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Abstract—An occupancy grid map is a common world repre-
sentation for mobile robotics navigation. Usually, the information
stored in every cell is the probability on the occupancy state.
In this paper, an evidential approach based on Dempster-Shafer
theory is proposed to process the information in accordance with
the least commitment principle. The map grid is updated by a
fusion mechanism by using an inverse model of the sensor. We
show that the evidential framework offers powerful tools to make
a good management of uncertainties especially when the sensory
data are poor in terms of information. After having presented
the key concepts of evidential grids with respect to probabilistic
ones, entropy and specificity metrics are introduced to qualify
the degree of information stored in the cells. Some comparisons
with the probabilistic approach are given on fusion and decision
results using simulation. We also report experimental results to
illustrate the performance of a real-time implementation of the
method with a 4-layer lidar mounted in the bumper of a car
driving in real urban traffic conditions.

I. INTRODUCTION

Occupancy Grids (OG) are often used as the backbone of
mobile perception systems for intelligent vehicles navigation
like for data fusion [1], localization [2] and obstacle avoid-
ance [3]. As OGs manage a representation of the environment
that does not make any assumption on the geometrical shape
of the detected elements, they provide a general framework to
deal with complex perception conditions. Many works have
contributed to improve this framework at different levels :
geometric (from 2D to 2.5D [4] and 3D [5]), uncertainty
management [6], dynamic conditions [7] and clustering and
tracking [8].

In this paper, we focus on the use of a multi-echo and
multi-layer lidar system in order to characterize the dynamic
surrounding environment of a vehicle driving in common
traffic conditions. The perception strategy involves map and
scan grids [9], [10]. Indeed, an instantaneous scan grid built
from the lidar doesn’t provide enough reliable information
because of noise and miss-detections. The map grid acts as a
filter that accumulate information and allows to detect moving
objects.

In dynamic environments, it is crucial to have a good
modeling of the information flow in the data fusion process
in order to avoid adding wrong implicit prior knowledge that
will need time to be forgotten. In this context, Evidential OG
are particularly interesting to make a good management of
the information since it is possible to explicitly make the
distinction between non explored and moving cells. In this

paper, we conduct a study with the classical probabilistic
approach to highlight the added values.

This paper is organized as follows. The concept of occu-
pancy grids with inverse sensor models is explained in section
II. Then, evidential occupancy grids are presented in section
III. Section IV compares the probabilistic framework with the
evidential one. Finally, conclusion and outline perspectives are
given in section V.

II. ROBOTIC PERCEPTION WITH OCCUPANCY GRIDS

A. Occupancy Grid in Dynamic Environments

The basic idea of an OG is to divide the surrounding
environment (the ground plane of 2D world) into a set a cells
(denoted Ci, i ∈ [0, n]) in order to estimate their occupancy
state. In a probabilistic framework, the aim is to estimate
the probabilities P

(
Oi|z1:t

)
and P

(
F i|z1:t

)
given a set of

measures z1:t from the beginning up to the current time t. Oi

(resp. F i) denotes the occupied (resp. free) state of the cell Ci.
Finally, a decision rule is applied (e.g. Maximum A Posterior
- MAP) in order to select the most likely state for each cell.

Occupancy grids can be classified into two categories de-
pending on the use of a forward or inverse sensor model.
The forward model [11] relies on Bayes inference. Since this
approach takes into account the conditional dependency of the
cells of the map, it is well adapted to a sensor that observes
a large domain of cells with only one reading measurement
(e.g. a ultrasonic sonar). However, it requires heavy processing
that can be handled by optimized approximation [12] or GPU
computing [13].

