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Abstract—Dempster-Shafer evidence theory is widely used for
approximate reasoning under uncertainty; however, the decision-
making is more intuitive and easy to justify when made in
the probabilistic context. Thus the transformation to approx-
imate a belief function into a probability measure is crucial
and important for decision-making based on evidence theory
framework. In this paper we present a new transformation of
any general basic belief assignment (bba) into a Bayesian belief
assignment (or subjective probability measure) based on new
proportional and hierarchical principle of uncertainty reduction.
Some examples are provided to show the rationality and efficiency
of our proposed probability transformation approach.
Keywords: Belief functions, probabilistic transformation,
DSmP, uncertainty, decision-making.

I. INTRODUCTION

Dempster-Shafer evidence theory (DST) [1] proposes a
mathematical framework for approximate reasoning under
uncertainty thanks to belief functions. Thus it is widely used in
many fields of information fusion. As any theory, DST is not
exempt of drawbacks and limitations, like its inconsistency
with the probability calculus, its complexity and the miss
of a clear decision-making process. Aside these weaknesses,
the use of belief functions remains flexible and appealing
for modeling and dealing with uncertain and imprecise in-
formation. That is why several modified models and rules of
combination of belief functions were proposed to resolve some
of the drawbacks of the original DST. Among the advances
in belief function theories, one can underline the transferable
belief model (TBM) [2] proposed by Smets, and more recently
the DSmT [3] proposed by Dezert and Smarandache.

The ultimate goal of approximate reasoning under uncer-
tainty is usually the decision-making. Although the decision-
making can be done based on evidence expressed by a belief
function [4], the decision-making is better established in a
probabilistic context: decisions can be evaluated by assessing
their ability to provide a winning strategy on the long run in a
game theory context, or by maximizing return in a utility the-
ory framework. Thus to take a decision, it is usually preferred
to transform (approximate) a belief function into a probability
measure. So the quality of such probability transformation
is crucial for the decision-making in the evidence theory.
The research on probability transformation has attracted more
attention in recent years.

The classical probability transformation in evidence theory
is the pignistic probability transformation (PPT) [2] in TBM.
TBM has two levels: the credal level, and the pignistic level.
Beliefs are entertained, combined and updated at the credal
level while the decision making is done at the pignistic level.
PPT maps the beliefs defined on subsets to the probability
defined on singletons. In PPT, belief assignments for a com-
pound focal element are equally assigned to the singletons
included. In fact, PPT is designed according to the principle
of minimal commitment, which is somehow related with
uncertainty maximization.

Other researchers also proposed some modified probability
transformation approaches [5]–[13] to assign the belief assign-
ments of compound focal elements to the singletons according
to some ratio constructed based on some available information.
The representative transformations include Sudano’s probabil-
ity transformations [8] and Cuzzolin’s intersection probability
transformation [13], etc. In the framework of DSmT, another
probability transformation approach was proposed, which is
called DSmP [9]. DSmP takes into account both the values
of the masses and the cardinality of focal elements in the
proportional redistribution process. DSmP can also be used in
both DSmT and DST. For a probability transformation, it is
always evaluated by using probabilistic information content
(PIC) [5] (PIC being the dual form of Shannon entropy),
although it is not enough or comprehensive [14]. A probabil-
ity transformation providing a high probabilistic information
content (PIC) is preferred in fact for decision-making since
naturally it is always easier to take a decision when the
uncertainty is reduced.

In this paper we propose a new probability transformation,
which can output a probability with high but not exagger-
ated PIC. The new approach, called HDSmP (standing for
Hierarchical DSmP) is implemented hierarchically and it fully
utilize the information provided by a given belief function.
Succinctly, for a frame of discernment (FOD) with size 𝑛, for
𝑘 = 𝑛 down to 𝑘 = 2, the following step is repeated: the belief
assignment of a focal element with size 𝑘 is proportionally
redistributed to the focal elements with size 𝑘 − 1. The
proportion is defined by the ratio among mass assignments of
focal elements with size 𝑘−1. A parameter 𝜖 is introduced in
the formulas to avoid division by zero and warranty numerical
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robustness of the result. HDSmP corresponds to the last step
of the hierarchical proportional redistribution method for basic
belief assignment (bba) approximation presented briefly in
[16] and in more details in [17]. Some examples are given at
the end of this paper to illustrate our proposed new probability
transformation approach. Comparisons of our new HDSmP
approach with the other well-known approaches with related
analyses are also provided.

