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Numerous self-driving cars algorithms rely on grid maps for motion planning, obstacles avoidance
or environment perception. Obtained from fused sensory information, the occupancy grids (OGs) are
nowadays among the most popular solutions used in series production in automotive industry. In this
paper, we extend Deep Grid Net (DGN) [1], a deep learning(DL) system designed for understanding
the context in which an autonomous car is driving. We consider this paper a granular approach to DGN
method due to the improvements added to the original research [1]. DGN incorporates a learned driving
environment representation based on OGs obtained from raw real-world Lidar data and constructed
on top of the Dempster-Shafer (DS) theory. Our system is able to predict in real-time if the vehicle
is driving on highway, on county roads, inside a city, in parking lots or is stuck in a traffic jam.
The predicted driving context is further used for switching between different autonomous driving
strategies implemented within EB robinos, Elektrobit’s Autonomous Driving (AD) software platform.
We propose a neuroevolutionary approach to search the optimal hyper-parameters set of DGN. Genetic
algorithms (GAs) were selected due to their demonstrated capabilities to evolve deep neural networks
with improved accuracy and processing speed. The performance of the proposed deep network has
been evaluated against similar competing driving context estimation classifiers.

Keywords: Deep Learning; Genetic Algorithms; Occupancy Grids.

1. Introduction

An essential requirement for autonomous vehicles is the ability to perceive and understand
in real-time the surroundings in order to instrument a responsive answer. An important
amount of resources were allocated in the last years to solve the environment understanding
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challenges. Neural networks become the main solution for analysis of the considerable
amount of data coming from the various sensors mounted on vehicles. Surveys dedicated
to autonomous vision and environment perception can be found in [2] and [3]. Autonomous
driving in urban street scenarios achieved a strong progress recently. In order to navigate
autonomously in complex driving scenarios a vehicle demands a deep scene understanding.

The context in which the vehicle is driving represents an important input for a Highly
Autonomous Driving (HAD) systems in order to deploy the ideal driving strategies when
driving within a city in comparison with driving on a country road. There are several use
cases in which the driving situation classification can represent an important source of
information for a vehicle behaviour arbitration mechanism. The missing of Global Posi-
tioning Systems (GPS) signal or the low accuracy can be one of the use cases.

This paper is an extended version of the work published in [1] where Deep Grid Net
(DGN) algorithm, illustrated in Fig. 1 was introduced. This work is a granular approach
aiming to add more implementation details and experiments results to our original research.
DGN algorithm predicts the driving context by analyzing local Occupancy Grids (OGs)
constructed from fused raw sensory data. The OGs are preferred over images due to the
highly reduced search space determined by the lower information representation. The OGs
describe the driving environment as free or occupied spatially distributed cells, as later
explained in Section 3. As in the previous work [1], the occupancy grids are built from data
acquired from Lidar sensors, mounted on the front and rear sections of the ego-car.

The DGN approach leverages on the power of deep neural architectures for learning
a grid-based representation of the traffic scene. By using OGs instead of raw image data,
we are able to cope with uncertainties present in the driving scenes, such as changes in
the sensors calibration, pose, time and latency. This learned representation can be used in
different autonomous driving tasks which rely on driving context understanding.

The DGN algorithm is deployed within Elektrobit’s HAD software framework, coined
EB robinos. A brief description of EB robinos is given in Section 4. DGN offers a robust
real-time estimation of the driving context mapped to five classes: driving on the highway,
driving in the inner-city, driving on the country roads, driving in ares with traffic jam situa-
tions and parking. This information is further used by the Behavior Arbitration layer of the
framework for planning different autonomous driving strategies.

Grid Maps, or Occupancy Grids (OGs), have their origins in robotic applica-
tions [4], [5]. A traditional grid map divides the environment into single grid cells and
estimates the occupancy probability of each cell. We have used grid information as data
source for our deep network, thus obtaining a bird’s-eye view perspective of the traffic
scene, as shown in the images from Fig. 2. Each cell is color-coded, red pixels representing
obstacles, green marking the free space and black representing the unknown occupancy.
Apart from the free/occupied information, the grid also encodes the occupancy confidence,
also referred to as occupancy probability, or occupancy belief.

