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Similarity search in web networks, aiming to find entities similar to the given entity, is one of the core tasks
in network analysis. With the proliferation of web applications, including web search and recommendation
system, SimRank has been a well-known measure for evaluating entity similarity in a network. However,
the existing work computes SimRank iteratively over a huge similarity matrix, which is expensive in terms
of time and space cost and cannot efficiently support similarity search over large networks. In this paper,
we propose a link-based similarity search method, WebSim, towards efficiently finding similar entities in
web networks. WebSim defines the similarity between entities as the 2-hop similarity of SimRank. To reduce
computation cost, we divide the similarity search process into two stages: off-line stage and on-line stage.
In the off-line stage, the 1-hop similarities are computed, and an optimized algorithm is designed to reduce
the unnecessary accumulation operations on zero similarities. In the on-line stage, the 2-hop similarities are
computed, and a pruning algorithm is developed to support fast query processing through searching similar
entries from a partial sums index derived from the 1-hop similarities. The index items that are lower than a
given threshold are skipped to reduce the searching space. Compared to the iterative SimRank computation,
the time and space cost of similarity computation is significantly reduced, since WebSim maintains only the
similarity matrix of 1-hop that is much smaller than that of multi-hop. Experiments through comparison
with SimRank and its optimized algorithms demonstrate that WebSim has on average a 99.83% reduction in
the time cost and a 92.12% reduction in the space cost of similarity computation, and achieves on average

99.98% NDCG.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Web networks are ubiquitous and can be found in many real ap-
plications, such as web social networks, e-mail networks and product
co-purchasing networks. Similarity search in web networks aims to
find the entities similar to a given entity. It is a special important task
and draws extensive interests from various research fields, including
recommendation systems, link prediction, approximate query pro-
cessing and web search. For satisfying the requirements of above ap-
plications, some link-based similarity measures have been devoted
in recent years, such as SimRank (Jeh & Widom, 2002), P-Rank (Zhao,
Han, & Sun, 2009) and SimFusion (Xi et al., 2005). These methods
compute similarities by exploring the indirect links among entities.
The similarity between two entities is defined recursively with re-
spect to a “random surfer” model. Compared with the text-based sim-
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ilarity measures (Ganesan, Garcia-Molina, & Widom, 2003), the link-
based similarity measures produce systematically better correlation
with human judgements (Maguitman, Menczer, Erdinc, Roinestad, &
Vespignani, 2006), which provide a good way for effectively evaluat-
ing entity similarities.

Among the existing link-based similarity measures, SimRank (Jeh
& Widom, 2002) can be regarded as one of the influential ones on ac-
count of the following reasons. First, SimRank is based on hyper-links
and follows intuition that “two nodes are similar if they are refer-
enced by similar nodes”, which conforms to our basic understand-
ings. Second, SimRank considers not only direct connections among
nodes but also indirect connections, which helps discover valuable
underlying relationships. Third, SimRank does not suffer from any
field restrictions, which is applicable to any domain with entity-to-
entity relationships.

However, the computation of SimRank is expensive in terms of
time and space cost, which makes it less efficient for similarity
search in large networks. The SimRank algorithm computes similari-
ties through an iterative way, in which a huge similarity matrix need
to be maintained for storing similarities among entities. This similar-
ity matrix would become full after just a few iterations, and then the
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efficiency problem would be run into with network becoming mas-
sive. Although some techniques have been proposed for optimizing
SimRank computation (Du, Li, Chen, Tan, & Zhang, 2015; Lee, Laksh-
manan, & Yu, 2012; Lizorkin, Velikhov, Grinev, & Turdakov, 2010; Yu,
Lin, & Zhang, 2014; Zhao, Xiao, Lin, Liu, & Zhang, 2013), they still need
to maintain a large matrix for similarity computation, which are par-
ticularly inefficient in practice.

Motivated by above discussions, in this paper, we propose a link-
based similarity search method, WebSim, towards efficiently finding
similar entities in web networks. Our key observation is that the it-
erative computation of SimRank converges very fast, and there is lit-
tle change in the returned rankings after the second iteration. Based
on this, WebSim defines the similarity between entities as the Sim-
Rank similarity at the second iteration (2-hop similarity). The sim-
ilarity search process is divided into two stages: off-line stage and
on-line stage. In the off-line stage, we compute only the similarities
at first iteration (1-hop similarities), which helps further reduce the
pre-computation cost. In the on-line stage, we compute the 2-hop
similarity between query and candidate based on the pre-computed
1-hop similarities. WebSim maintains only the similarity matrix of 1-
hop that is much smaller than that of multi-hop, and therefore the ex-
pensive time and space cost for iterative SimRank computation would
be decreased.

Our research faces the following two challenges. The first chal-
lenge is to reduce the computation cost in the off-line stage. Al-
though the computation cost can be decreased to some extent by
reducing the iteration number of similarity computation, however,
it is inefficient in practice since many unnecessary accumulation
operations on zero similarities are still involved, especially when
the network grows large. For reducing the computation cost, we
rewrite WebSim equation into a more efficient and simple form
which is independent of initializing similarities. Based on this, we
develop an optimized algorithm for efficiently computing 1-hop
similarities, which decreases the computation cost by considering
only the accumulation operations on non-zero similarities, and the
unnecessary accumulation operations on zero similarities are not
involved.

The second challenge is to reduce the execution time of on-line
query processing. A straightforward approach is to search the en-
tities similar to a given query over a pre-computed similarity ma-
trix. Although this approach is extremely fast for on-line querying,
however, the similarity computation is prohibitively expensive in
terms of time and space cost (Jeh & Widom, 2002; Lizorkin et al.,
2010; Zhao et al., 2013). On the other hand, if the similarities are
not pre-computed, expensive operations would be involved to cal-
culate the similarity between query and candidate, which increases
the response time (He et al., 2014; Lee et al., 2012; Li, Liu, Yu, He,
& Du, 2010b). For supporting fast on-line query processing, we de-
velop a pruning algorithm which searches the similar entities over
a designed partial sums index that is built off-line by utilizing the
1-hop similarities. For reducing the searching space, we skip the in-
dex items of lower partial sums by setting a threshold, which re-
duces the time cost of on-line similarity computation and prunes the
candidates that are not promising. Experiments through comparison
with SimRank and its optimized algorithms demonstrate that Web-
Sim reduces the time and space cost of similarity computation by
on average 99.83% and 92.12% respectively, and achieves on average
99.98% NDCG.

The remaining of this paper is organized as follows. Section 2 dis-
cusses the related work on similarity search. Section 3 gives some
notations and SimRank overview. Section 4 gives WebSim equation.
In Section 5, we give the WebSim pre-computation algorithm and
the optimized techniques. In Section 6, we give the algorithms of
websim-baseline and websim-pruning. Experimental studies are re-
ported in Section 7. Finally, the conclusion are discussed in Section 8.

2. Related work

Due to the practical significance of similarity search in real net-
works, many approaches have been devoted in recent years. With re-
spect to the focus of this paper, below we briefly describe the work
on similarity search that is most relevant to the current work.