II. EVIDENCE THEORY AND PROBABILITY
TRANSFORMATIONS

A. Brief introduction of evidence theory

In Dempster-Shafer theory [1], the elements in the frame of
discernment (FOD) Θ are mutually exclusive. Suppose that 2Θ

represents the powerset of FOD, and one defines the function
𝑚 : 2Θ → [0, 1] as the basic belief assignment (bba), also
called mass function satisfying:∑

𝐴⊆Θ
𝑚(𝐴) = 1, 𝑚(∅) = 0 (1)

Belief function (𝐵𝑒𝑙) and plausibility function (𝑃𝑙) are
defined below, respectively:

𝐵𝑒𝑙(𝐴) =
∑

𝐵⊆𝐴
𝑚(𝐵) (2)

𝑃𝑙(𝐴) =
∑

𝐴∩𝐵 ∕=∅ 𝑚(𝐵) (3)

Suppose that 𝑚1,𝑚2, ...,𝑚𝑛 are 𝑛 mass functions, Dempster’s
rule of combination is defined in (4):

𝑚(𝐴) =

⎧⎨⎩
0, 𝐴 = ∅∑
∩𝐴𝑖=𝐴

∏
1≤𝑖≤𝑛

𝑚𝑖(𝐴𝑖)∑
∩𝐴𝑖 ∕=∅

∏
1≤𝑖≤𝑛

𝑚𝑖(𝐴𝑖)
, 𝐴 ∕= ∅ (4)

Dempster’s rule of combination is used in DST to accom-
plish the fusion of bodies of evidence (BOEs). However, the
final goal for decision-level information fusion is decision
making. The beliefs should be transformed into probabilities,
before the probability-based decision-making. Although there
are also some research works on making decision directly
based on belief function or bba [4], probability-based decision
methods are more intuitive and have become the current
trend to decide under uncertainty from approximate reasoning
theories [15]. Some existing and well-known probability trans-
formation approaches are briefly reviewed in the next section.

B. Probability transformations used in DST framework

A probability transformation (or briefly a “probabilization”)
is a mapping 𝑃𝑇 : 𝐵𝑒𝑙Θ → 𝑃Θ, where 𝐵𝑒𝑙Θ means
the belief function defined on Θ and 𝑃Θ represents a
probability measure (in fact a probability mass function,
pmf) defined on Θ. Thus the probability transformation
assigns a Bayesian belief function (i.e. probability measure)
to any general (i.e. non-Bayesian) belief function. It is a
reason why the transformations from belief functions to
probability distributions are sometimes called also Bayesian
transformations.

The major probability transformation approaches used so
far are:

a) Pignistic transformation
The classical pignistic probability was proposed by Smets

[2] in his TBM framework which is a subjective and a non-
probabilistic interpretation of DST. It extends the evidence
theory to the open-world propositions and it has a range of
tools including discounting and conditioning to handle belief
functions. At the credal level of TBM, beliefs are entertained,
combined and updated. While at the pignistic level, beliefs are
used to make decisions by resorting to pignistic probability
transformation (PPT). The pignistic probability obtained is
always called betting commitment probability (in short, BetP).
The basic idea of pignistic transformation consists of trans-
ferring the positive belief of each compound (or nonspecific)
element onto the singletons involved in that compound element
split by the cardinality of the proposition when working with
normalized bba’s.

Suppose that Θ = {𝜃1, 𝜃2, ..., 𝜃𝑛} is the FOD. The PPT for
the singletons is defined as [2]:

BetP𝑚(𝜃𝑖) =
∑

𝜃𝑖∈𝐵, 𝐵∈2Θ

𝑚(𝐵)

∣𝐵∣ (5)

PPT is designed according to an idea similar to uncertainty
maximization. In PPT, masses are not assigned discriminately
to different singletons involved. For information fusion, the
aim is to reduce the degree of uncertainty and to gain a more
consolidated and reliable decision result. High uncertainty in
PPT might not be helpful for the decision. To overcome this,
some typical modified probability transformation approaches
were proposed which are summarized below.

b) Sudano’s probabilities
Sudano [8] proposed Probability transformation propor-

tional to Plausibilities (PrPl), Probability transformation pro-
portional to Beliefs (PrBel), Probability transformation pro-
portional to the normalized Plausibilities (PrNPl), Probability
transformation proportional to all Plausibilities (PraPl) and
Hybrid Probability transformation (PrHyb), respectively. As
suggested by their names, different kinds of mappings were
used. For the belief function defined on the FOD Θ =
{𝜃1, ..., 𝜃𝑛}, they are respectively defined by

PrPl(𝜃𝑖) = 𝑃𝑙({𝜃𝑖}) ⋅
∑

𝑌 ∈2Θ,𝜃𝑖∈𝑌

𝑚(𝑌 )∑
∪𝑗𝜃𝑗=𝑌

𝑃𝑙({𝜃𝑗}) (6)

PrBel(𝜃𝑖) = 𝐵𝑒𝑙({𝜃𝑖}) ⋅
∑

𝑌 ∈2Θ,𝜃𝑖∈𝑌

𝑚(𝑌 )∑
∪𝑗𝜃𝑗=𝑌

𝐵𝑒𝑙({𝜃𝑗}) (7)

PrNPl(𝜃𝑖) =
𝑃𝑙({𝜃𝑖})∑
𝑗

𝑃𝑙({𝜃𝑗}) (8)

PraPl(𝜃𝑖) = 𝐵𝑒𝑙({𝜃𝑖}) +
1−∑

𝑗 𝐵𝑒𝑙({𝜃𝑗})∑
𝑗 𝑃𝑙({𝜃𝑗}) ⋅ 𝑃𝑙({𝜃𝑖}) (9)
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PrHyb(𝜃𝑖) = PraPl(𝜃𝑖) ⋅
∑

𝑌 ∈2Θ,𝜃𝑖∈𝑌

𝑚(𝑌 )∑
∪𝑗𝜃𝑗=𝑌

PraPl(𝜃𝑗)
(10)

c) Cuzzolin’s intersection probability
From a geometric interpretation of Dempster’s rule of

combination, an intersection probability measure was proposed
by Cuzzolin [12] from the proportional repartition of the
total nonspecific mass (TNSM) for each contribution of the
nonspecific masses involved.

