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Abstract 
In smart environments, a multi-robot system is difficult to achieve a high confidence level of 

information for reliable decision making. The pieces of sensed information obtained from a multi-robot 
system have different degrees of uncertainty. Generated contexts about the situation of the environment 
can be conflicting even if they are acquired by simultaneous operations. In particular, unpredictable 
temporal changes in sensory information reduce the confidence level of information then lead to wrong 
decision making. In order to solve this problem, we propose a reasoning method based on Dynamic 
Evidential Fusion Network (DEFN). First, we reduce conflicting information in multi-sensor networks 
using Evidential Fusion Network (EFN). Second, we improve the confidence level of information using 
Temporal Belief Filtering (TBF) and Normalized Weighting technique. We distinguish a sensor 
reading error from sensed information. Finally, we compare our approach with a fusion process based 
on Dynamic Bayesian Networks (DBNs) using paired observations so as to show the improvement of 
our proposed method. 

 
Keywords: Dynamic Evidential Fusion Network, Temporal Belief Filtering, Normalized Weighting 

technique, Dynamic Bayesian Networks, Decision Making, Multi-Robot System 
 

1. Introduction 
 

In smart environments, a multi-robot system utilizes different types of sensors, actuators, RFID 
devices, and time stamps for remote- or self-control, environmental monitoring, localization and object 
tracking, surveillance, and so on [1], [2], [3], [42]. Particularly, the sensors and actuators attached on 
the multi-robot system are operated by pre-defined rule or learning process of the expert system [40], 
[41]. Based on the integration of the sensed data, the expert system can estimate or can make a decision 
about different situations of the environment. However, the pieces of information obtained from 
different sources can be imperfect due to the imperfection of information itself or unreliability of the 
sensed data. In order to deal with different aspects of the imperfection of information, we proposed 
Evidential Fusion Network (EFN) based on Dezert-Smarandache Theory (DSmT) [4], Proportional 
Conflict Redistribution no. 5 (PCR5) [5] rule, and Generalized Pignistic Transformation (GPT) [6] as a 
mathematical tool in [7].  

However, it is still difficult to achieve a high confidence level of information for reliable decision 
making. Unpredictable temporal changes in sensory information may happen [8]. The previous work 
[7] did not consider dynamic metrics [9] of the context that shows information of the situation of the 
environment. We need a hybrid system that consists of both continuous time and discrete state with 
defined time stamp to make a correct decision about the situation. Thus, we propose Dynamic 
Evidential Fusion Network (DEFN) based on autonomous learning process so as to infer future 
information autonomously then to make a decision more correctly. The proposed DEFN deals with the 
relation dependency of consecutive time indexed states of information by applying Temporal Belief 
Filtering (TBF) algorithm. The defined discrete time domain shows a fusion process based on the time-
indexed state and the defined discrete event domain shows an autonomous learning process based on 
the relation and temporal dependency between time stamp and the event. For instance, information 
obtained from each sensor are integrated and fused at each time-indexed state then the combination of 
estimated information and gathered information are processed in reward state of autonomous learning 
process for decision making.  

In addition, we deal with both relative and individual importance of each component of a multi-
robot system such as walking robot, flying robot, and module-based robot so as to obtain optimal 
weights of each component of a multi-robot system based on the dynamic normalized weighting 
technique [10]. We then apply dynamic weights into DEFN to infer the situation of the environment for 
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helping to decision making. Finally, we compare our approach with a fusion process based on Dynamic 
Bayesian Networks (DBNs) [11], which has the same assumption of the environment in order to show 
the improvement of our approach. The main contribution of the proposed DEFN is distinguishing the 
sensor reading error from new sensor activations or deactivations by considering the TBF algorithm 
and optimal weights of each component of a multi-robot system based on the normalized weighting 
technique. This advantage helps to make correct decisions about the situation of the environment in 
multi-robot utilized applications.  

The rest of the paper is organized as follows. The previous work, Evidential Fusion Network [7], is 
introduced as a basic of reasoning method in section 2. In section 3, we introduce Dynamic Evidential 
Fusion Network as an autonomous learning method for reliable decision making. We perform a case 
study to show the improvement of our approach based on the applied multi-robot system applications 
in section 4. We compare and analyze the results of our approach with that of DBNs in section 5. 
Section 6 introduces some related works. We then conclude the paper in section 7. 