Some early approaches like Co-citation (Small, 1973), Biblio-
graphic Coupling (Kessler, 1963) and Amsler (Amsler, 1972) measure
similarity based on structural-context. Co-citation measures the sim-
ilarity between two papers based on the common papers which cite
both of them, formally, the similarity between paper a and paper b is
defined as the number of papers which cite both a and b, while Bib-
liographic Coupling defines similarity as the number of papers cited
by both a and b. Amsler fuses both Co-citation and Bibliographic Cou-
pling for similarity computation. Akmal, Shih, and Batres (2014) de-
veloped a semantic similarity measure based on the comparison of
classes in an ontology, in which the similarity between two classes
is computed based on their attribute similarities. Liao and Xu (2015)
employed cosine distance for computing the similarity between hesi-
tant fuzzy linguistic elements. These approaches compute similarities
based on 1-hop neighbors, the indirect connections are not consid-
ered for similarity computation, which would neglect some similar
results when searching similar entities.

In recent years, some multi-hop neighbor-based similarity mea-
sures have been devoted. SimRank (Jeh & Widom, 2002) is one of
these useful similarity measures for ranking nodes in order of rele-
vance to a query node. The similarity between two nodes is defined
as the expected distance for two random surfers to first meet at the
same node when they walk along the network backwards. SimRank
has been successfully employed in various applications, such as so-
cial recommender system (Li, Li, Chen, & Du, 2013), similarity join
(Tao, Yu, & Li, 2014) and query aggregation (Xu, Li, Chen, & Sun, 2015).
P-Rank (Zhao et al., 2009) enriches SimRank by jointly encoding both
in- and out-link relationships into structural similarity computation.
The intuition behind P-Rank is that “two nodes are similar if (1) they
are referenced by similar nodes or (2) they reference similar nodes”.
P-Rank is a general form of some other similarity measures, includ-
ing Co-citation, Bibliographic Coupling and SimRank. E-Rank (Zhang,
He, Hu, & Wang, 2012) measures similarity between social entities
based on the intuition that “two entities are similar if they can ar-
rive at common entities”, which exploits the meetings of any path
length and relationship strength to enhance the effectiveness. The
above similarity measures are mainly on the homogeneous networks
that consist of the objects and links of same type, the heterogeneity
of real networks is not addressed.

There are also some similarity measures on the heterogeneous
networks that consist of the objects and links of different types. Sim-
Fusion (Xi et al., 2005) uses an unified relationship matrix (URM) to
represent the heterogeneous web objects and the inter-relationships
among these web objects. Typical web objects include products, e-
mail users, web pages and the like. The similarity matrix of SimFusion
is computed iteratively over URM, which helps overcome the data
sparseness problem and detect the latent relationships among het-
erogeneous data objects. PathSim (Sun, Han, Yan, Yu, & Wu, 2011) is
a meta path-based similarity measure, which allows users provide a
meta path to measure similarities from different perspectives. How-
ever, it is difficult for the users to choose an appropriate meta path
especially when the network schema is unknown.

The above methods consider multi-hop neighbors for similarity
computation, which can find more comprehensive results compared
to the 1-hop neighbor-based measures. However, the iterative com-
putation of these methods is expensive, in which a huge matrix need
to be maintained for storing the multi-hop similarities. With iteration
increasing, this matrix would become full gradually, which decreases
the efficiency of similarity computation.

http://dx.doi.org/10.1016/j.eswa.2015.07.042

Please cite this article as: M. Zhang et al., Efficient link-based similarity search in web networks, Expert Systems With Applications (2015),




JID: ESWA

[m5G;August 11, 2015;11:9]

M. Zhang et al. / Expert Systems With Applications 000 (2015) 1-13 3

Some optimization techniques on similarity computation have
been developed recently. Lizorkin et al. (2010) optimized SimRank
by essential node pairs, partial sums and threshold-sieved, which
reduces the computational complexity from 0(n?d?) to O(n2d), and
further reduces to min(0(n2d), O(n3/log,n)) by using cross summa-
tion, where n is the node number of a given graph and d is the av-
erage degree. Li et al. (2010a) introduced a non-iterative SimRank
computation method in dynamic networks, which rewrites SimRank
into a non-iterative form based on the Kronecker product and vec-
torization operators. Yu, Lin, Zhang, Chang, and Pei (2013) proposed
SimRank* for resolving the counter-intuitive zero-similarity issues,
which speeds up the computation procedure by an induced graph.
Zhao et al. (2013) proposed a partition-based approach to tackle
the efficiency problem of SimRank by dividing the data graphs into
variable-size non-overlapping partitions.

Yu et al. (2014) proposed an incremental SimRank computation
algorithm, which characterizes the SimRank update matrix (1S w.r.t.
every link update via a rank-one Sylvester matrix equation. The “af-
fected areas” of (S is identified by an effective pruning strategy, in
which the unnecessary similarity re-computation is skipped. Yu, Lin,
Zhang, and McCann (2015) employed a clustering strategy to elimi-
nate duplicate computations occurring in partial sums, the SimRank
matrix is represented as an exponential sum of transition matrices,
which leads to a further speedup in the convergence rate of SimRank
iterations. Du et al. (2015) extended SimRank to define a similarity
measure on probabilistic graphs and dynamic graphs, in which the
probabilistic transition matrix is computed over uncertain graphs by
a designed SubG algorithm that utilizes multiple sub-graphs for com-
puting transition probability by dynamic programming methods.

Nevertheless, although the above optimization techniques can re-
duce the computation cost in some degree, they still need to maintain
a huge matrix to store the multi-hop similarities, which are particu-
larly inefficient in practice and cannot be efficiently applied to large
networks.

To reduce the pre-computation cost, NetSim (Zhang, Hu, He, &
Wang, 2015) computes the object similarities on-line by combining
the pre-computed attribute similarities. However, the attribute sim-
ilarities are computed in an iterative mode, which is less efficient
when network becomes large. Besides, this method cannot handle
the networks beyond x-star network schema. Iterative Single-Pair
SimRank (ISP) (He et al., 2014) computes the SimRank similarity score
for a single pair of nodes in a graph, in which a new data structure, po-
sition matrix, is used for facilitating computation of the first-meeting
probabilities of two random surfers. The time cost of ISP is always less
than the original algorithm SimRank, since the large similarity matrix
is not required. However, the expensive operations of on-line similar-
ity computation would increase the time cost of query processing.

Compared to the above methods, WebSim computes the actual
similarities at the second iteration on-line according to the pre-
computed 1-hop similarities, which saves the expensive operations
for iterative similarity computation. As well as other similarity mea-
sures that compute similarities based on multi-hop neighbors, Web-
Sim can effectively capture the latent similar entities that have com-
mon multi-hop neighbors but no common 1-hop neighbors even
though it considers only 2-hop neighbors, since only a small portion
of entities are similar in real networks (Yin, Han, & Yu, 2006).

3. Preliminaries
3.1. Notations

Before we discuss further on similarity search, we first list the no-
tations for the subsequent discussions.

Definition 1 (Web Network). A web network is defined as a directed
graph G(V, E), where V is a set of nodes and E is a set of edges. A di-

rected edge e(u, v) € E represents a link from u to v, where u, v e V
represent entities of web network.

The in-neighbor set of node v is denoted by I(v), which represents
the set of entities cited by v; and the out-neighbor set of node v is
denoted by O(v), which represents the set of entities cite v. Symbol
I;(v) denotes the ith neighbor in set I(v), and O;(v) denotes the ith
neighbor in set O(v).

Definition 2 (I-hop in-neighbor). A node x € Vis a [-hop in-neighbor
of v e Vif and only if there exists a path of length I from x to v, which
is also a reverse path of length [ from v to x.