Deep convolutional neural networks (DCNNs) were chosen to encode the traffic scene
due to their generalization capabilities. DCNNs performance depends on many hyper-
parameters, namely loss functions, optimization algorithms and the neurons number from
different layers. In order to overcome the manually tuning of these hyper-parameters, we
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Fig. 1. Deep Grid Net (DGN) architecture. Lidar sensory data streams are converted into Occupancy Grid (OGs),
which are furthered parsed by a Convolutional Neural Network. The final network layer provides the driving
context as a five classes probabilistic output, that is, driving on the highway, driving in the inner-city, driving on
the country roads, driving in ares with traffic jam situations and parking. A video which demonstrates the DGN’s
functionality can be found following this link

build on top of the authors previous work on one-shot learning using neuroevolutionary al-
gorithms [6] and propose an approach for the automatic computation of hyper-parameters
during training.

The main contributions of this paper can be summarized as follows:

• Improvement of Deep Grid Net (DGN) classification accuracy;
• Extension of DGN’s hyper-parameters set which are optimized using Genetic Al-

gorithms (GAs);
• Deployment and evaluation of DGN into the EB robinos autonomous driving soft-

ware stack.

The rest of the paper is organized as follows: an overview of related work is given
in Section 2, while the Deep Grid Net system is presented in Section 3. A description of
EB robinos, the training strategy, and the evaluation of DGN’s performance are given in
Section 4. Finally, the conclusions are stated in Section 5.

2. Background and Motivation

Occupancy grids are widely used in robotics field for autonomous navigation of self-driving
agents. In [7], Convolutional Neural Networks (CNNs) have been trained on 2D range sen-
sory data for the semantic labeling of places in unseen environments. This approach allows
a robot to use Lidar for space classification, where OGs created from Lidar scans are con-
verted to gray images used for training the CNN. In [7], the robot is able to distinguish
between three classes, that is, room, corridor, and doorway, which are used to create a lo-
calization map. Although similar, this solution to indoor mapping does not apply to outdoor
autonomous driving, where the traffic scene has a more complex structure. Driving through
an outdoor environment implies the interaction with dynamic objects, an interaction which
is not taken into consideration by the method presented in [7]. In our work, this drawback

https://www.youtube.com/watch?v=vDafgRWE_Jo&feature=youtu.be
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is eliminated by the OG degradation property, described in Section 3.
Recurrent Neural Networks (RNN) have been used by Ondruska [8] for tracking and

classifying the surroundings of a robot placed in a dynamic and partially observable envi-
ronment. A recurrent neural network filters the input stream composed of raw laser mea-
surements in order to infer the objects locations together with their identity, in both visible
and occluded areas. The algorithm in [8] takes inspiration from Deep Tracking [9], which
is a deep learning system that leverages on deep neural networks (DNNs) for end-to-end
tracking. Raw sensory data is used to construct an occupancy grid where the visible pixels
are labeled for a classifier in a supervised manner. The training data has been recorded
from a static and stationary position of the robot, resulting in low data variability. In order
to cover as many driving scenes as possible, we have used in our system Lidar data which
has been collected from various dynamic traffic scenarios. This procedure ensures a high
sensory data variation.

In [10], an environment modeled with a Bayesian filtering technique is processed
through a DNN, with the purpose of obtaining a long-term driving situation prediction
for intelligent vehicles. This work is based on the principles stated by Nuss in [11], [12],
where raw Radar and Laser data is parsed through a fusion layer. The algorithm predicts
future static and dynamic objects using a CNN trained on occupancy grids. As we have
also established, the filtered representation provided by OGs is a robust alternative to raw
image data, thus increasing the accuracy of driving context classification.

