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Airborne radar tracking in moving ground vehicle scenarios is

impacted by sensor, target, and environmental dynamics. Moving

targets can be characterized by 1-D High Range Resolution (HRR)

Radar profiles with sufficient Signal-to-Noise Ratio (SNR). The am-

plitude feature information for each range bin of the HRR pro-

file is used to discern one target from another to help maintain

track or to identify a vehicle. Typical radar clutter suppression al-

gorithms developed for processing moving ground target data not

only remove the surrounding clutter, but a portion of the target

signature. Enhanced clutter suppression can be achieved using a

Multi-channel Signal Subspace (MSS) algorithm, which preserves

target features. In this paper, we (1) exploit extra feature informa-

tion from enhanced clutter suppression for Automatic Target Recog-

nition (ATR), (2) present a Decision-Level Fusion (DLF) gain com-

parison using Displaced Phase Center Antenna (DPCA) and MSS

clutter suppressed HRR data; and (3) develop a confusion-matrix

identity fusion result for Simultaneous Tracking and Identification

(STID). The results show that more channels for MSS increase iden-

tification over DPCA, result in a slightly noisier clutter suppressed

image, and preserve more target features after clutter cancellation.

The paper contributions include extending a two-channel MSS clut-

ter cancellation technique to three channels, verifying the MSS is

superior to the DPCA technique for target identification, and a com-

parison of these techniques in a novel multi-look confusion matrix

decision-level fusion process.
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1. INTRODUCTION

Many surveillance systems incorporate High Range

Resolution (HRR) radar and Synthetic Aperture Radar

(SAR) modes to be able to capture moving and station-

ary targets. Feature-, signature-, and categorical-aided

tracking and Automatic Target Recognition (ATR) ap-

plications benefit from HRR radar processing. Success-

ful Simultaneous Tracking and Identification (STID)

[6, 12, 65] applications exploit feature information to

determine the target type and dynamics. Throughout the

paper, we use identification, as opposed to recognition,

to clarify the process of distinguishing between two tar-

gets of the same classification label or allegiance type.

To maximize a search area, airborne systems op-

erate at standoff ranges to detect targets and initiate

tracks [3, 5]. After target acquisition and track initia-

tion, tracking systems then transition into a track main-

tenance mode. However, closely spaced targets require

feature analysis to identify the targets. In track mainte-

nance, HRR radar affords dynamic processing analysis

for vehicle tracking and signal feature extraction (range,

angle, aspect, and peak amplitudes) for target detection

and identification [7].

Pattern recognition algorithms applied to ATR prob-

lems are typically trained on a group of desired objects

in a library to gain a statistical representation of each

objects’ features. One-dimensional (1-D) HRR classi-

fiers exploit the location and peak amplitude informa-

tion contained in the HRR signatures [19, 38]. HRR

classifiers align input signatures to the library templates

or models [16] and determine the best correlation value

for the aligned features. HRR ATR algorithms often ap-

ply a threshold to the best score to reject questionable

objects before making identification or class label deci-

sions. As per the previous work on target identification

from HRR signatures, we improve existing capabilities

by increasing the peak amplitudes and refine range-bin

locations through clutter suppression techniques.

A number of papers have been published that evalu-

ate one-dimensional (1-D) HRR ATR solutions [22, 27,

46, 62, 63]. Classifiers have been developed for cor-

relation [34], Bayes and Dempster Shafer information

fusion [11], entropy and information theory analysis

[8], and neuro-fuzzy methods [10]. The classifier results

have been used for tracking [9, 66] and multi-look HRR

identification [53, 67]. Other approaches include eigen-

value template matching [51], Eigen-Extended Maxi-

mum Average Correlation (EEMACH) filters [31] and

likelihood methods accounting for Rician, amplitude,

specular, and diffuse, Cisoid scattering [18]. Since we

utilize a combination of sensor and exploitation algo-

rithms (with reported decisions) we are not afforded

feature or signal-level fusion options. Using inspiration

from the above ATR fusion methods, we incorporate

maximum-likelihood Bayesian methods into our novel

Confusion Matrix Decision-Level Fusion (CM-DLF)

algorithm.
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Although the ATR process seems straightforward,

misidentification or rejection of an input object as a

viable target occurs because of feature extraction dif-

ferences over different operating conditions. Extended

operating conditions (EOCs) such as the target being

obscured from the sensor, targets adjacent to another

object, and target transitions from moving to station-

ary and back to a moving state in a traffic scenario

unexpectedly alter the features. The importance and

impact of EOCs is critical to ATR performance [25].

The quality of the information used in joint track-

ing, classification, and identification [1, 32, 36, 64]

can be determined through Bayes, Dempster-Shafer,

or Dezert-Smarandache Theory (DSmT) analysis meth-

ods [60]. The clutter-suppressed CM-DLF approach en-

hances both EOC target identification through mini-

mizing residual range and Doppler noise and enhanc-

ing track accuracy through pose angle determination

with the correct target shape (features in range-Doppler

space).

HRR ATR algorithm performance is impacted by the

quality of the features available in the 1-D HRR profiles.

Missing target features in training data will alter the li-

brary templates formed resulting in poorer identification

performance. The presence of EOCs will degrade 1-D

test signatures and the corresponding classifier perfor-

mance. Since the signature data used by ATR algorithms

is not always pristine, information fusion methods have

been developed such as multi-look ATR, decision level

fusion (DLF), and feature level fusion (FLF) in an ef-

fort to enhance identification performance from HRR

radar data. Improved HRR processing prior to 1-D HRR

profile formation (i.e., clutter cancellation) should im-

prove the target features available or reveal more target

features, resulting in higher quality 1-D signatures and

improved ATR performance.

For many decades, researchers have been develop-

ing methods for target identification (ID) through HRR

analysis either focused on the radar data itself (e.g., clut-

ter suppression) or the target classification (e.g., pattern

recognition methods), which lack the ability to deal with

high-density closely-spaced moving target IDs. As si-

multaneous tracking and identification methods are be-

ing applied to urban areas, targets are closer together,

have maneuvering dynamics, and are of similar shape.

