Extension of Inagaki General Weighted Operators

and

A New Fusion Rule Class of Proportional Redistribution of Intersection Masses

Florentin Smarandache
Chair of Math \& Sciences Depart.
University of New Mexico, Gallup, USA

Abstract

. In this paper we extend Inagaki Weighted Operators fusion rule (WO) [see 1, 2] in information fusion by doing redistribution of not only the conflicting mass, but also of masses of non-empty intersections, that we call Double Weighted Operators (DWO). Then we propose a new fusion rule Class of Proportional Redistribution of Intersection Masses (CPRIM), which generates many interesting particular fusion rules in information fusion. Both formulas are presented for 2 and for $\mathrm{n} \geq 3$ sources. An application and comparison with other fusion rules are given in the last section. Keywords: Inagaki Weighted Operator Rule, fusion rules, proportional redistribution rules, DSm classic rule, DSm cardinal, Smarandache codification, conflicting mass

ACM Classification: I.4.8.

1. Introduction.

Let $\theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}$, for $n \geq 2$, be the frame of discernment, and $S^{\theta}=(\theta, \cup, \cap, \tau)$ its super-power set, where $\tau(\mathrm{x})$ means complement of x with respect to the total ignorance.

Let $I_{t}=$ total ignorance $=\theta_{1} \cup \theta_{2} \cup \ldots \cup \theta_{\mathrm{n}}$, and Φ be the empty set.
$S^{\theta}=2^{\wedge} \theta_{\text {refined }}=2^{\wedge}\left(2^{\wedge} \theta\right)=D^{\theta \cup \theta c}$, when refinement is possible, where $\theta_{\mathrm{c}}=\left\{\tau\left(\theta_{1}\right), \tau\left(\theta_{2}\right)\right.$, $\left.\ldots, \tau\left(\theta_{\mathrm{n}}\right)\right\}$.

We consider the general case when the domain is S^{θ}, but S^{θ} can be replaced by $D^{\theta}=$ (θ, \cup, \cap) or by $2^{\theta}=(\theta, \cup)$ in all formulas from below.

Let $m_{1}(\cdot)$ and $m_{2}(\cdot)$ be two normalized masses defined from S^{θ} to $[0,1]$.
We use the conjunction rule to first combine $m_{1}(\cdot)$ with $m_{2}(\cdot)$ and then we redistribute the mass of $m(X \cap Y) \neq 0$, when $X \bigcap Y=\Phi$.

Let's denote $m_{2 \cap}(A)=\left(m_{1} \oplus m_{2}\right)(A)=\sum_{\substack{X, Y \in s^{\theta} \\(X \cap Y)=A}} m_{1}(X) m_{2}(Y)$ using the conjunction rule.
Let's note the set of intersections by:

$$
S_{\cap}=\left\{\begin{array}{l}
X \in S^{\theta} \mid X=y \cap z, \text { where } y, z \in S^{\theta} \backslash\{\Phi\} \tag{1}\\
X \text { is in a canonical form, and } \\
X \text { contains at least an } \cap \text { symbol in its formula }
\end{array}\right\} .
$$

In conclusion, S_{\cap} is a set of formulas formed with singletons (elements from the frame of discernment), such that each formula contains at least an intersection symbol \cap, and each formula is in a canonical form (easiest form).

For example: $A \cap A \notin S_{\cap}$ since $A \cap A$ is not a canonical form, and $A \cap A=A$. Also, $(A \cap B) \cap B$ is not in a canonical form but $(A \cap B) \cap B=A \cap B \in S_{\cap}$.

Let $S_{\cap}^{\Phi}=$ the set of all empty intersections from S_{\cap},
and
$S_{\cap, r}^{\text {non } \Phi}=\left\{\right.$ the set of all non-empty intersections from $S_{\cap}^{\text {non } \Phi}$ whose masses are redistributed to other sets, which actually depends on the sub-model of each application $\}$.