Although OGs are common tools in robotics, there are only a few cases where deep
learning techniques are used for real-time environment perception. This niche has not been
sufficiently studied and can present many research possibilities. In [13], an improved ver-
sion of the Proportional Conflict Redistribution rule ’#’6 (PCR6), taking into account
Zhang’s degree of intersection of focal elements [14], was used on Lidar data. The esti-
mated occupancy grids obtained from different methods, like PCR6 and Dempster-Shafer
(DS) [15], are very similar to the ones used in our work.

In order to improve environment perception using OGs, object detection and classifica-
tion can add important features, as shown in [16]. CNNs were applied on occupancy maps
for encoding 3D range sensory information. Given as input this environment representa-
tion, the object detector outputs a list of oriented shapes and their corresponding semantic
labels.

In [17], OGs and DNNs have been applied to outdoor driving scene classification. A
major differences with respect to our work is that the classifier in [17] estimates only four
driving classes based on OGs which are constructed by accumulating data over time. Only
after accumulating enough information, the OGs can be used for classification. In our work,
we compute OGs in real-time, during the movement of the vehicle. DGN also aims to
increase the granularity of classification by taking into account five road types.

To improve the driving context prediction performance, a fine-tuning of the hyper-
parameters set used in the DGN’s training process is needed. GAs are used to avoid the
manual parameters fine-tuning, based on multiple full training trials. Several papers demon-
strated the efficiency of using GAs for learning the optimal hyper-parameters set. In [18]
the authors present the advantages of using GAs for automatic selection and tuning of the
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hyper-parameters over various techniques. The algorithm introduced in [19] uses ideas like
mating and mutation in order to help the DNN architecture to learn to optimize its hyper-
parameters by itself rather than have the values explicitly set. As it was demonstrated in
[20], GAs can be applied even for hard deep reinforcement learning problems, evolving
networks with over four million free parameters, the largest neural networks ever evolved
with a traditional evolutionary algorithm.

The evaluation of a given hyper-parameters set can take a considerable amount of time
and the search space is often very high-dimensional. In [21] the authors propose a solution
to speed up the evaluation of DCNNs, solution that can be applied for our classification
algorithm.

3. Methodology

3.1. Problem space

The Deep Grid Net algorithm is mainly composed of three elements: (i) an occupancy grid
fusion algorithm, (ii) a deep neural network used for parsing the OG in real-time and (iii)
an evolutionary algorithm used for selecting the optimal neural network set. The outcome
obtained from DGN is a driving context classification, mapped to five classes: inner city,
country road, parking lot, highway and traffic jam.

The OGs training dataset D is used to calculate the optimal DGN hypothesis hDGN ,
which encodes the deep network’s structure and weights. We define our problem space
within the following Bayesian framework:

P(h|D) =
P(D|h)P(h)

P(D)
(1)

where P(h) is the prior probability over h, P(D) =
∫

h P(D|h)P(h) is the training data prob-
ability, independent of h and P(h|D) is the likelihood of h given D. P(D|h) is the data
likelihood over a given hypothesis.

The maximum a posteriori (MAP) hypothesis hMAP can be defined as

hMAP = argmax
h∈H

P(h|D). (2)

Using Bayes theorem, Eq. (2) can be written as:

hMAP = argmax
h∈H

P(D|h)P(h)
P(D)

, (3)

where P(D) is not influencing the maximization problem, reducing Eq. (3) to:

hMAP = argmax
h∈H

P(D|h)P(h). (4)

Assuming that all hypotheses are equally probable, we can choose a Maximum Likeli-
hood (ML) approach for training the deep network:
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Fig. 2. Samples of real-world occupancy grids. The top images in each group represent snapshots of the driving
environment, together with their respective OG and the activations of the first convolutional layer of DGN. The
OG are obtained using data from a Lidar sensor mounted on top of our test vehicle. DGN is able to distinguish
between highways (a), traffic jams (b), country roads (c), parking lots (d) and inner-city streets (e).
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hML = argmax
h∈H

P(D|h) = argmax
h∈H

L(h) (5)

The training samples are considered to be independently identically distributed, thus
satisfying the following statement:

P(D|h) =
m

∏
i=1

P(〈xi,yi〉|h) =
m

∏
i=1

P(yi|xi;h)P(xi) (6)

