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Abstract—The theory of belief functions is one of the most
important tools in information fusion and uncertainty reasoning.
Dempster’s rule of combination and its related modified versions
are used to combine independent pieces of evidence. However,
until now there is still no solid evaluation criteria and methods
for these combination rules. In this paper, we look on the evidence
combination as a procedure of estimation and then we propose
a set of criteria to evaluate the sensitivity and divergence of
different combination rules by using for reference the mean
square error (MSE), the bias and the variance. Numerical
examples and simulations are used to illustrate our proposed
evaluation criteria. Related analyses are also provided.
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I. INTRODUCTION

The theory of belief functions, also called Dempster-Shafer
evidence Theory(DST) [1], is one of the most important
theories and methods in information fusion and uncertainty
reasoning. It can distinguish ‘unknown’ and ‘imprecision’ and
propose a way to fuse or combine different pieces of evidence
by using the commutative and associative Dempster’s rule of
combination.

Dempster’s rule of combination can bring counter-intuitive
combination results in some cases [2], [3], so there have
emerged several improved and modified alternative evidence
combination rules, where counter-intuitive behaviors are im-
puted to the combination rule itself, especially the way to
deal with the conflicting mass assignments. The representative
works include Yager’s rule [4], Florea’s robust combination
rule (RCR) [5], disjunctive rule [6], Dubois and Prade’s rule
[7], proportional conflict redistribution rule (PCR) [8], and
mean rule [9], etc.

As aforementioned, several combination rules are available
including Dempster’s rule and its alternatives. Then, how
to evaluate them? This is crucial for the practical use of
the combination rules. The qualitative criterion is that the
combination results should be intuitive and rational [10]. Up to
now, there is still no solid performance evaluation approaches
for combination rules, especially for establishing quantitative
criteria. In this paper, we propose to interprept the evidence
combination as a procedure of estimation [11]; therefore, a
combination rule is regarded as an estimator. So, we define
some statistical criteria on sensitivity and divergence for the

different combination rules by using for reference the idea of
Mean Square Error (MSE) and its decomposition in estimation.
By adding small errors to the original pieces of evidence
(i.e., the “input” of the “estimator”), we check the mean
square error, the variance, and the bias of the combination
result (“output” of the estimator) caused by adding some
noise to describe the sensitivity and divergence of the given
combination rule. Distance of evidence [12] is used in our
work to define the variance, the bias and other related criteria.
Simulation results are provided to illustrate our proposed
evaluation approaches. Dempster’s rule and major available
alternative rules are evaluated and analyzed using the new
evaluation approaches.

II. BASICS OF DST

Dempster-Shafer evidence theory (DST) [1] has been
developed by Shafer in 1976 based on previous works of
Dempster. In evidence theory, the elements in frame of discern-
ment (FOD) Θ are mutually exclusive and exhaustive. Define
m : 2Θ → [0, 1] as a basic belief assignment (BBA, also called
mass function) satisfying:

∑

A∈2Θ

m(A) = 1, m(∅) = 0 (1)

If m(A) > 0, A is called a focal element. In DST, two reliable
independent bodies of evidence (BOEs) m1(⋅) and m2(⋅) are
combined using Dempster’s rule of combination as follows.
∀A ∈ 2Θ :

m(A) =

{

0, A = ∅∑
Ai∩Bj=A m1(Ai)m2(Bj)

1−K
, A ∕= ∅

(2)

where

K =
∑

Ai∩Bj=∅
m1(Ai)m2(Bj) (3)

represents the total conflicting or contradictory mass assign-
ments. Obviously, from Eq. (2), it can be verified that Demp-
ster’s rule is both commutative and associative. For Dempster’s
rule of combination, the conflicting mass assignments are
discarded through a classical normalization step.
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As firstly pointed out by Zadeh [2], Dempster’s rule
has been criticized for its counter-intuitive behaviors1. DST’s
validity has also been argued [3]. There have emerged several
alternatives of evidence combination rules aiming to suppress
the counter-intuitive behaviors of classical Dempster’s rule.
See [8] for details.