According to the definition of [-hop in-neighbor, we give the def-
inition of 2-hop in-neighbor, i.e., the in-neighbor’s in-neighbor. We
can also give the definition of [-hop out-neighbor similarly.

3.2. SimRank overview

In this subsection, we give a brief review of SimRank. For nodes q,
b € V, the SimRank similarity between them is denoted by s(a, b)
[0, 1], which is defined as s(a, b) = 1 if a = b, otherwise:

c Ii6a)! 1(b)
~ @Ol

where C € (0, 1) is the decay factor. For preventing division by zero in
Eq. (1), s(a, b) is defined as zero when [I(a)| = 0 or |I(b)| = 0.

We will further refer to s(x, *) as the theoretical similarity of Sim-
Rank, and refer to s(a, b) as the theoretical similarity between a and b.
A solution to compute SimRank similarities is reached by iteration to
a fixed-point. At iteration I, the computational similarity between a
and b is denoted by R(a, b). The iterative computation is started with
Ro(*, *), which is defined as:

U .
0, ifa#b
1, ifa=>b
When [ + 0, Ri(a, b) is defined as R;(a, b) = 1 if a = b, otherwise:

R(a.b) c lia)! 11(b)]
a, = 7
: @M

The time cost for computing the similarities of all node pairs at the
Ith iteration is O(ld2n?), and the space cost is O(n?), where d = |E|/ |V|
is the average degree and n is the node number of a given graph.

Eq. (1) is written for every pair of nodes a, b € V, resulting in a
set of n% equations for a network of size n. As mentioned by Jeh and
Widom (2002), the solution to n? iterative SimRank equations always
exists and is unique, which can be reached by iterative computation
to a fixed point. The solution to iterative SimRank converges to a limit,
ie, Va,beV,lim_, . R/(a,b) =s(a,b), which satisfies the recursive
SimRank equation. In real applications, iterative SimRank converges
very fast. Empirically, the iteration number is set as [ = 5 to derive
SimRank for all pairs of nodes in real networks.

s(a, b) s(li(a), 1;(b)) (1)

Ro(a,b) = (2)

Ri_1(Ii(a), I;(b)) (3)

Theorem 1. For entities a, b € V, decay factor C € (0, 1) and iteration I,
we have R;(a, b) = Ri(b, a).

Theorem 1 demonstrates the symmetry property of SimRank
which has been proved in Jeh and Widom (2002).

Theorem 2. For entities a, b € V, decay factor C (0, 1) and iteration |,
the average upper bound of the difference between s(a, b) and R(a, b) is
UB(SimRank@!) = s(a, b) — Ry(a, b) = (§)"*!, where SimRank@! is the
SimRank at iteration I.

Theorem 2 gives the average upper bound of the difference be-
tween the theoretical and computational similarity scores of Sim-
Rank, the proof can be found in (Lee et al., 2012).
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4. WebSim equation

The similarity between web entities can be characterized by their
linked neighbors based on the intuition that “similar entities are usu-
ally linked with similar entities”, which conforms to the intuition of
SimRank. Therefore, SimRank can be regarded as a promising mea-
sure for evaluating similarity between entities. However, the real net-
works are typically large, and the efficiency problem would be run
into when applying SimRank to large networks.

As mentioned by Jeh and Widom (2002), the relative rankings
would become stabilizing within 5 iterations, and there is little
change on returned rankings after the second iteration. Therefore, we
can reduce the computation cost by restricting the iteration number
of similarity computation.

The similarity Rj(a, b) between a and b can also be referred to as
I-hop similarity. WeSim similarity is defined as the 2-hop similarity
of SimRank. The WebSim similarities are divided into two stages: off-
line stage and on-line stage. In the off-line stage, we compute only the
1-hop similarities, specifically, the 1-hop similarity between a and b
is defined as R; (a, b) = 1 if a = b, otherwise:

(@) C |1a)l [1(b)]
Ri(a,b) = ——~+7~

@),

In the on-line stage, we compute the 2-hop similarity based on 1-

hop similarities. The 2-hop similarity between a and b is defined as
Ry(a, b) = 1ifa = b, otherwise:

c @)
AU S
Ro(a, b) HOIIIC) E—

By reducing the iteration number of SimRank computation, the
time and space cost for iterative similarity computation can be re-
duced. In the off-line stage, only the 1-hop similarities are computed,
which further saves the pre-computation cost.

Ro(l(a), 1;(b)) (4)

Ri(Ii(a), I;(b)) (5)

Corollary 1. For entities a, b € V, decay factor C € (0, 1), the av-
erage upper bound of the difference between s(a, b) and Ry(a, b) is
UB(WebSim) = s(a, b) — Ry(a, b) = (§)>.

Proof. By Theorem 2, we have UB(SimRank@!) = s(a, b) — R;(a, b) =
(§)1, replace I by 2, we get UB(WebSim) = s(a, b) — Ry(a, b) =
(3. o

Corollary 1 gives the average upper bound of the difference be-

tween the theoretical and computational similarity scores of Web-
Sim.

Corollary 2. For entities a, b € V, decay factor C < (0, 1) and iteration [

> 2, we have UB(SimRank@l) — UB(WebSim) = ()3 — (§)"*1.

Corollary 2 gives the average upper bound of the difference be-
tween the computational similarity scores of SimRank@! and Web-
Sim, which can be directly derived from Theorem 2 and Corollary 1.

5. Off-line similarity computation
5.1. Naive pre-computation algorithm

For a given web network G, the naive procedure for computing
1-hop similarity matrix is illustrated in Algorithm 1. From this algo-
rithm, we can derive that the average time cost for computing the
1-hop similarity between two entities is 0(d?), and then the time
cost for computing 1-hop similarity matrix can derived as 0(d?n?).
For any a € V, we have R;(qa, b) # 0 if x € I(a)Ab € O(x), and therefore
the maximal number of non-zero entries in the row vector of entity a
is [y < j(@)|O(x)|. So the maximal average number of non-zero entries
in the row vectors of R; can be further derived as d?. Thus, the space
complexity of 1-hop similarity matrix is 0(d%n).

Algorithm 1 Naive algorithm for computing 1-hop similarity matrix.
Input:
Network G(V, E);
Output:
WebSim score R (a, b), Va,b e V;
1: Initialize Ry(a, b), Va, b € V by Eq. (2?);
2: For aeV do
3: For beVdo

4 if a = b then
5: Ri(a,b) < 1;
6 else (@)1 1(8)
[I{a)[ 11(b)|
7: Ri(a, b) < M ﬁ, DI Ro(Li(a), I;(b));
8: end if
9: end for
10: end for

5.2. Optimized pre-computation algorithm

Compared to the iterative SimRank computation, the naive pre-
computation algorithm can reduce the time and space cost in the
off-line stage. However, with network becoming large, this algorithm
would suffer from some limitations on computation efficiency. First,
this algorithm needs to compute the similarity scores of all node pairs
even only a small portion of them is non-zero. Second, when comput-
ing the similarity of a node pair, all the initialized similarity scores
need to be checked, i.e., it cannot skip the zero similarity scores,
which wastes a lot of time cost. Therefore, the naive pre-computation
algorithm is particularly inefficient in practice. Accordingly, we next
introduce an optimized algorithm to reduce the time cost for com-
puting 1-hop similarities.