The inverse model approach is well adapted to narrow fields
of measures sensors (e.g. lidar). It is composed of two separate
steps. First, a snapshot map of the sensor reading is built
using an inverse sensor model P

(
Oi|zt

)
. This model can

take into account the conditional dependency between the
sensor reading and the occupancy of the seen cells. Then,
a fusion process (denoted �) is done with the previous map
P
(
Oi|z1:t−1

)
as an independent opinion poll fusion:

P
(
Oi|z1:t

)
= P

(
Oi|zt

)
� P

(
Oi|z1:t−1

)
(1)

In a probabilistic framework, the usual fusion operation
between states A and B is:

P (A)� P (B) =
P (A) · P (B)

P (A) · P (B) + (1− P (A)) · (1− P (B))
(2)
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Inverse approaches have very efficient implementations (e.g.
log-odd) that make them very popular in mobile robotics [14],
[15]. Maps built using inverse models are usually less accurate,
since they just take into account the dependency of the cells
observed in one reading, but it is a good approximation
with accurate and high resolution sensors observing a limited
number of cells at a time. Moreover, when the sensor is multi-
echo and multi-layer, the conditional dependency of the seen
cells can be modeled in an efficient way.

B. Fusion strategy with the inverse model

When dealing with the inverse model approach, an estimate
of the pose of the robot has to be available and map grid
GM has to be handled. This grid is defined in a world-
referenced frame (so it does not move with the robot) and
is updated when a new sensor reading is available. Because of
the likely evolution of the world in a dynamic environment,
the OG update has to be completed by a remanence strategy.
The fusion architecture follows then a prediction-correction
paradigm and can be used to fuse one or several sensors.

a) Prediction step: The prediction step computes the
predicted map grid at time t from the map grid estimated at
time t− 1. Depending on the available information, this step
can be very refined like done in [13]. As we consider here
that no specific information on the velocity of the objects (or
cells) is available, the prediction is done by discounting. The
confidence in aged data is controlled by a remanence factor
α ∈ [0; 1]. The prediction stage is therefore:

ĜMt = discount
(
ĜMt−1, α

)
b) Correction step: The correction step consists in the

combination of the previously estimated map grid with the grid
built from the current measures thanks to the inverse model
sensor. This one is called ScanGrid GSt . As this information
is referenced in the sensor frame, a 2D warping is applied
to reshape this grid into the fusion frame. To perform this
operation, the current pose qt is estimated using a GPS
sensor and the rigid homogeneous transformation matrix Ht

is computed. When GPS becomes unavailable, the CAN bus
is used to get the car odometric data. The motion matrix Ht

and the extrinsic calibration matrix C are used to compute a
remapping function f (Eq. 3).

f (x, y) = C ·Ht ·

 x
y
1

 (3)

Finally, the ScanGrid is remapped with f and fused with
the previous map grid.

ĜMt (i, j) = ĜMt (i, j)�GSt (f (i, j)) (4)

The evidential OGs that are described in the next sections
follow this paradigm.

III. EVIDENTIAL OCCUPANCY GRIDS

A. Belief functions basic concepts

The Transferable Belief Model introduced by Smets in [16]
is a formalization of Dempster-Shafer Theory [17], [18]. Let X
be a variable that takes value in a discrete frame of discernment
(FOD) Ω. Let us define a mass function m. This function
is a multi-valued mapping m : 2Ω −→ [0 1], where 2Ω is
called the powerset of Ω. m verifies

∑
A∈2Ω m(A) = 1. For

each element A of 2Ω, m (A) refers to the part of belief that
supports the hypothesis X ∈ A and nothing more. An initial
mass function mS called basic belief assignment (bba) can be
created from a piece of evidence on X provided by a source S
which can be either a sensor measurement or an information
model.

In the general case, bba verifies mS (∅) = 0 (i.e. there
no conflicting information) and the Least Commitment (LC)
Principle [19]. The basic idea of the LC principle is to
never give more support to elements of the belief domain
than justified. It permits to select the least informative belief
function in a set of equally justified belief functions. For
instance, the specialized bba used [20] respects this principle.
In the following of this paper, we suppose that every bba
respects this principle.

