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Abstract: This paper proposes a driving risk model based on the information given from the
Driver-Vehicle-Environment (DVE) entities. It develops a two-level strategy to evaluate the
driving risk. The first level aims to assess the risk locally in each entity and the second one
concludes the global risk. The advantage of this approach is the simultaneous consideration of
the parameters related to the DVE system regardless of information type (dynamic and static).
It uses the Dempster-Shafer Theory (DST) for information fusion at each level. The approach
uses Fuzzy Theory (FT) to design Basic Probability Assignment (BPA) functions, which is the
significant part of the belief theory. The drivers’ information for the driver risk evaluation the
age and gender. Two parameters in the Vehicle entity are used in the cases of lane keeping and
a left/right turn scenarios with utilizing two different developed Fuzzy Inference Systems (FIS).
The first system uses an Fuclidean acceleration-norm and the velocity of the vehicle; while, the
second one, uses lateral/longitudinal acceleration based on G-G diagram and a proposed risk
indicator.

The results of different scenarios validate the developed risk models using the sixth version of
the Proportional Conflict Redistribution (PCR6) combination algorithm.
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1. INTRODUCTION

Nowadays, inappropriate speed and acceleration are the
major causes of drivers death in road accidents. According
to Road Safety Canada Consulting (2011), 27% of casu-
alties in 2011 are caused by speeding where 81% of them
occur in highways. In addition, 30% of accidents take place
at intersections according to Rocha et al. (2013). This leads
to take into account not only the vehicle parameter’s but
also the environment aspects such as where you drive and
as you drive. For example, the night driving is considered
riskier than the day driving, according to the accident
number, due mainly to the visibility.

In the last two decades, there are numerous research
works that focus on the risk assessment in some particular
driving situations such as lane keeping and braking. There
are different autonomous vehicle-follower control systems
such as ACC with co-operative vehicle-follower control
was designed to reduce the rear-end crashes by adjusting
the vehicle speed and the inter-distance with the follower
vehicle. However, the acceptance of these systems by
people depends on its intuitiveness, unobtrusiveness, and
performances as discussed by Zhang et al. (2010). So,
the design of such systems has to be based on a good
framework that links the parameters related to the Driver,
Vehicle and Environment to have a better risk estimation.
Especially, the case of insurance application, the accuracy
of the estimated risk is very important, because it is
directly linked to the insurance charge according to the
Pay How You Drive (PHYD) and Pay Where You Drive

(PWYD) models. Several works use the Hidden Markov
Model (HMM) and the Gaussian Mixture Model (GMM)
to estimate the driver skills as done by Meng et al. (2006)
and Angkititrakul et al. (2011), respectively. However,
these references were only concentrated on the vehicle
parameters to assess the driving behavior and it is more
judicious to consider the Driver and Environment entities.

This paper deals with the risk estimation based on the
parameters of the DVE system using the Dempster-Shafer
Theory (DST) and the sixth version of the Proportional
Conflict Redistribution (PCR6) methods of Belief theory
in the case of insurance applications. The developed risk
models are designed to assess the driving risk in the case of
lane keeping situation as well as the turning scenario using
the G-G diagram. This latter was used in the literature to
define the driving safety area based on the longitudinal
and lateral accelerations. Based on this diagram a risk
indicator is developed and integrated in a Fuzzy Inference
System (FIS). Two developed FIS are used in the Vehicle
entity to compute the driving risk level.

After the presentation of the problematic and our method-
ology to assess the driving risk in Section 2, Section 3 intro-
duces the DST used for risk information fusion. Section 4,
develops the risk models for each entity of the DVE system.
Before the conclusion in Section 6, Section 5 presents
the results of the proposed scenarios used to validate the
proposed risk models.

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.08.014



90 Oussama Derbel et al. / IFAC-PapersOnLine 49-11 (2016) 089—094

2. PROBLEM STATEMENT AND METHODOLOGY

The evaluation of the driver safety remains a complex task
due to the heterogeneity of the parameters in terms of time
variation (e.g. driver age and vehicle velocity). Moreover,
vehicle’s parameters are measured using low-cost sensors,
and therefore are noisy. The noise affects the driver safety
indicators accuracy and makes the risk assessment more
difficult, especially in the case of insurance applications,
where the driver is charged according to his driving be-
haviors (PWYD and PHYD).