By Eq. (2), we have Ry(I;(a), I;(b)) = 0 if I;(a) # I;(b), which gives
no contribution to Ry(a, b); and Ro(li(a), Ij(b)) = 1 if Ii(a) = I;(b),
only this case is accounted for computing R;(a, b). And then, we con-
sider only the meetings that two surfers start from a and b when they
respectively walk along paths x — a and x — b backwards and meet
at x, where x € I(a)nI(b). Thus, Eq. (4) can be equivalently rewritten
as:

C
Ri(a,b) = -~ Ro(x, x) (6)
By Eq. (2), we get Ro(x, x) = 1, and then Eq. (6) can be formalized
as:
B ClI(a) nI(b)|
(e D) =iy e 2

By Eq. (7), we have R;(a, b) = 0 if I(a) nI(b) = @, in this case, the
operations of similarity computation are unnecessary. On the other
hand, if I(a) N I(b) # @, we have R;(a, b) # 0, which can be accounted
for computing Rq(q, b).

Based on the above discussions, we give an optimized algo-
rithm for computing 1-hop similarity matrix, which is shown in
Algorithm 2. For each a € V, line 3 to 10 captures each node b € O(x)
for x € I(a) that connects with a through a symmetrical path a «
x — b, and updates Rq(a, b) by accumulating WEICWFT’ which skips
the unnecessary accumulation operations on zero similarity scores.

The time complexity of this algorithm is derived as O(d?n). As
mentioned by Faloutsos, Faloutsos, and Faloutsos (1999), the web net-
work follows a power-law degree distribution, the probability that a
node has 0 in- and out-links, p(6), is on the order 6-9, where a is
a degree exponent. And then we can get that the expected value of
degree is E(B) = a/ (a — 1). In this case, the time complexity of this
algorithm is O(a?n/ (a — 1)?). Similarly, the space complexity of the
1-hop similarity matrix can be derived as O(a?n/ (a — 1)?), which is
very sparse compared to a full similarity matrix of n x n.
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Please cite this article as: M. Zhang et al., Efficient link-based similarity search in web networks, Expert Systems With Applications (2015),




JID: ESWA

[m5G;August 11, 2015;11:9]

M. Zhang et al. / Expert Systems With Applications 000 (2015) 1-13 5

Algorithm 2 Optimized algorithm for computing 1-hop similarity
matrix.
Input:
Network G(V, E);
Output:
WebSim score R;(a, b), Va,b € V;
1: For a eV do
2: Ry(a,a) < 1;
3:  For x eI(a) do
4 For b € O(x) do
5: if a = b then
6
7
8
9

Continue;
end if

Ri(a,b) < Ri(a, D) + yaimen

end for
10: end for
11: end for

6. On-line query processing
6.1. Top-k similarity search under WebSim

Under the definition of WebSim, we now give the definition of
top-k similarity search problem, which is described as follows.

Definition 3. (Top-k similarity search under WebSim). In a web net-
work G = (V, E), the top-k similarity search for a given entity q is to
find k most similar entities ranked with similarities descending, such
that Ry(q, a) > Ry(q, d’) for a in the returning list and a’ not, where R,
is the similarity function under WebSim.

6.2. WebSim-baseline

For a given query g, the baseline method for finding top-k similar
entities is that: (1) for each candidate a € V, we compute the sim-
ilarity between q and a using Eq. (5), and add a to a candidate set
Cif |C| < k, otherwise: we remove a’ e C corresponds to the lowest
similarity from Cif Ry(q, a’) < Ry(q, a), and add a to C; and (2) we
sort the k candidates in C and return them. The time cost for find-
ing top-k similar entities consists of two parts: one part is the time
cost for selecting k entities from the n unsorted entities, which is
derived as O((d? + k)n); and another part is the time cost for sort-
ing these k entities, denoted by O([(k)), which is depends on the
sort algorithm. Therefore, the total time cost for finding top-k simi-
lar entities is O((d? + k)n + [)(k)). Compared to SimRank, although
WebSim requires less computation cost in off-line stage, however,
the time cost of on-line query processing would be significantly in-
creased, since the similarity between query and candidate is com-
puted on-line, while SimRank computes the whole similarity matrix
in the off-line stage.

6.3. Optimized on-line query processing algorithm

In WebSim-baseline algorithm, two factors that increase the com-
putation cost of query processing are involved. First, the more can-
didates to check, the more time the algorithm will take; and second,
the more operations for computing the similarity between query and
candidate, the more time will take. Therefore, the intuition to speed
up the search process is to reduce the unnecessary operations for
similarity computation and prune the unpromising candidates of be-
ing checked.

6.3.1. Rewrite WebSim similarity equation
For reducing the unnecessary operations for computing similar-
ity between query and candidate, we next introduce an optimization

2-tuples consist of entity IDs and partial sums

[3672 |—{ <7181,0.003> | [ <3428,0.006> ] [ <1003,0.001>
[9801 —] <6112,0.005> | [ <3058,0.013> | [ <8932,0.010>
(6891 |—{ <9091,0.001> | [ <7181,0.051> | [ <6833,0.013>

IDs of entities

Fig. 1. A Fraction of partial sums index.

technique based on partial sums (Lizorkin et al., 2010), which allows
reducing access operations to R;(x, *) that is required for computing
Ry(, x). For given I(a) and [;(b) € I(b), the partial sums corresponds to
Ry is defined as:

. @)
partialy ) (I;(b)) =

i=1

|
Ri(Ii(a), I;(b)) (8)

The partial sums are computed in the off-line stage, based on
which the similarity between entities can be computed on-line.
Specifically, Ry(a, b) is defined as Ry(a, b) = 1 if a = b, otherwise:

c o
Ry(a,b) = [1(a)[11(b)[ j=1

In practice, not all the partial sums can give enough contribution
to the similarity scores, and some lower partial sums can be skipped
when computing similarities. Next we skip the partial sums of lower
value by setting a threshold €. The partial sums partialf(la)(lj(b)) un-

der threshold € is denoted by partialﬁ‘a')s(lj(b)), which is defined as:

partialy, (I;(b)) (9)

IHa)]

partialil;*(Ii(b)) = Ri(Ii(a), j(b)) (10)
i=1

if right-hand side of Eq. (10) is bigger than €, otherwise

partial'f(la’)e (I;(b)) = 0. And then Ry(a, b) can be defined approximately

as R(a, b) = 1if a = b, otherwise:

c e
Ri(a,b) = OO partial;(y) (1;(b)) (11)
j=1

By Eq. (11), the time cost for computing similarity between query
and each candidate can be derived as O(d), so the time cost of
WebSim-baseline can be reduced to O((d + k)n + [/(k)), which is sig-
nificantly lower than WebSim-baseline.

6.3.2. Partial sums index

In practise, the entities similar to a given query are not too many,
some entities corresponds to lower similarities can be skipped when
processing queries. For a given query g, the operation for comput-
ing similarity Rg(q, x) between ¢ and candidate x is unnecessary if
R§(q. x) is zero or closed to zero, and would increase the response
time of on-line query processing.

For improving the efficiency of on-line query processing, we in-
troduce an index structure, called partial sums index, for storing par-
tial sums. The partial sums index is formalized as P® = {P¢(y)|y
V A O(y) # @} corresponds to the whole partial sums index, where
PE(y) = {{a, partialf(la’)g(y)) |partialﬁla’)£(y) # 0} is a set of 2-tuples cor-
responds to (nodelD, partial sums). An example of partial sums index
is shown as Fig. 1, where the 2-tuples consist of entity IDs and partial
sums. For example, (7181, 0.003) corresponds to “3672” means the

value of partial sums partialﬁyf81)(3672) is 0.003.