Maximizing the Eq. (6) is equivalent with the maximization of the logarithmic function
logL(h):

logL(h) =
m

∑
i=1

logP(yi|xi;h)+
m

∑
i=1

logP(xi) (7)

The term
m
∑

i=1
logP(xi) depends on D, but not on h. Hence, it can be ignored when search-

ing for the optimal DGN hypothesis:

logL(hDGN) =
m

∑
i=1

logP(yi|xi;h) (8)

3.2. Occupancy Grids

Occupancy Grids are the data source for calculating the optimal DGN hypothesis hDGN .
OG are often used for environment perception and navigation, applications which require
techniques for data fusion and obstacles avoidance. In our work, the grids used for driving
context classification where built using the Dempster-Shafer (DS) theory, also known as the
Theory of Evidence or the Theory of Belief Functions, developed by Shafer in 1976 from
Dempster’s work [15]. It is characterized by four functions: a Frame of Discernment (FoD)
function, a Belief (Bel) function, the sources of evidence represented by a Basic Belief
Assignment (BBA) and the Plausibility (Pl) function. In the followings, a short introduction
to belief functions and fusion rules will be provided for a better understanding on how the
OG is built using the DS method. A pedagogical example of the DS approach chose to
build our OGs is illustrated in Fig. 3.

The theory of belief functions is a general framework for reasoning with uncertainty,
with connection to other frameworks such as possibility and probability theories.

Let Ω be a finite discrete FoD:

Ω = {w1,w2,w3, . . . ,wn} (9)

where n > 1 for the considered fusion problem and its fusion space GΩ. DΩ is the hyper-
power set, or the super-power set SΩ, depending on the considered problem [22]. A Basic
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Belief Assignment (BBA) associated with the given set of evidence is defined as the map-
ping:

m(.) : GΩ→ [0,1] (10)

satisfying m(Φ) = 0 and ΣA∈GΩm(A) = 1, where m(A) is the mass of belief of A committed
by the source of evidence. The fusion space GΩ, also named the power set, is the set of
all discernment frames, that is, all hypotheses and all possible unions of hypotheses. The
hyper-power set DΩ and the super-power set SΩ are defined as the set formed by all unions
and intersections of hypotheses, or set formed by all unions, intersection, and complements
of the hypotheses, respectively [23].

The Belief (Bel) and Plausibility (Pl) functions are defined as:

Bel(A) = ∑
B⊆A

B∈GΩ

m(B), Pl(A) = ∑
B∩A6=φ

B∈GΩ

m(B) (11)

The maximum amount of potential specific support that could be given to A is quantified
by the degree of plausibility Pl(A), while the amount of justified support that should be
given to A is quantified by the degree of belief Bel(A) for a subset A. If for some A ∈ GΩ,
m(A)> 0 then A is called a focal element of BBA m(.). If all focal elements are singletons
and GΩ = 2Ω, then BBA m(.) is called a Bayesian BBA [15] and its belief function Bel(A)
is homogeneous and is equal to Bel(A) = Pl(A). Otherwise Bel(A)≤ Pl(A).

From the different fusion rules proposed in literature [22], the DS rule was most suited
for our work, being also one of the most common rules used in the theory of evidence. The
issue which arises here is how to combine two independent sets of probability mass assign-
ments with specific situations. This rule derives commonly shared beliefs between multiple
data sources and ignores all of the conflicted beliefs through a normalization factor. The
joint mass is calculated from the m1(.) and m2(.) sets of masses. The DS combination is
defined by taking mDS

1,2(Φ) = 0 for all X 6= Φ:

mDS
1,2 ,

1
1−m1,2(φ)

∑
X1,X2∈2Ω

X1∩X2 6=φ

2

∏
i=1

mi(Xi) (12)

where m1,2(φ) measures the amount of conflict between the two mass sets. The term 1−
m1,2(φ) is a normalization constant. The total degree of conflict between the two sources
of evidence is defined as:

m1,2(φ), ∑
X1,X2∈2Ω

X1∩X2=φ

2

∏
i=1

mi(Xi) (13)