To compensate for these needs, we have coordinated the

development of (1) MSS clutter suppression enhance-

ments to deal with closely spaced targets, (2) designed

a novel confusion-matrix decision-level fusion approach

to take sensor-exploitation likelihood results and update

target ID tracks, and (3) combined clutter suppression

and CM-DLF for enhanced target signature analysis

through movements. Conceptually, target identification

improves from having more (a) salient features, (b) spa-

tially and temporally refined features in range-Doppler

space, and (c) recursively fused features from different

perspectives.

Fig. 1. 1-D HRR profile formation process.

This paper reviews HRR data processing in Sec-

tion 2, discusses the implementation of a standard two-

channel DPCA clutter cancellation method, presents an

improved multi-channel signal subspace (MSS) clut-

ter suppression algorithm, and compares the resulting

clutter-canceled target chips and target-to-clutter ratios.

In Section 3, a multi-look decision level fusion iden-

tification method is presented along with performance

metrics. Section 4 presents the DPCA and MSS 1-D

HRR identification performance in both single-look and

multi-look scenarios and Section 5 discusses conclu-

sions and future work.

2. HRR DATA PROCESSING

Focused 1-D HRR radar profiles of moving targets

may be generated with enhanced target-to-clutter ratios.

The moving target is first chipped from the motion-

compensated video phase history (MCVPH) radar data

for each channel available. The chipped target of the

trailing channel is aligned to the target chip of the

lead channel for clutter suppression and focusing, as

illustrated in Fig. 1. The processing results in a two-

dimensional range-Doppler (RD) chip (shown in Fig. 5)

that is masked using binary morphology to determine

the mean clutter level, target length, and target edges in

the chip. The range-Doppler chip is then cropped about

the Doppler extent of the target mask before computing

the mean of all sub-aperture images. The integration

over the dwell time is conducted, which is the duration

that the target remains in the radar’s beam during each

scan. The maximum scatters from each range bin are

kept to form the 1-D HRR profile.

Stationary targets from SAR imagery may also be

formed into 1-D HRR profiles using a similar process.

For targets in SAR imagery, constant-false alarm rate

(CFAR) detection is performed first, followed by target

mask formation using binary morphology. The forma-

tion process crops around the target mask and computes

the mean of all sub-aperture images, keeping the maxi-

mum scatters from each range bin to form the stationary

HRR profile. Shown in Fig. 1 is the general profile for-

mation process flow.

Recent research [19] has shown that HRR profiles

formed from SAR imagery of stationary targets have

comparable features to profiles of the same target mov-

ing at corresponding collection geometries as shown in

Fig. 2. The amplitude of the moving target range profile

(dashed red line) is lower relative to the stationary target

profile (solid blue line) because some of the moving
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Fig. 2. Comparison of moving/stationary 1-D HRR profiles.

target energy is lost during clutter cancellation while

forming the HRR profile. HRR profiles formed from
SAR images do not require clutter cancellation in the
range profile formation process. However, the strongest
scattering features of the target still correlate in range
between the moving and stationary target HRR profiles.
Since HRR profiles can be formed directly from moving
platform HRR collections or extracted from SAR target
chips, we are able to utilize collected SAR images for

HRR testing and analysis.

2.1. General Clutter Suppression

Clutter suppression of airborne radar data for mov-
ing ground targets is a crucial step in target detection
and identification. Clutter suppression is needed to en-
hance the target signature while reducing the compet-
ing ground clutter energy surrounding the moving target
[13]. As shown in the results in Section 2.4, three visible
improvements in Figs. 8—10 that compare two-channel

versus three-channel MSS are: (1) better estimate of en-
ergy return to range resulting in the estimate of the tar-
get length, (2) reduced Doppler clutter to enhance target
movement estimates for tracking, and finally, (3) more
salient features from which to do a target identification
from either template or model matching.
Typically, clutter suppression techniques have the

unintentional side effect of reducing some of the target

energy while suppressing the ground clutter. Although
the target-to-clutter ratio may improve greatly, a reduc-
tion in the target features is inevitable, which impacts
target tracking and identification performance. The pro-
cessing of airborne multi-channel radar data to cancel
the clutter near moving ground targets can be accom-
plished through a variety of techniques such as Doppler
filtering, space-time adaptive processing (STAP), or dis-

placed phase center antenna (DPCA) processing [13].
Doppler filtering is a technique used with adaptive

radars that sense the Doppler distribution of clutter and
adjust the radar parameters in an attempt to maximize
the signal to clutter ratio. Clutter suppression is accom-
plished by obtaining a separate coherent output from
each channel of an antenna array and applying a unique

Fig. 3. Three-channel antenna configuration.

complex weight to each channel. Then the weighted
channels are added coherently to cancel the clutter en-

ergy [13, 21, 33].
A two-dimensional filtering technique known as

Space Time Adaptive Processing (STAP) [21, 28, 29, 49]
uses the Doppler frequency, sensor platform velocity,
and direction of arrival information to achieve clutter

cancellation. Adaptive filter weights are determined for
the temporal and spatial domains after sampling a co-
herent train of pulses. These weights then form a two-
dimensional space-time clutter filter that can be applied
to the data to eliminate ground clutter. STAP process-
ing is robust to errors and can simultaneously suppress

clutter returns and jamming signals [17, 40, 48].
In DPCA processing, radar motion compensation re-

duces the Doppler spread of ground clutter induced by
the sensor platform [30, 35, 41]. A multi-channel air-
borne radar configuration often has a pair of antennas
positioned so that as the platform travels in time, the

position of the trailing antenna will occupy approxi-
mately the same position of the lead antenna at some
delta time. Essentially, for a given time interval, one
antenna position is fixed. Clutter suppression is accom-
plished by subtracting the received signal from the trail-
ing antenna at the delta time from the received signal

of the lead antenna at the initial time of the processing
interval [37, 39, 58].
Both STAP and DPCA are capable of cancelling

main beam and side lobe clutter for multi-channel air-
borne radars with two or more antenna phase centers
[40]. In this paper, an available DPCA two-channel al-

gorithm was chosen for comparison to the multi-channel
signal subspace algorithm.
A three-channel antenna configuration is shown in

Fig. 3, where antenna number 1 is the lead channel for
the collected data. The concept of DPCA processing is

illustrated in Fig. 3 for a three-channel antenna array
configuration. The positions of the antennas are shown
at the initial time, ti, and with platform motion at some
time interval, ti+¢t, where ¢t is the change in time.
Through DPCA processing, two antenna positions will
appear to be at the same physical location for the array

depicted in Fig. 3. Therefore, clutter cancellation is
possible where channel 2 at ti and channel 3 at ti+¢t
line up and where channel 1 at ti and channel 2 at ti+¢t
are aligned.