To measure the dissimilarity between different BBAs, the
distance of evidence can be used. Jousselme’s distance [13] is
one of the most commonly used distance of evidence, which
is defined as

dJ(m1,m2) =

√

1

2
⋅ (m1 −m2)

T
Jac (m1 −m2) (4)

where the element Jij ≜ Jac(Ai, Bj) of Jaccard’s weighting
matrix Jac is defined as

Jac(Ai, Bj) =
∣Ai ∩Bj ∣

∣Ai ∪Bj ∣
(5)

There are also other types of distance of evidence [12], [14].
We choose to use Jousselme’s distance of evidence in this
paper, because it has been proved to be a strict distance metric
[15].

III. SOME MAJOR ALTERNATIVE COMBINATION RULES

In this section, some major combination rules in evidence
theory other than Dempster’s rule are briefly introduced. For
all A ∈ 2Θ

1) Yager’s rule [4]:

⎧





⎨





⎩

m(∅) = 0
mY ager(A) =

∑

Bi∩Cj=A ∕=∅

m1(Bi)m2(Cj)

m(Θ) = m1(Θ)m2(Θ) +
∑

B∩C=∅

m1(Bi)m2(Cj)
(6)

In Yager’s rule, the conflict mass assignments are assigned to
the total set of the FOD Θ.

2) Disjunctive rule [6]:

{

m(∅) = 0
mDis(A) =

∑

Bi∪Cj=A

m1(Bi)m2(Cj) (7)

This rule reflects the disjunctive consensus.

3) Dubois & Prade’s rule (D&P rule) [7]:

⎧





⎨





⎩

m(∅) = 0
mDP (A) =

∑

Bi∩Cj=A ∕=∅

m1(Bi)m2(Cj)

+
∑

Bi∩Cj=∅,Bi∪Cj=A

m1(Bi)m2(Cj)
(8)

This rule admits that the two sources are reliable when they
are not in conflict, but only one of them is right when a conflict
occurs.

1According to the viewpoint of proponents of Dempster’s rule, the counter-
intuitive behavior is imputed to the sensors, the data or the BOEs obtained
from different sources, but not to Dempster’s rule itself.

4) Robust Combination Rule (RCR, or Florea’s rule) [5]:

mRCR(A) = �(K)mDis(A) + �(K)mConj(A) (9)

where mDis is the BBA obtained using the disjunctive rule,
mConj is the BBA obtained using the conjunctive rule, and
�(K), �(K) are the weights, which should satisfy

�(K) + (1 −K)�(K) = 1 (10)

where K is the conflict coefficient defined in Eq. (3). Robust
combination rule can be considered as a weighted summation
of the BBAs obtained using the disjunctive rule and the
conjunctive rule, respectively.

5) PCR5 [8]: Proportional Conflict Redistribution rule
5 (PCR5) redistributes the partial conflicting mass to the
elements involved. in the partial conflict, considering the
canonical form of the partial conflict. PCR5 is the most
mathematically exact redistribution of conflicting mass to non-
empty sets following the logic of the conjunctive rule.

mPCR5(∅) = 0

and ∀X ∈ 2Θ ∖ {∅}

mPCR5(A) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) +m2(X2)
+

m2(X)2m1(X2)

m2(X) +m1(X2)
] (11)

In fact there exists another rule PCR6 that coincides with
PCR5 when combining two sources, but differs from PCR5
when combining more than two sources altogether and PCR6 is
considered more efficient than PCR5 because it is compatible
with classical frequentist probability estimate [16].

6) Mean rule [9]:

mmean(A) =
1

n

∑n

i=1
mi(A) (12)

By using this rule, we can find the average of the BBAs to be
combined.