To take into account the heterogeneity of the parameters,
Figure 1 presents the adopted fusion architecture. In this
one, the noise is spread from the vehicle sensors level to the
global decision level using the Dempster-Shafer theory of
evidence. This theory allows taking into account the noise
of the parameters by computing the belief and plausibility
parameters. The difference between these two parameters
is the uncertainty of the output given the errors of the
inputs. Figure 1 shows two fusion levels while the first one
is designed to fuse locally the risk of each entity of the DVE
system, and the second one computes the global driving
risk.

In this paper, the risk in Driver entity depends on the
driver age and gender. In fact, analysis of accident statistic
reveals that the driver’s gender is an important factor
that affects the traffic safety as shown in Figure 4a. In
this figure, male drivers are less involved in accidents than
female drivers for all ages. Therefore, the risks related to
the age and gender are fused to obtain the local risk related
to the Driver entity.

In the Vehicle entity, the longitudinal and lateral acceler-
ations as well as the acceleration norm and the velocity
are taken into account. The lateral and the longitudinal
acceleration are evaluated together by means of the G-G
diagram (more explanation is given in Section 4.3). The
diagram is divided into different zones that characterizes
the driving behavior, especially in the case of a curved road
(e.g., right/left turns). Since the vehicle parameters are
noisy, the fuzzy logic theory is applied in our framework
to ensure the fuzzy passage between the different zones of
the G-G diagram. From the insurance point of view, the
Vehicle safety level serves to evaluate the insurance policy
based on the PHYD model. Here, as the Vehicle risk level
gets more important as the driver is considered aggressive
and the insurance charge gets important.

According to the accident statistical analysis done by
Gilbert and Halsey-Watkins (2013), the driving place, the
time of the day, and the day of the week are of great
importance. Figure 2 presents the normalized risk level
related to the time of driving during the day which is
considered in this paper.

3. DEMPSTER-SHAFER THEORY OF EVIDENCE

The Dempster-Shafer Theory (DST) has been developed
by Dempster (1968) and later on by Shafer (1976). The
DST theory is based on the definition of the frame of
discriminant composed by all the possible sets (or hy-
potheses). Let © be the set of the hypotheses defined as
© ={64,0,...,0,}, where 6, is a possible solution.

The relative referential subset 2© (power set) is then de-
fined as

Longitudinal
and lateral
accelerations

Global risk

Driver sex

Position

Fig. 1. Diagram for driving risk assessment

29 =1{0,61,05,...,0,,0,Ubs,...,0}, (1)

where () represents the conflict between sources and © the
ignorance (the union of all hypotheses). The belief in each
hypothesis is represented by the mass, the Basic Belief
Assignment (BBA) or the Basic Probability Assignment
(BPA) defined as:

m:29 = [0, 1], (2)

where Z m(A) =1 and m() = 0.
Aeg2@

So, the DS structure is not a fuzzy measure since it is
not required to have m(©) = 1. Yager (1999) studied
the difference between the Fuzzy and the DS theories and
concludes that the DST allows representing an additional
information to the fuzzy measure about the uncertainty in
the parameter. In our framework, the algorithm developed
by Boudraa et al. (2004) is used in the case of fuzzy
measure.

The combination step is the third step of this theory. There
are a variety of fusion algorithms in this part and the
choice among them depends on the application. Daniel
et al. (2013) suggest the use of the Proportional Conflict
Redistribution (PCR) algorithm, which is developed by
Smarandache and Dezert (2005), in the case of risk fusion.
However, Daniel et al. (2013) used the fifth version of this
algorithm that Martin and Osswald (2006) has demon-
strated some drawbacks and propose the sixth version of
the PCR given for N sources as follows:
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where v;, is given by:
'Vk(])zj if j <k (4)
W) =j+1 ifj=k

The decision step is used to assign the output masses
over the reference subset given by (1). In this paper, the
Belief function is used to decide the risk output. More
information about the decision function can be found in
the reference of Martin and Osswald (2006).
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4. DRIVER-VEHICLE-ENVIRONMENT RISK
MODELS

4.1 Environment risk model

The environmental parameters have to be taken into ac-
count to assess the driving risk. In this paper, we consider
both the place and the time of driving (the month of
the year, the day of the week, and the time of the day).
The choice of these parameters is based on the fact that
the driving place gives a subjective risk evaluation using
the accident number. Here, no matter that this place is
a highway or an intersection. In fact, the accident can
be caused by the absence of the traffic lights and/or the
visibility in the intersection.

Based on the statistical analysis of accident presented by
Gilbert and Halsey-Watkins (2013), the hour of the day
risk model is developed using the normalized accident rate.
This model is presented in Figure 2. As expected, the
traffic presents the higher risk level between 5 pm and
7 pm since it is the most congested period of the day.
In addition, there is a pic of high risk change at 8 am
corresponding to the rush hour.