According to Shafer [15], the combination rule cannot be applied when two sources
are in total conflict. It is said that the two sources are in total conflict if the condition
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Fig. 3. Pedagogical example illustrating the behavior of the DS algorithm. The ego-car encounters an obstacle
when driving on the North-East (NE) direction. Initially, at time t0, the cell is marked as free space (green color).
Once the car approaches an obstacle, the respective cell’s occupancy belief increases, shown here by the red
marking at time stamp t3.

m1,2(φ) = 1 applies. Additional details on Dempster’s Rule of Combination can be found
in [24].

The occupancy grids provide a birds-eye perspective on the traffic scene. The basic
idea behind OGs is the environment’s division into 2D cells, each cell representing the
probability, or belief, of occupation. Each cell is color-coded, green pixels representing the
free space, red marking the occupied cells (or obstacles) and black models the unknown
occupancy. The color intensity represents the degree of occupancy. The higher the intensity
of the green color is, the higher the probability of a cell to be free is.

In this work, the content of the grid layer gets degraded over time by gradually decreas-
ing the occupancy information for every grid cell. The grid content is updated over and
over again, in real-time, with each sensory measurement.

The range of the sensors and the degrade factor were used to define the OG’s dimension
and precision. The world coordinate system is the reference for the OGs, sliding along the
ego vehicle’s driving direction. An anchor describing the position of the grid along the
driving direction is used when new data is filled inside the occupancy map.

In order to have a better viewing perspective of the traffic scene, the ego-vehicle should
always be centered in the grid. Due to the different data acquisition timestamps, this is
not always the case. This phenomenon happens because the viewing range of the sensor is
higher than the distance between the car and the outer grid cell. This inconvenience may
cause the vehicle to move around 15m inside the grid, without moving the grid information
itself. When newly received sensory data falls outside of the current grid system, the anchor
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is moved and the grid switches position in a forward direction.
Due to the different sampling times, this behavior is potentially dangerous for the OGs

consistency. As solution, we continuously move the grid relative to the position of the ego
vehicle, while the anchor is tracked in parallel for grid data integration.

The OGs used for training are labeled through the visual inspection of the camera image
provided by the video sensor. Examples of labeled OGs are shown in Fig. 2.

3.3. Neuroevolutionary Training of DGN

The optimization problem of the hyper-parameters set can be briefly defined as the amount
of function evaluations that will be performed on every optimization in order to select the
best hyper-parameters set for a specific model.

Genetic Algorithms (GAs) [25] are a metaheuristic optimization method, belonging to
a broader class of evolutionary algorithms. GAs are inspired by the natural selection pro-
cess, which mimics the evolution paradigm. The evolutionary training process starts from
an initial set of solutions, or population P , where every solution is given by a set of prop-
erties, called genes. A solution is also called an individual hDGN ∈P . During training,
an optimization objective is evaluated across populations, followed by the selection of the
fittest solutions and their recombination using crossover and mutation operations. GAs are
mainly used to solve global optimization objectives over problem domains with complex
parameter spaces, demonstrating success in overcoming local minimums, when compared
to gradient-based algorithms.

Algorithm 1 Deep Grid Net’s training procedure in pseudocode.
1: procedure TRAIN(P)
2: for (θ,hDGN,t) ∈ P do
3: while not end of training do
4: θ ← backprop(θ |hDGN) . backpropagation training for the current

hyper-parameters in hDGN

5: hDGN ← eval(hDGN) . evaluate the current model
6: hDGN ← explore(hDGN ,P) . select the new hyper-parameters set p
7: update P with new (hDGN, θ, t +1) . update population P

8: end while
9: end for

10: return top 5 hDGN individuals in P . returns the models with the
highest scores