The procedure for building partial sums index is shown as
Algorithm 3. In line 4 to 12, for each node a € V, the partial sums
partialf(la’)E (y) corresponds to node y € {yly € VAR (x, y) > 0} is up-

dated by accumulating Ry (x, y) for each x € I(a). Here, B is a temporary

http://dx.doi.org/10.1016/j.eswa.2015.07.042
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Algorithm 3 Index building.

Algorithm 4 WebSim-pruning algorithm.

Input:
Network G(V, E), 1-hop similarity matrices Ry, threshold €;
Output:
Partial sums index P¢;
1: Initialize P¢ as &
2: For a eV do
3:  Initialize set B as &

4:  For x € I(a) do

5: For y e {yly eV AR{(x,y) > 0} do

6: if partialf(la')e( ) € B then

7: partialﬁ‘a')s (y) < partlall(a) ) +Ri(x,y);

8: else . .

o: partiall(‘a’)&(y) < Ri(x,y),B<BU {partlall(la M
10: end if

11: end for

12:  end for
13 For partial’¥(y) ¢ B do

i(a) VY
14: if partlalﬁ‘a) (y) > € then
15: if P£(y) € Pt then
16: PE(y) < PE(y) U {a, partial (‘a)a( )
17: else
18: PE(y) < PE(y) U (a, partlalR(‘a) (v)), P& < PEUPE(y);
19: end if
20: end if
21:  end for
22: end for

set consists of partial sums. In this step, only node y € {yly € VAR
(x, y) > 0} is considered for computing partial sums partialﬁ‘a’)&(y).

In line 13 to 21, we add (a, partlall(a) (y)) to partial sums index P¢ if

partlall(a') (y) > €. The idea of this algorithm is similar to the accumu-

lation operations for computing matrix R; as discussed before.

The time complexity of this algorithm can be easily derived as
O(dnn’), where n’ < n is the average number of non-zero entries in
the row vectors of matrix R;. As mentioned in Section 5.1, the maxi-
mal average number of non-zero entries in the row vectors of matrix
Ry is d?, therefore, the time complexity of index building is O(d®n).

6.3.3. WebSim-pruning

Based on partial sums index, we next introduce an optimized on-
line query processing algorithm, called WebSim-pruning, which uti-
lizes both partial sums index and accumulation operations for speed-
ing up the on-line query processing.

The procedure of WebSim-pruning is shown in Algorithm 4, which
searches the top-k most similar entities to a given query g over a par-
tial sums index PE. In line 1, we initialize Q(C, S) by setting both C
and S as ¢, where Cis a set of candidates, and S is a similarity set
corresponds to the candidates. Line 2-12 updates the similarity be-
tween g and a by accumulating Wpartlal R, (I (y)). Fory € I(q),
we first get each candidate a such that (a, partlalf(lu) (y)) € PE(y), and
update S(a) by accumulating mpartiall(q) (Ii(y)) if a € C oth-
erwise we need to add a new element S(a) to S. In this step, only
the non-zero partial sums are accounted for similarity computation.
Function GetSortedEntity(k, Q) is used for getting the k most similar
entities from Q, the basic process is that first get the k most similar en-
tities from Caccording to their corresponding similarities in S, then
sort aBd return them. The time cost of this algorithm can be derived
asO(  yey(q) le(v) + kIC| + T)(k)), where [¢(y) is the size of P¥(y).

Input:
Network G(V, E), partial sums index P¢, query q and parameter k;
Output:
Top-k most similar sorted web entities;
1: Initialize Q(C, S) by setting Cand S as ¢;
2: For y €I(q) do
3. For (a, partialf(la’)g(y)) e PE(y) do

4 if a € Cthen .
5 S(a) < S(a) + mpartiall(z)s(lj(y));
6: else

7 S(a) < pgfyPartialy ((7)):
8 C <« Cu{a};
9 S < Su{s(a)};
10: end if
11:  end for
12: end for

13: return GetSortedEntity(k, Q);

From this algorithm we get that the candidate set corresponds

to node y € I(q) is C(y) = {a|{(a, partlalf(‘a)s(y)) e P&(y)}. Therefore,

the whole candidate set corresponds to query q is C= Uye,(q)C(y) =

Uyer(q)lal(a, partialf(lu')s(y)) € P&(y)}. When increasing €, the size of

C(y) would have a downward trend, and hence the size of C would
have a downward trend as well. Therefore, the time cost for choosing
the k entities from Cwould be decreased. Note that the size of C(y) is
equal to the size of PE(y).

Compared to the pruning SimRank algorithm (Jeh & Widom,
2002), WebSim-pruning reduces the computation cost from the fol-
lowing two aspects. On the one hand, WebSim-pruning can skip the
accumulation operations on zero similarities during similarity com-
putation, while the pruning SimRank algorithm needs to compute the
similarities of all node pairs within a radius r, which involves lots of
zero similarities. On the other hand, WebSim-pruning can reduce the
number of candidates by removing items lower than € from partial
sums index, while the pruning SimRank needs to check all the candi-
dates of lower similarities.

Theorem 3. For entities abeV, decayfactor C< (0, 1) and threshold €,

we have 0 < Ry(a, b) — R§(a, b) < \I(b)l
Proof. By Egs. (9) and (11), we can derive
C
Ry(a,b) —RS(a,b) = ——~—~
A B) =R D) = 1rayiiey
Ka)l

x (partlall(a)( i(b)) — partlal,(a) (1;(b))).
i=1
By Egs. (8) and (10), we get partlall( )( i(b)) — partlalf(1 )( i(b)) =
0 if partlal ! (I (b)) > otherwise 0 < partlall( )(I (b)) —
partial (1 )g( -(b)) < €, and then we can derive 0 < partlal (I (b)) -

partlall(1 )E( i(b)) < €, and consequently we have

c Ul c U@
@G = M@)o
—partlalR’ E(I (b)))

(partlal a)( i(b))

Ry(a, b) — R§(a, b)

¢ "M ce
= i(@)[11(b)] [1(b)|"
which gives 0 < Ry(a, b) — R§(a, b) = & 1
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Theorem 3 gives the maximal difference between WebSim-
baseline and WebSim-pruning, which is the maximal accuracy loss
of WebSim-pruning. By setting € = 0, we have R,(a, b) = R§(a, b), in
this case, the maximal accuracy loss is 0.

Theorem 4. For entities a, b € V, decay factor C € (0, 1) and threshold €,
we have |R(a, b) — R§(b, a)| < |1C(b£)|'

Proof. By Theorem 3, we have 0 < Ry(a, b) — R§(a, b) < &, and

Ong(b,a)—Rg(b,a)gﬁ‘Eaﬂ, which  gives _ﬁﬁaﬂ <R§(b,a) -
Ry(b,a) <0, and then we get —% <Ry(a,b) — R(a, b) +

RS(b, a) — Ry(b,a) < ﬁfﬂ

By Theorem 1, we get Ry(a, b) = Ry(b, a) by setting [ = 2. There-
fore, —ﬁfﬂ <R§(b,a) — (R§(a, b) < ﬁfy which gives |R§(a,b) —
RE(b, a)| < ﬁfﬂ‘ O

Theorem 4 shows that the similarity of WebSim-pruning is not
symmetrical when € > 0, and gives the maximal difference between
Rg(a,‘ b) and Rg(bz a)'. By setting € =0, we can get RS(a, b) = RE(D, a),
in this case, the similarity of WebSim-pruning is symmetrical.