CuzzP(𝜃𝑖) = 𝑚({𝜃𝑖}) + 𝑃𝑙({𝜃𝑖})−𝑚({𝜃𝑖})∑
𝑗 (𝑃𝑙({𝜃𝑗})−𝑚({𝜃𝑗})) ⋅ TNSM (11)

where

TNSM = 1−
∑

𝑗
𝑚({𝜃𝑗}) =

∑
𝐴∈2Θ,∣𝐴∣>1

𝑚(𝐴) (12)

d) DSmP transformation
DSmP proposed recently by Dezert and Smarandache is

defined as follows:

DSmP𝜖(𝜃𝑖) = 𝑚({𝜃𝑖})
+ (𝑚({𝜃𝑖}) + 𝜖) ⋅

∑
𝑋∈2Θ

𝜃𝑖⊂𝑋
∣𝑋∣≥2

𝑚(𝑋)∑
𝑌 ∈2Θ

𝑌⊂𝑋
∣𝑌 ∣=1

𝑚(𝑌 ) + 𝜖 ⋅ ∣𝑋∣ (13)

In DSmP, both the mass assignments and the cardinality
of focal elements are used in the proportional redistribution
process. The parameter of 𝜖 is used to adjust the effect of
focal element’s cardinality in the proportional redistribution,
and to make DSmP defined and computable when encoun-
tering zero masses. DSmP made an improvement compared
with Sudano’s, Cuzzolin’s and PPT formulas, in that DSmP
mathematically makes a more judicious redistribution of the
ignorance masses to the singletons involved and thus increases
the PIC level of the resulting approximation. Moreover, DSmP
works for both theories of DST and DSmT.

There are still some other definitions on modified PPT such
as the iterative and self-consistent approach PrScP proposed
by Sudano in [5], and a modified PrScP in [11]. Although
the aforementioned probability transformation approaches are
different, they are all evaluated according to the degree of
uncertainty. The classical evaluation criteria for a probability
transformation are the following ones:

1) Normalized Shannon Entropy
Suppose that 𝑃 (𝜃) is a probability mass function (pmf),

where 𝜃 ∈ Θ, ∣Θ∣ = 𝑁 and the ∣Θ∣ represents the cardinality
of the FOD Θ. An evaluation criterion for the pmf obtained
from different probability transformation is as follows [12]:

EH =

− ∑
𝜃∈Θ

𝑃 (𝜃) log2(𝑃 (𝜃))

log2 𝑁
(14)

i.e., the ratio of Shannon entropy and the maximum of
Shannon entropy for {𝑃 (𝜃)∣𝜃 ∈ Θ},∣Θ∣ = 𝑁 . Clearly EH

is normalized. The larger EH is, the larger the degree of

uncertainty is. The smaller EH is, the smaller the degree
of uncertainty is. When EH= 0, one hypothesis will have
probability 1 and the rest with zero probabilities. Therefore
the agent or system can make decision without error. When
EH= 1, it is impossible to make a correct decision, because
𝑃 (𝜃), for all 𝜃 ∈ Θ are equal.

2) Probabilistic Information Content
Probabilistic Information Content (PIC) criterion [5] is an

essential measure in any threshold-driven automated decision
system. The PIC value of a pmf obtained from a probability
transformation indicates the level of the total knowledge one
has to draw a correct decision.

PIC(𝑃 ) = 1 +
1

log2 𝑁
⋅
∑
𝜃∈Θ

𝑃 (𝜃) log2(𝑃 (𝜃)) (15)

Obviously, PIC = 1 − EH. The PIC is the dual of the
normalized Shannon entropy. A PIC value of zero indicates
that the knowledge to take a correct decision does not exist (all
hypotheses have equal probabilities, i.e., one has the maximal
entropy).

Less uncertainty means that the corresponding probability
transformation result is better to help to take a decision.
According to such a simple and basic idea, the probability
transformation approach should attempt to enlarge the belief
differences among all the propositions and thus to achieve a
more reliable decision result.

III. THE HIERARCHICAL DSMP TRANSFORMATION

In this paper, we propose a novel probability transformation
approach called hierarchical DSmP (HDSmP), which provides
a new way to reduce step by step the mass committed to
uncertainties until to obtain an approximate measure of
subjective probability, i.e. a so-called Bayesian bba in [1]. It
must be noticed that this procedure can be stopped at any
step in the process and thus it allows to reduce the number
of focal elements in a given bba in a consistent manner to
diminish the size of the core of a bba and thus reduce the
complexity (if needed) when applying also some complex
rules of combinations. We present here the general principle
of hierarchical and proportional reduction of uncertainties
in order to finally obtain a Bayesian bba. The principle of
redistribution of uncertainty to more specific elements of the
core at any given step of the process follows the proportional
redistribution already proposed in the (non hierarchical)
DSmP transformation proposed recently in [3].