11: end procedure

GAs are used in our work for finding the optimal hyper-parameters set encoding h∗DGN ,
that is, the optimal number of neurons in each layer, most suitable optimizer, the number
and size of kernel filters used for the convolution operation and the best cost function
for backpropagation. This allows us to determine the smallest neural networks structure,
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Fig. 4. DGN general architecture. It contains two convolutional layers, filtered by ReLu activation functions.
Pooling and normalization operations are following each convolutional layer. The model contains three fully
connected layers connected to a softmax activation function.

which can deliver accurate results, as well as real-time processing capabilities [26]. An
eval function has been defined for evaluating the fitness function. Finding the optimal set
of parameters is defined as:

θ
∗ = argmax

θ∈Θ

eval(θ). (14)

The proposed training method optimizes over a hyper-parameters solutions space, aim-
ing at calculating the top individuals hDGN ∈P based on their fitness value, defined here
as the accuracy of the deep neural network:

h∗DGN = argmax
hDGN∈P

eval(backprop(θ |hDGN)) (15)

The optimal structure of the network is evaluated within the training loop for a given
set of weights θ , DGN individual hDGN and training step t. The weights θ are calculated
using classical backpropagation, according to the maximum likelihood estimation defined
in Eq. 8:

θ ← backprop(θ |hDGN). (16)

Once the training in Eq. 16 is completed, the hyper-parameters are evaluated based on
hDGN using the eval(·) fitness function. The new set of hyper-parameters are calculated by
exploring the solution space with the help of the explore(hDGN ,P) procedure. The training
loop stops after 15 training epochs and returns the top 5 individuals, which have the highest
fitness value. The pseudocode of our approach is given in Algorithm 1.

3.4. DGN Architecture

In the interest of constructing a grid representation of the driving environment we have
defined a deep CNN topology which takes as input the OGs described in section 3.2. The
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Fig. 5. Open EB robinos reference architecture (www.elektrobit.com).

resulted occupancy grids are exported as 128×128 images and fed as input into the CNN.
The neural network architecture is written in Keras [27], on top of the TensorFlow [28]

library . Keras was chosen considering the ease in fast prototyping, as well as its capacity
to run seamlessly on CPU and GPU.

The structure of the CNN, with a default hyperparameter set, is illustrated in Fig. 4. Re-
ducing the problem than we want to solve to a multiclass classification task, we have chosen
for performance evaluation competing neural networks like AlexNet [29], GoogLeNet [30],
ResNet [31] and LeNET [32].

The Deep Grid Net architecture has been developed for deployment within EB robi-
nos, where smaller activation maps are required in order to achieve real-time performance.
The DGN’s topology consists of two convolutional layers filtered by Rectified Linear Unit
(ReLu) activation function. To find the number of kernel filters and their optimal size we
provide intervals of values to the neuroevolutionary algorithm described in Section 3.3.

Each convolutional layer is followed by a pooling operation and a normalization layer
(Batch Normalization). The network also contains three fully connected (FC) layers linked
to a final Softmax activation function which calculates the driving context probabilities.
In order to reduce the model overfitting, Dropout layers were added after the first two FC
layers. The optimal number of neurons for the FC layers, as well as the loss function and
the optimizer, are obtained based on the designed neuroevolutionary algorithm.

4. Experimental results

We describe in this section the experimental results obtained from the integration of DGN
within EB robinos.

4.1. EB robinos

EB robinos is a functional software architecture from Elektrobit Automotive, with open
interfaces and software modules, that manages the complexity of autonomous driving. The
EB robinos reference architecture, illustrated in Fig. 5, integrates components following
the sense, plan, act decomposition paradigm. Moreover, it also makes use of AI technology
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Fig. 6. Self driving test vehicle [33] used for real-world data acquisition.

within its software modules in order to cope with the highly unstructured real-world driving
environment.

DGN is used within EB Robinos to select different driving strategies, depending on the
context in which the ego-car has to drive autonomously.

4.2. Training strategy

The testing data contains occupancy grids collected from different driving scenarios. The
data was collected on several road types in Germany, using the test vehicle (Volkswagen
Passat) presented in Fig. 6 equipped with a front camera (Continental MFC430), a front
and rear lidar (Quanergy M8) and front, rear and side radars (Continental ARS430).