For the purpose of the practical use of different com-
bination rules, the evaluation criteria are required. In the
next section, the available evaluation criteria or properties of
evidence combination rules are beriefly introduced.

IV. PROPERTIES OF COMBINATION RULES AS

QUALITATIVE CRITERIA

1) Commutativity [17]: The combination of two BBAs m1

and m2 using some rule R does not depend on the order of
the two BBA, i.e.,

R(m1,m2) = R(m2,m1) (13)

All the combination rules aforementioned in Section III are
commutative.
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2) Associativity [17]: The combination result of multiple
BBAs does not depend on the order of the BBAs to be
combined. For example, when there are 3 BBAs,

R(R(m1,m2),m3) = R(m1, R(m2,m3)) (14)

Dempster’s rule and disjunctive rule are associative. The other
rules introduced in Section III are not associative. The property
of associativity is important to facilitate the implementation of
the distributed information fusion system. But it should be
noted that it is not necessarily efficient in term of quality of
fusion result. Non-associative rules are able to provide better
performances in general than associative rules [16].

3) Neutral impact of the vacuous belief [17]: The combi-
nation rule preserves the neutral impact of the vacuous BBA,
i.e., when m2 is m(Θ) = 1,

R(m1,m2) = m1 (15)

All the rules aforementioned in Section III but the mean rule,
satisfy this property.

These criteria are qualitative and they correspond to good
(interesting) properties that a rule could satisfy. It should be
noted that these “expected good” properties do not warrant
that a real efficient fusion rule must absolutely satisfy them.
Therefore, these properties are not enough to the evaluations of
combination rules. In this paper, we propose some quantitative
evaluation criteria for combination rules.

V. STATISTICAL SENSITIVITY AND DIVERGENCE OF

COMBINATION RULES

Here, we develop a group of criteria for combination rules
in terms of sensitivity and divergence. The idea of Mean
Square Error (MSE) and its decomposition are used as a basic
framework for such a development.

A. Mean Square Error and its decomposition

For an estimate x̂ of the scalar estimand x, the MSE is
defined as

MSE(x̂) = E[(x̂− x)2] (16)

MSE can be decomposed as

MSE(x̂) = E[(x̂ − E(x̂))2] + E[(E(x̂)− x)2]

= Var(x̂) + (Bias(x̂, x))
2 (17)

The MSE is equal to the sum of the variance and the squared
bias of the estimator or of the estimations. The variance can
represent the divergence of the estimation results. The bias can
represent the sensitivity of the estimator.

B. Criteria for statistical sensitivity and divergence

If we consider the procedure of evidence combination with
a given rule as an estimator (as illustrated in Fig. 1), then we
can consider the combination results as the estimations.

So, we can use for reference the MSE and its decompo-
sitions to measure the error, the variance, and the bias of the
combination results based on the given combination rule. Here
we attempt to design some criteria related to the sensitivity and
divergence of combination rules. We use the change of the

combination results after adding small noise to the original
BBA to reflect the sensitivity and divergence of a combination
rule. If under a given small noise, a combination rule bring
out smaller variance and smaller bias, then such a rule is less
divergent and less sensitive, based on which, the sensitivity
and divergence of combination rules can be evaluated. The
definitions of MSE, variance and bias for combination rules,
and the evaluation procedure are as follows.

Fig. 1. Evidence combination and Estimation.

Step 1: Randomly generate a BBA m. Add random noise to
m for N times, respectively. In each time, the noise is �i (small
values), where i = 1, ..., N . The noise sequence is denoted
by � = [�1, �2, ..., �N ]. Here each �i is a small real number
(negative or positive) close to zero. Then, we can obtain a
sequence of noised BBAs as

m
′ = [m1,m2, ...,mN ] (18)

It should be noted that all the noised BBAs are normalized.

Step 2: Generate original combination results sequence
with a combination rule R

mc = [m1
c ,m

2
c , ...,m

N
c ]

= [R(m,m), R(m,m), ..., R(m,m)]
(19)

The length of mc is N .