The radar data processed for this paper was collected

at X-Band with the aircraft traveling in a linear flight

path north of the scene center collecting in spotlight

mode at a depression angle of 8.97 degrees and at

a weighted resolution of approximately 12 inches. As
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Fig. 4. SAR image of collection site.

Fig. 5. Example of target chip before clutter suppression.

illustrated in the SAR image of Fig. 4, the center of the

collection site was a rectangular grassy area with roads

along the western, eastern, and southern borders of the

target area. Wooded areas surround the grassy rectangle

along the northern, eastern, and southern portions of the

scene. In the scenario, civilian vehicles (i.e., trucks and

cars) are traveling along the roads in all directions.

The image chips used in the processing discussion

are of the test vehicle moving south along the western

Fig. 6. Two-channel DPCA process flow.

road. In Fig. 5, an example range-Doppler chip of the

target vehicle from channel 1, the lead channel, before

clutter suppression is shown. The y-axis is a function

of the range bins, which when multiplied by the pixel

spacing, is measured in meters (m). The x-axis is in

Hz, where the maximum Doppler shift for the clutter is

determined as (2¤velocity of the sensor)/wavelength.
The two-channel DPCA processing approach is ex-

plained in Section 2.2. Section 2.3 explains the multi-

channel signal subspace algorithm and the clutter sup-

pression results of the target chip are presented in Sec-

tion 2.4.

2.2. DPCA Technique

In Section 2.1, the DPCA processing was intro-

duced. The DPCA algorithm used in this work was de-

veloped for measured data from a radar array of two an-

tennas oriented along the sensor platform path of travel.

In general, the data from the trailing antenna (channel 2

of Fig. 6) is aligned to the lead channel (channel 1 of

Fig. 6), where the phases are adjusted so that the aligned

channels appear to be at the same location in space, and

finally, the channels are subtracted to suppress the sta-

tionary clutter. Fig. 6 illustrates the processing steps and

data flow of the DPCA technique.

The DPCA algorithm is provided motion-compen-

sated phase history data for both the lead (channel 1)

and trailing (channel 2) channels. Channel 2, the trail-

ing channel data, contains extra pulses to address mi-

nor offset delays between the channels. Alignment of

the range and pulse offset is conducted to roughly get

channel 2 to approximate channel 1. Then, the antenna

patterns are estimated for each channel and an antenna

pattern correction is applied to channel 2 so that the

channels are similar. A phase correction is determined

in the Doppler compressed domain to account for dif-

ferences in the frequency direction not already corrected

by coarse channel alignment and to address small phase

variations between the channels caused by any minor

hardware differences in the collection system. The phase

correction factor is applied to the data of channel 2.

Further phase adjustments are determined in the range-

Doppler domain and applied to channel 2 to account for

any shift in the fast-time samples. A series of additional

phase corrections are applied to channel 2 by the DPCA

algorithm to improve the fine alignment of channel 2 to

channel 1 to maximize the target-to-clutter ratio. These
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additional corrections require that any target-like objects

in the data be avoided so that the target energy is not

included in phase correction estimates as was done in

the determination of the previous correction factors. The

correction factors account for time varying phase differ-

ences between both channels being applied to channel 2.

Next, a fast-time magnitude and phase correction is ap-

plied in the Doppler compressed domain to the data of

channel 2. Then a smoothing technique is applied to the

data resulting in a trailing channel that has been equal-

ized to the lead channel. This completes the alignment

process of channel 2 to channel 1. Now that channel 2

appears to be the same as channel 1, the subtraction of

the channels result in the cancellation of stationary clut-

ter in the scene. The baseline clutter suppressed data

is represented by fd(k,n) = f1(k,n)¡f2(k,n), where f1
is channel 1, f2 is the equalized phase history data of

channel 2 to that of channel 1, k is the fast-time index,

n is the pulse number, and fd is the clutter-cancelled

result.

The DPCA adaptive clutter cancellation method pre-

sented will be applied to the data used in this work to

ultimately produce the DPCA 1-D HRR profiles. In an

effort to improve the 1-D HRR profiles and preserve

more target features, a multi-channel signal subspace

technique is developed in Section 2.3.

2.3. Multi-channel Signal Subspace Technique

The exploitation of the additional information of a

third channel in the phased array radar yields more pre-

cise clutter estimation and results in better suppression

of unwanted clutter returns. By using the information

of all three channels, more target features are preserved

in the clutter canceled image [26]. Increasing available

target features should translate into better target identi-

fication performance. This section will briefly explain

the background, the theory behind two channel clutter

suppression, and extend this technique to three-channel

clutter cancellation.

2.3.1. Signal Subspace Background
The Multi-channel Signal Subspace (MSS) technique

is based on 2-D adaptive filtering principles. The pro-

cess has been applied to a wide variety of data pro-

cessing problems in the literature [54] such as SAR

change detection, [47] image fusion of radar surveil-

lance data, [56, 57] medical imaging, and video pro-

cessing [20, 54]. Most of the work with signal subspace

processing has focused on data pairs either separated

spatially (e.g., two channel phased array radar data) or

separated temporally (e.g., such as electro-optical im-

ages collected at different times) as discussed in the

literature by Soumekh and others [54, 55, 57].

The development of a true multi-channel, greater

than two, signal subspace algorithm for use with a multi-

channel radar system consisting of a planar antenna ar-

ray of 22 receiver channels seemed likely [2]. However,

the received power at each channel was too weak to

form an image of sufficient quality for further process-

ing. This issue was resolved by splitting the data from

the 22 channels into a pair of 11 receiver channel groups

that were summed to improve the signal to noise level

[57]. Once the planar antenna array is represented by

two receive channels, the signal subspace processing

technique is applied to clutter-cancel the data. In the

next section, the process for two-channel clutter sup-

pression will be explained.