The sensory data streams are fused into occupancy grids having a size of 125×125 and
a resolution of 0.25m. The recordings were performed during daytime, with mostly dry and
sunny weather and include crowded, as well as light traffic conditions.

The data samples are saved during driving at time intervals ranging between 50 ms
and 90 ms per cycle. Approximately 60.000 samples were obtained, containing different
scenarios types: country roads, highways, inner city, parking lots, or traffic jam situations.
From the total amount of samples, 65% were used for training, 25% for validation and 10%
for testing. The validation data set provides an unbiased evaluation of a model fit on the
training dataset while tuning model hyper-parameters. An important effort was allocated to
select the proper validation data. Given the fact that the data is collected every 50-90 ms the
consecutive samples can be very similar. To eliminate the problem of having very similar
images in both training and validation datasets, the samples for validation were selected
when slightly changes in the OGs structure are visually detected. The same procedure was
used to create the dataset for testing.

Concerning the training process, a desktop computer was used, which was equipped
with an NVIDIA GeForce GTX 1080 TI graphical processing unit (GPU).
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Fig. 7. Examples of confusion matrices generated during the neuroevolutionary training process. The figures are
generated with different hyper-parameters from which it can be highlighted: a) mean-squared error as activation
function and stochastic gradient descent (SGD) as optimizer; b) mean-squared error as activation function and
adam as optimizer.

The classification model was trained from scratch, using the dataset described above
and a learning rate α of 0.0001 for the backpropagation algorithm.

The structure of our network was determined based on the algorithm described in the
Section 3.3. The scope was to search for the optimal optimizer, cost function, and number
of neurons for the FC layers, together with the ideal number and size of the kernel filters
used for the convolution operation. The following hyper-parameters were used as input for
the neuroevolutionary training process:

• Optimizers: rmsprop, adam, Stochastic Gradient Descent (SGD), adagrad,
adadelta, adamax, nadam;

• Loss functions: categorical crossentropy, mean squared error;
• Number of neurons: 16, 32, 64, 128, 258;
• Number of kernel filters: 16, 32, 64, 96;
• Size of kernel filters: 3, 5, 7, 9;

During the neuroevolutionary training process confusion matrices for each individual
were generated. In Fig. 7 are presented examples of confusion matrices for two models
containing the following hyper-parameters:

a) optimizer: SGD; loss function: mean squared error; number of neurons: 128 for
both FC layers; kernel filters: 5× 5× 96 and 5× 5× 16 for the first and second
convolutional layer, respectively

b) optimizer: SGD; loss function: mean squared error; number of neurons: 512 for
the first FC layer and 128 for the second FC layer; kernel filters: 7×7×32 and
3×3×16 for the first and second convolutional layer, respectively
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Fig. 8. Fitness function evolution during training.

It can be observed that the model evaluated in Fig. 7a) has a very good accuracy for all
the classes, comparing with the model evaluated in Fig. 7b) where the accuracy is lower
and the overfitting occurs. Calculating the confusion matrices for each individual is useful
for evaluating the training process progress.

The fitness function evolution can be seen in Fig. 8. The GA evolved the DGN’s hyper-
parameters with a generation restraint value of 10, each generation consisting of 20 in-
dividuals. An individual represents a DGN neural network, with its structure described in
Section 3.4 and with the hyper-parameters selected by the neuroevolutionary algorithm. An
average classification accuracy is measured after each generation. When the last generation
is reached, the individual with the best score is selected as h∗DGN . Extending the hyper-
parameters set used in our training method, we have reached an improved value of 99.1%
fitness accuracy. The selected neural network architecture contains 96 and 64 neurons for
the first and second fully connect layers, respectively and uses nadam as backpropagation
optimizer and categorical crossentropy as loss function. The optimal number and size of
the convolutional layers kernel filters were determined as following: 7× 7× 64 filters for
the first convolutional layer and 3×3×32 filters for the second convolutional layer.