Let’s first introduce two new notations for convenience and
for concision:

1) Any element of cardinality 1 ≤ 𝑘 ≤ 𝑛 of the power
set 2Θ will be denoted, by convention, by the generic
notation 𝑋(𝑘). For example, if Θ = {𝐴,𝐵,𝐶}, then
𝑋(2) denotes the following partial uncertainties 𝐴∪𝐵,
𝐴∪𝐶 or 𝐵∪𝐶, and 𝑋(3) denotes the total uncertainty
𝐴 ∪𝐵 ∪ 𝐶.

2) The proportional redistribution factor (ratio) of width 𝑠
involving elements 𝑌 and 𝑋 of the powerset is defined
as (for 𝑋 ∕= ∅ and 𝑌 ∕= ∅)
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𝑅𝑠(𝑌,𝑋) ≜ 𝑚(𝑌 ) + 𝜖 ⋅ ∣𝑋∣∑
𝑌 ⊂𝑋

∣𝑋∣−∣𝑌 ∣=𝑠
(𝑚(𝑌 ) + 𝜖 ⋅ ∣𝑋∣) (16)

where 𝜖 is a small positive number introduced here to
deal with particular cases where

∑
𝑌⊂𝑋

∣𝑋∣−∣𝑌 ∣=𝑠
𝑚(𝑌 ) = 0.

In HDSmP, we just need to use the proportional redis-
tribution factors of width 𝑛 = 1, and so we will just
denote 𝑅(𝑌,𝑋) ≜ 𝑅1(𝑌,𝑋) by convention.

The HDSmP transformation is obtained by a step by step
(recursive) proportional redistribution of the mass 𝑚(𝑋(𝑘))
of a given uncertainty 𝑋(𝑘) (partial or total) of cardinality
2 ≤ 𝑘 ≤ 𝑛 to all the least specific elements of cardinality
𝑘 − 1, i.e. to all possible 𝑋(𝑘 − 1), until 𝑘 = 2 is reached.
The proportional redistribution is done from the masses of
belief committed to 𝑋(𝑘 − 1) as done classically in DSmP
transformation. Mathematically, HDSmP is defined for any
𝑋(1) ∈ Θ, i.e. any 𝜃𝑖 ∈ Θ by

𝐻𝐷𝑆𝑚𝑃 (𝑋(1)) = 𝑚(𝑋(1))+∑
𝑋(2)⊃𝑋(1)

𝑋(1),𝑋(2)∈2Θ

[𝑚ℎ(𝑋(2)) ⋅𝑅(𝑋(1), 𝑋(2))] (17)

where the ”hierarchical” masses 𝑚ℎ(.) are recursively (back-
ward) computed as follows:

𝑚ℎ(𝑋(𝑛− 1)) = 𝑚(𝑋(𝑛− 1))+∑
𝑋(𝑛)⊃𝑋(𝑛−1)

𝑋(𝑛),𝑋(𝑛−1)∈2Θ

[𝑚(𝑋(𝑛)) ⋅𝑅(𝑋(𝑛− 1), 𝑋(𝑛))]

𝑚ℎ(𝐴) = 𝑚(𝐴),∀∣𝐴∣ < 𝑛− 1

(18)

𝑚ℎ(𝑋(𝑛− 2)) = 𝑚(𝑋(𝑛− 2))+∑
𝑋(𝑛−1)⊃𝑋(𝑛−2)

𝑋(𝑛−2),𝑋(𝑛−1)∈2Θ

[𝑚ℎ(𝑋(𝑛− 1)) ⋅𝑅(𝑋(𝑛− 2), 𝑋(𝑛− 1))]

𝑚ℎ(𝐴) = 𝑚(𝐴),∀∣𝐴∣ < 𝑛− 2

...
(19)

𝑚ℎ(𝑋(2)) = 𝑚(𝑋(2))+∑
𝑋(3)⊃𝑋(2)

𝑋(3),𝑋(2)∈2Θ

[𝑚ℎ(𝑋(3)) ⋅𝑅(𝑋(2), 𝑋(3))]

𝑚ℎ(𝐴) = 𝑚(𝐴),∀∣𝐴∣ < 2

(20)

Actually, it is worth to note that 𝑋(𝑛) is in fact unique and
it corresponds only to the full ignorance 𝜃1 ∪ 𝜃2 ∪ . . . ∪ 𝜃𝑛.
Therefore, the expression of 𝑚ℎ(𝑋(𝑛 − 1)) in Eq. (18) just
simplifies as

𝑚ℎ(𝑋(𝑛−1)) = 𝑚(𝑋(𝑛−1))+𝑚(𝑋(𝑛))⋅𝑅(𝑋(𝑛−1), 𝑋(𝑛))

Because of the full proportional redistribution of the masses
of uncertainties to the elements least specific involved in these
uncertainties, no mass of belief is lost during the step by step
hierarchical process and thus one gets finally a Bayesian bba
satisfying

∑
𝑋(1)∈2Θ 𝐻𝐷𝑆𝑚𝑃 (𝑋(1)) = 1.