Fusion

Like probabilities, mass functions can be combined with
fusion operators. Let be two sources that give mass functions
m1 and m2 on the same FOD. In case of two sources with
independent errors and if both sources are fully reliable then
the fusion is performed by the Dempster rule ⊕ defined in
Eq.5:

m1 ⊕m2 (A) =


m1 ∩©2(A)

1−m1 ∩©2(∅) A 6= ∅

0 A = ∅
(5)

where ∩© is the conjunctive rule:

∀A ∈ 2Ω, m1 ∩©2 (A) =
∑

B,C∈2Ω|A=B∩C

m1 (B)·m2 (C) (6)

Belief and plausibility representation

Information can be represented by belief bel () or plausibil-
ity functions pl () instead of mass functions.

∀A ∈ 2Ω, bel (A) =
∑

B|B⊆A

m (B) (7)

∀A ∈ 2Ω, pl (A) =
∑

B|B∩A6=∅

m (B) (8)

Within the transferable belief model, the degree of belief
bel(A) given to a subset A quantifies the amount of justified
specific support to be given to A, and the degree of plausibility
pl(A) quantifies the maximum amount of potential specific
support that could be given to A.
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Discounting

A discounting effect can be applied on a mass function m
if a piece of information has its reliability lowered. In this
case, a new mass function mα is computed from m and a part
of the mass of each element of the FOD is transferred to the
unknown Ω.

mα (A) =

{
α ·m (A) if A 6= Ω

α ·m (A) + (1− α) if A = Ω

Back to probability

Finally, the pignistic transformation BetP [21] allows to
compute a probability measure from a mass function by
distributing proportionally the mass of the subsets on their
focal elements:

∀A ∈ Ω, BetP (A) =
∑
B∈2Ω

m (B) · |A ∩B|
|B|

(9)

where card (A) is the cardinal of subset A.
Hoverer, this transformation is not bijective (a part of the

information is lost). So, one can find an infinity of mass
functions with the same pignistic probability. This issue is
inherent in the nature of probabilities which are not able to
distinguish ignorance from inconsistency.

B. Evidential occupancy grids

As described in [22] and [23], evidential grids handle
occupancy information and uncertainty with Belief functions.
In this problem, the FOD is Ω = {F, O} and for each cell
Ci, one can define a mass function mi that represents its
occupancy. In this particular case, m is a vector composed of 4
masses: [m (∅) m (F ) m (O) m (Ω)] where m (Ω) represents
the part of ignorance and m (∅) represents the conflict.

Example 1. A source says that a cell is free with a confidence
level of 70%. The LC bba is :[

m (∅) m (F ) m (O) m (Ω)
0 0.7 0 0.3

]
70% supports the state F whereas the 30% remaining does
not support any specific state and so Ω = {F, O}.

This representation is the main advantage of the evidential
concept. It is demonstrated in section IV.

IV. PROBABILISTIC AND EVIDENTIAL GRIDS COMPARISON

A. Effect of representation on the fusion result

The first advantage of the evidential representation is to be
able to distinguish:
• a non-informative value; when a cell is not observed

(masked cells, out of sensor coverage cells,etc..), the mass
assignment is m (Ω) = 1

from
• an ambiguous value; when the state of the cell results

from contradictory beliefs, the mass is split on m (O)
and m (F ).

Let us illustrate this with examples. Let consider the fusion of
two pieces of information coming from two different sources 1
and 2 and let consider two cases. The mass function m1 is the
same in the two cases but the mass function m2 changes. In
the first case, source n° 2 represents an unspecific information
(non-informative) and in the second case, it represents a state
of conflict (ambiguous). The pignistic transform is used to
compute equivalent probabilities P1 and P2. One can notice
that, in both cases, information is represented by the same
probabilities. Tab I shows the results of the fusion.