4.3. Accuracy Evaluation

The DGN’s classification performance is summarized in the confusion matrix from
Fig. 9a), where it can be observed that the classification accuracy is very high on the test
dataset for every evaluated class. Minor differences in their per-class performance are vis-
ible. The classes traffic jam and country road present a higher detection accuracy due to a
more distinctive structure of the occupancy grids.
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Fig. 9. Generated confusion matrices for performance evaluation. In this figure four confusion matrices are used to
compare the accuracy of DGN, in figure a), with accuracy gained from the evaluation of: b) AlexNet, c) Seeger’s
method, d) LeNet.

A comparison of DGN’s classification performance against state-of-the-art methods is
presented in Table 1. The competitors are several network topologies, like AlexNet [29],
or GoogleLeNet [30], as well as the algorithm from [17], which is the closest approach
to our system. All algorithms were tested with respect to the same testing data, acquired
with our test vehicle. The classification results obtained with DGN are clearly higher than
the ones delivered by the competing estimators, this making DGN comparable with well
known DNN topologies.

In order to have a better performance comparison overview, we have generated confu-
sion matrices for the models which have more similarities with DGN. In Fig. 9b), c) and d)
the confusion matrices for AlexNet, LeNet and Seeger’s method [17] can be analyzed.

Interestingly enough, AlexNet and Seeger’s models were able to provide a perfect score
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Table 1. Comparison of driving context classification performance

Method Accuracy Recall Precision F-measure Specificity
LeNET 0.88 0.91 0.93 0.92 0.86

GoogLeNet 0.94 0.96 0.97 0.97 0.97
ResNet 0.9 0.92 0.94 0.928 0.88
AlexNet 0.95 0.95 0.96 0.96 0.95
Seeger 0.91 0.9 0.92 0.92 0.93
DGN 0.98 0,988 0,983 0,984 0.95

Table 2. Test samples processing time comparison

LeNet GoogLeNet ResNet AlexNet Seeger DGN
Time (milliseconds) 175 930 820 710 620 145

accuracy for one of the classes, which can imply that our test set was not sufficient for these
complex neural network architectures. Additionally, AlexNet provides a good accuracy for
the class city, very close to DGN’s performance. In accordance with the confusion matrix,
Seeger’s method has a lower classification accuracy comparing with DGN, even if the
network complexity is higher. LeNet provides the lowest classification accuracy on our test
dataset.

Adjacent to the high classification accuracy, DGN was designed to be used in real-time
applications, like the EB robinos HAD platform. The speed of the algorithm was com-
pared with the already mentioned competitors. In Table 2 the processing speed comparison
is presented. In can be observed that DGN’s is suitable for real-time application, having
the best performances in terms of processing speed. LeNet model has comparable results.
Nevertheless, the DGN’s classification accuracy is much comparing with LeNet.

Comparing with the method defined in [17], DGN runs on single OG sample, without
the need to accumulate grid data over time. DGN’s architecture is simple, the number of
layers and neurons being reduced to a necessary minimum, keeping in parallel an optimal
accuracy.

5. Conclusion

In this paper, we have extended Deep Grid Net (DGN), a solution for driving context under-
standing, required by behavior arbitration components within Highly Autonomous Driving
(HAD) systems. It has been designed to infer the driving context directly from Occupancy
Grids (OGs), as opposed to traditional image based methods. We were able to show that a
simplified convolutional neural network topology is sufficient to classify in real-time be-
tween different types of OGs, without the need of training large neural networks, such as
AlexNet, or GoogLeNet.
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One straightforward way to improve DGN’s performance is to enlarge its training
dataset, as well as increasing the number of OGs classes. New samples can be acquired
especially through an automated process of synthetic training samples generation, as the
GOL algorithm introduced by the authors in [6]. Candidates for new OGs classes can be
construction sites, highway entrances or exits, lanes merging situations or accidents. Due
to DGN’s scalability, these additions can be directly implemented within the algorithm.

Another strategy to improve the DGN’s is to fuse data from multiple sensors. In this
direction images collected with the camera mounted on the test vehicle can be used as input
into the deep learning algorithm, together with the OGs.
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