2. Extension of Inagaki General Weighted Operators (WO).

Inagaki general weighted operator $(W O)$ is defined for two sources as:

$$
\begin{equation*}
\forall A \in 2^{\theta} \backslash\{\Phi\}, m_{(W O)}(A)=\sum_{\substack{X, Y \in \in^{\theta} \\(X \cap Y)=A}} m_{1}(X) m_{2}(Y)+W_{m}(A) \cdot m_{2 \cap}(\Phi), \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\sum_{X \in 2^{\theta}} W_{m}(X)=1 \text { and all } W_{m}(\cdot) \in[0,1] . \tag{3}
\end{equation*}
$$

So, the conflicting mass is redistributed to non-empty sets according to these weights $W_{m}(\cdot)$.

In the extension of this $W O$, which we call the Double Weighted Operator (DWO), we redistribute not only the conflicting mass $m_{2 \cap}(\Phi)$ but also the mass of some (or all) non-empty intersections, i.e. those from the set $S_{\cap, r}^{n o n \Phi}$, to non-empty sets from S^{θ} according to some weights $W_{m}(\cdot)$ for the conflicting mass (as in WO), and respectively according to the weights $\mathrm{V}_{\mathrm{m}}($.$) for$ the non-conflicting mass of the elements from the set $S_{\cap, r}^{\text {non } \Phi}$:
$\forall A \in\left(S^{\theta} \backslash S_{\cap, r}^{n o \infty}\right) \backslash\{\Phi\}, m_{D W O}(A)=\sum_{\substack{X, Y \in \theta^{\theta} \\(X \cap Y)=A}} m_{1}(X) m_{2}(Y)+W_{m}(A) \cdot m_{2 \cap}(\Phi)+V_{m}(A) \cdot \sum_{z \in S_{n, r}^{\text {nom }}} m_{2 \cap}(z)$,
where

$$
\begin{equation*}
\sum_{X \in S^{\theta}} W_{m}(X)=1 \text { and all } W_{m}(\cdot) \in[0,1], \text { as in }(3) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{z \in \int_{n, r}^{\text {none }}} V_{m}(z)=1 \text { and all } V_{m}(\cdot) \in[0,1] \tag{5}
\end{equation*}
$$

In the free and hybrid modes, if no non-empty intersection is redistributed, i.e. $S_{\cap, r}^{\text {non } \Phi}$ contains no elements, DWO coincides with WO.

In the Shafer's model, always DWO coincides with WO.
For $s \geq 2$ sources, we have a similar formula:

$$
\begin{equation*}
\forall A \in\left(S^{\theta} \backslash S_{\cap, r}^{n o n \Phi}\right) \backslash\{\Phi\}, m_{D W O}(A)=\sum_{\substack{X_{1}, X_{2}, \ldots, X_{n} \in S^{\theta} \\ \prod_{i=1}^{\star} x_{i}=A}} \prod_{i=1}^{s} m_{i}\left(X_{i}\right)+W_{m}(A) \cdot m_{s \cap}(\Phi)+V_{m}(A) \cdot \sum_{z \in S_{n, r}^{\text {none }}} m_{s \cap}(z) \tag{6}
\end{equation*}
$$

with the same restrictions on $W_{m}(\cdot)$ and $V_{m}(\cdot)$.

3. A Fusion Rule Class of Proportional Redistribution of Intersection Masses

For $A \in\left(S^{\theta} \backslash S_{n, r}^{n o n \Phi}\right) \backslash\left\{\Phi, I_{t}\right\}$ for two sources we have:

$$
\begin{equation*}
m_{\text {CPRIM }}(A)=m_{2 \cap}(A)+f(A) \cdot \sum_{\substack{X, Y \in s^{\theta} \\ \text { or }\{\Phi \neq X \cap Y Y \text { and } A \subseteq M\} \\\left\{\oplus X \cap Y \in S_{n, r}^{\text {nond }} \text { and } A \subseteq N\right\}}} \frac{m_{1}(X) m_{2}(Y)}{\sum_{z \subseteq M} f(z)}, \tag{7}
\end{equation*}
$$

where $f(X)$ is a function directly proportional to $X, f: S^{\theta} \rightarrow[0, \infty]$.
For example, $f(X)=m_{2 \cap}(X)$, or