 
2. Evidential Fusion Network (EFN) 

 
A multi-robot system consists of sensors, actuators, RFID devices, and time stamps, is used for 

remote- or self-control, environmental monitoring, localization, or surveillance. In this case, robots are 
operated by pre-defined rules or learning processes of the expert systems. First, each sensor can be 
represented by an evidential form such as “active” (1) and “inactive” (0) to represent the status of 
robots or to operate actuators. Whenever the state of a certain context associated with a sensor attached 
on the robot is changed, the value of a sensor can change from 0 to 1 or from 1 to 0. We simply express 
the status of each sensor as a frame: θ = {1, 0}. Sensed data are inherently unreliable or uncertain due 

to technical factors. Different types of a sensor may have various discounting factors (D) (0≤D≤1). We 
express the degree of reliability, which is related in an inverse way to the discounting factor. The 
smaller reliability (R) corresponds to a larger discounting factor (D) (e.g., R = 1 – D).  

For inferring the situation of the environment based on evidential theory, reliability discounting 
methods that transform belief of each source are used to reflect sensor’s credibility in terms of discount 
factor (D). The discount mass function is defined as eq. (1). The source is absolutely reliable (D=0), the 
source is reliable with a discounting factor (D) (0≤D≤1), and the source is completely unreliable (D 
=1).      

                                    (1) 
  

The basic idea of DSmT [12] is to consider all elements of θ as not precisely defined and separated. 

Shafer’s model [13] assumes θ to be truly exclusive and appears only as a special case of the DSm 
hybrid model in DSmT. Second, we use Proportional Conflict Redistribution no. 5 (PCR5) rule [5] as a 
conjunctive rule of combination. In DSmT framework, the PCR5 rule redistributes partial conflicting 
mass only to the elements involved in that partial conflict. For this approach, the PCR5 rule calculates 
the conjunctive rule of the belief masses of sources. It then calculates the total or partial conflicting 
masses. And last, it proportionally redistributes the conflicting masses to nonempty sets involved in the 
model according to all integrity constraints. Third, we use a disjunctive combination rule to compute 
prediction from previous mass distributions and model of evolution of TBF [14]. For instance, TBF, 
which reflects that only one hypothesis concerning activity or operation is true at each time-indexed 
state, ensures a temporal consistency with exclusivity. Fourth, decisions are achieved by computing the 
expected utilities when a decision must be taken. The maximum of the pignistic probability is used as a 
decision criterion in this paper. Based on Smets’ notation [15], generalized pignistic transformation 
(GPT) is defined by [6]: 

 

                                               (2) 
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Figure 1. Evidential Fusion Network (EFN) 

 
where CM(X) denotes the DSm cardinal of a proposition X for the DSm model M of the problem under 
consideration. For example, we gets a basic belief assignment with non-null masses only on X1, X2 and 
X1 ∪  X2. Finally, we perform the proposed Evidential Fusion Network (EFN), shown in Figure 1, as a 
fusion process as follows.  
 

1) Define the Frame of Discernment: the evidential form represents all possible sensor values and 
their combination values. 

2) Sensor’s Credibility: Reliability discounting mass functions defined as eq. (1) transforms beliefs 
of individual evidence in order to reflect sensor’s credibility. We apply a discounting factor (D) into 
each sensor within EFN. 

3) Multi-valued Mapping: A multi-valued mapping represents evidence to the same problem with 
different views. It is applied to the sensor to represent the relationships between sensors and associated 
objects by translating mass functions. It also can be applied to the related aggregation to represent the 
relationships among sensors. Each aggregation consists of different pre-defined static weights of the 
evidence (Relative importance). 

4) Consensus: Several independent sources of evidence combine belief mass distributions on the 
same frame to achieve conjunctive consensus with conflict masses. We apply the PCR5 rule [5] into 
aggregation state to obtain a consensus that helps to recognize the situation of the environment. 

5) Degree of Belief: Lower bounds (Belief (Bel)) and upper bounds (Plausibility (Pl)) on probability 
is calculated to represent the degree of belief. Then the uncertainty levels (Pl - Bel) of evidence is 
measured by using belief functions after applying the PCR5 rule. 

6) Decision Making: As a decision criterion, we utilize the expected utility and the maximum of the 
pignistic probability such as GPT. The situation of the environment is inferred by calculating the belief, 
uncertainty, and confidence (i.e., GPT) levels of information. 