Step 3: Generate combination results sequence by combin-
ing BBAs with noise and the original BBAs using the rule of
R

mcn = [m1
cn,m

2
cn, ...,m

N
cn]

= [R(m1,m), R(m2,m), ..., R(mN ,m)]
(20)

Step 4: Calculate the MSE of mcn as

MSEBBA(mcn) =
1
N

N
∑

i=1

[

dJ(m
i
c,m

i
cn)

]2

= 1
N

∑N

i=1 [dJ (R(m,m), R(m,mi))]
2

(21)

where dJ is Jousselme’s distance defined in Eq. (3). MSEBBA

represents the error between the original combination results
and the results obtained using BBAs with noise.

We can also calculate the relative MSE by removing the
effect of the noise amplitude as follows

MSE′
BBA(mcn) =

MSEBBA(mcn)

∥�∥2
(22)
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Step 5: Calculate the variance of mcn as

VarBBA(mcn) =
1
N

N
∑

i=1

[

dJ(m
i
cn, m̄cn)

]2

= 1
N

N
∑

i=1

[

dJ (R(m,mi),
1
N

N
∑

j=1

R(m,mj))

]2 (23)

where m̄cn = 1
N

∑N

j=1 m
j
cn = 1

N

∑N

j=1 R(m,mj). VarBBA

represents the fluctuations of the combination results obtained
using BBAs with noise.

Then, calculate the relative variance by removing the effect
of the noise amplitude as follows

Var′BBA(mcn) =
VarBBA(mcn)

V ar(�)
(24)

Relative variance in fact represents the degree of am-
plification or reduction of the variances between and after
combination.

Step 6: Calculate the bias of mcn as

BiasBBA(mcn) =

√

1
N

N
∑

i=1

[dJ(mi
c, m̄cn)]

2

=

√

√

√

⎷ 1
N

N
∑

i=1

[

dJ(R(m,m), 1
N

N
∑

j=1

R(m,mj))

]2

= dJ(R(m,m), 1
N

N
∑

j=1

R(m,mj))

(25)

BiasBBA represents the difference between the expectation of
the combination results obtained using BBAs with noise and
the original combination results.

Then, calculate the relative bias by removing the effect of
the noise amplitude as follows

Bias′BBA(mcn) =
BiasBBA(mcn)

∥�∥
(26)

Regenerate randomly a new original BBA m for M times.
In each time, re-do Step 1 to Step 6. Based on the M groups
of results, calculate the averaged MSE′

BBA, the averaged
Var′BBA, and the averaged Bias′BBA. These three indices are
called the statistical MSE, the statistical variance, and the
statistical bias of the combination rule R. We jointly use
these indices (quantitative criteria) to describe the statistical
sensitivity and divergence of a given combination rule R.

Relative MSE is a comprehensive index. Larger relative
MSE intuitively means larger sensitivity. However, relative
MSE is insufficient to evaluate a combination rule. So we
should further use its decomposition (including the relative
variance and the relative bias) for a deeper analysis.

High relative bias values represent high sensitivity. it rep-
resents high degree of departure from the origin. It can reflect
a given combination rule’s capability of sensitive response to
the changes in input evidences. It represents the “agility” of a
combination rule. Moderate relative bias values are preferred,
which means the balance or trade-off between the robustness
and the sensitivity.

Relative variance in fact represents the degree of amplifica-
tion or reduction of the variances between and after combina-
tion. In the evaluation procedure, for all the combination rule,
the variance of the noise are the same (using the same noise
sequence for different rules). So, high relative variance values
also represent high divergence among all the combination
results using a given combination rule when adding noise.
Small relative variance values are preferred, which represent
the high cohesion of a given combination rule.

