nearest  Neighbour-like  approach  and  uses 
Munkres algorithm to resolve the generalized association 
matrix. The principles of Dezert-Smarandache theory of 
plausible  and  paradoxical  reasoning  to  utilize  attribute 
data  are  applied.  The  results  show that  even  in  dense 
target  scenarios  and  realistic  accuracy  of  attribute  data 
classifier  the algorithm performance meets requirements 
concerning  its  practical  implementation.  Beside  this 
inference, the results once more underline the advantage 
of  used algorithm utilizing both kinematic and attribute 
data over that one working with kinematic data only.
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