Assignment Fusion
m1 m2 P1 P2 m1⊕2 BetP1⊕2 P1�2

∅ 0 0 × × 0 × ×
F 0.5 0 0.75 0.5 0.5 0.75 0.75

O 0 0 0.25 0.5 0 0.25 0.25

Ω 0.5 1 × × 0.5 × ×

(a) Case of source n° 2 is non-informative (ignorance)

Assignment Fusion
m1 m2 P1 P2 m1⊕2 BetP1⊕2 P1�2

∅ 0 0 × × 0 × ×
F 0.5 0.45 0.75 0.5 0.65 0.68 0.75

O 0 0.45 0.25 0.5 0.29 0.32 0.25

Ω 0.5 0.1 × × 0.06 × ×

(b) Case of source n° 2 is ambiguous (conflict)

Table I
FUSION OF TWO PIECES OF INFORMATION

The result of the fusion can be the same (case 1) but can
slightly differ (case 2) when there are ambiguous sources.

B. Information metrics

In probability, Shannon’s entropy is a measure of uncer-
tainty due to ignorance or to conflict. It is defined for a discrete
random variable A, such as:

HP = −
∑
A∈Ω

P (A) · ln (P (A)) (10)

In the Belief framework, Yager introduced in [24] two un-
certainty measures of mass functions that generalize Shannon’s
entropy: entropy and specificity. Entropy of a mass function
is defined as follows:

Em = −
∑
A⊆Ω

m (A) · ln (pl (A)) (11)

Yager’s entropy characterizes inconsistency in the assump-
tions supported by mass function.

For instance, let consider the FOD Ω = {F,O}. In the case
of a simple mass function (i.e. the mass is distributed on a
single focal element F or O and on Ω), entropy equals zero
Em = 0.

When there is no ignorance, Yager’s and Shannon’s en-
tropies are the same.
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The specificity of a mass function (which has no equivalent
in probability) is defined as:

Sm =
∑

A ⊆ Ω
A 6= ∅

m (A)

|A|
. (12)

With Ω = {F,O}, one can demonstrate that specificity
belongs to the interval

[
1
2 ; 1
]
.

1

2
≤ Sm ≤ 1 (13)

High specificity is used to characterize the fact that the
masses are mainly attributed to small subsets. This usually
indicates that the mass function is not doubtful even if it can
be conflictual. Thereby, a mass function that is informative
and unambiguous has got a high specificity and a low en-
tropy. Therefore, entropy and specificity are measures used to
characterize the uncertainty of mass functions. More details on
these metrics can be found in [25]. An evidential occupancy
grid being a spacial set of mass functions, these measures
represent therefore perception uncertainty.

C. Decision

Finally, let consider the capability of both approaches to
make decisions. Probabilistic approaches generally use a MAP
decision rule like P (O) > 0.5. In the evidential framework,
one can transform the mass function to probabilities with the
pignistic transform and then use a MAP estimator. Never-
theless, as the credal level (mass function space) provides
more information, this framework can potentially make better
decisions. The belief bel and plausibility pl (acting as lower
and upper bounds of probability) allow to compute more
specific decision rules.

In order to detect the occupied and free space, one can use
bel (O) > 0.5 or bel (F ) > 0.5. This ensures to chose the most
likely level without considering the part of unknown. Then, an
important part of the mass on the unknown Ω will be rejected
and a sound decision can be computed for this cell.

V. EXPERIMENTS

In the coming sections, we do a comparison between
the probabilistic and the evidential frameworks to show the
benefits of these concepts.

A. Simulation example

Let focus on a particular cell of the grid. In order to carry
out an appropriate comparison, the probabilistic fusion follows
the same scheme as the evidential one. Sensor bbas are first
converted into probabilities using the pignistic transformation.