7. Experimental study

In this section, we report some preliminary experimental results
in real networks derived from practical datasets. Experiments were
done on a 2.39 GHz Intel(R) Xeon(R) CPU with 64GB main memory,
running Windows Server 2008 R2 Enterprise. All algorithms were im-
plemented in C++ and compiled by using Visual Studio 2010.

7.1. Setup

7.1.1. Datasets
We ran our experiments on the following two real datasets:

- Citation network We build a citation network by using the high
energy physics paper dataset! (Gehrke, Ginsparg, & Kleinberg,
2003; Leskovec, Kleinberg, & Faloutsos, 2005), where each node
corresponds to a paper and each edge corresponds to a citation
between papers. We get 16,000 papers by breadth first traversal
from a randomly chosen paper and get 66,794 citations among
these papers.

- E-mail network We extract an e-mail network from Enron e-mail
dataset?. In this e-mail network, a node represents an e-mail user
and an edge implies the delivery relationship from one user to
another. We choose 16,000 e-mail users by breadth first traversal
from a randomly chosen e-mail user and get 32,120 delivery re-
lationship among these e-mail users, the sum of all the delivery
frequencies is 233,023.

7.1.2. Evaluation and comparison methods

The effectiveness of the returned rankings is evaluated by NDCG
(Normalized Discounted Cumulative Gain) (Jarvelin & Kekdldinen,
2002). NDCG value at position k (NDCG@k) of the returned rankings
is computed by the exact SimRank scores at iteration 10. Formally,
NDCG@k is defined as:

DCG@k

NDCG@k = iDCC@k (12)

where DCG@k (Discounted Cumulative Gain at k) is defined as:
DREL(V, Vi), ifi< 2

DCG@k = DCG@i 4 3 RElﬁ(gV;iV")' ifi > 2 (13)

1 http://snap.stanford.edu/data/cit-HepPh.html
2 http://www.cs.cmu.edu/~enron/

where i denotes rank of v; in the returned list, REL(v, v;) denotes the
exact SimRank score between v and v;. IDCG@k is a normalized factor
to ensure the exact ranking generate equals 1.

In terms of the efficiency of similarity search, we report the time
cost of similarity computation, query processing and index building,
as well as the space cost of similarity matrix and partial sums index.

We compare our approaches, including WebSim and optimized
WebSim (Opt-WebSim), with (1) SimRank that computes similarities
by the naive SimRank algorithm (Jeh & Widom, 2002); and (2) opti-
mized SimRank (Opt-SimRank) that speeds up the SimRank compu-
tation based on the partial sums (Lizorkin et al., 2010). We use Sim-
Rank@2 and SimRank@10 to denote the SimRank at iteration 2 and 10
respectively. Similarly, we use Opt-SimRank@2 and Opt-SimRank@10
to denote the Opt-SimRank at iteration 2 and 10 respectively. All the
comparison methods are implemented strictly following their pa-
pers. The decay factors of WebSim, SimRank and Opt-SimRank are
all set as 0.8, since there is little difference in relative rankings on
different values (Jeh & Widom, 2002).

7.2. Effectiveness comparison

7.2.1. NDCG value

Fig. 2 a shows the NDCG change versus position k on citation net-
work. At each position k, the NDCG of WebSim-baseline is higher than
both WebSim-pruning@0.025 (WebSim-pruning at threshold 0.025)
and WebSim-pruning@0.050 (WebSim-pruning at threshold 0.050),
but the difference of them is very minor, which demonstrates the
reasonability of our pruning algorithm. From k = 2 to 10, there is a
downward trend on the curves, this is because each entity are simi-
lar to itself, so the NDCG at k = 1 is 1, which affects the NDCG from
k = 2 to 10. The NDCG at each position k of the SimRank rankings are
always 1, which are not repeatedly shown in our experiments. Fig. 2b
shows the NDCG change versus position k on e-mail network. Com-
pared to the result on citation network, the curves of this result are
not so close, this is because different methods may be suit for dif-
ferent datasets, which is common for similarity search algorithms.
On both datasets, WebSim achieves on average 99.98% NDCG, which
demonstrates WebSim is effective as well as SimRank.

7.2.2. Case study on citation network

Next we give some case studies on citation network by making
use of WebSim. The top 10 similar papers for different queries are
shown in Table 1. The first column shows the returned list of the
query “Adiabatic Motion of a Quantum Particle in a Two-Dimensional
Magnetic Field” that is a paper on the adiabatic motion of “Quantum
Particle”. We found that most of the returned papers are highly rel-
evant to the given query. For example, “Adiabatic Motion of a Quan-
tum Particle in a Two-Dimensional Magnetic Field” is the query itself;
“Embedding of Relativistic Particles and Spinor Natural-Frame” is a
paper on “Relativistic Particles” and “Spinor Natural-Frame”, which
is relevant to “Quantum Particle” even though there is no common
term in their titles; “Fermion Quantum Numbers and Families Repli-
cation from an Extension of Space-Time Relativity” introduced the
motion of particles on “1+3 space-time”, which is also relevant to
the motion of “Quantum Particle”; “Effective Dynamics on a Line”
analyzed the effective classical/quantum dynamics of a particle con-
strained on a closed line embedded in a higher dimensional config-
uration space, which is relevant to motion of “Quantum Particle” as
well; “Dirac Particles in Twisted Tubes” discussed the motion of Dirac
particle in the interior of a twisted tube with boundary conditions,
“Quantum Charged Spinning Particles in a Strong Magnetic Field (a
Quantal Guiding Center Theory)” presented a quantal guiding cen-
ter theory which allows to systematically study the separation of the
different time scale behaviors of a quantum charged spinning par-
ticle moving in an external inhomogeneous magnetic field, both of

http://dx.doi.org/10.1016/j.eswa.2015.07.042
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Fig. 2. NDCG value change on varying k.

Case studies for different queries on citation network.

Rank Adiabatic motion of a Brane gases in the early Nonlinear interaction On tree form-factors in Constraints on
quantum particle in a universe between electromagnetic (supersymmetric) Brane-localized gravity
two-dimensional magnetic fields at high temperature Yang-Mills theory
field
1 Adiabatic motion of a Brane gases in the early Nonlinear interaction On tree form-factors in Constraints on
quantum particle in a universe between electromagnetic (supersymmetric) Brane-localized gravity
two-dimensional fields at high temperature Yang-Mills theory
magnetic field
2 Embedding of relativistic Hybrid superstrings on Large N phase transition in On form-factors in Dynamical localization of
particles and spinor singular calabi-Yau continuum QCD, Sin(h)-Gordon theory gravity
natural-frame fourfolds
3 Fermion quantum numbers On T-duality in Brane gas A simple derivation of the New representation for Constraints on AdSs
and families replication cosmology hard thermal loop Lagrangians of self-dual Embeddings
from an extension of effective action nonlinear
space-time relativity electrodynamics
4 Effective dynamics on a line Loitering phase in Brane gas The Barton expansion and An infinite set of tree A Brane world solution to
cosmology the path integral approach amplitudes in the cosmological constant
in thermal field theory Higgs-Yang-Mills problem
5 Dirac particles in twisted Numerical experiments in Integral representations of Gravitational SD Perturbiner Inflation and gauge
tubes string cosmology thermodynamic 1PI Green hierarchy in
functions in the Randall-Sundrum
world-line formalism compactification
6 Quantum charged spinning Effective tachyonic potential Thermal matter and Gravitationally dressed Non-conventional
particles in a strong in closed string field radiation in a Parke-Taylor amplitudes cosmology from a
magnetic field (a quantal theory gravitational field brane-universe
guiding center theory)
7 Dimensional reduction by a Acoustics in Bose-Einstein Non-linear electromagnetic SD Perturbiner in Dynamic dilatonic domain
two-Form (another condensates as an interactions in thermal YM+Gravity walls
alternative to example of Lorentz QED
compactification) symmetry breaking
8 Charged Particles in a 2+1 Relation between Tunneling Thermal Green’s Functions On amplitudes in self-dual Brane cosmological
Curved Background and Particle Production in from Quantum sector of Yang-Mills evolution in a bulk with
Vacuum Decay Mechanical Path Integrals theory cosmological constant
II: Inclusion of Fermions
9 Non-minimal couplings in Brane gas cosmology in Non-linear electromagnetic Nonlinear Self-Duality and Modeling the fifth
two dimensional gravity: M-theory: late time interactions in thermal Supersymmetry dimension with scalars
a quantum investigation behavior QED and gravity
10 Quantum Mechanical Complete Wetting of Gluons Thermal Green'’s Functions Electric-Magnetic Duality An Alternative to