In this work, we propose a statistical evaluation approach
for evidence combination rules based on Monte-Carlo simula-
tion. To implement the statistical evaluation of a combination
rule according to the method introduced here, two problems
should be resolved at first. One is the way of adding noise and
the other is the way of random generation of BBA.

C. Method I for adding noise

Method I for adding noise is designed to evaluate the effect
of the slight value change of the mass of the existing focal
element. Suppose that m is a BBA defined on FOD Θ. First,
we find the primary focal element (the focal element having the
highest mass assignment) 2, i.e., the focal element Ai satisfying

i = argmax
j,Aj⊆Θ

m(Aj) (27)

Second, add the noise � to the mass assignment of the
primary focal element.

m′(Ai) = m(Ai) ⋅ (1 + �) (28)

Then, for the mass assignments of other focal elements in
original BBA,

m′(Aj) = m(Aj)−
m(Aj)

1−m(Ai)
⋅ � ⋅m(Ai), ∀j ∕= i (29)

m′ is the generated BBA with noise. It is easy to verify that

∑

B⊆Θ
m′(B) = 1 (30)

It can be seen that the change of mass assignment for the
primary focal element is the most significant when compared
with those of other focal elements. The change of the mass
assignment for primary focal element is redistributed to all the
other focal elements according to the ratio among their corre-
sponding mass assignments. BBAs are generated according to
Algorithm 1 below [12].

For method I for adding noise, some restrictions should be
adopted for the values of original BBA and the noise added
to make sure that the noised BBA m′ satisfies the defintion of
BBA. The restriction are as shown in Eq. (31).

0 ≤ (1 + �) ⋅max
A

(m(A)) ≤ 1, ∀A ∈ 2Θ (31)

2For example, when Θ = {�1, �2} and m({�1}) = 0.8, m({�2}) =
0.1, m(Θ) = 0.1, the primary focal element is {�1}. When Θ = {�1, �2}
and m({�1}) = 0.45, m({�2}) = 0.45,m(Θ) = 0.1, the primary focal
elements are {�1} and {�2}.
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Algorithm 1. Random generation of BBA

Input: Θ: Frame of discernment;
Nmax: Maximum number of focal elements
Output: Output: m: BBA
Generate P(Θ), which is the power set of Θ;
Generate a random permutation of P(Θ) → ℛ(Θ);
Generate an integer between 1 and Nmax → l;
FOReach First k elements of ℛ(Θ) do
Generate a value within [0, 1] → mi, i = 1, ..., l;
END
Normalize the vector m = [m1, ...,ml] → m

′;
m(Ai) = m′

i;

where m is the original BBA.

D. Method II for adding noise

Method II for adding noise is designed to evaluate the effect
of creating new focal elements. Suppose that m is a BBA with
a special structure defined on FOD Θ. The focal elements are
some singletons {�i} and the total set Θ. First, find out a pair
of singletons {�i} and {�j}.

Second, create a new focal element {�i, �j} with the mass
value of �, i.e., m′({�i, �j}) = �.

Then, the mass values for focal elements {�i} and {�j}
are regenerated as

{

m′({�i}) = m({�i})− � ⋅ m({�i})
m({�i})+m({�j})

m′({�j}) = m({�j})− � ⋅ m({�j})
m({�i})+m({�j})

(32)

Obviously, one has
∑

B⊆Θ m′(B) = 1.

The BBAs with special structure (with only some
singletons and the total set focal elements) are generated
according to Algorithm 2 below:

Algorithm 2. Random generation of BBA

Input: Θ: Frame of discernment;
n: Cardinality of Θ;
Nmax: Maximum number of focal elements
Output: m: BBA
Generate P(Θ), which is the power set of Θ;
Generate a random permutation of P(Θ) → ℛ(Θ);
FOR i = 1 : Nmax − 1
Generate an integers j between 1 and n;
Generate a focal element Fi : {�j};
END
Generate a focal element FNmax : Θ.
FOR i = 1 : Nmax