 
3. An Autonomous Learning Method 
 

As shown in Figure 2, Information of the environment has the association or correlation between 
two consecutive time-indexed states. The EFN should include a temporal dimension for dealing with 
this reasoning over time. Hence we propose DEFN as an autonomous learning method in this section. 
 
3.1. A Normalized Weighting for Evidence 
 

We define sensor rules to represent dynamic weights of a sensor. Within the EFN, each aggregation 
of sensors has the same weight. When C(ak

t) reflects the increase or decrease degree of a particular 
sensor, L(ak

t) reflects the level of a particular sensor. We calculate the relative weight of a sensor based 
on Multi-Attribute Utility Theory (MAUT) [10], [16] to setup the initial weight of a sensor within a 
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given aggregation of sensors. The weights are determined by their importance in regarding to the 
specific situation of the environment. We construct a scale representing the properties of the levels of a 
sensor so as to evaluate sensors. For instance, we assume that the scale from 0 (e.g., the least affection) 
to 100 (e.g., the most affection) for the situation serves as measure of the evaluation as shown in Table 
1. We pre-define the scale of a sensor then calculate the relative importance of a sensor. Relative 
weight of a sensor is equal to the sum of the value of Scale-R and Scale-E for one sensor type divided 
by the total sum of the value of Scale-R and Scale-E. After calculating relative weight of a sensor, we 
redistribute the weight of a sensor over time based on the pre-defined rule of a sensor. 
 

 
Figure 2. The relation dependency of consecutive time-indexed state with Temporal Belief Filtering 

 
Table 1. An example of Relative Weight of a Sensor 

Sensor Type Regular Emergency Relative Weight of a Sensor 
Walk-Audio 
Walk-Light 
Walk-Video 

Scale-R (5) 
Scale-R (5) 
Scale-R (5) 

Scale-E (55) 
Scale-E (35) 
Scale-E (95) 

0.3 
0.2 
0.5 

Flying-Audio 
Flying-Light 
Flying-Video 

Scale-R (5) 
Scale-R (5) 
Scale-R (5) 

Scale-E (20) 
Scale-E (45) 
Scale-E (70) 

0.17 
0.33 
0.50 

 
Let w1, w2, w3, ∙∙∙, wk, ∙∙∙, wk+m, ∙∙∙, wN denote an initial relative weight associated with a given 
aggregation of sensors (Si

t) for fusion process. Within same region, a normalized weighting technique 
for individual difference between two consecutive time-indexed states is applied to each sensor. For 
instance,  

                                  (3) 
 

3.2. Temporal Belief Filtering (TBF) 
 

Depending on temporal changes, the values of a sensor at the current time-indexed state (St) are 
evolved by the measured values at the previous time-indexed state (St−1), because belief mass 
distribution can not vary abruptly between two consecutive time-indexed states. In order to deal with 
this evolution, we utilize an autonomous learning process that has three states: 1) Initial State, 2) 
Reward State, and 3) Final Decision State as shown in Figure 2. Particularly, Temporal Belief 
Filtering (TBF) operations: prediction, fusion, learning and update perform in reward state to obtain 
the relation-dependency. TBF ensures temporal consistency with exclusivity between two consecutive 
time-indexed states when only one hypothesis concerning activity is true at each time stamp. TBF 
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assumes that General Basic Belief Assignment (GBBA) at current time stamp t is close to GBBA at the 
previous time stamp t−1. Based on this assumption, the evolution process predicts a current GBBA 
taking the GBBA at t−1 into account. The TBF at each time stamp t consists in four steps: 1) 
Prediction, 2) Fusion, 3) Learning and 4) Updated rule if required. For instance, if the situation of the 
environment was emergency (E) at t−1 then it would be partially emergency (E) at t. This is an 
implication rule for emergency (E) which can be weighted by a confidence value of mE{.} ∈ [0, 1]. 