Embedding of Spinning
Particle and Induced
Spin-connection

and Gluinos

from Quantum
Mechanical Path Integrals

Rotations in Non-Linear
Electrodynamics

Compactification

them are obviously relevant to the given query. Similarly, other pa-
pers in the returned list are all similar to the given query, includ-
ing “Charged Particles in a 2+1 Curved Background”, “Non-minimal
couplings in two dimensional gravity: a quantum investigation” and
“Quantum Mechanical Embedding of Spinning Particle and Induced
Spin-connection”.

The second column shows the returned list of the query “Brane
Gases in the Early Universe”, which is a paper on “D-branes” in
string theory. In which, the “Brane Gases in the Early Universe” in
the returned list is the query itself; “Hybrid Superstrings on Singu-

lar Calabi-Yau Fourfolds” discussed the “wound strings” and outlined
some possible extensions, including higher-dimensional wrapped
branes, which is relevant to “D-branes”; “On T-Duality in Brane Gas
Cosmology” is also on “D-branes”, which is relevant to the given
query as well. Other papers in the returned list from rank 3 to 10 can
be analyzed similarly, which are also relevant to the given query.
Similar cases can be found in other queries, such as “Nonlinear in-
teraction between electromagnetic fields at high temperature”, “On
tree form-factors in (supersymmetric) Yang-Mills theory” and “Con-
straints on Brane-Localized Gravity”, the returned list of these queries

http://dx.doi.org/10.1016/j.eswa.2015.07.042
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Table 2
Pre-computation time (min).
Dataset SimRank@2  SimRank@10  Opt-SimRank@2  Opt-SimRank@10 ~ WebSim  Opt-WebSim
Citation  75.66 435.72 43.45 189.38 40.08 0.01
E-mail 33.93 278.56 2410 124.55 13.59 0.04
Table 3
Similarity matrix size (K).
Dataset SimRank@2  SimRank@10  Opt-SimRank@2  Opt-SimRank@10 ~ WebSim  Opt-WebSim
Citation 2923.51 28435.66 2923.60 28435.66 362.37 362.37
E-mail 71095.38 113033.86 71095.37 113033.86 238790  2387.90

can be analyzed similarly. From above discussions, we can conclude
that our proposed WebSim can really reflect the reality to single out
similar results.

7.3. Efficiency comparison

7.3.1. Pre-computation cost

Table 2 shows the running time for pre-computing similarity ma-
trices. On both datasets, SimRank@2 requires less time cost than Sim-
Rank@10, since it computes only the 2-hop similarities. Similarly,
Opt-SimRank@2 also requires less time cost than Opt-SimRank@10.
The time cost of WebSim is lower than the comparison methods,
since it computes only the 1-hop similarities. On citation network,
the time cost of WebSim is 52.96% of SimRank@2, 9.20% of Sim-
Rank@10, 92.24% of Opt-SimRank@2 and 21.64% of Opt-SimRank@10
respectively; and on e-mail network is 40.05%, 48.78%, 56.37% and
10.91% respectively. By Opt-WebSim, the efficiency of similarity com-
putation can be further improved. As shown in this table, the time
cost of the comparison methods is reduced by 99.97% and 99.70% re-
spectively on the citation and e-mail networks.

Table 3 shows the size of non-zero similarity matrix on the cita-
tion and e-mail networks. Here the symbol “K” in the caption refers
to “219”, On both datasets, the similarity matrix of SimRank@2 is
smaller than SimRank@10, since SimRank@10 involves a lot of en-
tries of lower similarity scores. Similarly, the similarity matrix of Opt-
SimRank@2 is smaller than Opt-SimRank@10. The similarity matrix
size of both SimRank@2 and Opt-SimRank@2 are same, since Opt-
SimRank reduces only the time cost of SimRank, the matrix for stor-
ing similarities is still required, similar cases can be found in other
methods. The similarity matrices of both WebSim and Opt-WebSim
are smaller than other methods, since they compute only the 1-hop
similarities. On citation network, the similarity matrix size of our ap-
proach is 12.39% of SimRank@2 and 1.27% of SimRank@10 respec-
tively; and on e-mail network, the similarity matrix size of WebSim is
3.36% of SimRank@2 and 2.11% of SimRank@10 respectively. We find
that the improvement of the former is more evidently, this is because
the citation network is more sparser than the e-mail network. Com-
pared to both SimRank and Opt-SimRank, the reduction in space cost
is 87.60% and 96.64% and respectively on the citation and e-mail net-
works.

We also recorded the time cost of index building. On citation net-
work, the time cost at € =0, 0.025,0.05 is 2056 ms, 1069 ms and
1019 ms respectively; and on e-mail network is 64,522 ms, 21,954 ms
and 16,753 ms respectively. This result demonstrates that the time

Table 4
Average execution time of on-line query processing on k = 50 (ms).

cost of index building is very low, and shows a downward trend as €
increases.

7.3.2. On-line query processing

In order to accurately test the average execution time of query
processing, we randomly choose 5000 query nodes and process each
query with 30 runs, and then divide the total time cost by “5000x30".
The average execution time of query processing on both citation and
e-mail networks is shown in Table 4, where k = 50 and € = 0.025. We
find that the time cost of SimRank@10 and Opt-SimRank@10 is close
since their similarity matrix sizes are same, similar case can be found
in SimRank@2 and Opt-SimRank@2. The query time of SimRank@10
is higher than SimRank@2, since SimRank@10 needs to check more
entities of lower similarity scores. The result of Opt-SimRank@10
and Opt-SimRank@2 can be explained similarly. On both datasets,
WebSim-baseline is the most time-consuming, since it computes
the similarity between query and candidate in the on-line stage,
which increases the time cost of query processing. The time cost of
WebSim-pruning is significantly lower than other methods, since it
searches the similar result from only a partial sums index. These re-
sults demonstrate that WebSim-pruning is more efficient than other
methods.