Generate a value within [0, 1] → mi;
END
Normalize the vector m = [m1, ...,mNmax ] → m′;
m(Fi) = m′

i;

For method II for adding noise, some restrictions should
be adopted for the values of original BBA and the noise added
to make sure that the noised BBA m′ satisfies the defintion of
BBA. According to Eq. (32), the restriction can be obtained as

shown in Eq. (33). For all the available singleton focal element
{�i} in original BBA,

0 ≤ m({�i}) ⋅ (1−
�

∑

j,m({�j})>0 m({�j})
) ≤ 1, ∀A ∈ 2Θ

(33)
where m is the original BBA.

E. A simple illustrative example

Here an illustrative example of single cycle calculation of
the evaluation indices is provided by using Method I for adding
noise. By referring to this illustrative example, evaluations by
using Method II are easy to implement.

A BBA m defined on the FOD Θ = {�1, �2, �3} is
m({�1}) = 0.6,m({�2}) = 0.3,m({�1, �2, �3}) = 0.1.

Suppose that the noise sequence is
� = [−0.1,−0.05,−0.02, 0.02, 0.05, 0.1].

It can be seen that the restrictions in Eq. (31) are not
violated.

According to the Step 1, we generate the sequence six
noised BBA m

′ = [m1,m2,m3,m4,m5,m6] as follows:

m1({�1}) = 0.5,m1({�2}) = 0.375, m1({�1, �2, �3}) = 0.125;
m2({�1}) = 0.55, m2({�2}) = 0.3375, m2({�1, �2, �3}) = 0.1125;
m3({�1}) = 0.58, m3({�2}) = 0.315, m3({�1, �2, �3}) = 0.105;
m4({�1}) = 0.62, m4({�2}) = 0.285, m4({�1, �2, �3}) = 0.095;
m5({�1}) = 0.65, m5({�2}) = 0.2625, m5({�1, �2, �3}) = 0.0875;
m6({�1}) = 0.7,m6({�2}) = 0.225, m6({�1, �2, �3}) = 0.075.

Here we use Dempster’s rule of combination. Then, ac-
cording to the Step 2, the original combination sequence
mc = [m1

c ,m
2
c , ...,m

6
c ] is as

∀i = 1, ..., 6.
mi

c({�1}) = 0.75, mi
c({�2}) = 0.2344, mi

c({�1, �2 �3}) = 0.0156.

Then according to the Step 3, the sequence of combination
results by combining BBAs with noise and the original BBAs
mcn = [m1

cn,m
2
cn, ...,m

6
cn] is as

m1
cn({�1}) = 0.6627, m1

cn({�2}) = 0.3162,
m1

cn({�1, �2, �3}) = 0.0211;
m2

cn({�1}) = 0.7076, m2
cn({�2}) = 0.2741,

m2
cn({�1, �2, �3}) = 0.0183;

m3
cn({�1}) = 0.7334, m3

cn({�2}) = 0.2500,
m3

cn({�1, �2, �3}) = 0.0167;
m4

cn({�1}) = 0.7662, m4
cn({�2}) = 0.2192,

m4
cn({�1, �2, �3}) = 0.0146;

m5
cn({�1}) = 0.7895, m5

cn({�2}) = 0.1973,
m5

cn({�1, �2, �3}) = 0.0132;
m6

cn({�1}) = 0.8257, m6
cn({�2}) = 0.1634,

m6
cn({�1, �2, �3}) = 0.0109.

For the noise sequence,

∥�∥2 = 0.0258

V ar(�) = 0.0043

According to the Step 4, the value of MSE is

MSEBBA(mcn) = 0.00270

MSE′
BBA(mcn) = 0.00270/0.0258 = 0.104752
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According to the Step 5, the value of variance is

VarBBA(mcn) = 0.002697

Var′BBA(mcn) = 0.002697/0.0043 = 0.6272

In the final, according to the Step 5, the value of bias is

BiasBBA(mcn) = 0.002406

Bias′BBA(mcn) = 0.002406/
√
0.0258 = 0.014978

The above is the illustration of one-cycle procedure. One
can use other combination rules to do these steps. Randomly
generate BBAs and repeat all the steps, then we can obtain the
final statistical evaluation results.