The vector notation of a GBBA defined on the frame of discernment (θ) is used: 

                              (4) 
 
 The evolution process can be interpreted as a GBBA defined as: 

                              (5) 
 

3.2.1. Prediction 
 
We use the disjunctive combination rule (M∪) to compute prediction from the previous GBBA at 

t−1 (mθ
t-1) and model of evolution (mθ

M) based on current model M with only two focal sets. The 
disjunctive combination rule does not allow to assigning more belief to a hypothesis than does the 
previous GBBA. This is well suited for an autonomous evolution process under uncertainty:  

                                                (6) 
 
The prediction for emergency (E) situation of the environment at time stamp t is defined as: 

                                                (7) 
 

when mE =1, the prediction reflects a total confidence. When mE =0, the prediction reflects a total 
ignorance with a current time-indexed state 

 
3.2.2. Fusion, Learning, and Updated Rule 

 
Prediction and measurement represent two distinct pieces of information. Fusion of two distinct 

pieces of information leads to a new GBBA whose conflict value (CF ) is relevant for belief learning 
and update requirement. In this case, conflict value (CF ) is calculated by the conjunctive combination 
rule (M∩) of prediction and measurement. 

                                     (8) 
 

Policy is required to analyze whether the current model M is valid or not. If CF is not greater than 
the pre-defined threshold (T), the model at t− 1 is kept as valid at t. However, if CF exceeds T, the 
model is evolved based on the result of a conjunctive combination rule of prediction and measurement. 
Depending on the applied policy, the evolution process (i.e., learning) is performed.  
     After a learning step, a fading memory process (Fa) has embedded to reduce relation-dependency of 
the pieces of long past information even though the cumulative sum of conflict value (CF ) between 
prediction and measurement is lower than T during long time intervals. Fa resets the cumulative sum of 
CF as a zero (0) and prediction is equal to measurement at time window size (W), which is chosen as a 
constant value (C). Then, updated rule is applied to the model of evolution repeatedly after Fa is 
applied to measurement at time window size (W). 
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3.2.3. Decision Rule 
 
We take the maximum of GPT (i.e., eq. (2)) as a decision criterion within the DSmT framework 

after the evolution process is performed. We adopt Shafer’s model [13] to compare our approach with 
DBNs, which can get a BBA with non null masses only on θ1 and θ2 where θ1 and θ2 are hypotheses of 
the frame of discernment (Θ). It is required to assess the recognition performance of a time-indexed 
state to decide whether a temporal sequence of the state has a false alarm or new sensor activation 
within the defined time window size (W). It is necessary to find a quality criterion without references to 
assess this performance. 
     In addition, we defined DF as the differentiation of GPTs of two consecutive time-indexed states. 
The DM is defined as the mean of DF within the defined W as the chosen criterion to distinguish a 
sensor reading error from new sensor activations or deactivations. If DM is less than δ, there is no error 

within W. If DM is located between δ and γ, a false alarm happens. And if DM is greater than γ, the 

emergency situation of the user or environment progress. In this case, δ is the defined false alarm 

threshold and is the defined emergency progress threshold for the chosen criterion. The value of δ is 

always lower than that of γ, because we assume that the false alarm does not often happen when new 
sensor (de)activation is detected by expert system in emergency situation of the environment. Based on 
the defined threshold (T) for conflict value (CF ) and time window size (W), we can distinguish a sensor 
reading error from new sensor operations. We can perform evolution operations with DEFN in order to 
improve the confidence (i.e., GPT) level of information.  
 

 
Figure 3. Dynamic Evidential Fusion Network (DEFN) 

 
3.3. Proposed Autonomous Learning 
 

Based on the EFN with a temporal dimension, the proposed DEFN is constructed as shown in 
Figure 3. In DEFN, a reasoning method is performed to find a false alarm in captured contexts by 
multi-robot and to make a high confidence level of the situation of the environment. We assume that 
the initial prediction is equal to the 1st measurement at 1st time-indexed state (S1). The consecutive 
processing of two combination rules (i.e., disjunctive rule and conjunctive rule) is well adapted to EFN 
so as to update the belief mass distribution of EFN at time-indexed states. In Figure 3, we define n time 
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intervals and time window sizes W to reflect a fading memory process (Fa), which reduces a long past 
information of the environment. The procedures of DEFN consist of seven steps. 
 