$$
\begin{equation*}
f(X)=\operatorname{card}(X), \text { or } \tag{9}
\end{equation*}
$$

$$
f(X)=\frac{\operatorname{card}(X)}{\operatorname{card}(M)} \text { (ratio of cardinals), or }
$$

$$
\begin{equation*}
f(X)=m_{2 \Omega}(X)+\operatorname{card}(X), \text { etc.; } \tag{10}
\end{equation*}
$$

and M is a subset of S^{θ}, for example:
$M=\tau(X \cup Y)$, or
$M=(X \cup Y)$, or
M is a subset of $X \cup Y$, etc.,
where N is a subset of S^{θ}, for example:

$$
\begin{equation*}
N=X \cup Y, \text { or } \tag{11}
\end{equation*}
$$

N is a subset of $X \cup Y$, etc.

And

$$
m_{\text {CPRIM }}\left(I_{t}\right)=m_{2 \cap}\left(I_{t}\right)+\sum_{\substack{X, Y \in S^{\theta}}}^{\left\{X \cap Y=\Phi \text { and }\left(M=\Phi \text { or } \sum_{z \in M} f(z)=0\right)\right\}}<m_{1}(X) m_{2}(Y) .
$$

These formulas are easily extended for any $s \geq 2$ sources $m_{1}(\cdot), m_{2}(\cdot), \ldots, m_{s}(\cdot)$.
Let's denote, using the conjunctive rule:

$$
\begin{align*}
& m_{s \cap}(A)=\left(m_{1} \oplus m_{2} \oplus \ldots \oplus m_{s}\right)(A)=\sum_{\substack{X_{1}, X_{2}, \ldots, X_{s} \in S^{\wedge} \Theta \\
\bigcap_{i=1}^{s} x_{i=A}}} \prod_{i=1}^{s} m_{i}\left(x_{i}\right) \tag{13}
\end{align*}
$$

where $f(\cdot), M$, and N are similar to the above where instead of $X \cup Y$ (for two sources) we take $X_{1} \cup X_{2} \cup \ldots \cup X_{s}$ (for s sources), and instead of $m_{2 \cap}(X)$ for two sources we take $m_{s \cap}(X)$ for s sources.

4. Application and Comparison with other Fusion Rules.

Let's consider the frame of discernment $\Theta=\{A, B, C\}$, and two independent sources $m_{1}($.$) and$ $\mathrm{m}_{2}($.$) that provide the following masses:$
A B C $\quad \mathrm{A} \cup \mathrm{B} \cup \mathrm{C}$
$\begin{array}{llll}\mathrm{m}_{1}(.) & 0.3 & 0.4 & 0.2\end{array}$
0.1
$\begin{array}{llll}\mathrm{m}_{2}(.) & 0.5 & 0.2 & 0.1\end{array}$
0.2

Now, we apply the conjunctive rule and we get:

A	B	C	$\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}$	$\mathrm{A} \cap \mathrm{B}$	$\mathrm{A} \cap \mathrm{C}$	$\mathrm{B} \cap \mathrm{C}$
$\mathrm{m}_{12 \cap}()$.	0.26	0.18	0.07	0.02	0.26	0.13
0.08						

Suppose that all intersections are non-empty \{this case is called: free DSm (DezertSmarandache) Model $\}$. See below the Venn Diagram using the Smarandache codification [3]:

Applying DSm Classic rule, which is a generalization of classical conjunctive rule from the fusion space (Θ, U), called power set, when all hypotheses are supposed exclusive (i.e. all intersections are empty) to the fusion space (Θ, \cup, \cap), called hyper-power set, where hypotheses are not necessarily exclusive (i.e. there exist non-empty intersections), we just get:

A	B	C	$\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}$	$\mathrm{A} \cap \mathrm{B}$	$\mathrm{A} \cap \mathrm{C}$	$\mathrm{B} \cap \mathrm{C}$
$\mathrm{m}_{\mathrm{DSmC}}()$.	0.26	0.18	0.07	0.02	0.26	0.13

DSmC and the Conjunctive Rule have the same formula, but they work on different fusion spaces.