VI. SIMULATIONS

A. Simulation I: using Method I for adding noise

In our simulations, the cardinality of the FOD is 3. In
random generation of BBAs, the number of focal elements
has been set to 5. The length of the noise sequence is 50 (the
noise value starts from -0.1, with an increasing step of 0.004,
up to 0.1. Of course, the zero value for noise is not considered
because it corresponds to noiseless case.). In each simulation
cycle, seven combination rules including Dempster’s rules
and other alternatives aforementioned in Section III are used,
respectively. We have repeated the Monte Carlo simulation
with 100 runs. In random generation of original BBAs, the
restrictions in Eq. (31) are not violated. The statistical results
are listed in Tables I-III. The ranks of the relative MSE, relative
variance and relative bias are obtained based on the descending
order.

It should be noted that when using RCR in our simulation,
the weights are generate as follows.

{

�(K) = K
1−K+K2

�(K) = 1−K
1−K+K2

(34)

TABLE I. COMPARISONS IN TERMS OF MSE

Combination Rules MSE′
BBA Rank

Dempster’s rule 0.0010758 1

Yager’s rule 0.0005743 5

Disjunctive rule 0.0004298 7

D&P rule 0.0006247 4

RCR 0.0007152 3

PCR5 0.0010505 2

Mean rule 0.0005711 6

TABLE II. COMPARISONS IN TERMS OF VARIANCE

Combination Rules Var′BBA Rank

Dempster’s rule 1.7260 1

Yager’s rule 0.9568 6

Disjunctive rule 0.7469 7

D&P rule 1.0226 4

RCR 1.2788 3

PCR5 1.6801 2

Mean rule 1 5

As we can see in Tables I - III, Dempster’s rule are the
most sensitive to the mass change according to the criterion of
the relative bias, and it also has highest degree of divergence
according to the criterion of relative variance. Mean rule is the
most insensitive to the mass change according to the criteria

TABLE III. COMPARISONS IN TERMS OF BIAS

Combination Rules Bias′BBA Rank

Dempster’s rule 0.81132*10−7 1

Yager’s rule 0.59228*10−7 2

Disjunctive rule 0.41949*10−7 4

D&P rule 0.49075*10−7 3

RCR 0.39592*10−7 5

PCR5 0.38066*10−7 6

Mean rule 0 7

of relative bias, and it is always a rule with smaller divergence
according to the criterion of the relative variance. Yager’s rule
is always more sensitive to the mass change and is always not
so divergent.PCR5 rule is not so sensitive to the mass change
according to the criterion of Bias (rank 6), and it is not so
divergent according to the criterion of the relative variance.
The Robust combination rule (RCR), Dubois & Prade’s rule
(D&P rule) are always moderate to the mass change in terms
of sensitivity and in terms of divergence. So, PCR5 and RCR
are more moderate rules; thus, they are relatively good choices
for practical use.

B. Simulation II: using Method II for adding noise

In our simulations, the cardinality of the FOD is 3. In
generation of BBAs, the total set Θ is used as a focal element
and the number of singleton focal elements has been set to
2. The length of the noise sequence is 50 (the noise value
starts at 0.002 with an increasing step of 0.002, up to 0.1.)
In each simulation cycle, seven combination rules including
Dempster’s rules and other alternatives aforementioned in
Section III are used, respectively. We have repeated the Monte
Carlo simulation with 100 runs. In random generation of
original BBAs, the restrictions in Eq. (33) are not violated. The
statistical results are listed in Tables IV-VI. The ranks of the
relative MSE, relative variance and relative bias are obtained
based on the descending order.