1) Measure a GBBA of EFN: We measure a GBBA of EFN using evidential operations at t initially. 
1st Prediction is equal to the 1st measurement at S1. 
2) Update the Weight of a Sensor: We calculate individual difference between two time-indexed states 
using the proposed normalized weighting technique. We then apply the updated weight into each 
sensor from 2nd time-indexed state to obtain the GPT of information. 
3) Prediction and Evolution: We calculate prediction from previous GBBA and model of evolution 
using the disjunctive combination rule that does not allow to assigning more belief to hypothesis than 
does the previous GBBA. The GBBA of EFN at time stamp t + 1 will be affected by prediction.  
4) Learning: We fuse prediction and measurement at t+1 using the conjunctive combination rule to 
make a new GBBA. Within a learning step, if a conflict value (CF) is greater than T, a new GBBA is 
adapted. Whereas, the previous learned GBBA is adapted continuously as a new GBBA. 
5) Fading Memory Process (Fa): We apply Fa with the defined time window size (W) to reduce the 
affection of a long past information. After Fa is performed, the GBBA of prediction at t+w is equal to 
the GBBA of measurement at t+w. The previous GBBA of prediction at t+w−1 is ignored at t+w. 
6) Update and Decision Making: We calculate each GPT per time-indexed state by applying updated 
rule then calculate differentiation (DF) of two consecutive time-indexed states. Based on the mean of 
DF and the pre-defined value for δ and γ, we can make a decision: No errors, False alarm, or 
Emergency. 
7) Comparison the GPT level: Finally, we compare the GPT level. If the GPT level is over Te, which 
represents the emergency situation, for defined continuous time-indexed states, we make a decision 
about the situation of the environment as an emergency. 
 

 
Figure 4. An example of DEFN for making a decision about the situation of the environment 

 
4. A Case Study 

 
4.1. Applied Scenario and Assumptions 
 

We face many ambiguous situations of environment in intelligent multi-robot system applications. 
Particularly, we suppose that the situation (i.e., ”Regular” (R) or ”Emergency” (E)) of the environment 
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can happen. In order to check dynamic emergency and to make a decision about the situation, six types 
of a sensor attached on the multi-robot are randomly activated during some time intervals. As six types 
of a sensor attached on the robot, walk-audio (wa), walk-light (wl), walk-video (wv), flying-audio (fa), 
flying-light (fl), and flying-video (fv) sensors are used in space and terrain. As shown in Figure 4, we 
perform an evidential fusion process with a 95% confidence interval for 500 iterations for making a 
simulation. Assuming that a discounting factor of each sensor is different. Table 1 shows an initial 
relative weight of each sensor using a scale representing method. Initially, a discounting factor and a 
relative weight of each sensor are fixed so as to calculate the initial GBBA of EFN. Moreover, we use 
paired observations [17] that construct a confidence interval for the difference in order to compare our 
method with DBNs. The analysis of paired observations deals with two processes as one process of n 
pairs. For each pair, the difference in performance can be computed. Then, if the confidence interval 
includes zero, two fusion processes are not significantly different. 
 
5. Comparison and Analysis 

 
5.1. GPT Levels of DSmT and DBNs 
 

We compare the GPT levels of two cases: 1) DEFN and 2) DBNs. For calculating the “Emergency 
(E)” situation of the environment within the applied scenario, we apply two methods: 1) weighting 
factors and 2) discounting factors into two fusion processes, respectively. In particular, we utilize the 
paired observation method with different error rates (r) (i.e., 0%, 1%, 5%, 10%, 20% and 50%) so as to 
compare the two fusion processes. The GPT level of each case is calculated within DEFN as the 
default value of the criterion. This default value is used to compare the relation dependency of DEFN 
with that of DBNs [18]. The model evolution (i.e., the association or correlation of two consecutive 
time-indexed states) of DEFN is applied as a transition probability of DBNs in order to compare the 
GPT of DEFN with that of DBNs. 
 
5.1.1. Comparison with Weighting Factors 

 
First, we compare the GPT level of DEFN with that of DBNs by calculating the GPT difference 

with a 95% confidence interval. As shown in Table 2, we apply different weights to each sensor with 
T=0 and W=5. Since we can apply dynamic change of the weight into the fusion process if T=0. If the 
value of W is small, the frequent Fa can ignore the relation dependency of consecutive time-indexed 
states. So we apply W=5. We use paired observations depending on the GPT level of DEFN when the 
degree of GPT level is over 0.5 cases. Because the aggregation of the degree of GPT is not over 0.5 
reduces the total GPT level.  