Using Figure 2, the thresholds between the different sets of
the driving risk levels have been fixed. By means of these
thresholds, the Expert model based BPA is developed
and presented in figure 3 using trapezoidal and triangular
membership functions. This Figure shows that between
12 pm and 6 am, the Environment risk related to the
driving time is Low. The risk from 8 am to 10 am is
qualified by neither High Risk (HR) nor Medium Risk
(MR) but a risk between MR and HR. The advantage of
the smooth transition between the defined risk levels in the
developed expert model-based BPA can be shown between
3 pm and 7 pm in Figure 3. Here, the risk is considered to
be high before it switches to a risk between HR and MR
between 7 pm and 8 pm.

01234567 891011121314151617181920212223
Time

Fig. 2. Environment risk model based on the hour of
driving in the day

4.2 Driver risk model

In this paragraph, the Driver’s expert model-based BPA
will be developed using the same method of paragraph 4.1.
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Fig. 3. Hours Basic Probability Assignment

In this paper, we will consider not only the age of the driver
but also his sex. For this purpose, an expert model-based
BPA is developed for each sex of driver.

Age and gender risk models  Driver risk model depends
on various parameters that can be classified as dynamic
and static relative to the driving mission. The most impor-
tant static parameters that affect the driver safety are the
age and experience while the mood could be considered as
variable. To study the impact of these parameters on driver
safety, some researchers use the questionnaires and/or the
physiological changes (e.g, facial muscles activities, eye
tracking, heart activity,...). Moreover, statistical analysis
of accident done by Rocha et al. (2013) reveals that the
driver gender has an impact on the traffic safety. Figure 4a
shows that men drivers are riskier than women according
to the number of accident. At the same time, this figure
shows that the women under 19 years old are less risky
than those between 25 and 54 years old in terms of accident
number. This is counter-intuitive since women under 19
years old are considered as teenagers and less experienced
than those are elder. For this purpose, the accident rate
has been normalized with respect to the demography of
each age group presented in Figure 4a. Figure 4b presents
the normalized risk with respect to the drivers gender
and age. So, man are more risky than women and that
the woman drivers under 19 years old are considered as
more risky than the older ones. In the Figure 4b, we have
defined the thresholds between the different risk levels
(LR, LRUMR, MR, MRUHR, HR, HRULR) to develop
subsequently the expert-model based BPA for each gender
as done in the paragraph 4.1. This model will be used in
the driving risk assessment in the Section 5.

4.8 Vehicle risk model

Both the longitudinal and lateral accelerations are very im-
portant for the evaluation of the driver behavior, especially
in the case of left/right turns scenarios. The longitudinal
and lateral acceleration limits are highly related to the
friction ellipse that defines the relationship between the
tire and the road surface for different surface conditions.
Vaiana et al. (2014) proposes a Driving Style Diagram
(DSD) from the G-G diagram, which is presented in the
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Fig. 4. (a) accident rate with respect to the driver age and
gender [2006-2011] (b) Risk with respect to the driver
age and gender [2006-2011]

Figure 5. This diagram assumes that the driving style
is safe if the point with the coordinates of a, (longitu-
dinal acceleration) and a, (lateral acceleration) is inside
the diagram. Otherwise, the driving style is unsafe. The
drawback of this approach is the binary evaluation of the
driving behavior. In case of a driving mission, Vaiana et al.
(2014) compute the percentage of point inside and outside
the DSD to have an overview of the driving behavior.
The limits of the safe area are fixed to 2.5 m.s~2 for the
longitudinal and lateral acceleration in the case of left and
right turns, and 3 m.s™2 is the limit of the longitudinal
deceleration. The safe area limits were computed using an
experimental dataset done by a single professional driver
with different behaviors.
Our proposed method is twofold. The first one presents a
new indicator to measure the driving style aggressiveness
even inside the DSD by considering the distance from
the origin of the diagram (point O in Figure 5) to the
acceleration point (point I in Figure 5) and the distance
from the origin to the intersection between the line passing
from the acceleration point and the safe area limit of the
DSD (point J in Figure 5). We define our indicator as
o2}
m ) (5)
that is able to compute the aggressiveness degree of the
driver even in case of safe driving situation.
The second level introduces a new area in the safety area
of the DSD limited by the dashed lines as shown in Figure
5. These dashed lines represents the equation I, = 0.5.
The variability of the dashed line limits depends on the
choice of the user to qualify the driving style, especially
in the case of insurance applications. Nevertheless, as the
acceleration gets important, the driving style is aggressive
even in a safe area. When the acceleration is inside the area
bounded by the dashed line, the driving style is considered
as good. It is assumed normal when 0.5 < I, < 1. Other-
wise, the driving style is considered Aggressive. Since the
limits in the G-G diagram for classifying good, normal and
aggressive driving range are subject to change according
to the environment model (e.g. date with respect to sta-
tistical density of weather/rain/road friction conditions)