The derivation of weights of RCR has been done in the
same manner as for the Simulation I.

TABLE IV. COMPARISONS IN TERMS OF MSE

Combination Rules MSE′
BBA Rank

Dempster’s rule 0.0050 3

Yager’s rule 0.0038 5

Disjunctive rule 0.0033 6

D&P rule 0.0014 7

RCR 0.0078 1

PCR5 0.0043 4

Mean rule 0.0056 2

TABLE V. COMPARISONS IN TERMS OF VARIANCE

Combination Rules Var′BBA Rank

Dempster’s rule 0.9218 3

Yager’s rule 0.7019 5

Disjunctive rule 0.5434 6

D&P rule 0.2714 7

RCR 1.3528 1

PCR5 0.8014 4

Mean rule 1 2

As we can see in Tables IV - VI, RCR is the most
sensitive to the change of focal elements according to the
criterion of the relative bias, and it also has highest degree

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

228



TABLE VI. COMPARISONS IN TERMS OF BIAS

Combination Rules Bias′BBA Rank

Dempster’s rule 0.0016 3

Yager’s rule 0.0012 5

Disjunctive rule 0.0011 6

D&P rule 0.0004 7

RCR 0.0025 1

PCR5 0.0013 4

Mean rule 0.0018 2

of divergence according to the criterion of relative variance.
Dubois & Prade’s rule (D&P rule) is the most insensitive
rule according to the criteria of relative bias, and it is always
a rule with smaller divergence according to the criterion of
the relative variance. Yager’s rule is always insensitive and is
always not so divergent. Mean rule is sensitive to the change of
focal element according to the criterion of Bias (rank 2), and it
is divergent according to the criterion of the relative variance.
Dempster’s rule is not so sensitive to the change of focal
element. The PCR5 and Yager’s rules are always moderate
to the change of focal elements in terms of sensitivity and in
terms of divergence.

According to simulations results, we see that the different
methods of adding noises impact differently the results of the
comparative evaluations. However, we have shown that no
matter the method adopted (by keeping the original core of the
BBA, or modifying it slightly), PCR5 provides quite robust
results for combining two BBA’s and thus offers practical
interests from this standpoint.

VII. CONCLUSION

In this paper we have proposed a group of statistical criteria
for evaluating the sensitivity of different combination rules
with respect to the noise perturbations. The design is based
on the classical measures of performance like MSE, variance,
and bias encountered in the estimation theory. We don’t rank
the rules according to their a priori “good expected” properties.
Moderate relative bias values are preferred, which means the
balance or trade-off between the robustness and the sensitivity.
Small relative variance values are preferred, which represent
the high cohesion of a given combination rule. Seven widely
used evidence combination rules were evaluated using the new
proposed evaluation criteria. PCR5 is a moderate rule which
is good for the practical use for combining two BBAs. For
combining more than two BBAs, we expect that PCR6 will
be a good choice, but we need to make more investigations in
future to evaluate precisely its performances.

In this work, we have added some noises to BBAs mainly
by modifying the mass assignments of the primary focal
element and by creating new focal elements. In our future
work, we will try to use other methods to add noise to BBAs,
e.g., eliminating some of original focal elements. In our Monte-
Carlo simulations, there is no pre-settings of mass assignments
for the BBAs. In this paper, in each cycle we only generate one
BBA, based on which, we generate a sequence of BBAs by
adding small noise. The BBAs to be combined are the original
BBAs and the BBAs with small noise. In our future work,
we will try to generate two BBA sequences and add noise
to them, respectively, where we can use some special BBAs
in the evaluation procedure, e.g., BBAs to be combined are
high conflicting. Then we can do more specific performance

evaluations on the combination rules. In this paper, we did
only focus on the property of sensitivity and divergence. The
evaluation criteria of other aspects of evidence combination are
also required for evaluating and designing new combination
rules, which will be investigated in future research works and
forthcoming publications.
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