As shown in Figure 5, the GPT levels of different cases have different paired observation results. 
The confidence interval includes zero when we compare the case 1 and case 2. In this case, it is 
impossible to distinguish which one is better than the other. The reason is that the degree of GPT is 
lower than 0.5 sometimes. Whereas the confidence intervals of the case 3 and 4, the case 5 and 6 and 
the case 7 and 8 do not have zero. In these cases, we can prove that the GPT levels of DEFN with 
different weights are better than those of DBNs. In addition, we can distinguish which one is better 
than the other with 0%, 1%, 5%, 10%, or 20% error rate. However, it is impossible to prove anything 
with a 50% error rate. Because an error rate makes the wrong simulation operation then the result is 
nothing. 

 
Table 2. An example of different weights for DEFN and DBNs 

Case wa wl wv fa fl fv 
1 (DEFN) 
2 (DBNs) 
3 (DEFN) 
4 (DBNs)  
5 (DEFN) 
6 (DBNs) 
7 (DEFN) 
8 (DBNs) 

0.8 
0.8 
0.5 
0.5 
0.3 
0.3 
0.2 
0.2 

0.1 
0.1 

0.25 
0.25 
0.2 
0.2 
0.3 
0.3 

0.1 
0.1 

0.25 
0.25 
0.5 
0.5 
0.5 
0.5 

0.3 
0.3 

0.25 
0.25 
0.17 
0.17 
0.3 
0.3 

0.4 
0.4 

0.25 
0.25 
0.33 
0.33 
0.3 
0.3 

0.3 
0.3 
0.5 
0.5 
0.5 
0.5 
0.4 
0.4 
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Figure 5. Comparison GPT levels of DEFN with those of DBNs based on different weighting factors 

 
Table 3. An example of different discounting factors D 

Case No. wa wl wv fa fl fv 
Case 1 
Case 2 
Case 3 
Case 4 
Case 5 
Case 6 
Case 7 

20% 
20% 
20% 
20% 
20% 
20% 
20% 

10% 
10% 
10% 
10% 
10% 
10% 
10% 

0% 
1% 
2% 
5% 

10% 
20% 
50% 

20% 
20% 
20% 
20% 
20% 
20% 
20% 

10% 
10% 
10% 
10% 
10% 
10% 
10% 

0% 
1% 
2% 
5% 

10% 
20% 
50% 

 

 
Figure 6. Comparison GPT levels of DEFN with those of DBNs based on different discounting factors 
 
5.1.2. Comparison with Discounting Factors 

 
Second, we compare the GPT level of DEFN with that of DBNs with different discounting factors 

by applying different discounting factors into each sensor as shown in Table 3. In particular, we 
compare the GPT level of the two processes depending on different D on “wv” and ”fv”, because we 
assume that sensed video information more reliable than the other information in space and terrain. The 
two cases show different degrees of GPT levels as shown in Figure 6. The GPT levels of DBNs are 
lower than those of the DEFN except for the 50% error rate of “wv” and “fv” case when we utilize 
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paired observations for all cases in Table 3. Based on the result of Figure 6, the confidence intervals do 
not include zero except for the error rate is 50% case. Our approach with different discounting factors 
gets a higher confidence level of information than the fusion process based on DBNs. 
 
5.2. Decision Making 
 

To check the emergency situation of the environment, 26 cases that depends on activated 
sensors happen randomly during 50 time intervals as shown in Figure 7. The level change of the 
state of a sensor represents temporal changes in sensory information in order to find a false 
alarm. To make a simulation, we apply different simulation error rates (e.g., 0%, 20% and 50%) 
into the evidential fusion process with a 95% confidence interval for 500 iterations. 
 

 
Figure 7. An example of sensor activations during 50 time intervals 

 
5.2.1. Finding an Optimal Time Window Sizes W 

 
In order to make a correct decision about the ”emergency”, first we have to define the time 

window size (W) that supports a fading memory process (Fa). We assume that W is 5 because 
the longer W can have a difficult to catch a false alarm or an emergency progress. For instance, 
if we apply the longer time window size such as W=35 or W=15, the mean of the differentiation 
(DF) between two consecutive time-indexed states has no variations as shown in Figure 8. It is 
difficult to find a false alarm or an emergency progress if we utilize the longer W. In addition, 
we are able to distinguish a false alarm from new sensor activations if we check the mean of 
differentiation frequently. However, the shorter W also has problem that there is no relation 
dependency between two consecutive time-indexed state then lead to decrease the GPT level of 
information. A trade-off exists between the increased GPT level of the DEFN approach and the 
mean of differentiation (DM). Thus, we assume that δ is equal to 0.05 and γ is equal to 0.08 in 
order to make a correct decision. We utilize the middle value of W as an optimal time window 
size (e.g., W=5) 
 