2.3.2. Dual-Channel Signal Subspace Technique
The dual-channel radar system discussed in this sec-

tion will have a pair of antennas in a phased array

similar to what is illustrated in Fig. 3, but without the

third channel being present. Channel 1 will be the lead

channel and channel 2 will be the trailing channel. In

keeping with the convention found in the literature, let

f1(x,y) represent the range-Doppler image formed from

the motion-compensated data from channel 1 over a

coherent processing interval (CPI) of 128 ms. Then,

f2(x,y) will be the range-Doppler image formed from

the motion-compensated data from channel 2 after a

slow-time alignment with channel 1. Since the channel 2

range-Doppler image is a linear combination of chan-

nel 1 and any shifted versions, f2(x,y) can then be mod-

eled by [54, 20], f2(x,y) = f1(x,y)− h(x,y) +fe(x,y);
where − is the convolution operator, fe(x,y) repre-

sents the target motion in the range-Doppler image, and

h(x,y) is the impulse response representing the relative

shift in each range-Doppler image due to differences in

the two receive channels of the sensor system.

Gain and phase ambiguities caused by known and

unknown factors, such as differences between the an-

tenna patterns or antenna vibration, in the two receive

channels may dominate the moving target signature in

the imagery. These differences are treated as an error

signal in the collected data. The DPCA approach re-

duces the error signal to a set of pre-determined func-

tions that are estimated and accounted for deterministi-

cally. The MSS technique applied to a dual antenna sen-

sor system views the error estimation process as com-

pletely stochastic.

Signal subspace theory estimates h(x,y) from f1(x,y)

and f2(x,y) resulting in the error function, ĥ(x,y)

[54, 56]. This is accomplished by minimizing the

squared error between f2(x,y) and its estimated version

given by

f̂2(x,y) = ĥ(x,y)−f1(x,y) (1)

where f̂2(x,y) is determined by projecting f2(x,y) on to

a set of orthogonal basis functions defined by f1(x,y)

[54]. The orthogonal basis functions can be computed

using any one of accepted decomposition/orthogonal-

ization techniques such as singular value decomposi-

tion, QR orthogonalization, or the Gram-Schmidt pro-

cedure. QR orthogonalization was used in the MSS im-

plementation that generated the results of this paper

where in practice ĥ(x,y)−f1(x,y) is estimated instead
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of ĥ(x,y). In general, the spatially-invariant difference

over the entire image is represented by [20, 54],

f̂d(x,y) = f2(x,y)¡ f̂2(x,y): (2)

To suppress unwanted clutter in radar data, the er-

ror function is estimated with overlapping odd-sized

blocks over the entire image to account for the spatially

varying nature of the phase in the imagery. The entire

range-Doppler image is divided into rectangular blocks

containing an odd number of pixels and processed to

estimate the error function. The blocks of image pix-

els were moved so that some portion of the rectangular

patch overlapped a previously processed block until the

entire subdivided image had been processed. This re-

sults in a clutter-cancelled image given by [56],

f̂d(xi,yi) =

LX
l=1

[f2(xi,yi)¡ f̂2(xi,yi)]Il(xi,yi) (3)

for a two channel phased array radar system. L is the

number of overlapping blocks processed, i is the odd

number of pixels per block, and Il is an identity matrix.

The MSS implementation in this paper used square

patches in the processing represented by (xi,yi), but

in general a rectangular block represented by (xi,yj)

could be used for an i-by-j-dimensional block. The next

section discusses the extension of this technique to data

collected with a three-channel phased array radar.

2.3.3. Three Channel Signal Subspace Technique

The two-channel signal subspace method explained

in Section 2.3.2 is extended for use with all three

channels of the phased array radar depicted in Fig. 3.

Once again, the lead channel will be channel 1 and the

trailing channels will be 2 and 3. The Multi-channel

Signal Subspace (MSS) extension to three channels will

first project the range-Doppler image formed from the

aligned motion compensated data of channel 2, f2(x,y),

on to the basis functions defined by the range-Doppler

image formed from the motion compensated data of

channel 1, f1(x,y), and determine the spatially varying

difference, f̂d2(xi,yi), given by Equation 3. The resulting

range-Doppler difference image of channels 1 and 2

is treated as a new independent channel, f4(x,y), as

shown by

f4(x,y) = f̂d2(x,y) = f2(x,y)¡ f̂2(x,y): (4)

Then the range-Doppler image formed by the align-

ed motion compensated data of channel 3, f3(x,y), is

projected on to the basis functions defined by the range-

Doppler image formed from the motion compensated

data of channel 2, f2(x,y). The spatially varying differ-

ence, f̂d3(xi,yi), from (3) is then determined. The result-

ing range-Doppler difference image of channels 2 and

3 in f5(x,y) = f̂d3(x,y) = f3(x,y)¡ f̂3(x,y) is treated as a
second new independent channel, f5(x,y), at a slightly

different look angle.

Now the second new independent channel, f5(x,y),

is projected on to the orthogonal basis functions of the

first new independent channel, f4(x,y), represented by

f̂5(x,y) = f4(x,y)− ĥ45(x,y).
The three-channel spatially-invariant difference im-

age is represented as f̂d(x,y) = f5(x,y)¡ f̂5(x,y). The
block processing represented by Equation 3 was applied

to account for the spatially varying nature of the range-

Doppler images.

Since each of the new independent channels is essen-

tially a clutter-canceled range-Doppler image, this tech-

nique represents the fusion of two dual-channel clutter-

suppressed range-Doppler images. The resulting clutter-

suppressed range-Doppler image should contain more

target features from the slightly different viewing an-

tenna geometries in the array. The MSS method im-

proves target features without enhancing any residual

clutter in the new input images. Examples of this pro-

cessing are presented in the section that follows.

2.4. Clutter-Suppression Results

The clutter-suppressed range-Doppler chips pre-

sented in this section were generated from the same

part of the collected data discussed in Section 2.1. The

moving target, a sedan, is slowing down while heading

south, away from the radars’ location. All of the range-

Doppler chips presented in this section have a dynamic

range of 50 dB with Doppler increasing from the left

of the image to the right, and range increasing from

the bottom of the image to the top. The DPCA algo-

rithm result is presented first, then the two-channel MSS

processed chips, and finally the three-channel clutter-

suppressed result. The signal-to-noise ratio for all of

the clutter-suppressed range-Doppler chips is computed

for algorithm performance comparison.