-

and the vehicle parameters, the fuzzy approach is used.
Using the defined G-G diagram in Figure 5, the DSD and
the developed indicator, the fuzzy membership functions
in Figure 6 are developed for the synthesis of the BPA by
means of the Boudraa et al. (2004)’s method. This latter is
used to compute the belief measurements from the fuzzy
measurements given from the Figure 6. Then, the belief
measurements related to the Vehicle together with those
from the Environment and the Driver are used to evaluate
the driver behavior in Section 5.

Fig. 5. The G-G diagram for Driver risk assessment

Gagod Normal Aggréssive

o o o
> ) ©
T T T
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Fig. 6. Fuzzy membership functions of the developed safety
indicator

5. EXPERIMENTAL RESULTS
5.1 Introduction

The goal of this section is to assess the driving risk in
case of longitudinal driving and left/right turns scenarios
through the developed risk models of the Driver-Vehicle-
Environment system.
The risk is qualified as Low Risk (LR), Medium Risk (MR)
or High Risk (HR) and the frame of discernment is defined
by

© = {LR,MR,HR}. (6)
The relative referential subset is defined as:

2 = {0, LR,LRUMR, MR, MRUHR, HR, HRU LR,0} (7)
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So, the goal is to evaluate the driving risk by generating
masses over the propositions LR, LRUMR, MR, MR U
HR and HR. The test and validation results of the
developed DVE risk models are made through static and
dynamic data using MATLAB and the CarSim vehicle
simulator. Two types of scenarios are presented in this
section. The first type presents two cases of static data and
the second one evaluates a group of static data gathered
from a driving mission. Here, the macroscopic parameters
(e.g. mean of the masses over the propositions and its
standard deviation,...) are used to post-process the driving
behavior.

5.2 Experimental tests and results

Scenario # 1  The first static scenario considers a 45-
year-old female driver who drives at 4 pm on Monday
in July 2015 in the ”"Sud Ouest” district of Montreal
(Canada). The velocity and the longitudinal and lateral
accelerations of the vehicle are 103.8 km.h~!, and -6
m.s~2 and -0.55 m.s~2, respectively. This configuration is
made to test the developed Driver entity risk models. At
the global fusion level, this configuration involves a high
conflict between the Driver entity, which assigns the total
mass to the Low Risk (m(LR)=1), and the Environment
and Vehicle entities, where the total masses are assigned
to the High Risk proposition at the local fusion level.
The global fusion results remains coherent with the a-
priori risk analysis using the PCR6 to combine the local
risks. In fact, the PCR6 redistributes the risk over the
propositions LR (m(LR)=0.3333) and HR (m(HR)=0.6667)
and this reflects the driving situation since there is only
the Vehicle entity exposed to the High Risk.

Scenario # 2  This scenario takes the same parameters
related to the Driver and the Environment entities of the
first scenario. The main difference comes at the Vehicle en-
tity. Here the Velocity of the vehicle is 130 km.h~! and the
longitudinal and lateral acceleration are equal to 1 m.s~2
and 0 m.s~2, respectively. This configuration involves a
high conflict at the Vehicle’s local fusion level as well as
the global fusion level. So, according to the acceleration-
velocity FIS model, this latter assigns the total mass to
the proposition HR (m(HR)=1) since the speed limit in the
road section is 100 km.h~! whereas the vehicle speed is 130
km.h~!. According to the G-G diagram and the developed
fuzzy model, these latter distribute the masses over the
propositions LR (m(LR)=0.08), MR (m(LR)=0.32), and
the union of these two propositions LR U MR (m(LR
U MR)=0.6). The PCR6 redistributes the risk over the
propositions LR (m(LR)=0.0059), MR (m(MR)=0.0776),
HR (m(HR)=0.6915), and the union of the two proposi-
tions LR U MR (m(LR U MR)=0.2250).

The results of the global fusion reorganizes the distribution
of the masses obtained at the local fusion level and assign it
to the proposition LR (m(LR)=0.3984) due to the masses
abtained from the Driver entity at the local fusion level.
The other masses are assigned to the propositions MR
(m(MR)=0.0029), HR (m(HR)=0.5760) and the union of
the two propositions LR U MR (m(LR U MR)=0.0228).