5.2.2. Decision Making for Emergency Analysis 

 
Finally, we can infer the situation of the environment by using the mean of the DF (i.e., DM) and 

pre-defined rule of a decision. It then can make a decision that the inferred situation has wrong 
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information or not. For example, we assume that the pre-defined threshold (i.e., Te) for an emergency 
situation of the environment is equal to 0.7. If the degree of GPT is over 0.7 for predefined continuous 
time-indexed states, we estimate that the situation is an emergency. If that is not over 0.7 for at any 
time-indexed states and is not match with the pattern of emergency progress, we estimate that one of 
sensors or some sensors have reading errors then lead to wrong decision making.  

According to Figure 9, the GPT level of DEFN is higher than that of DBNs with a 0% and a 20% 
error rate when the degree of GPT is over 0.5 (e.g., time intervals from 17th). However, the GPT level 
of DEFN and that of DBNs is difficult to distinguish with a 50% error rate. In addition, we catch a 
false alarm at two points: 1) between 20th and 25th time intervals and 2) between 30th and 35th time 
intervals, respectively. Then, we are able to approximately estimate that the emergency situation of the 
environment starts from 25th time interval. This is helpful to make a decision about the situation of 
environment in intelligent multi-robot system applications. 
 

 
Figure 8. Comparison the mean of the differentiation with different time window sizes (W) 

 

 
Figure 9. GPT levels of DEFN and DBNs depending on the applied scenario 

 
6. Related Work 

 
We need reasoning context models that can adapt the situation definitions based on discovered 

changes with changing environments and changing user needs [19]. However, both the physical world 
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itself and our measurements of it are prone to uncertainty. Different types of entities in smart 
environments must be able to reason about uncertainty. To solve these problems, a number of 
mechanisms have been proposed in the literature for reasoning on uncertainty. There are two main 
purposes for reasoning on uncertainty: 1) improving the quality of information and 2) inferring new 
kinds of information. Reasoning to improve the quality of information typically takes the form of 
multi-sensor fusion where data from different sensors are used to increase confidence, resolution or any 
other quality metrics. Reasoning to infer new information typically takes the form of deducing higher 
level contexts (e.g., activity of a user or a robot) or situations from lower-level information, because we 
cannot directly sense the higher-level information. These contexts may be associated with a certain 
level of uncertainty depending on both the accuracy of the sensed information and precision of the 
deduction process [20], [21]. Therefore, we introduce some reasoning approaches such as Fuzzy logic, 
Probabilistic logic, Bayesian Networks (BNs), Hidden Markov Models (HMMs), Kalman Filtering 
Models (KFMs), Dynamic Bayesian Networks (DBNs) and Dempster-Shafer Theory (DST) of the 
evidence in order to compare them with our reasoning approach. 
 
6.1. Puzzy Logic, Probabilistic Logic and BNs 
 

In fuzzy logic, a degree of membership represented by a pair (A:m) where A is a set and m is a 
possibility distribution in real unit interval [0,1] is used to show an imprecise notion such as confidence 
values [22], [23]. The elements of two or more fuzzy sets can be combined to create a new fuzzy set 
with its own membership function then it is used for reasoning models which need more than the 
probabilistic theory with uncertainty. For example, fuzzy logic is used to capture a clinical uncertainty 
in medical data of pervasive computing applications in [24]. In addition, fuzzy logic is well suited for 
describing subject contexts by resolving conflicts between different actuator’s operations [25]. We 
assume that the sensors attached on multi-robot system are operated based on the fuzzy logic of the 
selected sensors.  

Probabilistic logic and Bayesian networks (BNs) can be used for improving the quality of 
information through multi-sensor fusion as well as for deriving the higher-level probabilistic contexts. 
They also can be used for resolving conflicts between information obtained from different sources. 
According to [26], [27], the probabilistic logic is used for encoding access control policies and the BNs 
is used for combining uncertain information from a large number of sources and deducing higher-level 
contexts. However, these rules can not represent the ignorance [28], which manages the degree of 
uncertainty, caused by the lack of information. 
 