The implementation of the DPCA algorithm re-

quired the first channel to be the lead channel and lim-

ited the amount of shifting that may occur to align the

two channels. Therefore, only channels 1 and 2 could

be processed to yield a clutter-cancelled range-Doppler

image. The result is shown in Fig. 7. As stated earlier,

the dynamic range is constant for all the results present

in this section. However, adjusting the dynamic range of

the DPCA range-Doppler chip would help better define

the target.

Although the DPCA method could only produce

clutter-cancelled chips from two of the three chan-

nels available, the multi-channel signal subspace (MSS)

technique utilized all three channels in the processing.

Fig. 8 is the clutter-suppressed range-Doppler image

produced from channels 1 and 2. In comparing Fig. 8

to Fig. 7, the MSS approach does a better job of clutter

cancellation than the baseline technique using the same

data channels.

In Fig. 9, the clutter cancelled result of the MSS

algorithm using channels 2 and 3 is presented. The

relative reduction of clutter is similar to that of Fig. 8.
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Fig. 7. DPCA clutter suppression technique.

Fig. 8. MSS Two-channel clutter suppression technique: channels 1

and 2.

Close examination of Figs. 8 and 9 reveal scattering

from different locations of the target as well as more

features in the range-Doppler imagery. This is caused

in part by minor variations in the collection geometry

due to the spacing of the antennas in the phased array

radar.

Found in Fig. 10 is the clutter suppressed range-

Doppler chip produced by the enhanced MSS algorithm

using all three channels of the motion compensated data.

A minor reduction in the level of clutter cancellation

can be seen when comparing the results of Fig. 10 to

that of Figs. 8 and 9. However, careful examination

of the range-Doppler image in Fig. 10 shows more

target features are present. The three-channel clutter

suppressed image has a signal to noise level comparable

to that of the MSS two-channel clutter-cancelled results

and is an improvement over the baseline technique.

Finally, a signal-to-clutter ratio was determined for

the chips presented in this section to help gauge the

relative performance levels of the various techniques.

This ratio was determined by finding the largest pixel

value in the image; which is the brightest point on

the target and dividing it by the average clutter in a

one pixel wide frame around the entire range-Doppler

chip. A comparison of the signal-to-clutter levels for the

range-Doppler images formed from the three techniques

discussed in this paper can be found in Table I.

Fig. 9. MSS Two-channel clutter suppression technique: channels 2

and 3.

Fig. 10. MSS Three-channel clutter suppression technique.

TABLE I

DPCA vs. MSS Target to Clutter Ratio Comparison

DPCA processing 33.20 dB

MSS: 2 channel SS: channels 1 and 2 42.81 dB

MSS: 2 channel SS: channels 2 and 3 42.99 dB

MSS: 3 channel SS 42.57 dB

The MSS performance scales based on the compara-

ble target-to-clutter ratios for both the two-channel and

three-channel processing, with the three-channel MSS

method resulting in a slightly noisier clutter-suppressed

image, but with the added benefit of more target features

being preserved after clutter cancellation. The results in

Table I indicate that the MSS technique for traditional

two-channel clutter cancellation and for multi-channel

clutter suppression performs much better, nearly 10 dB

in target to clutter ratio, than the DPCA method.

3. TARGET IDENTIFICATION FUSION

The ability to perform track and identity fusion

requires sensor-processed classifications/identifications

from different levels. Multi-target data association al-

gorithms that accurately track targets in the presence of

clutter assume that the detected targets can be tracked

from a sequence of center-of-gravity and pose positional

data. Detected classification can effectively discern the

DECISION-LEVEL FUSION PERFORMANCE FROM HRR RADAR CLUTTER SUPPRESSION 107



target for a given scenario using experience of target

movement, training, or predicted information. For ex-

ample, two targets of the same type may be crossing in

space, but since they can not occupy the same location,

they would each have a different orientation relative to

a sensor. By exploiting the orientation, velocity, and

multi-resolution feature information, each target can be

assessed for the correct track-ID association.

The capability of a sensor to track and identify tar-

gets simultaneously requires the target center, the target

pose, and neighboring characteristics to discern salient

features for target type association. For example, fea-

tures [59] can be used to identify targets with a level

of uncertainty. However, if many features are fused,

the identity improves and helps eliminate clutter. The

tracker must use the available features to discern an ob-

ject (identify a target), which is a subset of Automatic

Target Recognition (ATR). Certain features are inher-

ently more useful in recognizing a target than others,

but obtaining these features is a function of sensor res-

olution and collection geometry.

The 1-D HRR ATR known as the Baseline Auto-

mated Recognition of Targets (BART) algorithm has

been used to generate identification results [22, 27].

BART is a template matching algorithm using the dom-

inant range-space eigenvector. Eigen-templates have

been used for 2D ATR problems using electro-optical

[43], SAR, [42, 43], and Forward-Looking IR (FLIR)

analysis [14, 15]. In each of these methods, the eigen-

template matching provides a stable analysis for a single

look. The eigenvector approach was then adapted and

refined by Shaw [4, 52, 45] and others [18] for 1-D

template formation using HRR profile data.

By leveraging knowledge about target features, fu-

sion algorithms can significantly reduce processing time

for tracking and identifying targets. For separated tar-

gets, resources may exist to identify each target. How-

ever, when resources and processing time are limited,

a trade-off exists between the identification and track-

ing of a target. In the case of multiple ATR systems

observing the same area, the HRR profiles can be at

significantly different sensor-to-target geometries. Dif-

ferent geometries result in different features for target

classification. In such a case, a decision-level fusion

approach is a good solution since the ATR decisions

are fused and not the features of the target signatures.

By leveraging knowledge about target types, fusion al-

gorithms can significantly reduce processing time for

tracking and identifying targets. Increased robustness is

achieved with a multi-look approach utilizing the eigen-

template feature analysis [22], summarized by a classi-

fier confusion matrix, and combined for enhanced HRR

target identification.