To compare probabilistic and evidential uncertainty mea-
sures, let consider two simulations which are presented on
Fig.1 and Fig. 2. Let us suppose that the state of the cell of the
grid changes because of the dynamic of the scene (an object
appears and then moves to another cell). In each scenario, the
top plot of the figure shows the sensor detection bba. The
middle plot displays the result of the Bayesian fusion with

the resulting Shannon’s entropy H . The bottom plot shows
the evidential result with the corresponding entropy E and
specificity S. Recall that specificity doesn’t exist in probability.

The sensor confidence parameters are set to m (F ) = 0.85
m (Ω) = 0.15 when the cell is free and m (O) = 0.7
m (Ω) = 0.3 when occupied. They respect the principle of
minimal commitment. Physically, it means that when the cell
is free, 85% of the time the cell is well classified and 15% of
the time the sensor is not able to say anything. The discounting
factor α was set to 0.05. The corresponding time constant
τ can be computed using the relation α = 1 − e

∆t
τ where

∆t = 1
Freq is the sampling period. For a lidar sensor with

Freq = 15Hz, we assume a remanence of τ = 1.3s for
α = 0.05.

In the first simulation (Fig. 1), two changes occur in the
cell: free to occupied at time index 10 and occupied to free at
time index 30. It corresponds to a scenario where an obstacle
crosses this cell. Mass functions are initialized to ignorance
m (Ω) = 1 and probabilities equally distributed to 0.5 as is
usually done.

0 5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

Sensor Information

0 5 10 15 20 25 30 35 40 45 50 55
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Probabilistic fusion
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Figure 1. Change of state of the occupancy of a cell: F → O → F .

Shannon’s entropy H follows similar evolutions at time
indexes 0, 12 and 33. So, it doesn’t allow to distinguish initial
ignorance (time 0) from state change (time 12 and 33). This
is perfectly in agreement with the fact that probabilities make
no difference between ignorance and conflict.

In the case of belief functions, entropy E raises just when
state changes. Specificity S starts from 0.5 due to the initial
ignorance and then stays close to 1 since the sensor always
provides information. Thanks to this specific behavior, one
can notice that the belief masses are informative for t > 2.
During intervals [11; 17] and [31; 35], masses are ambiguous.
This refined analysis is not possible using probabilities.

In the second simulation (Fig. 2), the cell is free at the
beginning but it is not observed during a lapse of time (20 <
t < 45s) because of an outage for instance and, when it is

ha
l-0

10
56

35
5,

 v
er

si
on

 1
 - 

18
 A

ug
 2

01
4



observed again, its state has changed.
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Figure 2. Effect of discounting factor α = 0.05, occupancy of the cell:
F → Ω (i.e. not observed)→ O.

After the transient phase, Shannon’s entropy H increases
slowly during the outage as the information on the cell is
discounted. Nevertheless, when the cell is observed again
(t>45), nothing indicates the change of the state. In the case of
belief masses, the specificity S slowly decreases indicating that
the loss of sensor information. Entropy E stays identically null
up to index 45 because their is no measurement that indicates a
change of state. When a measurement is again available (t>45),
the specificity reaches 1 again which indicates that the belief
masses are again informative. The entropy peak (t=45) is due
to the change of state. Its amplitude remains small because of
the ignorance level.

B. Real-time example with real data

The proposed system has been implemented in real-time and
embedded in an experimental vehicle. In this implementation,
we only make the fusion of the data provided by a IBEO
Alasca XT lidar scanner installed in the front bumper. In
this case, the amount of data is relatively sparse compared
to the scene complexity. An inertial positioning system with
hybridized GPS (Novatel Span CPT) provided the pose of the
vehicle with a high sampling rate.