IV. EXAMPLES

In this section we show in details how HDSmP can be
applied on very simple different examples. So let’s examine
the three following examples based on a simple 3D frame of
discernment Θ = {𝜃1, 𝜃2, 𝜃3} satisfying Shafer’s model.

A. Example 1

Let’s consider the following bba:

𝑚(𝜃1) = 0.10, 𝑚(𝜃2) = 0.17, 𝑚(𝜃3) = 0.03,

𝑚(𝜃1 ∪ 𝜃2) = 0.15, 𝑚(𝜃1 ∪ 𝜃3) = 0.20,

𝑚(𝜃2 ∪ 𝜃3) = 0.05, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30.

We apply HDSmP with 𝜖 = 0 in this example because there
is no mass of belief equal to zero. It can be verified that the
result obtained with a small positive 𝜖 parameter remains (as
expected) numerically very close to the result obtained with
𝜖 = 0. This verification is left to the reader.

The first step of HDSmP consists in redistributing back
𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30 committed to the full ignorance
to the elements 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 only, because
these elements are the only elements of cardinality 2 that are
included in 𝜃1∪𝜃2∪𝜃3. Applying the Eq. (18) with 𝑛 = 3, one
gets when 𝑋(2) = 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃1 ∪ 𝜃2 the following
masses

𝑚ℎ(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.15 + (0.3 ⋅ 0.375) = 0.2625

because 𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) = 0.15
0.15+0.20+0.05 = 0.375.

Similarly, one gets

𝑚ℎ(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.5) = 0.35

because 𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) = 0.20
0.15+0.20+0.05 = 0.5, and also

𝑚ℎ(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.05 + (0.3 ⋅ 0.125) = 0.0875

because 𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) = 0.05
0.15+0.20+0.05 = 0.125.

Now, we go to the next step of HDSmP and one needs to
redistribute the masses of partial ignorances 𝑋(2) correspond-
ing to 𝜃1∪𝜃2, 𝜃1∪𝜃3 and 𝜃2∪𝜃3 back to the singleton elements
𝑋(1) corresponding to 𝜃1, 𝜃2 and 𝜃3. We use directly HDSmP
in Eq. (17) for doing this as follows:
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𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.10 + (0.2625 ⋅ 0.3703) + (0.35 ⋅ 0.7692)
= 0.10 + 0.0972 + 0.2692 = 0.4664

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.10

0.10 + 0.17
≈ 0.3703

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.10

0.10 + 0.03
≈ 0.7692

Similarly, one gets

𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.10 + (0.2625 ⋅ 0.6297) + (0.0875 ⋅ 0.85)
= 0.17 + 0.1653 + 0.0744 = 0.4097

because

𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =
0.17

0.10 + 0.17
≈ 0.6297

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17

0.17 + 0.03
= 0.85

and also

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.03 + (0.35 ⋅ 0.2307) + (0.0875 ⋅ 0.15)
= 0.03 + 0.0808 + 0.0131 = 0.1239

because

𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =
0.03

0.10 + 0.03
≈ 0.2307

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.03

0.17 + 0.03
= 0.15

Hence, the final result of HDSmP transformation is:

𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 0.4664, 𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 0.4097,

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 0.1239.

and we can easily verify that

𝐻𝐷𝑆𝑚𝑃 (𝜃1) +𝐻𝐷𝑆𝑚𝑃 (𝜃2) +𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 1.

The procedure can be illustrated in Fig. 1 below.

1 2 3{ , , }   

1 2{ , }  1 3{ , }  2 3{ , }  

1{ } 2{ } 3{ } 

Step 1

Step 2

Figure 1. Illustration of Example 1

Table I
EXPERIMENTAL RESULTS FOR EXAMPLE 1.

Approaches
Propositions

EH𝜃1 𝜃2 𝜃3
BetP 0.3750 0.3700 0.2550 0.9868
PrPl 0.4045 0.3681 0.2274 0.9747
PrBel 0.4094 0.4769 0.1137 0.8792
DSmP 0 0.4094 0.4769 0.1137 0.8792
DSmP 0.001 0.4094 0.4769 0.1137 0.8792
HDSmP 0 0.4664 0.4097 0.1239 0.8921
HDSmP 0.001 0.4664 0.4097 0.1239 0.8921

The classical DSmP transformation [3] and the other trans-
formations (BetP [2], PrBel and PrPl [8]) are compared with
HDSmP for this example in Table I. It can be seen in Table I
that the normalized entropy EH of HDSmP is relatively small
but not too small among all the probability transformations
used. In fact it is normal that the entropy drawn form HDSmP
is a bit bigger than the entropy drawn from DSmP, because
there is a ”dilution” of uncertainty in the step-by-step redis-
tribution, whereas such dilution of uncertainty is absent in the
direct DSmP transformation.