3.1. Decision Level Fusion (DLF) Method
The decisions from an ATR are often stored in a

confusion matrix (CM), which is an estimate of like-

lihoods. For the single-look ATR performance, these

estimates are treated as priors [61]. Decisions from

multiple ATRs or from multiple looks from different

geometric perspectives are fused using the Decision

Level Fusion (DLF) technique presented. With respect

to the DLF, the CMs represent the historical perfor-

mances of the ATR system. Assume that we have two

ATRs each described in a confusion matrix designated

as CA and CB . The elements of a confusion matrix are

cij = PrfATR decides oj when oi is trueg, where i is the
true object class, j is the assigned object class, and

i= 1, : : : ,N for N true classes. The CM elements can

be represented as probabilities as cij = Prfz = j j oig=
pfzj j oig. To determine an object declaration, we need
to use Bayes’ rule to obtain pfoi j zjg which requires the
class priors, pfoig. We denote the priors and likelihoods
as column vectors1

p(ō) =

266664
p(o1)

p(o2)

...

p(oN)

377775

p(zj j ō) =

266664
p(zj j o1)
p(zj j o2)

...

p(zj j oN)

377775 :
(5)

For M decisions, a confusion matrix would be of the

form

C =

266664
p(z1 j o1) p(z2 j o1) ¢ ¢ ¢ p(zM j o1)
p(z1 j o2) p(z2 j o2) ¢ ¢ ¢ p(zM j o2)

¢ ¢ ¢ ¢ ¢ ¢ . . . ¢ ¢ ¢
p(z1 j oN) p(z2 j oN) ¢ ¢ ¢ p(zM j oN)

377775 :
(6)

The joint likelihoods are similar column vectors, where

we assume independence for two confusion matrices A

and B (denoted here as superscripts),

p(zAj ,z
B
k j ō) =

2664
p(zAj j o1) ¢p(zBk j o1)
p(zAj j o2) ¢p(zBk j o2)

¢ ¢ ¢
p(zAj j oN) ¢p(zBk j oN)

3775 (7)

where k is used to distinguish between the different as-

signed object classes between the two confusion matri-

ces when the CMs are not symmetric.

Using the priors and the likelihoods, we can calcu-

late a posteriori from Bayes’ Rule

p(ō j zAj ,zBk ) =
p(zAj ,z

B
k j ō)p(ō)

NX
i=1

p(zAj ,z
B
k j ō)p(ō)

: (8)

1Based on FITE Memo, 15 May 2006, from Tim Ross.
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Fig. 11. Confusion matrix pseudo code.

Note that there are similar column matrices for the

posteriors p(ō j zj) and p(ō j zAj ,zBk ). A decision is made
using the maximum likelihood estimate

di = argmax
j;k

p(oijzAj ,zBk ) (9)

where the final decision of the true object class i is

determined from the largest value from the vector.

Note that the subscripts indicate the value of a

variable and the superscripts indicate the ATR source.

For example, zA = z3 indicates that source A made a

decision z3; where source A might be the first look of a

HRR ATR and decision z3 might be target type “sedan.”

The absence of a superscript implies an unspecified

single source. We represent the particular states from

each source with the subscripts a and b such as zA = zAa
indicating that source A’s decision was za.

For the developments of the pseudo code, shown

below in Fig. 11, we shorten the notation to zA = za,

while keeping track of the confusion matrix source

A or B.

3.2. Naïve Bayes DLF Pseudocode

Inputs to the fuser are the decisions of ATR A and B,

i.e., za and zb respectively. The output of the fuser is the

decision d based on a maximum a posteriori probability

(MAP) decision rule, where the posterior is p(ō j za,zb).
The fuser must know the prior probabilities p(ō) and the

confusion matrices (one for each source).

Pseudo code for DFL is represented as:

² za = za and zb = zb are the integer decisions between
1 : : :M of sources A and B, respectively

² pObar = p(ō) is a vector of priors, represented as
either constants or input variable

² CA= CA and CB= CB are the confusion matrices
derived from sources A and B, respectively

² pZaObar = p(za j ō) and pZbObar = p(zb j ō) are the
likelihoods as extracted columns from the confu-

sion matrices [pZaObar = CA(:,za); and pZbObar =

CB(:,zb)]

² pZaZbMbar = p(za,zb j ō) is the joint likelihood de-
rived from the point-wise product of the source like-

lihoods (pZaZbObar = pZaObar.¤pZbObar);
² pObarZaZb = p(ō j za,zb) = (p(za,zb j ō)p(ō))=(

PN
i=1

¢p(za,zb j ō)p(ō))

–the numerator is:

posteriorNum= pZaZbObar.¤pObar;
–the denominator is:

posteriorDen = sum(posteriorNum);

–pMbarZaZb = posteriorNum=posteriorDen;

² d =max(pObarZaZb), which is the fused decision,
di 3 p(oi j za,zb)¸ p(oi j za,zb) 8i,j where i,j 2 1,
: : : ,N.

The DLF function pseudo code is presented for verifi-

cation.

3.3. Metric Presentation

We used the eigen-value HRR target identification

approach as a baseline method [27]. The likelihood vec-

tors were compiled into a confusion matrix (CM). Thus,

each single look provided a full analysis of the classi-

fier, presented as a CM, for all target comparisons. The

likelihood vectors of the confusion matrix allowed for a

more thorough analysis with such performance criteria

as declaration, PD, and false alarm, PFA, probabilities.

The confusion matrix lists a set of likelihood values

with the real targets as the rows fT1, : : : ,TNg, and the
testable hypothesis as the columns fT1, : : : ,TN , otherg.
For example, if the true target is T1, the CM is

CM =

T1 T2 TN Other

T1

T2

TN

: (10)

266664
A B ¢ ¢ ¢ B O

E D ¢ ¢ ¢ D O

...
...

...
...

...

E D ¢ ¢ ¢ D O

377775
Selecting the likelihood values in the CM, one can com-

pare the performance metrics for different size CMs.

From the CM and a defined target-to-confusion ratio as

m (as set by the operational ATR requirements), a set of

metrics can be identified to support analysis including

PDeclaration =
A

A+B
(11)

PFalseAlarm =
E

E+D
(12)

PCorrectClassification =
m ¢PD

(m ¢PD)+PFA
: (13)

Using Fig. 21 as an example, let A be the fact that

target 1 is choice (row) and that target 1 is declared

(column) by the ATR to produce a normalized likeli-

hood of 0.63. The rows are normalized to one but round-

ing errors lead to values close to but not exactly equal to

1. B = 0:075+0:12+0:56+0:042 = 0:293. E = 0:039

+0:047+0:081+0:12+0:21 = 0:497. O is the entire

right column of 0:084+0:02+0:054+0:039+0:025+

0:21 = 0:432. Finally, D is the remaining value D =

4:146. Using the results from Fig. 21, then PDec = 0:63=

[0:63+0:293] = 0:683. PFA = 0:497=[0:497+4:146] =

0:107. If we letm= 1, then PCC = 0:683=[0:683+0:107]

= 0:865. These metrics are important in the fact that the
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system is not forced to make a target declaration (col-

umn other) as well as ability to discern whether there is

enough evidence to declare a target in the library [50].