Inagaki rule was defined on the fusion space (Θ, U). In this case, since all intersections are empty, the total conflicting mass, which is $\mathrm{m}_{12 \cap}(\mathrm{~A} \cap \mathrm{~B})+\mathrm{m}_{12 \cap}(\mathrm{~A} \cap \mathrm{C})+\mathrm{m}_{12 \cap}(\mathrm{~B} \cap \mathrm{C})=0.26+$ $+0.13+0.08=0.47$, and this is redistributed to the masses of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and $\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}$ according to some weights $\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}$, and w_{4} respectively, depending to each particular rule, where: $0 \leq \mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4} \leq 1$ and $\mathrm{w}_{1}+\mathrm{w}_{2}+\mathrm{w}_{3}+\mathrm{w}_{4}=1$. Hence

A	B	C	AUBUC
$\mathrm{m}_{\text {Inagaki }}()$.	$0.26+0.47 \mathrm{w}_{1}$	$0.18+0.47 \mathrm{w}_{2}$	$0.07+0.47 \mathrm{~W}_{3}$

Yet, Inagaki rule can also be straightly extended from the power set to the hyper-power set.
Suppose in DWO the user finds out that the hypothesis $\mathrm{B} \cap \mathrm{C}$ is not plausible, therefore $\mathrm{m}_{12 \cap}(\mathrm{~B} \cap \mathrm{C})=0.08$ has to be transferred to the other non-empty elements: $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{A} \cup \mathrm{B} \cup \mathrm{C}$, $A \cap B, A \cap C$, according to some weights $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$, and v_{6} respectively, depending to the particular version of this rule is chosen, where:
$0 \leq v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6} \leq 1$ and $v_{1}+v_{2}+v_{3}+v_{4}+v_{5}+v_{6}=1$. Hence
A
B
C
$\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}$
$A \cap B$
$\mathrm{A} \cap \mathrm{C}$
$\mathrm{m}_{\text {DWo }}() \quad 0.26+.0.08 \mathrm{v}_{1} \quad 0.18+0.08 \mathrm{v}_{2} \quad 0.07+0.08 \mathrm{v}_{3} \quad 0.02+0.08 \mathrm{v}_{4} \quad 0.26+0.08 \mathrm{v}_{5} \quad 0.13+0.08 \mathrm{v}_{6}$
Now, since CPRIM is a particular case of DWO, but CPRIM is a class of fusion rules, let's consider a sub-particular case for example when the redistribution of $m_{12 \cap}(B \cap C)=0.08$ is done proportionally with respect to the DSm cardinals of B and C which are both equal to 4 . DSm
cardinal of a set is equal to the number of disjoint parts included in that set upon the Venn Diagram (see it above).
Therefore 0.08 is split equally between B and C , and we get:

A	B	C	$\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}$	$\mathrm{A} \cap \mathrm{B}$	$\mathrm{A} \cap \mathrm{C}$
$\mathrm{m}_{\text {CPRIMcard }(.)}$	0.26	$0.18+0.04=0.22$	$0.07+0.04=0.11$	0.02	0.26

Applying one or another fusion rule is still debating today, and this depends on the hypotheses, on the sources, and on other information we receive.

5. Conclusion.

A generalization of Inagaki rule has been proposed in this paper, and also a new class of fusion rules, called Class of Proportional Redistribution of Intersection Masses (CPRIM), which generates many interesting particular fusion rules in information fusion.

References:

[1] T. Inagaki, Independence Between Safety-Control Policy and Multiple-Sensors Schemes via Dempster-Shafer Theory, IEEE Transaction on Reliability, 40, 182-188, 1991.
[2] E. Lefèbvre, O. Colot, P. Vannoorenberghe, Belief Function Combination and Conflict Management, Information Fusion 3, 149-162, 2002.
[3] F. Smarandache, J. Dezert (editors), Advances and Applications of DSmT for Information Fusion, Collective Works, Vol. 2, Am. Res. Press, 2004.