B. Example 2

Let’s consider the following bba:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0.17, 𝑚(𝜃3) = 0.13,

𝑚(𝜃1 ∪ 𝜃2) = 0.20, 𝑚(𝜃1 ∪ 𝜃3) = 0.20,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30

The first step of HDSmP consists in redistributing back
𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30 committed to the full ignorance to
the elements 𝜃1∪𝜃2, and 𝜃1∪𝜃3 only, because these elements
are the only elements of cardinality 2 that are included in
𝜃1∪𝜃2∪𝜃3. Applying the Eq. (18) with 𝑛 = 3, one gets when
𝑋(2) = 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃1 ∪ 𝜃2 the following masses

𝑚ℎ(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.5) = 0.35

because 𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) = 0.20
0.20+0.20+0.00 = 0.5.

Similarly, one gets

𝑚ℎ(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.5) = 0.35

because 𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) = 0.20
0.20+0.20+0.00 = 0.5, and also

𝑚ℎ(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.00 + (0.3 ⋅ 0.0) = 0

because 𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) = 0.0
0.20+0.20+0.00 = 0.

Now, we go to the next and last step of HDSmP principle,
and one needs to redistribute the masses of partial ignorances
𝑋(2) corresponding to 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3 back to
the singleton elements 𝑋(1) corresponding to 𝜃1, 𝜃2 and 𝜃3.
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We use directly HDSmP in Eq. (17) for doing this as follows:

𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.00 + (0.35 ⋅ 0.00) + (0.35 ⋅ 0.00)
= 0.00 + 0.00 + 0.00 = 0

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.00

0.00 + 0.17
= 0.00

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.00

0.00 + 0.13
= 0.00

Similarly, one gets

𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.17 + (0.35 ⋅ 1) + (0.00 ⋅ 0.5667)
= 0.17 + 0.35 + 0.00 = 0.52

because
𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =

0.17

0.00 + 0.17
= 1

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17

0.17 + 0.13
≈ 0.5667

and also

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.13 + (0.35 ⋅ 1) + (0.00 ⋅ 0.4333)
= 0.13 + 0.35 + 0.00 = 0.48

because
𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =

0.13

0.13 + 0.00
= 1

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.13

0.17 + 0.13
≈ 0.4333

Hence, the final result of HDSmP transformation is:

𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 0.4664, 𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 0.4097,

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 0.1239.

and we can easily verify that

𝐻𝐷𝑆𝑚𝑃 (𝜃1) +𝐻𝐷𝑆𝑚𝑃 (𝜃2) +𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 1.

The HDSmP procedure of Example 2 with 𝜖 = 0 is Fig. 2.
The HDSmP procedure of Example 2 with 𝜖 > 0 is the same
as that illustrated in Fig. 1. When one takes 𝜖 > 0, there exist
masses redistributed to {𝜃2 ∪ 𝜃3}. If one takes 𝜖 = 0, there
is no mass edistributed to {𝜃2 ∪ 𝜃3}. That’s the difference
between Fig. 1 and Fig. 2.

Let’s suppose that one takes 𝜖 = 0.001, then the HDSmP
calculation procedure is as follows:
∙ Step 1: The first step of HDSmP consists in distributing back
𝑚(𝜃1∪ 𝜃2∪ 𝜃3) = 0.30 committed to the full ignorance to the
elements 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and 𝜃2 ∪ 𝜃3. Applying the formula

1 2 3{ , , }   

1 2{ , }  1 3{ , }  

1{ } 2{ } 3{ } 

Step 1

Step 2

Figure 2. Illustration of Example 2.

(III) with 𝑛 = 3, one gets when 𝑋(2) = 𝜃1 ∪ 𝜃2, 𝜃1 ∪ 𝜃3 and
𝜃1 ∪ 𝜃2 the following masses

𝑚ℎ(𝜃1 ∪ 𝜃2) = 𝑚(𝜃1 ∪ 𝜃2) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃2, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.4963) = 0.3489

because

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) =
0.20 + 0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.4963

𝑚ℎ(𝜃1 ∪ 𝜃3) = 𝑚(𝜃1 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃1 ∪ 𝜃3, 𝑋(3))

= 0.20 + (0.3 ⋅ 0.4963) = 0.3489

because

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) =
0.20 + 0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.4963

𝑚ℎ(𝜃2 ∪ 𝜃3) = 𝑚(𝜃2 ∪ 𝜃3) +𝑚(𝑋(3)) ⋅𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

= 0.00 + (0.3 ⋅ 0.0073) = 0.0022

because

𝑅(𝜃2 ∪ 𝜃3, 𝑋(3)) =
0.001 ⋅ 3

(0.20 + 0.001 ⋅ 3) ⋅ 2 + (0.00 + 0.001 ⋅ 3)
= 0.0073

∙ Next step: one needs to redistribute the masses of partial
ignorances 𝑋(2) corresponding to 𝜃1∪𝜃2, 𝜃1∪𝜃3 and 𝜃2∪𝜃3
back to the singleton elements 𝑋(1) corresponding to 𝜃1, 𝜃2
and 𝜃3. We use directly HDSmP in Eq. (17) for doing this as
follows:

𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 𝑚(𝜃1) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃1, 𝜃1 ∪ 𝜃3)

≈ 0.00 + (0.3489 ⋅ 0.0115) + (0.3489 ⋅ 0.0149)
= 0.00 + 0.0040 + 0.0052 = 0.0092

because

𝑅(𝜃1, 𝜃1 ∪ 𝜃2) =
0.00 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.17 + 0.001 ⋅ 2)
= 0.0115

𝑅(𝜃1, 𝜃1 ∪ 𝜃3) =
0.00 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
= 0.0149
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Similarly, one gets

𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 𝑚(𝜃2) +𝑚ℎ(𝜃1 ∪ 𝜃2) ⋅𝑅(𝜃2, 𝜃1 ∪ 𝜃2)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃2, 𝜃2 ∪ 𝜃3)

≈ 0.17 + (0.3489 ⋅ 0.9885) + (0.0022 ⋅ 0.5658)
= 0.17 + 0.3449 + 0.0012 = 0.5161

because

𝑅(𝜃2, 𝜃1 ∪ 𝜃2) =
0.17 + 0.001 ⋅ 2

(0.00 + 0.001 ⋅ 2) + (0.17 + 0.001 ⋅ 2)
= 0.9885

𝑅(𝜃2, 𝜃2 ∪ 𝜃3) =
0.17 + 0.001 ⋅ 2

(0.17 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
≈ 0.5658

and also

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 𝑚(𝜃3) +𝑚ℎ(𝜃1 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃1 ∪ 𝜃3)

+𝑚ℎ(𝜃2 ∪ 𝜃3) ⋅𝑅(𝜃3, 𝜃2 ∪ 𝜃3)

≈ 0.13 + (0.3489 ⋅ 0.9851) + (0.0022 ⋅ 0.4342)
= 0.13 + 0.3437 + 0.0009 = 0.4746

because

𝑅(𝜃3, 𝜃1 ∪ 𝜃3) =
0.13 + 0.001 ⋅ 2

(0.13 + 0.001 ⋅ 2) + (0.00 + 0.001 ⋅ 2)
= 0.9851

𝑅(𝜃3, 𝜃2 ∪ 𝜃3) =
0.13 + 0.001 ⋅ 2

(0.17 + 0.001 ⋅ 2) + (0.13 + 0.001 ⋅ 2)
≈ 0.4342

Hence, the final result of HDSmP transformation is:

𝐻𝐷𝑆𝑚𝑃 (𝜃1) = 0.0092, 𝐻𝐷𝑆𝑚𝑃 (𝜃2) = 0.5161,

𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 0.4746.

and we can easily verify that

𝐻𝐷𝑆𝑚𝑃 (𝜃1) +𝐻𝐷𝑆𝑚𝑃 (𝜃2) +𝐻𝐷𝑆𝑚𝑃 (𝜃3) = 1.

We also calculate some other probability transformations
and the results are listed in Table II.

Table II
EXPERIMENTAL RESULTS FOR EXAMPLE 2.

Approaches
Propositions

EH𝜃1 𝜃2 𝜃3
BetP 0.3000 0.3700 0.3300 0.9966
PrPl 0.3125 0.3683 0.3192 0.9975
PrBel NaN NaN NaN NaN
DSmP 0 0.0000 0.5400 0.4600 0.6280
DSmP 0.001 0.0037 0.5381 0.4582 0.6479
HDSmP 0 0.0000 0.5200 0.4800 0.6302
HDSmP 0.001 0.0092 0.5161 0.4746 0.6720

It can be seen in Table II that the normalized entropy EH

of HDSmP is relatively small but not too small among all the
probability transformations used.

C. Example 3

Let’s consider the following bba:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0, 𝑚(𝜃3) = 0.70,

𝑚(𝜃1 ∪ 𝜃2) = 0, 𝑚(𝜃1 ∪ 𝜃3) = 0,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 0.30

In this example, the mass assignments for all the focal ele-
ments with cardinality size 2 equal to zero. For HDSmP, when
𝜖 > 0, 𝑚(𝜃2 ∪ 𝜃3) will be divided equally and redistributed to
{𝜃1 ∪ 𝜃2}, {𝜃1 ∪ 𝜃3} and {𝜃2 ∪ 𝜃3}. Because the ratios are

𝑅(𝜃1 ∪ 𝜃2, 𝑋(3)) = 𝑅(𝜃1 ∪ 𝜃3, 𝑋(3)) = 𝑅(𝜃2 ∪ 𝜃3, 𝑋(3))

=
0.00 + 0.001 ⋅ 3

(0.00 + 0.001 ⋅ 3) ⋅ 3 = 0.3333

One sees that with the parameter 𝜖 = 0, HDSmP cannot be
computed (division by zero) and that is why it is necessary to
use 𝜖 > 0 in such particular case. The results of HDSmP and
other probability transformations are listed in Table III.