6.2. HMMs, KFMs and DBNs 
 

In order to dealing with unpredictable temporal changes in obtained sensory information, Hidden 
Markov Models (HMMs) [29], [30], [31], Kalman Filtering Models (KFMs) [32], [33] or Dynamic 
Bayesian Networks (DBNs) [6], [11], [18] are used as fusion techniques. In terms of probabilistic 
networks, HMMs represent stochastic sequences as Markov chains. This model is used for location 
prediction by using a hierarchical Markov model that can learn and infer a user’s daily movements [34]. 
KFMs represent the state of the system refers to a set of variables that describe the inherent properties 
of the system at a specific instant of time. This is a useful technique for estimating, or updating the 
previous estimate of, a system’s state by using indirect measurements of the state variables and using 
the covariance information of both state variables and indirect measurements [35].  

However, DBNs, which were proposed as a generalization of HMMs and KFMs, have some 
distinct features. DBNs allow much more general graph structures compared with HMMs or KFMs. 
DBNs represent the hidden state in terms of a set of random variable compared with HMMs, which 
represent the state space with a single random variable. DBNs allow general hybrid and nonlinear 
conditional probability densities (CPDs) compared with KFMs, which require all CPDs to be linear-
Gaussian. This is a useful feature to manage the causality between random variables as well as time 
series data. For instance, a high level user behavior is inferred from low level sensor data by adding 
knowledge of real-world constraints to user location data in [36]. A variant of DBNs is used in an 
unsupervised way in order to predict transport routes based on GPS data. By adding constraints on the 
routes that could be learned by the training algorithm, the prediction accuracy was significantly 
improved.  
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DBNs are made up of the interconnected two time-indexed states of a static Bayesian Network 
(BN) and the transition of a static BN between two consecutive time t and t+1 satisfies the Markov 
property [37]. In this work, we use Markov property, which is similar to DBNs, in order to represent 
temporal and state links between two consecutive time-indexed states of DEFN then compare it with 
the original process of DBNs. 
 
6.3. Dempster-Shafer Theory (DST) 
 

DST is a mathematical theory of the evidence based on belief and plausible reasoning, which is 
used to combine separate pieces of information in order to calculate the probability of the event. It is 
often used method of sensor fusion to deal with uncertainty associated with context reasoning by 
combining the independent observations of multiple sensors (e.g., the user’s activity monitoring in 
smart home) [38], [39]. However, the DST has limitations and weaknesses. In particular, the 
Dempster’s combination rule has limitations. The results of the combination have low confidences 
when a conflict becomes important between sources. Thus, we use the Dezert-Smarandache Theory 
(DSmT), which is an extended DST, as a reasoning method. No one applies the DSmT into pervasive 
computing area or smart environmental applications such as multi-agent system or multi-robot system. 
Our research attempts the DSmT into the pervasive computing applications and intelligent multi-robot 
system in order to reduce the conflicting mass in uncertainty level of information and improve the 
confidence (i.e., GPT) level of information in emergency situation of the environment. 
 
7. Conclusion 

 
Until now, we proposed a reasoning method under uncertainty based on Dynamic Evidential Fusion 

Network (DEFN) in smart environments in order to support both consistency verification of the model 
and reasoning techniques in multi-robot system. The proposed reasoning technique improved the 
quality of information and inferred new kinds of information. The proposed DEFN dealt with dynamic 
metrics such as preference, temporal consistency and relation-dependency of the consecutive time-
indexed state using the autonomous learning method such as normalized weighting technique and 
Temporal Belief Filtering (TBF) then improved the confidence level of information compared to the 
fusion process based on DBNs. In particular, we compared the confidence (i.e., GPT) levels of the two 
fusion processes with different weighting factors and discounting factors using paired observations in 
order to show the improvement of our approach. We then showed an example of a false alarm that 
helps to decision making more correctly.  

We will continuous work on autonomous learning process with self-configuring, self-healing, self- 
optimizing, and self-protecting in order to adapt the various situation of the environment into the multi-
robot system without errors. This research directions will be able to make Cyber Physical System 
(CPS) in the real world by improving dependable and reliable information of the system.. 
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