7.4. On varying threshold €

We next report some results to test the effect of threshold €. Fig. 3
illustrates the NDCG, index size, index building time and query pro-
cessing time versus threshold € on citation network. From Fig. 3a,
we can clearly see that the NDCG decreases as € increases except
€ = 0.05. This is because the partial sums lower than € are pruned
when processing queries, which affects the effectiveness of returned
rankings. From Fig. 3b, c and d, we find that the curves show a down-
ward trend as € increases. This is because the partial sums lower than
€ are skipped when building index, which naturally decreases the in-
dex size, index building time and query processing time.

Fig. 4 illustrates the NDCG, index size, index building time and
query processing time versus threshold € on e-mail network. We can
clearly see that the curves of Fig. 4a, b, c and d also show a downward
trend with € increasing. This phenomenon is similar to the result on
citation network and can be explained similarly. Compared to Fig. 3,
the downward trend of the curves in Fig. 4 is more evident. This is
because there are more index items of lower partial sums in e-mail
network, and these items would be pruned with € increasing.

Dataset SimRank@2 SimRank@10  Opt-SimRank@2 Opt-SimRank@10  WebSim-baseline ~ WebSim-pruning@0.025
Citation 0.31 3.29 0.31 319 102.29 0.14
E-mail 10.40 16.27 10.10 16.82 56.88 0.56
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7.5. Scalability

Next we test the performance of WebSim with increasing en-
tities through comparison with SimRank and Opt-SimRank. Fig. 5
shows the running time for computing similarity matrix on vary-
ing entity number. On both datasets, the time cost of WebSim is
lower than the comparison methods, but the improvement is not
so evident. The time cost of Opt-WebSim is significantly lower than
other methods, since the accumulation operations on zero similarity
scores are skipped when computing similarities. On varying entity
number, the incremental time of Opt-WebSim is always lower than
other methods, which shows a good performance in pre-computation
stage.

Fig. 6 shows the similarity matrix size on varying entity number.
The similarity matrices of both WebSim and Opt-WebSim are signif-
icantly smaller than the comparison methods. This result demon-
strates that our approach can efficiently reduce the space cost for
similarity computation when the network grows large. The curves of
WebSim and Opt-WebSim are overlapped since their space complex-
ities are same, other overlapped curves can also be explained simi-
larly.

Fig. 7 shows the execution time of on-line query processing on
varying entity number. The time cost of WebSim-baseline is higher
than other methods, since the similarity between query and candi-
date is computed on-line, which increases time cost of query process-
ing. WebSim-pruning performs better than other methods since the
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searching space can be significantly reduced by removing the items
of lower partial sums from the partial sums index. The curves of Sim-
Rank@2 and Opt-SimRank@2 are almost overlapped, this is because
the sizes of their similarity matrices are same, which gives same
searching spaces, and similar cases can be found in other curves. With
entity increasing, the incremental time of WebSim-pruning is always
minor, which demonstrates that WebSim-pruning can support fast
query processing in large networks.

8. Conclusion

This paper introduced a link-based similarity search method Web-
Sim for efficiently searching similar entities from web networks.
Compared to iterative SimRank computation, WebSim computes only
the 1-hop similarities in the off-line stage, and the actual similarities
at the second iteration are computed on-line based on 1-hop simi-
larities. The pre-computation cost is reduced by an optimized algo-
rithm which skips the unnecessary accumulation operations on zero
similarity scores, and the on-line query processing is speeded up by
an efficient pruning algorithm which searches similar entities from a
partial sums index derived from 1-hop similarities. Empirical studies
on real datasets through comparison with SimRank and its optimized
algorithms show that WebSim has on average a 99.83% reduction in
the time cost and a 92.12% reduction in the space cost of similarity
computation, and achieves on average 99.98% NDCG.

The contributions presented in this paper are different from the
existing methods. Compared to the multi-hop neighbor-based simi-
larity measures (Kumar, Ye, & Doermann, 2014; Nikolic, 2012; Zhang
et al., 2015), WebSim computes only the 1-hop similarities in the off-
line stage, in which the large matrix for storing multi-hop similar-
ities is not required. In this respect, there are also some measures
which compute similarity based on 1-hop neighbors, such as cosine
distance-based similarity (Liao & Xu, 2015; Ye, 2015), ontology-based
similarity (Sanchez & Batet, 2013; Sohn, Yim, Lee, & Lee, 2014) and
categorical-based similarity (dos Santos & Zarate, 2015). Although
these methods do not involve the expensive operations for iterative
similarity computation, however, the indirect connections would be
neglected when computing similarities. Unlike these methods, Web-
Sim utilizes 2-hop neighbors for similarity computation during on-
line query processing, which considers not only direct connections
but also indirect connections.

This work has both theoretical and practical implications. Theoret-
ically, WebSim particularly contributes to the computation of existing
similarity measures. For example, it can speed up the computation of
the similarity measures (Xi et al., 2005; Zhang et al., 2015; Zhao et al.,
2009) that are defined with respect to a “random surfer” model by re-
stricting the iteration number of similarity computation. WebSim can
also enhance the effectiveness of the 1-hop neighbor-based similarity
measures by further integrating 2-hop neighbors into their similarity
computations. Besides, WebSim can be regarded as a general method,
since it can be easily combined with existing optimization techniques
(Du et al., 2015; Yu et al., 2014; Yu et al., 2015). As far as practical im-
plications are concerned, WebSim can be applied to many web appli-
cations, such recommender systems (Champiri, Shahamiri, & Salim,
2015), link prediction (He, Liu, Hu, & Wang, 2015) and data quality as-
sessment (Mendi, 2015). WebSim provides an effective and efficient
solution to evaluate underlying similarity, which helps improve the
system performance and map human intuition under different real
settings of web data.

The advantages of this paper can be summarized as follows.
First, WebSim requires less time and space cost than the multi-hop
neighbor-based similarity measures, since the similarity matrix of
1-hop is significantly smaller than that of multi-hop, in which the
expensive operations for iterative SimRank computation are saved.
Second, WebSim is more effective than the 1-hop neighbor-based
similarity measures, since the indirect connections are integrated

into similarity computation, which helps find more comprehensive
results. Third, the pruning algorithm for on-line query processing is
more efficient than the methods (Milchevski, Anand, & Michel, 2015;
Zhang et al., 2015) which compute similarities in the on-line stage,
since the searching space can be reduced by skipping the index items
that are lower than a given threshold.

There are still some limitations in our research. First, unlike the
similarity measures (Sun et al., 2011; Zhang et al., 2015) that are
on heterogeneous networks, WebSim is proposed for homogeneous
networks, in which the importance of different type relationships is
not addressed. Second, different from the incremental SimRank al-
gorithms (Du et al., 2015; Li et al., 2010a; Yu et al., 2014), WebSim
focuses on only the networks that are static. When network changes,
WebSim needs to compute the whole similarity matrix even only a
small portion of them is required, which wastes a lot of time and
space. Finally, compared to the semantic similarity measures (Duong,
Nguyen, Truong, & Nguyen, 2015; He & Tan, 2015), WebSim cannot
support similarity search in semantic networks, since the semantics
of relationships are not considered for similarity computation.

In future work, we will focus on the following aspects to over-
come the above limitations. First, extending our approach for hetero-
geneous network can be regarded as a promising direction of future
work. To this end, we plan to develop a general framework for uni-
fying the different heterogeneous relationships. Second, we intend to
develop a new semantic similarity measure for handling the semantic
networks by integrating semantic similarity into WebSim. Finally, we
would like to extend WebSim for similarity computation in dynamic
networks. For this purpose, we will develop an increment algorithm
to update the affected areas of the similarity matrix without comput-
ing the whole similarities.
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