Table III
EXPERIMENTAL RESULTS FOR EXAMPLE 3.

Approaches
Propositions

EH𝜃1 𝜃2 𝜃3
BetP 0.1000 0.1000 0.8000 0.5871
PrPl 0.0562 0.0562 0.8876 0.3911
PrBel NaN NaN NaN NaN
DSmP 0 0.0000 0.0000 1.0000 0.0000
DSmP 0.001 0.0004 0.0004 0.0092 0.0065
HDSmP 0 NaN NaN NaN NaN
HDSmP 0.001 0.0503 0.0503 0.8994 0.3606

It can be seen in Table III that the normalized entropy EH

of HDSmP is relatively small but not the smallest among all
the probability transformations used. Naturally, and as already
pointed out, HDSmP𝜖=0 cannot be computed in such example
because of division by zero. But with the use of the parameter
𝜖 = 0.001, the mass of 𝑚(𝜃1∪𝜃2∪𝜃3) becomes equally divided
and redistributed to the focal elements with cardinality of 2.
This justify the necessity of the use of parameter 𝜖 > 0 in
some particular cases when there exist masses equal to zero.

D. Example 4 (vacuous bba)

Let’s consider the following particular bba, called the vacu-
ous bba since it represents a fully ignorant source of evidence:

𝑚(𝜃1) = 0, 𝑚(𝜃2) = 0, 𝑚(𝜃3) = 0,

𝑚(𝜃1 ∪ 𝜃2) = 0, 𝑚(𝜃1 ∪ 𝜃3) = 0,

𝑚(𝜃2 ∪ 𝜃3) = 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) = 1

In this example, the mass assignments for all the focal ele-
ments with cardinality less than 3 equal to zero. For HDSmP,
when 𝜖 > 0, 𝑚(𝜃1 ∪ 𝜃2 ∪ 𝜃3) will be divided equally and
redistributed to {𝜃1 ∪ 𝜃2}, {𝜃1 ∪ 𝜃3} and {𝜃2 ∪ 𝜃3}. Similarly,
the mass assignments for focal elements with cardinality of
2 (partial ignorances) obtained at the intermediate step will
be divided equally and redistributed to singletons included in
them. This redistribution is possible for the existence of 𝜖 > 0
in HDSmP formulas. HDSmP cannot be applied and computed
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in such example if one takes 𝜖 = 0, and that is why one needs
to use 𝜖 > 0 here. The results of HDSmP and other probability
transformations are listed in Table IV.

Table IV
EXPERIMENTAL RESULTS FOR EXAMPLE 4.

Approaches
Propositions

EH𝜃1 𝜃2 𝜃3
BetP 0.3333 0.3333 0.3333 1.0000
PrPl 0.3333 0.3333 0.3333 1.0000
PrBel NaN NaN NaN NaN
DSmP 0 NaN NaN NaN NaN
DSmP 0.001 0.3333 0.3333 0.3333 1.0000
HDSmP 0 NaN NaN NaN NaN
HDSmP 0.001 0.3333 0.3333 0.3333 1.0000

It can be seen in Tables I – IV that the normalized entropy
EH of HDSmP is always moderate among the other probability
transformations it is compared with, and it is normal to get an
entropy value with HDSmP bigger than with DSmP because of
dilution of uncertainty through the procedure of HDSmP. We
have already shown that the entropy criteria is not enough in
fact to evaluate the quality a probability transformation [14],
and always a compromise must be found between entropy level
and numerical robustness of the transformation. Although the
entropy should be as small as possible for decision-making,
exaggerate small entropy is not always preferred. Because of
the way the mass of (partial) ignorances is proportionally
redistributed, it is clear that if the mass assignment for a
singleton equals to zero in the original bba, then after applying
DSmP or HDSmP transformations this mass is unchanged and
is kept to zero. This behavior may appear a bit intuitively
surprising at the first glance specially if some masses of partial
ignorances including this singleton are not equal to zero.
This behavior is however normal in the spirit of proportional
redistribution because one wants to reduce the PIC value so
that if one has no strong support (belief) in a singleton in
the original bba, we expect also to have no strong support in
this singleton after the transformation is applied which makes
perfectly sense. Of course if such behavior is considered as
too optimistic or not acceptable because it appears too risky
in some applications, it is always possible to choose another
transformation instead. The final choice is always left in the
hands of the user, or the fusion system designer.

V. CONCLUSIONS

Probability transformation is very crucial for decision-
making in evidence theory. In this paper a novel interesting and
useful hierarchical probability transformation approach called
HDSmP has been proposed, and HDSmP always provides a
moderate value of entropy which is necessary for an easier
and reliable decision-making support. Unfortunately the PIC
(or entropy) level is not the unique useful criterion to evaluate
the quality of a probability transformation in general. At least
the numerical robustness of the method is also important and
must be considered seriously as already shown in our previous
works. Therefore, to evaluate any probability transformation
more efficiently and to outperform existing transformations

(including DSmP and HDSmP) a more general comprehensive
evaluation criteria need to be found. The search for such a
criteria is under investigations.
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