By choosing a different target truth (row) to selec-

tion (column) as defined by the diagonal, the process is

repeated for each true target and the resulting metrics

are summed and normalized for the number of targets.

For example, the second true target is

CM =

T1 T2 ¢ ¢ ¢ TN Other

T1

T2

...

TN

(14)

266664
D E D ¢ ¢ ¢ D O

B A B ¢ ¢ ¢ B O

...
...

...
...

...
...

D E D ¢ ¢ ¢ D O

377775 :

4. IDENTIFICATION PERFORMANCE

Identification (ID) performance varies over three op-

erating conditions: environment, sensors, and targets. To

demonstrate environment variations, we compare adja-

cent versus separated target IDs for moving targets in

Sections 4.1 and 4.2. To highlight the variations in sen-

sors, we acknowledge the variations between the sensor-

processing methods (DCPA versus MSS) throughout

Section 4. Finally, for target variation, we show the con-

fusion matrices results for single-look and multi-look

comparisons in Sections 4.3—4.5.

The results that follow are from collected HRR pro-

files from moving targets. Simultaneous target tracking

and ID requires using HRR radar mode that supports

feature analysis in-between point movements (Moving

Target Indicator–MTI mode) and 2-D stationary im-

ages (Synthetic Aperture Radar–SAR mode). In ad-

dition to enhanced target ID through higher-diagonal

CM results, the clutter-suppression results demonstrate

improved target localization. HRR feature analysis be-

gins with aligning the HRR profile. Higher signature

matches presented in the CM cell’s results are indica-

tive of more feature matches (including the length of

the HRR target profiles).

Single-look confusion matrices were produced for

1-D HRR profiles formed from DPCA and MSS clut-

ter canceled target chips for ten ground vehicles travel-

ing along the roads shown in Fig. 4. Obscuration from

nearby vegetation along the streets impacted identifi-

cation performance depending on collection geometry.

The DLF technique was then applied to five DPCA and

five MSS single-look confusion matrices each produced

with a unique sample set. The results of these experi-

ments are presented in the subsections that follow.

4.1. Adjacent Vehicles

A subset of the data was selected to address a

common target tracking issue, vehicle adjacency, and to

compare identification performance among the various

types of clutter canceled data in benign conditions.

Three cars moving south along the western road shown

in Fig. 4 were chosen because the vehicles are in the

open and not obscured by vegetation. A bend in the road

required the vehicles to decelerate and cluster closer

together (less than one car length apart) while making

the turn. The vehicle data near the bend in the road

was divided from the vehicle data of the cars traveling

south toward the bend in the road, creating two data

sets: adjacent and separated. Note that these results are

for an aspect angle centered around 180 degrees or near

the rear of the vehicles.

Confusion matrix results were produced for the

closely associated vehicles near the turn in the road.

As targets slowed approaching the turn, the data was

treated as the adjacency data set. The lead target had

the fewest samples, and the trailing target had the most

samples since it was waiting for the other targets to

make the turn. Using the ID counts for each sample,

we turned them into the scores in the single-look CM.

Identification performance for the first two vehicles to

arrive at the bend in the road was consistently poorer

than the trailing vehicle that was less obscured. Note

that the data included in Section 4.1 was used later in

the overall results.

The identification performance using data sets for all

clutter suppression methods are found in Figs. 12—15.

4.2. Separated Vehicles

The data of the three vehicles separated while travel-

ing in the open was used to produce a “best case” iden-

tification performance comparison of each clutter sup-

pression method. The recognition results for separated

targets are presented in Figs. 16—19. It is noted from the

CM, that the ID performance of all vehicles increases

from » 0:5 to » 0:85. The ID performance of separated
targets can be used in target confirmation, track mainte-

nance, as well as afford resources to be applied to other

search areas to acquire targets. To compare separated

versus adjacent methods using the clutter cancellation,

we summarize the results from the CMs.

A mean identification performance was computed

for each matrix by averaging the diagonal of the CMs

and is presented in Fig. 20 for comparison of the

relative identification performance gains achieved by

the techniques used. The three-channel signal subspace

showed the best overall performance, followed by two

channel signal subspace clutter cancelation with the

two-channel DPCA having the poorest performance of

the techniques compared. As expected, a high level

of target identification of separated vehicles in benign

conditions was achieved for all techniques examined.

4.3. Single-Look Performance

The identification performance comparisons pre-

sented in Sections 4.3, 4.4, and 4.5 are between the

best (three-Channel MSS) and worst (DPCA) perform-

ing techniques in Sections 4.1 and 4.2.
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Fig. 12. DPCA single-look performance with target adjacency.

Fig. 13. Two-channel (1 and 2) MSS single-look performance with

target adjacency.

Five vehicles were selected for the library and the

remaining five vehicles were used as confusers as was

done in the companion papers [23, 24] for a total of ten

templates. The libraries of target profiles were created

from the off-line collected target signatures for this data

set and compared to the on-line test data as used in [6].

To ensure 360 degree coverage, we used the entire data

set to locate enough signatures to develop a 360 degree

target signature database for training. After capturing

the necessary training set, we used the remaining data

for testing. For example, of the 1800 samples, we used

about 1500 for training and the remaining 300 for

testing.

The DPCA single-look identification results are

shown in Fig. 21 with a mean target identification rate of

65%. The three-channel MSS single-look 1-D HRR ID

performance is presented in Fig. 22 with an improved

mean identification rate of 73.6% relative to the DPCA

results.

The distribution of the confuser vehicles was spread

across the not-in-library row for both the DPCA and

Fig. 14. Two-channel (2 and 3) MSS single-look performance with

target adjacency.

Fig. 15. Three-channel MSS single-look performance with target

adjacency.

MSS confusion matrices indicating no strong bias to-

ward a library object.