Figure 3 shows some results in an urban environment (Paris)
under real traffic conditions. The top left figure presents
an image of the scene acquired by a camera embedded in
the vehicle used only for visualization. And top right one
shows a 3D view of the current lidar scan, the vehicle is
represented by the 3 axis on the bottom of the figure. The
bottom images present a set of grids that represent different
values (probabilities, mass functions, metrics, etc...). The size
of the grid is 10 m width and 40 m length with a cell resolution
of 0.1 m. The car is at the bottom of the grid looking upwards.
The 4-layers lidar is working at 15 Hz. The sensor model used

in this experiment is described in [10]. The discounting rate
α was set to 0.05 corresponding to a time constant of 1.3 s
as stated before. Sensor reliability was set to 0.8 for occupied
and free detection. These are the only parameters needed by
the perception method.

On figure 3c the grids represent respectively (from the left to
the right) : Evidential entropy Em, evidential specificity S̄m,
mass evidential function m, occupancy probability P (O) and
the probabilistic entropy H . All theses value are normalized
to the interval [0, 1] to be represented as a gray scale image
(0:black, 1:white). For the specificity, the value presented is the
complementary S̄m = 1−Sm in order to make the comparison
with the entropy easier. The mass function is represented by a
color grid, each color represents a specific mass (green : free,
red occupied, empty-set : blue and black unknown).

Here, the ego-vehicle is waiting at traffic lights and a car
coming from the left turns to the left. The environment is
composed of a lot of elements and the coverage of the sensor
is small because of masking.

First, the mass function m and the probabilistic grids P (O)
present quite similar results. Nevertheless, the evidential grid
is able to distinguish clearly the masked cells (black) of
the cells that make conflict (blue) whereas, in the second,
this is represented by the same gray level. The grids of
metrics illustrate these phenomena. One can remark that the
probabilistic entropy H and the complementary specificity S̄
are very similar. This shows that, in this case, for most of the
cells that have a high entropy, this is caused by ignorance.
These cells haven’t captured information from the previous
reading (because non observed) and so they can be fused with
any specific information directly in both frameworks.

Nevertheless, differences are apparent on these grids in areas
where the car is turning. These differences are highlighted
by evidential entropy E. It presents a low value everywhere
except on the car and on the borders. This entropy shows a
competition between the two states O and F . Contrary to a
non information, this means that the sensor provides reading
about this cell but the fusion brings conflict because of model
errors. Here, the static world assumption and the discretization
of the world induce this entropy. The entropy level can be used
to detect any inconsistency between the model and the data.
So, a mean level of the entropy of the grid can be an indicator
of the proper functioning.

C. Decision

Figure 4 shows the result of the decision bel (F ) > 0.5,
bel (O) > 0.5 and P (O > 0.5) on the same snapshot pre-
viously presented. We can remark that the two evidential
decisions are not complementary, because there are cells that
cannot be decided as free or occupied ones. If we observe the
probabilistic and evidential grids, we can see that the bel (O)
is similar but finer than the probabilistic one. This is because
cells near the borders support both O and Ω that are not
distinguishable by probabilities.
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Figure 4. Decision. Left: pl (O) > 0.5 (evidential), Middle: bel (O) > 0.5
(evidential), Right: P (O) > 0.5 (probabilistic)

VI. CONCLUSION

This paper has highlighted the advantages of managing
occupancy grids with an evidential framework. Results from
simulations and real-time experiments have been used to
make a comparison with the classical probabilistic approach.
The fact that belief functions are able to represent explicitly
ignorance and conflict improves the behavior of the data
fusion process particularly when the knowledge of the state
of the cells is poor because of the high dynamic of the
perception scene and the limited sensor coverage. We have
also presented belief function tools like specificity, entropy,
belief and plausibility that can help to build relevant indicators
to improve the reliability of the estimation process.

The frame of discernment presented here is simple and
considers only two states which is very efficient for a real-
time implementation as it has been shown by the real-time
results. We believe that similar approaches can be applied to
larger frames to enhance the understanding of the scene by
refining the classification process.
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(a) Camera Image (b) Current lidar cloud points

(c) Information metric comparison on a real occupancy grid.

Figure 3. Results of the real-time implementation using a four layers lidar.
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