Scenario # 8  Figure 7 presents the parameters of the
third test scenario. The goal is to give a global evaluation

of the driving behaviors at the end of the driving mission
using the obtained masses in each simulation step. Here,
the mean of the instantaneous masses over the referential
subset given by equation (7) is used.

This scenario is performed using CarSim vehicle simulator
and is divided into two parts. In the first one, the driver
accelerates until reaching the speed limit of 100 km.h~! at
the time 8 s as shown in the Figure 7. From 8 s to 13 s, the
driver starts making a zigzag trajectory at high speed with
a high lateral deceleration that reaches -6 m.s~2. In this
scenario, we assume that the driver is a 45-year-old woman
and the test is performed on Monday, 19 January 2015 at
8 pm in the district "Outremont” in the city of Montreal.
We consider that the speed limit in this straight two lanes
road section is 100 km.h~?!.

The local fusion results related to each entity of the DVE
system is presented in the Figure 8. The Driver entity’s
masses remain constant during the mission since the same
driver has made the test (m(LR)=1).

The Environment masses (m(LR)=0.25, m(LRUMR)=0.5,
m(MRUHR)=0.25) are constant since the driving place is
not changed and the masses related to the driving time
are constant from 8 pm to 11 pm as shown in Figure 3. In
the same figure, the Vehicle entity’s masses represent the
mean of all the instantaneous masses computed in each
simulation step.

The combination of the local risks of the Driver, the
Vehicle, and the Environment involves a large conflict
between these local risks. In fact, the risk of the Driver
entity is Low (m(LR)=1) while the Environment and
Vehicle entities assigns masses over the proposition High
Risk.

According to the PCR6, this algorithm allocates the large
mean masses to the propositions LR (m(LR)=0.4630), due
to the low risk at the Driver and Environment entities, and
HR (m(HR)=0.4070) as a result of the risk related to the
Environment and the Vehicle entities.

In the Vehicle entity, the mean masses obtained through
the first FIS (see Figure 1) is divided between the propo-
sitions MR (m(MR)=0.0018), HR (m(HR)=0.9982), and
the union of these two propositions MR U HR (m(MR U
HR)=0.0291). Here, the highest mass over the proposition
HR is explained as follow: since the velocity limit during
the simulation is fixed to 100 km.h~! and the velocity of
the driver varies from 0 to 110 km.h~!, the time spent to
reach the velocity limit is qualified by a high risk driving
at the Vehicle entity. So, the driver spend the most amount
of time with a velocity very lower than the velocity limit.
During this period of time, the first FIS (see Figure 1),
which is related to the speed and the acceleration norm,
gives a risky situation while the second FIS, which is
related to the G-G diagram, gives a safe situation since
the longitudinal and lateral accelerations are within the
safe area of the G-G diagram during the most portion of
this period.

Once the velocity becomes close to the speed limit, the
zigzag scenario begins and the norm of the vehicle ac-
celerations exceeds the safe acceleration limit. Here the
first FIS intervenes in the risk evaluation less than the
second FIS. In fact, the evaluation of the risk is more
based on the second FIS (see Figure 1) and the G-G
diagram in case of the zigzag scenario. The masses ob-
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tained from the second FIS are divided between the propo-
sitions LR (m(LR)=0.0124), MR (m(MR)=0.0425), HR
(m(HR)=0.8106), LR U MR (m(LR U MR )=0.0251) and
MR U HR (m(MR U HR)=0.1094). The obtained masses
are explained as follow: when the vehicle is performing
a zigzag, the lateral acceleration is varying from -6.4540
m.s~2 to 4.0158 m.s~2. So, when the acceleration is in the
safe area of the G-G diagram, the masses of the second
FIS will be divided between the other propositions excepts
the HR one. Otherwise, the proposition HR will have
the highest mass from the second FIS, which is obtained
during the most portion of the time.
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Fig. 7. ZigZag scenario at high speed
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Fig. 8. Results of the scenario #3

6. CONCLUSIONS

This paper presented a driving behavior analysis based on
the parameters related to the DVE entities in the case of
longitudinal driving and ZigZag scenarios. The proposed
approach takes into account the age and gender of the
Driver, the place and time of driving in the Environment

entity and uses of G-G diagram in the Vehicle entity to
develop an aggressiveness indicator inside the diagram and
the related FIS model. The combination algorithm PCR6
has shown a good result in terms of conflict management
between information sources.

Nevertheless, the presented work has to be more improved
to by taking into account the driver’s experience in the Ve-
hicle entity and separating the risk coming from highways
and residential areas in the Environment entity.
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