A comparison of the receiver operator curve (ROC)

associated with each of the HRR clutter cancelled data

sets is presented in Fig. 23. The MSS clutter-suppressed

data performs better with respect to the DPCA pro-

cessed data.

4.4. Multi-look DLF Performance

Wider angle changes (different perspectives) would

increase the ATR results. Instead of processing wider

(n-channel) clutter suppression, we utilized Decision-

Level Fusion (DLF) to incorporate angle changes for

enhanced ATR results. The test data used for the DLF

was the same as that used to create the single-look

analysis. The DLF data included the entire scenario of

the ten targets (five selected, five confusers) moving

through different operating conditions of adjacency and

separation, while the single-look analysis was a subset

of only three targets in the specified operating condition

over a shorter time interval.
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Fig. 16. DPCA single-look performance with separated targets.

Fig. 17. Two-channel (1 and 2) MSS single-look performance with

separated targets.

The DLF algorithm described in Section 3.2 was

run with confusion matrices 1 and 2 with the remaining

confusion matrices being incorporated sequentially and

the fused decision from the previous run being treated

as prior knowledge of the targets of interest. This proce-

dure was followed for both the DPCA and MSS single-

look matrices. The fused DPCA target recognition re-

sults can be seen in Fig. 24 with significant performance

gains relative to the single-look DPCA results of Fig. 21

and improved performance relative to the MSS single-

look results of Fig. 22. Since the multi-look DPCA is

better than the single-look MSS, there is value in utiliz-

ing multi-look DLF no matter which clutter suppression

technique is used.

The best identification results for this scenario are

shown in the MSS confusion matrix of Fig. 25 for multi-

look DLF. The DLF off-diagonal target confusion was

significantly reduced while correct ID was greatly en-

hanced relative to the DPCA processed data or single-

look MSS target recognition. Average MSS DLF target

ID increased to 89.2% for this moving target scenario

relative to the single-look average DPCA vehicle recog-

Fig. 18. Two-Channel (2 and 3) MSS single-look performance

with separated targets.

Fig. 19. Three-channel MSS single-look performance with

separated targets.

nition performance of 64.8%. Since the targets in the

dynamic scenario are not always well separated, through

DLF and three-channel MSS clutter suppression, the av-

erage target ID was better than the average DCPA best

single look condition (Fig. 16) and equivalent to that of

the average two-channel MSS best single look condition

(Figs. 17 and 18).

A ROC comparison of the multi-look DLF perfor-

mance is shown in Fig. 26. The Multi-channel Signal

Subspace clutter suppressed data set has the best per-

formance with respect to the fused DPCA data set and

the single-look target identification results. The single-

look performance of the MSS data set is comparable

to the fused DPCA performance as illustrated by both

the confusion matrices of Figs. 22 and 24 and the ROC

curves found in Figs. 23 and 26. To further assess the

similarities and differences in target identification per-

formance relative to enhanced clutter suppression and

fusion technique, the metrics of Section 3.2 are used

on a per target basis and presented in the section that

follows.
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Fig. 20. Comparison of Mean Single-Look Identification

Performance.

Fig. 21. DPCA single-look performance.

Fig. 22. Three-channel MSS single-look performance.

4.5. Performance Metrics

Fig. 27 shows the performance metrics computed

using Equations 11—13 for each of the five in-library

targets. Declaration, false alarm, and correct classifica-

tion probabilities were compared for single-look DPCA

(first blue bar), single-look MSS (second red bar), de-

cision level fused multi-look DPCA (third yellow bar),

and multi-look decision level fused MSS (fourth green

bar) performance.

Fig. 23. Single-look ROC comparison.

Fig. 24. DPCA decision-level fusion performance.

Fig. 25. Three-channel MSS decision-level fusion performance.

In general, target identification improves with en-

hanced clutter suppression and fused multi-look perfor-

mance versus a single look ID. However, it is noted that

not every example of MSS clutter cancellation results in

improved individual target identification. An example of

a false alarm increase was seen using the MSS in target

5. Using the DLF, both declaration and correct classifi-

cation were improved. More importantly, with CMDLF,

the false alarms were significantly reduced.

DECISION-LEVEL FUSION PERFORMANCE FROM HRR RADAR CLUTTER SUPPRESSION 113



Fig. 26. Multi-look fusion ROC comparison.

Fig. 27. DPCA and MSS single-look to multi-look performance

metrics.

5. DISCUSSION AND CONCLUSIONS

The capability to collect and process three chan-

nels of radar data from a system configured with three

phased-array antennas oriented in the along-track di-

mension has been demonstrated. The application of

traditionally accepted two-channel clutter suppression

techniques has been extended to true multi-channel data.

The Multi-channel Signal Subspace (MSS) technique

for two channels of data was demonstrated to be a

superior clutter suppression technique to that of the

Displaced Phase Center Antenna (DPCA) method. The

MSS methodology was extended to exploit the addi-

tional information provided by the third channel of the

phased array interrogating the scene.

The MSS technique applied to three channels of

data suppressed the clutter well while preserving the

features of the moving target. The signal-to-noise level

of the three-channel MSS technique is approximately

that of the two-channel MSS results. The availability of

more target features in the range-Doppler image, while

maintaining a good clutter suppression level, makes the

MSS approach beneficial to automatic target recognition

(ATR) applications. A significant ATR performance

improvement is achieved with clutter suppressed data

using the MSS algorithm relative to ATR performance

with DPCA suppressed data.

A major factor not addressed in this paper; how-

ever, is that the processing time for the MSS algorithm

is quite significant, especially when compared to the

DPCA method. The processing times will need to be

drastically reduced for the MSS algorithm to be practi-

cal in a data processing or operational environment. A

potential solution is the parallelization of the time con-

suming block processing steps. This remains an area of

future study.

The Confusion Matrix (CM) Decision-Level Fusion

(DLF) multi-look technique improved target identifica-

tion performance in comparison to the single-look ATR

results. The CM-DLF algorithm performed extremely

well with the MSS clutter suppressed data showing sig-

nificant performance gains over both the single-look re-

sults and the DPCA fused performance. The DLF iden-

tification performance benefited from the target features

preserved by the three-channel MSS clutter cancellation

technique. For ATR applications, improved clutter sup-

pression of HRR radar data greatly increases vehicle

recognition and further enhances the resulting decision

level fusion target identification of moving targets.
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